]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/memory.c
d4493ef9e43060d3018374084d8dbc1094cb5178
[mirror_qemu.git] / softmmu / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/qemu-print.h"
27 #include "qom/object.h"
28 #include "trace.h"
29
30 #include "exec/memory-internal.h"
31 #include "exec/ram_addr.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/runstate.h"
34 #include "sysemu/tcg.h"
35 #include "qemu/accel.h"
36 #include "hw/boards.h"
37 #include "migration/vmstate.h"
38
39 //#define DEBUG_UNASSIGNED
40
41 static unsigned memory_region_transaction_depth;
42 static bool memory_region_update_pending;
43 static bool ioeventfd_update_pending;
44 bool global_dirty_log;
45
46 static QTAILQ_HEAD(, MemoryListener) memory_listeners
47 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
48
49 static QTAILQ_HEAD(, AddressSpace) address_spaces
50 = QTAILQ_HEAD_INITIALIZER(address_spaces);
51
52 static GHashTable *flat_views;
53
54 typedef struct AddrRange AddrRange;
55
56 /*
57 * Note that signed integers are needed for negative offsetting in aliases
58 * (large MemoryRegion::alias_offset).
59 */
60 struct AddrRange {
61 Int128 start;
62 Int128 size;
63 };
64
65 static AddrRange addrrange_make(Int128 start, Int128 size)
66 {
67 return (AddrRange) { start, size };
68 }
69
70 static bool addrrange_equal(AddrRange r1, AddrRange r2)
71 {
72 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
73 }
74
75 static Int128 addrrange_end(AddrRange r)
76 {
77 return int128_add(r.start, r.size);
78 }
79
80 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81 {
82 int128_addto(&range.start, delta);
83 return range;
84 }
85
86 static bool addrrange_contains(AddrRange range, Int128 addr)
87 {
88 return int128_ge(addr, range.start)
89 && int128_lt(addr, addrrange_end(range));
90 }
91
92 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93 {
94 return addrrange_contains(r1, r2.start)
95 || addrrange_contains(r2, r1.start);
96 }
97
98 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99 {
100 Int128 start = int128_max(r1.start, r2.start);
101 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102 return addrrange_make(start, int128_sub(end, start));
103 }
104
105 enum ListenerDirection { Forward, Reverse };
106
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 do { \
109 MemoryListener *_listener; \
110 \
111 switch (_direction) { \
112 case Forward: \
113 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
114 if (_listener->_callback) { \
115 _listener->_callback(_listener, ##_args); \
116 } \
117 } \
118 break; \
119 case Reverse: \
120 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
123 } \
124 } \
125 break; \
126 default: \
127 abort(); \
128 } \
129 } while (0)
130
131 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132 do { \
133 MemoryListener *_listener; \
134 \
135 switch (_direction) { \
136 case Forward: \
137 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
138 if (_listener->_callback) { \
139 _listener->_callback(_listener, _section, ##_args); \
140 } \
141 } \
142 break; \
143 case Reverse: \
144 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
145 if (_listener->_callback) { \
146 _listener->_callback(_listener, _section, ##_args); \
147 } \
148 } \
149 break; \
150 default: \
151 abort(); \
152 } \
153 } while (0)
154
155 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
156 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 do { \
158 MemoryRegionSection mrs = section_from_flat_range(fr, \
159 address_space_to_flatview(as)); \
160 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
161 } while(0)
162
163 struct CoalescedMemoryRange {
164 AddrRange addr;
165 QTAILQ_ENTRY(CoalescedMemoryRange) link;
166 };
167
168 struct MemoryRegionIoeventfd {
169 AddrRange addr;
170 bool match_data;
171 uint64_t data;
172 EventNotifier *e;
173 };
174
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
176 MemoryRegionIoeventfd *b)
177 {
178 if (int128_lt(a->addr.start, b->addr.start)) {
179 return true;
180 } else if (int128_gt(a->addr.start, b->addr.start)) {
181 return false;
182 } else if (int128_lt(a->addr.size, b->addr.size)) {
183 return true;
184 } else if (int128_gt(a->addr.size, b->addr.size)) {
185 return false;
186 } else if (a->match_data < b->match_data) {
187 return true;
188 } else if (a->match_data > b->match_data) {
189 return false;
190 } else if (a->match_data) {
191 if (a->data < b->data) {
192 return true;
193 } else if (a->data > b->data) {
194 return false;
195 }
196 }
197 if (a->e < b->e) {
198 return true;
199 } else if (a->e > b->e) {
200 return false;
201 }
202 return false;
203 }
204
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
206 MemoryRegionIoeventfd *b)
207 {
208 if (int128_eq(a->addr.start, b->addr.start) &&
209 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
210 (int128_eq(a->addr.size, b->addr.size) &&
211 (a->match_data == b->match_data) &&
212 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
213 (a->e == b->e))))
214 return true;
215
216 return false;
217 }
218
219 /* Range of memory in the global map. Addresses are absolute. */
220 struct FlatRange {
221 MemoryRegion *mr;
222 hwaddr offset_in_region;
223 AddrRange addr;
224 uint8_t dirty_log_mask;
225 bool romd_mode;
226 bool readonly;
227 bool nonvolatile;
228 };
229
230 #define FOR_EACH_FLAT_RANGE(var, view) \
231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236 return (MemoryRegionSection) {
237 .mr = fr->mr,
238 .fv = fv,
239 .offset_within_region = fr->offset_in_region,
240 .size = fr->addr.size,
241 .offset_within_address_space = int128_get64(fr->addr.start),
242 .readonly = fr->readonly,
243 .nonvolatile = fr->nonvolatile,
244 };
245 }
246
247 static bool flatrange_equal(FlatRange *a, FlatRange *b)
248 {
249 return a->mr == b->mr
250 && addrrange_equal(a->addr, b->addr)
251 && a->offset_in_region == b->offset_in_region
252 && a->romd_mode == b->romd_mode
253 && a->readonly == b->readonly
254 && a->nonvolatile == b->nonvolatile;
255 }
256
257 static FlatView *flatview_new(MemoryRegion *mr_root)
258 {
259 FlatView *view;
260
261 view = g_new0(FlatView, 1);
262 view->ref = 1;
263 view->root = mr_root;
264 memory_region_ref(mr_root);
265 trace_flatview_new(view, mr_root);
266
267 return view;
268 }
269
270 /* Insert a range into a given position. Caller is responsible for maintaining
271 * sorting order.
