]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - security/selinux/ss/conditional.c
Merge tag 'selinux-pr-20200621' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / security / selinux / ss / conditional.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
3 * Frank Mayer <mayerf@tresys.com>
4 *
5 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/string.h>
11 #include <linux/spinlock.h>
12 #include <linux/slab.h>
13
14 #include "security.h"
15 #include "conditional.h"
16 #include "services.h"
17
18 /*
19 * cond_evaluate_expr evaluates a conditional expr
20 * in reverse polish notation. It returns true (1), false (0),
21 * or undefined (-1). Undefined occurs when the expression
22 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
23 */
24 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
25 {
26 u32 i;
27 int s[COND_EXPR_MAXDEPTH];
28 int sp = -1;
29
30 if (expr->len == 0)
31 return -1;
32
33 for (i = 0; i < expr->len; i++) {
34 struct cond_expr_node *node = &expr->nodes[i];
35
36 switch (node->expr_type) {
37 case COND_BOOL:
38 if (sp == (COND_EXPR_MAXDEPTH - 1))
39 return -1;
40 sp++;
41 s[sp] = p->bool_val_to_struct[node->bool - 1]->state;
42 break;
43 case COND_NOT:
44 if (sp < 0)
45 return -1;
46 s[sp] = !s[sp];
47 break;
48 case COND_OR:
49 if (sp < 1)
50 return -1;
51 sp--;
52 s[sp] |= s[sp + 1];
53 break;
54 case COND_AND:
55 if (sp < 1)
56 return -1;
57 sp--;
58 s[sp] &= s[sp + 1];
59 break;
60 case COND_XOR:
61 if (sp < 1)
62 return -1;
63 sp--;
64 s[sp] ^= s[sp + 1];
65 break;
66 case COND_EQ:
67 if (sp < 1)
68 return -1;
69 sp--;
70 s[sp] = (s[sp] == s[sp + 1]);
71 break;
72 case COND_NEQ:
73 if (sp < 1)
74 return -1;
75 sp--;
76 s[sp] = (s[sp] != s[sp + 1]);
77 break;
78 default:
79 return -1;
80 }
81 }
82 return s[0];
83 }
84
85 /*
86 * evaluate_cond_node evaluates the conditional stored in
87 * a struct cond_node and if the result is different than the
88 * current state of the node it sets the rules in the true/false
89 * list appropriately. If the result of the expression is undefined
90 * all of the rules are disabled for safety.
91 */
92 static void evaluate_cond_node(struct policydb *p, struct cond_node *node)
93 {
94 struct avtab_node *avnode;
95 int new_state;
96 u32 i;
97
98 new_state = cond_evaluate_expr(p, &node->expr);
99 if (new_state != node->cur_state) {
100 node->cur_state = new_state;
101 if (new_state == -1)
102 pr_err("SELinux: expression result was undefined - disabling all rules.\n");
103 /* turn the rules on or off */
104 for (i = 0; i < node->true_list.len; i++) {
105 avnode = node->true_list.nodes[i];
106 if (new_state <= 0)
107 avnode->key.specified &= ~AVTAB_ENABLED;
108 else
109 avnode->key.specified |= AVTAB_ENABLED;
110 }
111
112 for (i = 0; i < node->false_list.len; i++) {
113 avnode = node->false_list.nodes[i];
114 /* -1 or 1 */
115 if (new_state)
116 avnode->key.specified &= ~AVTAB_ENABLED;
117 else
118 avnode->key.specified |= AVTAB_ENABLED;
119 }
120 }
121 }
122
123 void evaluate_cond_nodes(struct policydb *p)
124 {
125 u32 i;
126
127 for (i = 0; i < p->cond_list_len; i++)
128 evaluate_cond_node(p, &p->cond_list[i]);
129 }
130
131 void cond_policydb_init(struct policydb *p)
132 {
133 p->bool_val_to_struct = NULL;
134 p->cond_list = NULL;
135 p->cond_list_len = 0;
136
137 avtab_init(&p->te_cond_avtab);
138 }
139
140 static void cond_node_destroy(struct cond_node *node)
141 {
142 kfree(node->expr.nodes);
143 /* the avtab_ptr_t nodes are destroyed by the avtab */
144 kfree(node->true_list.nodes);
145 kfree(node->false_list.nodes);
146 }
147
148 static void cond_list_destroy(struct policydb *p)
149 {
150 u32 i;
151
152 for (i = 0; i < p->cond_list_len; i++)
153 cond_node_destroy(&p->cond_list[i]);
154 kfree(p->cond_list);
155 }
156
157 void cond_policydb_destroy(struct policydb *p)
158 {
159 kfree(p->bool_val_to_struct);
160 avtab_destroy(&p->te_cond_avtab);
161 cond_list_destroy(p);
162 }
163
164 int cond_init_bool_indexes(struct policydb *p)
165 {
166 kfree(p->bool_val_to_struct);
167 p->bool_val_to_struct = kmalloc_array(p->p_bools.nprim,
168 sizeof(*p->bool_val_to_struct),
169 GFP_KERNEL);
170 if (!p->bool_val_to_struct)
171 return -ENOMEM;
172 return 0;
173 }
174
175 int cond_destroy_bool(void *key, void *datum, void *p)
176 {
177 kfree(key);
178 kfree(datum);
179 return 0;
180 }
181
182 int cond_index_bool(void *key, void *datum, void *datap)
183 {
184 struct policydb *p;
185 struct cond_bool_datum *booldatum;
186
187 booldatum = datum;
188 p = datap;
189
190 if (!booldatum->value || booldatum->value > p->p_bools.nprim)
191 return -EINVAL;
192
193 p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
194 p->bool_val_to_struct[booldatum->value - 1] = booldatum;
195
196 return 0;
197 }
198
199 static int bool_isvalid(struct cond_bool_datum *b)
200 {
201 if (!(b->state == 0 || b->state == 1))
202 return 0;
203 return 1;
204 }
205
206 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
207 {
208 char *key = NULL;
209 struct cond_bool_datum *booldatum;
210 __le32 buf[3];
211 u32 len;
212 int rc;
213
214 booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
215 if (!booldatum)
216 return -ENOMEM;
217
218 rc = next_entry(buf, fp, sizeof buf);
219 if (rc)
220 goto err;
221
222 booldatum->value = le32_to_cpu(buf[0]);
223 booldatum->state = le32_to_cpu(buf[1]);
224
225 rc = -EINVAL;
226 if (!bool_isvalid(booldatum))
227 goto err;
228
229 len = le32_to_cpu(buf[2]);
230 if (((len == 0) || (len == (u32)-1)))
231 goto err;
232
233 rc = -ENOMEM;
234 key = kmalloc(len + 1, GFP_KERNEL);
235 if (!key)
236 goto err;
237 rc = next_entry(key, fp, len);
238 if (rc)
239 goto err;
240 key[len] = '\0';
241 rc = hashtab_insert(h, key, booldatum);
242 if (rc)
243 goto err;
244
245 return 0;
246 err:
247 cond_destroy_bool(key, booldatum, NULL);
248 return rc;
249 }
250
251 struct cond_insertf_data {
252 struct policydb *p;
253 struct avtab_node **dst;
254 struct cond_av_list *other;
255 };
256
257 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
258 {
259 struct cond_insertf_data *data = ptr;
260 struct policydb *p = data->p;
261 struct cond_av_list *other = data->other;
262 struct avtab_node *node_ptr;
263 u32 i;
264 bool found;
265
266 /*
267 * For type rules we have to make certain there aren't any
268 * conflicting rules by searching the te_avtab and the
269 * cond_te_avtab.
270 */
271 if (k->specified & AVTAB_TYPE) {
272 if (avtab_search(&p->te_avtab, k)) {
273 pr_err("SELinux: type rule already exists outside of a conditional.\n");
274 return -EINVAL;
275 }
276 /*
277 * If we are reading the false list other will be a pointer to
278 * the true list. We can have duplicate entries if there is only
279 * 1 other entry and it is in our true list.
280 *
281 * If we are reading the true list (other == NULL) there shouldn't
282 * be any other entries.