272 */
273 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
274 {
275 if (view->nr == view->nr_allocated) {
276 view->nr_allocated = MAX(2 * view->nr, 10);
277 view->ranges = g_realloc(view->ranges,
278 view->nr_allocated * sizeof(*view->ranges));
279 }
280 memmove(view->ranges + pos + 1, view->ranges + pos,
281 (view->nr - pos) * sizeof(FlatRange));
282 view->ranges[pos] = *range;
283 memory_region_ref(range->mr);
284 ++view->nr;
285 }
286
287 static void flatview_destroy(FlatView *view)
288 {
289 int i;
290
291 trace_flatview_destroy(view, view->root);
292 if (view->dispatch) {
293 address_space_dispatch_free(view->dispatch);
294 }
295 for (i = 0; i < view->nr; i++) {
296 memory_region_unref(view->ranges[i].mr);
297 }
298 g_free(view->ranges);
299 memory_region_unref(view->root);
300 g_free(view);
301 }
302
303 static bool flatview_ref(FlatView *view)
304 {
305 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
306 }
307
308 void flatview_unref(FlatView *view)
309 {
310 if (qatomic_fetch_dec(&view->ref) == 1) {
311 trace_flatview_destroy_rcu(view, view->root);
312 assert(view->root);
313 call_rcu(view, flatview_destroy, rcu);
314 }
315 }
316
317 static bool can_merge(FlatRange *r1, FlatRange *r2)
318 {
319 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
320 && r1->mr == r2->mr
321 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
322 r1->addr.size),
323 int128_make64(r2->offset_in_region))
324 && r1->dirty_log_mask == r2->dirty_log_mask
325 && r1->romd_mode == r2->romd_mode
326 && r1->readonly == r2->readonly
327 && r1->nonvolatile == r2->nonvolatile;
328 }
329
330 /* Attempt to simplify a view by merging adjacent ranges */
331 static void flatview_simplify(FlatView *view)
332 {
333 unsigned i, j, k;
334
335 i = 0;
336 while (i < view->nr) {
337 j = i + 1;
338 while (j < view->nr
339 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
340 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
341 ++j;
342 }
343 ++i;
344 for (k = i; k < j; k++) {
345 memory_region_unref(view->ranges[k].mr);
346 }
347 memmove(&view->ranges[i], &view->ranges[j],
348 (view->nr - j) * sizeof(view->ranges[j]));
349 view->nr -= j - i;
350 }
351 }
352
353 static bool memory_region_big_endian(MemoryRegion *mr)
354 {
355 #ifdef TARGET_WORDS_BIGENDIAN
356 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
357 #else
358 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
359 #endif
360 }
361
362 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
363 {
364 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
365 switch (op & MO_SIZE) {
366 case MO_8:
367 break;
368 case MO_16:
369 *data = bswap16(*data);
370 break;
371 case MO_32:
372 *data = bswap32(*data);
373 break;
374 case MO_64:
375 *data = bswap64(*data);
376 break;
377 default:
378 g_assert_not_reached();
379 }
380 }
381 }
382
383 static inline void memory_region_shift_read_access(uint64_t *value,
384 signed shift,
385 uint64_t mask,
386 uint64_t tmp)
387 {
388 if (shift >= 0) {
389 *value |= (tmp & mask) << shift;
390 } else {
391 *value |= (tmp & mask) >> -shift;
392 }
393 }
394
395 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
396 signed shift,
397 uint64_t mask)
398 {
399 uint64_t tmp;
400
401 if (shift >= 0) {
402 tmp = (*value >> shift) & mask;
403 } else {
404 tmp = (*value << -shift) & mask;
405 }
406
407 return tmp;
408 }
409
410 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
411 {
412 MemoryRegion *root;
413 hwaddr abs_addr = offset;
414
415 abs_addr += mr->addr;
416 for (root = mr; root->container; ) {
417 root = root->container;
418 abs_addr += root->addr;
419 }
420
421 return abs_addr;
422 }
423
424 static int get_cpu_index(void)
425 {
426 if (current_cpu) {
427 return current_cpu->cpu_index;
428 }
429 return -1;
430 }
431
432 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
433 hwaddr addr,
434 uint64_t *value,
435 unsigned size,
436 signed shift,
437 uint64_t mask,
438 MemTxAttrs attrs)
439 {
440 uint64_t tmp;
441
442 tmp = mr->ops->read(mr->opaque, addr, size);
443 if (mr->subpage) {
444 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
445 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
446 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
447 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
448 }
449 memory_region_shift_read_access(value, shift, mask, tmp);
450 return MEMTX_OK;
451 }
452
453 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
454 hwaddr addr,
455 uint64_t *value,
456 unsigned size,
457 signed shift,
458 uint64_t mask,
459 MemTxAttrs attrs)
460 {
461 uint64_t tmp = 0;
462 MemTxResult r;
463
464 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
465 if (mr->subpage) {
466 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
467 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
468 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
469 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
470 }
471 memory_region_shift_read_access(value, shift, mask, tmp);
472 return r;
473 }
474
475 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
476 hwaddr addr,
477 uint64_t *value,
478 unsigned size,
479 signed shift,
480 uint64_t mask,
481 MemTxAttrs attrs)
482 {
483 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
484
485 if (mr->subpage) {
486 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
487 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
488 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
489 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
490 }
491 mr->ops->write(mr->opaque, addr, tmp, size);
492 return MEMTX_OK;
493 }
494
495 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
496 hwaddr addr,
497 uint64_t *value,
498 unsigned size,
499 signed shift,
500 uint64_t mask,
501 MemTxAttrs attrs)
502 {
503 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
504
505 if (mr->subpage) {
506 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
507 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
508 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
509 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
510 }
511 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
512 }
513
514 static MemTxResult access_with_adjusted_size(hwaddr addr,
515 uint64_t *value,
516 unsigned size,
517 unsigned access_size_min,
518 unsigned access_size_max,
519 MemTxResult (*access_fn)
520 (MemoryRegion *mr,
521 hwaddr addr,
522 uint64_t *value,
523 unsigned size,
524 signed shift,
525 uint64_t mask,
526 MemTxAttrs attrs),
527 MemoryRegion *mr,
528 MemTxAttrs attrs)
529 {
530 uint64_t access_mask;
531 unsigned access_size;
532 unsigned i;
533 MemTxResult r = MEMTX_OK;
534
535 if (!access_size_min) {
536 access_size_min = 1;
537 }
538 if (!access_size_max) {
539 access_size_max = 4;
540 }
541
542 /* FIXME: support unaligned access? */
543 access_size = MAX(MIN(size, access_size_max), access_size_min);
544 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
545 if (memory_region_big_endian(mr)) {
546 for (i = 0; i < size; i += access_size) {
547 r |= access_fn(mr, addr + i, value, access_size,
548 (size - access_size - i) * 8, access_mask, attrs);
549 }
550 } else {
551 for (i = 0; i < size; i += access_size) {
552 r |= access_fn(mr, addr + i, value, access_size, i * 8,
553 access_mask, attrs);
554 }
555 }
556 return r;
557 }
558
559 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
560 {
561 AddressSpace *as;
562
563 while (mr->container) {
564 mr = mr->container;
565 }
566 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
567 if (mr == as->root) {
568 return as;
569 }
570 }
571 return NULL;
572 }
573
574 /* Render a memory region into the global view. Ranges in @view obscure
575 * ranges in @mr.
576 */
577 static void render_memory_region(FlatView *view,
578 MemoryRegion *mr,
579 Int128 base,
580 AddrRange clip,
581 bool readonly,
582 bool nonvolatile)
583 {
584 MemoryRegion *subregion;
585 unsigned i;
586 hwaddr offset_in_region;
587 Int128 remain;
588 Int128 now;
589 FlatRange fr;
590 AddrRange tmp;
591
592 if (!mr->enabled) {
593 return;
594 }
595
596 int128_addto(&base, int128_make64(mr->addr));
597 readonly |= mr->readonly;
598 nonvolatile |= mr->nonvolatile;
599
600 tmp = addrrange_make(base, mr->size);
601
602 if (!addrrange_intersects(tmp, clip)) {
603 return;
604 }
605
606 clip = addrrange_intersection(tmp, clip);
607
608 if (mr->alias) {
609 int128_subfrom(&base, int128_make64(mr->alias->addr));
610 int128_subfrom(&base, int128_make64(mr->alias_offset));
611 render_memory_region(view, mr->alias, base, clip,
612 readonly, nonvolatile);
613 return;
614 }
615
616 /* Render subregions in priority order. */
617 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
618 render_memory_region(view, subregion, base, clip,
619 readonly, nonvolatile);
620 }
621
622 if (!mr->terminates) {
623 return;
624 }
625
626 offset_in_region = int128_get64(int128_sub(clip.start, base));
627 base = clip.start;
628 remain = clip.size;
629
630 fr.mr = mr;
631 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
632 fr.romd_mode = mr->romd_mode;
633 fr.readonly = readonly;
634 fr.nonvolatile = nonvolatile;
635
636 /* Render the region itself into any gaps left by the current view. */
637 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
638 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
639 continue;
640 }
641 if (int128_lt(base, view->ranges[i].addr.start)) {
642 now = int128_min(remain,
643 int128_sub(view->ranges[i].addr.start, base));
644 fr.offset_in_region = offset_in_region;
645 fr.addr = addrrange_make(base, now);
646 flatview_insert(view, i, &fr);
647 ++i;
648 int128_addto(&base, now);
649 offset_in_region += int128_get64(now);
650 int128_subfrom(&remain, now);
651 }
652 now = int128_sub(int128_min(int128_add(base, remain),
653 addrrange_end(view->ranges[i].addr)),
654 base);
655 int128_addto(&base, now);
656 offset_in_region += int128_get64(now);
657 int128_subfrom(&remain, now);
658 }
659 if (int128_nz(remain)) {
660 fr.offset_in_region = offset_in_region;
661 fr.addr = addrrange_make(base, remain);
662 flatview_insert(view, i, &fr);
663 }
664 }
665
666 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
667 {
668 FlatRange *fr;
669
670 assert(fv);
671 assert(cb);
672
673 FOR_EACH_FLAT_RANGE(fr, fv) {
674 if (cb(fr->addr.start, fr->addr.size, fr->mr,
675 fr->offset_in_region, opaque)) {
676 break;
677 }
678 }
679 }
680
681 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
682 {
683 while (mr->enabled) {
684 if (mr->alias) {
685 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
686 /* The alias is included in its entirety. Use it as
687 * the "real" root, so that we can share more FlatViews.
688 */
689 mr = mr->alias;
690 continue;
691 }
692 } else if (!mr->terminates) {
693 unsigned int found = 0;
694 MemoryRegion *child, *next = NULL;
695 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
696 if (child->enabled) {
697 if (++found > 1) {
698 next = NULL;
699 break;
700 }
701 if (!child->addr && int128_ge(mr->size, child->size)) {
702 /* A child is included in its entirety. If it's the only
703 * enabled one, use it in the hope of finding an alias down the
704 * way. This will also let us share FlatViews.
705 */
706 next = child;
707 }
708 }
709 }
710 if (found == 0) {
711 return NULL;
712 }
713 if (next) {
714 mr = next;
715 continue;
716 }
717 }
718
719 return mr;
720 }
721
722 return NULL;
723 }
724
725 /* Render a memory topology into a list of disjoint absolute ranges. */
726 static FlatView *generate_memory_topology(MemoryRegion *mr)
727 {
728 int i;
729 FlatView *view;
730
731 view = flatview_new(mr);
732
733 if (mr) {
734 render_memory_region(view, mr, int128_zero(),
735 addrrange_make(int128_zero(), int128_2_64()),
736 false, false);
737 }
738 flatview_simplify(view);
739
740 view->dispatch = address_space_dispatch_new(view);
741 for (i = 0; i < view->nr; i++) {
742 MemoryRegionSection mrs =
743 section_from_flat_range(&view->ranges[i], view);
744 flatview_add_to_dispatch(view, &mrs);
745 }
746 address_space_dispatch_compact(view->dispatch);
747 g_hash_table_replace(flat_views, mr, view);
748
749 return view;
750 }
751
752 static void address_space_add_del_ioeventfds(AddressSpace *as,
753 MemoryRegionIoeventfd *fds_new,
754 unsigned fds_new_nb,
755 MemoryRegionIoeventfd *fds_old,
756 unsigned fds_old_nb)
757 {
758 unsigned iold, inew;
759 MemoryRegionIoeventfd *fd;
760 MemoryRegionSection section;
761
762 /* Generate a symmetric difference of the old and new fd sets, adding
763 * and deleting as necessary.
764 */
765
766 iold = inew = 0;
767 while (iold < fds_old_nb || inew < fds_new_nb) {
768 if (iold < fds_old_nb
769 && (inew == fds_new_nb
770 || memory_region_ioeventfd_before(&fds_old[iold],
771 &fds_new[inew]))) {
772 fd = &fds_old[iold];
773 section = (MemoryRegionSection) {
774 .fv = address_space_to_flatview(as),
775 .offset_within_address_space = int128_get64(fd->addr.start),
776 .size = fd->addr.size,
777 };
778 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
779 fd->match_data, fd->data, fd->e);
780 ++iold;
781 } else if (inew < fds_new_nb
782 && (iold == fds_old_nb
783 || memory_region_ioeventfd_before(&fds_new[inew],
784 &fds_old[iold]))) {
785 fd = &fds_new[inew];
786 section = (MemoryRegionSection) {
787 .fv = address_space_to_flatview(as),
788 .offset_within_address_space = int128_get64(fd->addr.start),
789 .size = fd->addr.size,
790 };
791 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
792 fd->match_data, fd->data, fd->e);
793 ++inew;
794 } else {
795 ++iold;
796 ++inew;
797 }
798 }
799 }
800
801 FlatView *address_space_get_flatview(AddressSpace *as)
802 {
803 FlatView *view;
804
805 RCU_READ_LOCK_GUARD();
806 do {
807 view = address_space_to_flatview(as);
808 /* If somebody has replaced as->current_map concurrently,
809 * flatview_ref returns false.
810 */
811 } while (!flatview_ref(view));
812 return view;
813 }
814
815 static void address_space_update_ioeventfds(AddressSpace *as)
816 {
817 FlatView *view;
818 FlatRange *fr;
819 unsigned ioeventfd_nb = 0;
820 unsigned ioeventfd_max;
821 MemoryRegionIoeventfd *ioeventfds;
822 AddrRange tmp;
823 unsigned i;
824
825 /*
826 * It is likely that the number of ioeventfds hasn't changed much, so use
827 * the previous size as the starting value, with some headroom to avoid
828 * gratuitous reallocations.
829 */
830 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
831 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
832
833 view = address_space_get_flatview(as);
834 FOR_EACH_FLAT_RANGE(fr, view) {
835 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
836 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
837 int128_sub(fr->addr.start,
838 int128_make64(fr->offset_in_region)));
839 if (addrrange_intersects(fr->addr, tmp)) {
840 ++ioeventfd_nb;
841 if (ioeventfd_nb > ioeventfd_max) {
842 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
843 ioeventfds = g_realloc(ioeventfds,
844 ioeventfd_max * sizeof(*ioeventfds));
845 }
846 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
847 ioeventfds[ioeventfd_nb-1].addr = tmp;
848 }
849 }
850 }
851
852 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
853 as->ioeventfds, as->ioeventfd_nb);
854
855 g_free(as->ioeventfds);
856 as->ioeventfds = ioeventfds;
857 as->ioeventfd_nb = ioeventfd_nb;
858 flatview_unref(view);
859 }
860
861 /*
862 * Notify the memory listeners about the coalesced IO change events of
863 * range `cmr'. Only the part that has intersection of the specified
864 * FlatRange will be sent.