283 */
284 if (other) {
285 node_ptr = avtab_search_node(&p->te_cond_avtab, k);
286 if (node_ptr) {
287 if (avtab_search_node_next(node_ptr, k->specified)) {
288 pr_err("SELinux: too many conflicting type rules.\n");
289 return -EINVAL;
290 }
291 found = false;
292 for (i = 0; i < other->len; i++) {
293 if (other->nodes[i] == node_ptr) {
294 found = true;
295 break;
296 }
297 }
298 if (!found) {
299 pr_err("SELinux: conflicting type rules.\n");
300 return -EINVAL;
301 }
302 }
303 } else {
304 if (avtab_search(&p->te_cond_avtab, k)) {
305 pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
306 return -EINVAL;
307 }
308 }
309 }
310
311 node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
312 if (!node_ptr) {
313 pr_err("SELinux: could not insert rule.\n");
314 return -ENOMEM;
315 }
316
317 *data->dst = node_ptr;
318 return 0;
319 }
320
321 static int cond_read_av_list(struct policydb *p, void *fp,
322 struct cond_av_list *list,
323 struct cond_av_list *other)
324 {
325 int rc;
326 __le32 buf[1];
327 u32 i, len;
328 struct cond_insertf_data data;
329
330 rc = next_entry(buf, fp, sizeof(u32));
331 if (rc)
332 return rc;
333
334 len = le32_to_cpu(buf[0]);
335 if (len == 0)
336 return 0;
337
338 list->nodes = kcalloc(len, sizeof(*list->nodes), GFP_KERNEL);
339 if (!list->nodes)
340 return -ENOMEM;
341
342 data.p = p;
343 data.other = other;
344 for (i = 0; i < len; i++) {
345 data.dst = &list->nodes[i];
346 rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
347 &data);
348 if (rc) {
349 kfree(list->nodes);
350 list->nodes = NULL;
351 return rc;
352 }
353 }
354
355 list->len = len;
356 return 0;
357 }
358
359 static int expr_node_isvalid(struct policydb *p, struct cond_expr_node *expr)
360 {
361 if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
362 pr_err("SELinux: conditional expressions uses unknown operator.\n");
363 return 0;
364 }
365
366 if (expr->bool > p->p_bools.nprim) {
367 pr_err("SELinux: conditional expressions uses unknown bool.\n");
368 return 0;
369 }
370 return 1;
371 }
372
373 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
374 {
375 __le32 buf[2];
376 u32 i, len;
377 int rc;
378
379 rc = next_entry(buf, fp, sizeof(u32) * 2);
380 if (rc)
381 return rc;
382
383 node->cur_state = le32_to_cpu(buf[0]);
384
385 /* expr */
386 len = le32_to_cpu(buf[1]);
387 node->expr.nodes = kcalloc(len, sizeof(*node->expr.nodes), GFP_KERNEL);
388 if (!node->expr.nodes)
389 return -ENOMEM;
390
391 node->expr.len = len;
392
393 for (i = 0; i < len; i++) {
394 struct cond_expr_node *expr = &node->expr.nodes[i];
395
396 rc = next_entry(buf, fp, sizeof(u32) * 2);
397 if (rc)
398 return rc;
399
400 expr->expr_type = le32_to_cpu(buf[0]);
401 expr->bool = le32_to_cpu(buf[1]);
402
403 if (!expr_node_isvalid(p, expr))
404 return -EINVAL;
405 }
406
407 rc = cond_read_av_list(p, fp, &node->true_list, NULL);
408 if (rc)
409 return rc;
410 return cond_read_av_list(p, fp, &node->false_list, &node->true_list);
411 }
412
413 int cond_read_list(struct policydb *p, void *fp)
414 {
415 __le32 buf[1];
416 u32 i, len;
417 int rc;
418
419 rc = next_entry(buf, fp, sizeof buf);
420 if (rc)
421 return rc;
422
423 len = le32_to_cpu(buf[0]);
424
425 p->cond_list = kcalloc(len, sizeof(*p->cond_list), GFP_KERNEL);
426 if (!p->cond_list)
427 return -ENOMEM;
428
429 rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
430 if (rc)
431 goto err;
432
433 p->cond_list_len = len;
434
435 for (i = 0; i < len; i++) {
436 rc = cond_read_node(p, &p->cond_list[i], fp);
437 if (rc)
438 goto err;
439 }
440 return 0;
441 err:
442 cond_list_destroy(p);
443 p->cond_list = NULL;
444 return rc;
445 }
446
447 int cond_write_bool(void *vkey, void *datum, void *ptr)
448 {
449 char *key = vkey;
450 struct cond_bool_datum *booldatum = datum;
451 struct policy_data *pd = ptr;
452 void *fp = pd->fp;
453 __le32 buf[3];
454 u32 len;
455 int rc;
456
457 len = strlen(key);
458 buf[0] = cpu_to_le32(booldatum->value);
459 buf[1] = cpu_to_le32(booldatum->state);
460 buf[2] = cpu_to_le32(len);
461 rc = put_entry(buf, sizeof(u32), 3, fp);
462 if (rc)
463 return rc;
464 rc = put_entry(key, 1, len, fp);
465 if (rc)
466 return rc;
467 return 0;
468 }
469
470 /*
471 * cond_write_cond_av_list doesn't write out the av_list nodes.