865 */
866 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
867 CoalescedMemoryRange *cmr, bool add)
868 {
869 AddrRange tmp;
870
871 tmp = addrrange_shift(cmr->addr,
872 int128_sub(fr->addr.start,
873 int128_make64(fr->offset_in_region)));
874 if (!addrrange_intersects(tmp, fr->addr)) {
875 return;
876 }
877 tmp = addrrange_intersection(tmp, fr->addr);
878
879 if (add) {
880 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
881 int128_get64(tmp.start),
882 int128_get64(tmp.size));
883 } else {
884 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
885 int128_get64(tmp.start),
886 int128_get64(tmp.size));
887 }
888 }
889
890 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
891 {
892 CoalescedMemoryRange *cmr;
893
894 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
895 flat_range_coalesced_io_notify(fr, as, cmr, false);
896 }
897 }
898
899 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
900 {
901 MemoryRegion *mr = fr->mr;
902 CoalescedMemoryRange *cmr;
903
904 if (QTAILQ_EMPTY(&mr->coalesced)) {
905 return;
906 }
907
908 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
909 flat_range_coalesced_io_notify(fr, as, cmr, true);
910 }
911 }
912
913 static void address_space_update_topology_pass(AddressSpace *as,
914 const FlatView *old_view,
915 const FlatView *new_view,
916 bool adding)
917 {
918 unsigned iold, inew;
919 FlatRange *frold, *frnew;
920
921 /* Generate a symmetric difference of the old and new memory maps.
922 * Kill ranges in the old map, and instantiate ranges in the new map.
923 */
924 iold = inew = 0;
925 while (iold < old_view->nr || inew < new_view->nr) {
926 if (iold < old_view->nr) {
927 frold = &old_view->ranges[iold];
928 } else {
929 frold = NULL;
930 }
931 if (inew < new_view->nr) {
932 frnew = &new_view->ranges[inew];
933 } else {
934 frnew = NULL;
935 }
936
937 if (frold
938 && (!frnew
939 || int128_lt(frold->addr.start, frnew->addr.start)
940 || (int128_eq(frold->addr.start, frnew->addr.start)
941 && !flatrange_equal(frold, frnew)))) {
942 /* In old but not in new, or in both but attributes changed. */
943
944 if (!adding) {
945 flat_range_coalesced_io_del(frold, as);
946 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
947 }
948
949 ++iold;
950 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
951 /* In both and unchanged (except logging may have changed) */
952
953 if (adding) {
954 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
955 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
956 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
957 frold->dirty_log_mask,
958 frnew->dirty_log_mask);
959 }
960 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
961 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
962 frold->dirty_log_mask,
963 frnew->dirty_log_mask);
964 }
965 }
966
967 ++iold;
968 ++inew;
969 } else {
970 /* In new */
971
972 if (adding) {
973 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
974 flat_range_coalesced_io_add(frnew, as);
975 }
976
977 ++inew;
978 }
979 }
980 }
981
982 static void flatviews_init(void)
983 {
984 static FlatView *empty_view;
985
986 if (flat_views) {
987 return;
988 }
989
990 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
991 (GDestroyNotify) flatview_unref);
992 if (!empty_view) {
993 empty_view = generate_memory_topology(NULL);
994 /* We keep it alive forever in the global variable. */
995 flatview_ref(empty_view);
996 } else {
997 g_hash_table_replace(flat_views, NULL, empty_view);
998 flatview_ref(empty_view);
999 }
1000 }
1001
1002 static void flatviews_reset(void)
1003 {
1004 AddressSpace *as;
1005
1006 if (flat_views) {
1007 g_hash_table_unref(flat_views);
1008 flat_views = NULL;
1009 }
1010 flatviews_init();
1011
1012 /* Render unique FVs */
1013 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1014 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1015
1016 if (g_hash_table_lookup(flat_views, physmr)) {
1017 continue;
1018 }
1019
1020 generate_memory_topology(physmr);
1021 }
1022 }
1023
1024 static void address_space_set_flatview(AddressSpace *as)
1025 {
1026 FlatView *old_view = address_space_to_flatview(as);
1027 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1028 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1029
1030 assert(new_view);
1031
1032 if (old_view == new_view) {
1033 return;
1034 }
1035
1036 if (old_view) {
1037 flatview_ref(old_view);
1038 }
1039
1040 flatview_ref(new_view);
1041
1042 if (!QTAILQ_EMPTY(&as->listeners)) {
1043 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1044
1045 if (!old_view2) {
1046 old_view2 = &tmpview;
1047 }
1048 address_space_update_topology_pass(as, old_view2, new_view, false);
1049 address_space_update_topology_pass(as, old_view2, new_view, true);
1050 }
1051
1052 /* Writes are protected by the BQL. */
1053 qatomic_rcu_set(&as->current_map, new_view);
1054 if (old_view) {
1055 flatview_unref(old_view);
1056 }
1057
1058 /* Note that all the old MemoryRegions are still alive up to this
1059 * point. This relieves most MemoryListeners from the need to
1060 * ref/unref the MemoryRegions they get---unless they use them
1061 * outside the iothread mutex, in which case precise reference
1062 * counting is necessary.
1063 */
1064 if (old_view) {
1065 flatview_unref(old_view);
1066 }
1067 }
1068
1069 static void address_space_update_topology(AddressSpace *as)
1070 {
1071 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1072
1073 flatviews_init();
1074 if (!g_hash_table_lookup(flat_views, physmr)) {
1075 generate_memory_topology(physmr);
1076 }
1077 address_space_set_flatview(as);
1078 }
1079
1080 void memory_region_transaction_begin(void)
1081 {
1082 qemu_flush_coalesced_mmio_buffer();
1083 ++memory_region_transaction_depth;
1084 }
1085
1086 void memory_region_transaction_commit(void)
1087 {
1088 AddressSpace *as;
1089
1090 assert(memory_region_transaction_depth);
1091 assert(qemu_mutex_iothread_locked());
1092
1093 --memory_region_transaction_depth;
1094 if (!memory_region_transaction_depth) {
1095 if (memory_region_update_pending) {
1096 flatviews_reset();
1097
1098 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1099
1100 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1101 address_space_set_flatview(as);
1102 address_space_update_ioeventfds(as);
1103 }
1104 memory_region_update_pending = false;
1105 ioeventfd_update_pending = false;
1106 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1107 } else if (ioeventfd_update_pending) {
1108 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1109 address_space_update_ioeventfds(as);
1110 }
1111 ioeventfd_update_pending = false;
1112 }
1113 }
1114 }
1115
1116 static void memory_region_destructor_none(MemoryRegion *mr)
1117 {
1118 }
1119
1120 static void memory_region_destructor_ram(MemoryRegion *mr)
1121 {
1122 qemu_ram_free(mr->ram_block);
1123 }
1124
1125 static bool memory_region_need_escape(char c)
1126 {
1127 return c == '/' || c == '[' || c == '\\' || c == ']';
1128 }
1129
1130 static char *memory_region_escape_name(const char *name)
1131 {
1132 const char *p;
1133 char *escaped, *q;
1134 uint8_t c;
1135 size_t bytes = 0;
1136
1137 for (p = name; *p; p++) {
1138 bytes += memory_region_need_escape(*p) ? 4 : 1;
1139 }
1140 if (bytes == p - name) {
1141 return g_memdup(name, bytes + 1);
1142 }
1143
1144 escaped = g_malloc(bytes + 1);
1145 for (p = name, q = escaped; *p; p++) {
1146 c = *p;
1147 if (unlikely(memory_region_need_escape(c))) {
1148 *q++ = '\\';
1149 *q++ = 'x';
1150 *q++ = "0123456789abcdef"[c >> 4];
1151 c = "0123456789abcdef"[c & 15];
1152 }
1153 *q++ = c;
1154 }
1155 *q = 0;
1156 return escaped;
1157 }
1158
1159 static void memory_region_do_init(MemoryRegion *mr,
1160 Object *owner,
1161 const char *name,
1162 uint64_t size)
1163 {
1164 mr->size = int128_make64(size);
1165 if (size == UINT64_MAX) {
1166 mr->size = int128_2_64();
1167 }
1168 mr->name = g_strdup(name);
1169 mr->owner = owner;
1170 mr->ram_block = NULL;
1171
1172 if (name) {
1173 char *escaped_name = memory_region_escape_name(name);
1174 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1175
1176 if (!owner) {
1177 owner = container_get(qdev_get_machine(), "/unattached");
1178 }
1179
1180 object_property_add_child(owner, name_array, OBJECT(mr));
1181 object_unref(OBJECT(mr));
1182 g_free(name_array);
1183 g_free(escaped_name);
1184 }
1185 }
1186
1187 void memory_region_init(MemoryRegion *mr,
1188 Object *owner,
1189 const char *name,
1190 uint64_t size)
1191 {
1192 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1193 memory_region_do_init(mr, owner, name, size);
1194 }
1195
1196 static void memory_region_get_container(Object *obj, Visitor *v,
1197 const char *name, void *opaque,
1198 Error **errp)
1199 {
1200 MemoryRegion *mr = MEMORY_REGION(obj);
1201 char *path = (char *)"";
1202
1203 if (mr->container) {
1204 path = object_get_canonical_path(OBJECT(mr->container));
1205 }
1206 visit_type_str(v, name, &path, errp);
1207 if (mr->container) {
1208 g_free(path);
1209 }
1210 }
1211
1212 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1213 const char *part)
1214 {
1215 MemoryRegion *mr = MEMORY_REGION(obj);
1216
1217 return OBJECT(mr->container);
1218 }
1219
1220 static void memory_region_get_priority(Object *obj, Visitor *v,
1221 const char *name, void *opaque,
1222 Error **errp)
1223 {
1224 MemoryRegion *mr = MEMORY_REGION(obj);
1225 int32_t value = mr->priority;
1226
1227 visit_type_int32(v, name, &value, errp);
1228 }
1229
1230 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1231 void *opaque, Error **errp)
1232 {
1233 MemoryRegion *mr = MEMORY_REGION(obj);
1234 uint64_t value = memory_region_size(mr);
1235
1236 visit_type_uint64(v, name, &value, errp);
1237 }
1238
1239 static void memory_region_initfn(Object *obj)
1240 {
1241 MemoryRegion *mr = MEMORY_REGION(obj);
1242 ObjectProperty *op;
1243
1244 mr->ops = &unassigned_mem_ops;
1245 mr->enabled = true;
1246 mr->romd_mode = true;
1247 mr->destructor = memory_region_destructor_none;
1248 QTAILQ_INIT(&mr->subregions);
1249 QTAILQ_INIT(&mr->coalesced);
1250
1251 op = object_property_add(OBJECT(mr), "container",
1252 "link<" TYPE_MEMORY_REGION ">",
1253 memory_region_get_container,
1254 NULL, /* memory_region_set_container */
1255 NULL, NULL);
1256 op->resolve = memory_region_resolve_container;
1257
1258 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1259 &mr->addr, OBJ_PROP_FLAG_READ);
1260 object_property_add(OBJECT(mr), "priority", "uint32",
1261 memory_region_get_priority,
1262 NULL, /* memory_region_set_priority */
1263 NULL, NULL);
1264 object_property_add(OBJECT(mr), "size", "uint64",
1265 memory_region_get_size,
1266 NULL, /* memory_region_set_size, */
1267 NULL, NULL);
1268 }
1269
1270 static void iommu_memory_region_initfn(Object *obj)
1271 {
1272 MemoryRegion *mr = MEMORY_REGION(obj);
1273
1274 mr->is_iommu = true;
1275 }
1276
1277 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1278 unsigned size)
1279 {
1280 #ifdef DEBUG_UNASSIGNED
1281 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1282 #endif
1283 return 0;
1284 }
1285
1286 static void unassigned_mem_write(void *opaque, hwaddr addr,
1287 uint64_t val, unsigned size)
1288 {
1289 #ifdef DEBUG_UNASSIGNED
1290 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1291 #endif
1292 }
1293
1294 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1295 unsigned size, bool is_write,
1296 MemTxAttrs attrs)
1297 {
1298 return false;
1299 }
1300
1301 const MemoryRegionOps unassigned_mem_ops = {
1302 .valid.accepts = unassigned_mem_accepts,
1303 .endianness = DEVICE_NATIVE_ENDIAN,
1304 };
1305
1306 static uint64_t memory_region_ram_device_read(void *opaque,
1307 hwaddr addr, unsigned size)
1308 {
1309 MemoryRegion *mr = opaque;
1310 uint64_t data = (uint64_t)~0;
1311
1312 switch (size) {
1313 case 1:
1314 data = *(uint8_t *)(mr->ram_block->host + addr);
1315 break;
1316 case 2:
1317 data = *(uint16_t *)(mr->ram_block->host + addr);
1318 break;
1319 case 4:
1320 data = *(uint32_t *)(mr->ram_block->host + addr);
1321 break;
1322 case 8:
1323 data = *(uint64_t *)(mr->ram_block->host + addr);
1324 break;
1325 }
1326
1327 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1328
1329 return data;
1330 }
1331
1332 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1333 uint64_t data, unsigned size)
1334 {
1335 MemoryRegion *mr = opaque;
1336
1337 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1338
1339 switch (size) {
1340 case 1:
1341 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1342 break;
1343 case 2:
1344 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1345 break;
1346 case 4:
1347 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1348 break;
1349 case 8:
1350 *(uint64_t *)(mr->ram_block->host + addr) = data;
1351 break;
1352 }
1353 }
1354
1355 static const MemoryRegionOps ram_device_mem_ops = {
1356 .read = memory_region_ram_device_read,
1357 .write = memory_region_ram_device_write,
1358 .endianness = DEVICE_HOST_ENDIAN,
1359 .valid = {
1360 .min_access_size = 1,
1361 .max_access_size = 8,
1362 .unaligned = true,
1363 },
1364 .impl = {
1365 .min_access_size = 1,
1366 .max_access_size = 8,
1367 .unaligned = true,
1368 },
1369 };
1370
1371 bool memory_region_access_valid(MemoryRegion *mr,
1372 hwaddr addr,
1373 unsigned size,