472 * Instead it writes out the key/value pairs from the avtab. This
473 * is necessary because there is no way to uniquely identifying rules
474 * in the avtab so it is not possible to associate individual rules
475 * in the avtab with a conditional without saving them as part of
476 * the conditional. This means that the avtab with the conditional
477 * rules will not be saved but will be rebuilt on policy load.
478 */
479 static int cond_write_av_list(struct policydb *p,
480 struct cond_av_list *list, struct policy_file *fp)
481 {
482 __le32 buf[1];
483 u32 i;
484 int rc;
485
486 buf[0] = cpu_to_le32(list->len);
487 rc = put_entry(buf, sizeof(u32), 1, fp);
488 if (rc)
489 return rc;
490
491 for (i = 0; i < list->len; i++) {
492 rc = avtab_write_item(p, list->nodes[i], fp);
493 if (rc)
494 return rc;
495 }
496
497 return 0;
498 }
499
500 static int cond_write_node(struct policydb *p, struct cond_node *node,
501 struct policy_file *fp)
502 {
503 __le32 buf[2];
504 int rc;
505 u32 i;
506
507 buf[0] = cpu_to_le32(node->cur_state);
508 rc = put_entry(buf, sizeof(u32), 1, fp);
509 if (rc)
510 return rc;
511
512 buf[0] = cpu_to_le32(node->expr.len);
513 rc = put_entry(buf, sizeof(u32), 1, fp);
514 if (rc)
515 return rc;
516
517 for (i = 0; i < node->expr.len; i++) {
518 buf[0] = cpu_to_le32(node->expr.nodes[i].expr_type);
519 buf[1] = cpu_to_le32(node->expr.nodes[i].bool);
520 rc = put_entry(buf, sizeof(u32), 2, fp);
521 if (rc)
522 return rc;
523 }
524
525 rc = cond_write_av_list(p, &node->true_list, fp);
526 if (rc)
527 return rc;
528 rc = cond_write_av_list(p, &node->false_list, fp);
529 if (rc)
530 return rc;
531
532 return 0;
533 }
534
535 int cond_write_list(struct policydb *p, void *fp)
536 {
537 u32 i;
538 __le32 buf[1];
539 int rc;
540
541 buf[0] = cpu_to_le32(p->cond_list_len);
542 rc = put_entry(buf, sizeof(u32), 1, fp);
543 if (rc)
544 return rc;
545
546 for (i = 0; i < p->cond_list_len; i++) {
547 rc = cond_write_node(p, &p->cond_list[i], fp);
548 if (rc)
549 return rc;
550 }
551
552 return 0;
553 }
554
555 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
556 struct extended_perms_decision *xpermd)
557 {
558 struct avtab_node *node;
559
560 if (!ctab || !key || !xpermd)
561 return;
562
563 for (node = avtab_search_node(ctab, key); node;
564 node = avtab_search_node_next(node, key->specified)) {
565 if (node->key.specified & AVTAB_ENABLED)
566 services_compute_xperms_decision(xpermd, node);
567 }
568 return;
569
570 }
571 /* Determine whether additional permissions are granted by the conditional
572 * av table, and if so, add them to the result
573 */
574 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
575 struct av_decision *avd, struct extended_perms *xperms)
576 {
577 struct avtab_node *node;
578
579 if (!ctab || !key || !avd)
580 return;
581
582 for (node = avtab_search_node(ctab, key); node;
583 node = avtab_search_node_next(node, key->specified)) {
584 if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
585 (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
586 avd->allowed |= node->datum.u.data;
587 if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
588 (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
589 /* Since a '0' in an auditdeny mask represents a
590 * permission we do NOT want to audit (dontaudit), we use
591 * the '&' operand to ensure that all '0's in the mask
592 * are retained (much unlike the allow and auditallow cases).
593 */
594 avd->auditdeny &= node->datum.u.data;
595 if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
596 (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
597 avd->auditallow |= node->datum.u.data;
598 if (xperms && (node->key.specified & AVTAB_ENABLED) &&
599 (node->key.specified & AVTAB_XPERMS))
600 services_compute_xperms_drivers(xperms, node);
601 }
602 }