1374 bool is_write,
1375 MemTxAttrs attrs)
1376 {
1377 if (mr->ops->valid.accepts
1378 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1379 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1380 "0x%" HWADDR_PRIX ", size %u, "
1381 "region '%s', reason: rejected\n",
1382 addr, size, memory_region_name(mr));
1383 return false;
1384 }
1385
1386 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1387 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1388 "0x%" HWADDR_PRIX ", size %u, "
1389 "region '%s', reason: unaligned\n",
1390 addr, size, memory_region_name(mr));
1391 return false;
1392 }
1393
1394 /* Treat zero as compatibility all valid */
1395 if (!mr->ops->valid.max_access_size) {
1396 return true;
1397 }
1398
1399 if (size > mr->ops->valid.max_access_size
1400 || size < mr->ops->valid.min_access_size) {
1401 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1402 "0x%" HWADDR_PRIX ", size %u, "
1403 "region '%s', reason: invalid size "
1404 "(min:%u max:%u)\n",
1405 addr, size, memory_region_name(mr),
1406 mr->ops->valid.min_access_size,
1407 mr->ops->valid.max_access_size);
1408 return false;
1409 }
1410 return true;
1411 }
1412
1413 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1414 hwaddr addr,
1415 uint64_t *pval,
1416 unsigned size,
1417 MemTxAttrs attrs)
1418 {
1419 *pval = 0;
1420
1421 if (mr->ops->read) {
1422 return access_with_adjusted_size(addr, pval, size,
1423 mr->ops->impl.min_access_size,
1424 mr->ops->impl.max_access_size,
1425 memory_region_read_accessor,
1426 mr, attrs);
1427 } else {
1428 return access_with_adjusted_size(addr, pval, size,
1429 mr->ops->impl.min_access_size,
1430 mr->ops->impl.max_access_size,
1431 memory_region_read_with_attrs_accessor,
1432 mr, attrs);
1433 }
1434 }
1435
1436 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1437 hwaddr addr,
1438 uint64_t *pval,
1439 MemOp op,
1440 MemTxAttrs attrs)
1441 {
1442 unsigned size = memop_size(op);
1443 MemTxResult r;
1444
1445 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1446 *pval = unassigned_mem_read(mr, addr, size);
1447 return MEMTX_DECODE_ERROR;
1448 }
1449
1450 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1451 adjust_endianness(mr, pval, op);
1452 return r;
1453 }
1454
1455 /* Return true if an eventfd was signalled */
1456 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1457 hwaddr addr,
1458 uint64_t data,
1459 unsigned size,
1460 MemTxAttrs attrs)
1461 {
1462 MemoryRegionIoeventfd ioeventfd = {
1463 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1464 .data = data,
1465 };
1466 unsigned i;
1467
1468 for (i = 0; i < mr->ioeventfd_nb; i++) {
1469 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1470 ioeventfd.e = mr->ioeventfds[i].e;
1471
1472 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1473 event_notifier_set(ioeventfd.e);
1474 return true;
1475 }
1476 }
1477
1478 return false;
1479 }
1480
1481 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1482 hwaddr addr,
1483 uint64_t data,
1484 MemOp op,
1485 MemTxAttrs attrs)
1486 {
1487 unsigned size = memop_size(op);
1488
1489 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1490 unassigned_mem_write(mr, addr, data, size);
1491 return MEMTX_DECODE_ERROR;
1492 }
1493
1494 adjust_endianness(mr, &data, op);
1495
1496 if ((!kvm_eventfds_enabled()) &&
1497 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1498 return MEMTX_OK;
1499 }
1500
1501 if (mr->ops->write) {
1502 return access_with_adjusted_size(addr, &data, size,
1503 mr->ops->impl.min_access_size,
1504 mr->ops->impl.max_access_size,
1505 memory_region_write_accessor, mr,
1506 attrs);
1507 } else {
1508 return
1509 access_with_adjusted_size(addr, &data, size,
1510 mr->ops->impl.min_access_size,
1511 mr->ops->impl.max_access_size,
1512 memory_region_write_with_attrs_accessor,
1513 mr, attrs);
1514 }
1515 }
1516
1517 void memory_region_init_io(MemoryRegion *mr,
1518 Object *owner,
1519 const MemoryRegionOps *ops,
1520 void *opaque,
1521 const char *name,
1522 uint64_t size)
1523 {
1524 memory_region_init(mr, owner, name, size);
1525 mr->ops = ops ? ops : &unassigned_mem_ops;
1526 mr->opaque = opaque;
1527 mr->terminates = true;
1528 }
1529
1530 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1531 Object *owner,
1532 const char *name,
1533 uint64_t size,
1534 Error **errp)
1535 {
1536 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1537 }
1538
1539 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1540 Object *owner,
1541 const char *name,
1542 uint64_t size,
1543 bool share,
1544 Error **errp)
1545 {
1546 Error *err = NULL;
1547 memory_region_init(mr, owner, name, size);
1548 mr->ram = true;
1549 mr->terminates = true;
1550 mr->destructor = memory_region_destructor_ram;
1551 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1552 if (err) {
1553 mr->size = int128_zero();
1554 object_unparent(OBJECT(mr));
1555 error_propagate(errp, err);
1556 }
1557 }
1558
1559 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1560 Object *owner,
1561 const char *name,
1562 uint64_t size,
1563 uint64_t max_size,
1564 void (*resized)(const char*,
1565 uint64_t length,
1566 void *host),
1567 Error **errp)
1568 {
1569 Error *err = NULL;
1570 memory_region_init(mr, owner, name, size);
1571 mr->ram = true;
1572 mr->terminates = true;
1573 mr->destructor = memory_region_destructor_ram;
1574 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1575 mr, &err);
1576 if (err) {
1577 mr->size = int128_zero();
1578 object_unparent(OBJECT(mr));
1579 error_propagate(errp, err);
1580 }
1581 }
1582
1583 #ifdef CONFIG_POSIX
1584 void memory_region_init_ram_from_file(MemoryRegion *mr,
1585 Object *owner,
1586 const char *name,
1587 uint64_t size,
1588 uint64_t align,
1589 uint32_t ram_flags,
1590 const char *path,
1591 bool readonly,
1592 Error **errp)
1593 {
1594 Error *err = NULL;
1595 memory_region_init(mr, owner, name, size);
1596 mr->ram = true;
1597 mr->readonly = readonly;
1598 mr->terminates = true;
1599 mr->destructor = memory_region_destructor_ram;
1600 mr->align = align;
1601 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1602 readonly, &err);
1603 if (err) {
1604 mr->size = int128_zero();
1605 object_unparent(OBJECT(mr));
1606 error_propagate(errp, err);
1607 }
1608 }
1609
1610 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1611 Object *owner,
1612 const char *name,
1613 uint64_t size,
1614 bool share,
1615 int fd,
1616 ram_addr_t offset,
1617 Error **errp)
1618 {
1619 Error *err = NULL;
1620 memory_region_init(mr, owner, name, size);
1621 mr->ram = true;
1622 mr->terminates = true;
1623 mr->destructor = memory_region_destructor_ram;
1624 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1625 share ? RAM_SHARED : 0,
1626 fd, offset, false, &err);
1627 if (err) {
1628 mr->size = int128_zero();
1629 object_unparent(OBJECT(mr));
1630 error_propagate(errp, err);
1631 }
1632 }
1633 #endif
1634
1635 void memory_region_init_ram_ptr(MemoryRegion *mr,
1636 Object *owner,
1637 const char *name,
1638 uint64_t size,
1639 void *ptr)
1640 {
1641 memory_region_init(mr, owner, name, size);
1642 mr->ram = true;
1643 mr->terminates = true;
1644 mr->destructor = memory_region_destructor_ram;
1645
1646 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1647 assert(ptr != NULL);
1648 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1649 }
1650
1651 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1652 Object *owner,
1653 const char *name,
1654 uint64_t size,
1655 void *ptr)
1656 {
1657 memory_region_init(mr, owner, name, size);
1658 mr->ram = true;
1659 mr->terminates = true;
1660 mr->ram_device = true;
1661 mr->ops = &ram_device_mem_ops;
1662 mr->opaque = mr;
1663 mr->destructor = memory_region_destructor_ram;
1664
1665 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1666 assert(ptr != NULL);
1667 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1668 }
1669
1670 void memory_region_init_alias(MemoryRegion *mr,
1671 Object *owner,
1672 const char *name,
1673 MemoryRegion *orig,
1674 hwaddr offset,
1675 uint64_t size)
1676 {
1677 memory_region_init(mr, owner, name, size);
1678 mr->alias = orig;
1679 mr->alias_offset = offset;
1680 }
1681
1682 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1683 Object *owner,
1684 const char *name,
1685 uint64_t size,
1686 Error **errp)
1687 {
1688 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1689 mr->readonly = true;
1690 }
1691
1692 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1693 Object *owner,
1694 const MemoryRegionOps *ops,
1695 void *opaque,
1696 const char *name,
1697 uint64_t size,
1698 Error **errp)
1699 {
1700 Error *err = NULL;
1701 assert(ops);
1702 memory_region_init(mr, owner, name, size);
1703 mr->ops = ops;
1704 mr->opaque = opaque;
1705 mr->terminates = true;
1706 mr->rom_device = true;
1707 mr->destructor = memory_region_destructor_ram;
1708 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1709 if (err) {
1710 mr->size = int128_zero();
1711 object_unparent(OBJECT(mr));
1712 error_propagate(errp, err);
1713 }
1714 }
1715
1716 void memory_region_init_iommu(void *_iommu_mr,
1717 size_t instance_size,
1718 const char *mrtypename,
1719 Object *owner,
1720 const char *name,
1721 uint64_t size)
1722 {
1723 struct IOMMUMemoryRegion *iommu_mr;
1724 struct MemoryRegion *mr;
1725
1726 object_initialize(_iommu_mr, instance_size, mrtypename);
1727 mr = MEMORY_REGION(_iommu_mr);
1728 memory_region_do_init(mr, owner, name, size);
1729 iommu_mr = IOMMU_MEMORY_REGION(mr);
1730 mr->terminates = true; /* then re-forwards */
1731 QLIST_INIT(&iommu_mr->iommu_notify);
1732 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1733 }
1734
1735 static void memory_region_finalize(Object *obj)
1736 {
1737 MemoryRegion *mr = MEMORY_REGION(obj);
1738
1739 assert(!mr->container);
1740
1741 /* We know the region is not visible in any address space (it
1742 * does not have a container and cannot be a root either because
1743 * it has no references, so we can blindly clear mr->enabled.
1744 * memory_region_set_enabled instead could trigger a transaction
1745 * and cause an infinite loop.
1746 */
1747 mr->enabled = false;
1748 memory_region_transaction_begin();
1749 while (!QTAILQ_EMPTY(&mr->subregions)) {
1750 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1751 memory_region_del_subregion(mr, subregion);
1752 }
1753 memory_region_transaction_commit();
1754
1755 mr->destructor(mr);
1756 memory_region_clear_coalescing(mr);
1757 g_free((char *)mr->name);
1758 g_free(mr->ioeventfds);
1759 }
1760
1761 Object *memory_region_owner(MemoryRegion *mr)
1762 {
1763 Object *obj = OBJECT(mr);
1764 return obj->parent;
1765 }
1766
1767 void memory_region_ref(MemoryRegion *mr)
1768 {
1769 /* MMIO callbacks most likely will access data that belongs
1770 * to the owner, hence the need to ref/unref the owner whenever
1771 * the memory region is in use.
1772 *
1773 * The memory region is a child of its owner. As long as the
1774 * owner doesn't call unparent itself on the memory region,
1775 * ref-ing the owner will also keep the memory region alive.
1776 * Memory regions without an owner are supposed to never go away;
1777 * we do not ref/unref them because it slows down DMA sensibly.
1778 */
1779 if (mr && mr->owner) {
1780 object_ref(mr->owner);
1781 }
1782 }
1783
1784 void memory_region_unref(MemoryRegion *mr)
1785 {
1786 if (mr && mr->owner) {
1787 object_unref(mr->owner);
1788 }
1789 }
1790
1791 uint64_t memory_region_size(MemoryRegion *mr)
1792 {
1793 if (int128_eq(mr->size, int128_2_64())) {
1794 return UINT64_MAX;
1795 }
1796 return int128_get64(mr->size);
1797 }
1798
1799 const char *memory_region_name(const MemoryRegion *mr)
1800 {
1801 if (!mr->name) {
1802 ((MemoryRegion *)mr)->name =
1803 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1804 }
1805 return mr->name;
1806 }
1807
1808 bool memory_region_is_ram_device(MemoryRegion *mr)
1809 {
1810 return mr->ram_device;
1811 }
1812
1813 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1814 {
1815 uint8_t mask = mr->dirty_log_mask;
1816 RAMBlock *rb = mr->ram_block;
1817
1818 if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
1819 memory_region_is_iommu(mr))) {
1820 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1821 }
1822
1823 if (tcg_enabled() && rb) {
1824 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1825 mask |= (1 << DIRTY_MEMORY_CODE);
1826 }
1827 return mask;
1828 }
1829
1830 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1831 {
1832 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1833 }
1834
1835 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1836 Error **errp)
1837 {
1838 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1839 IOMMUNotifier *iommu_notifier;
1840 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1841 int ret = 0;
1842
1843 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1844 flags |= iommu_notifier->notifier_flags;
1845 }
1846
1847 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1848 ret = imrc->notify_flag_changed(iommu_mr,
1849 iommu_mr->iommu_notify_flags,
1850 flags, errp);
1851 }
1852
1853 if (!ret) {
1854 iommu_mr->iommu_notify_flags = flags;
1855 }
1856 return ret;
1857 }
1858
1859 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1860 uint64_t page_size_mask,
1861 Error **errp)
1862 {
1863 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1864 int ret = 0;
1865
1866 if (imrc->iommu_set_page_size_mask) {
1867 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1868 }
1869 return ret;
1870 }
1871
1872 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1873 IOMMUNotifier *n, Error **errp)
1874 {
1875 IOMMUMemoryRegion *iommu_mr;
1876 int ret;
1877
1878 if (mr->alias) {
1879 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1880 }
1881
1882 /* We need to register for at least one bitfield */
1883 iommu_mr = IOMMU_MEMORY_REGION(mr);
1884 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1885 assert(n->start <= n->end);
1886 assert(n->iommu_idx >= 0 &&
1887 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1888
1889 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1890 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1891 if (ret) {
1892 QLIST_REMOVE(n, node);
1893 }
1894 return ret;
1895 }
1896
1897 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1898 {
1899 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1900
1901 if (imrc->get_min_page_size) {
1902 return imrc->get_min_page_size(iommu_mr);
1903 }
1904 return TARGET_PAGE_SIZE;
1905 }
1906
1907 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1908 {
1909 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1910 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1911 hwaddr addr, granularity;
1912 IOMMUTLBEntry iotlb;
1913
1914 /* If the IOMMU has its own replay callback, override */
1915 if (imrc->replay) {
1916 imrc->replay(iommu_mr, n);
1917 return;
1918 }
1919
1920 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1921
1922 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1923 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1924 if (iotlb.perm != IOMMU_NONE) {
1925 n->notify(n, &iotlb);
1926 }
1927
1928 /* if (2^64 - MR size) < granularity, it's possible to get an
1929 * infinite loop here. This should catch such a wraparound */
1930 if ((addr + granularity) < addr) {
1931 break;
1932 }
1933 }
1934 }
1935
1936 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1937 IOMMUNotifier *n)
1938 {
1939 IOMMUMemoryRegion *iommu_mr;
1940
1941 if (mr->alias) {
1942 memory_region_unregister_iommu_notifier(mr->alias, n);
1943 return;
1944 }
1945 QLIST_REMOVE(n, node);
1946 iommu_mr = IOMMU_MEMORY_REGION(mr);
1947 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1948 }
1949
1950 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1951 IOMMUTLBEvent *event)
1952 {
1953 IOMMUTLBEntry *entry = &event->entry;
1954 hwaddr entry_end = entry->iova + entry->addr_mask;
1955 IOMMUTLBEntry tmp = *entry;
1956
1957 if (event->type == IOMMU_NOTIFIER_UNMAP) {
1958 assert(entry->perm == IOMMU_NONE);
1959 }
1960
1961 /*
1962 * Skip the notification if the notification does not overlap
1963 * with registered range.
1964 */
1965 if (notifier->start > entry_end || notifier->end < entry->iova) {
1966 return;
1967 }
1968
1969 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1970 /* Crop (iova, addr_mask) to range */
1971 tmp.iova = MAX(tmp.iova, notifier->start);
1972 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1973 } else {
1974 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1975 }
1976
1977 if (event->type & notifier->notifier_flags) {
1978 notifier->notify(notifier, &tmp);
1979 }
1980 }
1981
1982 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1983 int iommu_idx,
1984 IOMMUTLBEvent event)
1985 {
1986 IOMMUNotifier *iommu_notifier;
1987
1988 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1989
1990 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1991 if (iommu_notifier->iommu_idx == iommu_idx) {
1992 memory_region_notify_iommu_one(iommu_notifier, &event);
1993 }
1994 }
1995 }
1996
1997 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1998 enum IOMMUMemoryRegionAttr attr,
1999 void *data)
2000 {
2001 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2002
2003 if (!imrc->get_attr) {
2004 return -EINVAL;
2005 }
2006
2007 return imrc->get_attr(iommu_mr, attr, data);
2008 }
2009
2010 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2011 MemTxAttrs attrs)
2012 {
2013 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2014
2015 if (!imrc->attrs_to_index) {
2016 return 0;
2017 }
2018
2019 return imrc->attrs_to_index(iommu_mr, attrs);
2020 }
2021
2022 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2023 {
2024 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2025
2026 if (!imrc->num_indexes) {
2027 return 1;
2028 }
2029
2030 return imrc->num_indexes(iommu_mr);
2031 }
2032
2033 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2034 {
2035 uint8_t mask = 1 << client;
2036 uint8_t old_logging;
2037
2038 assert(client == DIRTY_MEMORY_VGA);
2039 old_logging = mr->vga_logging_count;
2040 mr->vga_logging_count += log ? 1 : -1;
2041 if (!!old_logging == !!mr->vga_logging_count) {
2042 return;
2043 }
2044
2045 memory_region_transaction_begin();
2046 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2047 memory_region_update_pending |= mr->enabled;
2048 memory_region_transaction_commit();
2049 }
2050
2051 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2052 hwaddr size)
2053 {
2054 assert(mr->ram_block);
2055 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2056 size,
2057 memory_region_get_dirty_log_mask(mr));
2058 }
2059
2060 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2061 {
2062 MemoryListener *listener;
2063 AddressSpace *as;
2064 FlatView *view;
2065 FlatRange *fr;
2066
2067 /* If the same address space has multiple log_sync listeners, we
2068 * visit that address space's FlatView multiple times. But because
2069 * log_sync listeners are rare, it's still cheaper than walking each
2070 * address space once.
2071 */
2072 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2073 if (!listener->log_sync) {
2074 continue;
2075 }
2076 as = listener->address_space;
2077 view = address_space_get_flatview(as);
2078 FOR_EACH_FLAT_RANGE(fr, view) {
2079 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2080 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2081 listener->log_sync(listener, &mrs);
2082 }
2083 }
2084 flatview_unref(view);
2085 }
2086 }
2087
2088 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2089 hwaddr len)
2090 {
2091 MemoryRegionSection mrs;
2092 MemoryListener *listener;
2093 AddressSpace *as;
2094 FlatView *view;
2095 FlatRange *fr;
2096 hwaddr sec_start, sec_end, sec_size;
2097
2098 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2099 if (!listener->log_clear) {
2100 continue;
2101 }
2102 as = listener->address_space;
2103 view = address_space_get_flatview(as);
2104 FOR_EACH_FLAT_RANGE(fr, view) {
2105 if (!fr->dirty_log_mask || fr->mr != mr) {
2106 /*
2107 * Clear dirty bitmap operation only applies to those
2108 * regions whose dirty logging is at least enabled
2109 */
2110 continue;
2111 }
2112
2113 mrs = section_from_flat_range(fr, view);
2114
2115 sec_start = MAX(mrs.offset_within_region, start);
2116 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2117 sec_end = MIN(sec_end, start + len);
2118
2119 if (sec_start >= sec_end) {
2120 /*
2121 * If this memory region section has no intersection
2122 * with the requested range, skip.
2123 */
2124 continue;
2125 }
2126
2127 /* Valid case; shrink the section if needed */
2128 mrs.offset_within_address_space +=
2129 sec_start - mrs.offset_within_region;
2130 mrs.offset_within_region = sec_start;
2131 sec_size = sec_end - sec_start;
2132 mrs.size = int128_make64(sec_size);
2133 listener->log_clear(listener, &mrs);
2134 }
2135 flatview_unref(view);
2136 }
2137 }
2138
2139 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2140 hwaddr addr,
2141 hwaddr size,
2142 unsigned client)
2143 {
2144 DirtyBitmapSnapshot *snapshot;
2145 assert(mr->ram_block);
2146 memory_region_sync_dirty_bitmap(mr);
2147 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2148 memory_global_after_dirty_log_sync();
2149 return snapshot;
2150 }
2151
2152 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2153 hwaddr addr, hwaddr size)
2154 {
2155 assert(mr->ram_block);
2156 return cpu_physical_memory_snapshot_get_dirty(snap,
2157 memory_region_get_ram_addr(mr) + addr, size);
2158 }
2159
2160 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2161 {
2162 if (mr->readonly != readonly) {
2163 memory_region_transaction_begin();
2164 mr->readonly = readonly;
2165 memory_region_update_pending |= mr->enabled;
2166 memory_region_transaction_commit();
2167 }
2168 }
2169
2170 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2171 {
2172 if (mr->nonvolatile != nonvolatile) {
2173 memory_region_transaction_begin();
2174 mr->nonvolatile = nonvolatile;
2175 memory_region_update_pending |= mr->enabled;
2176 memory_region_transaction_commit();
2177 }
2178 }
2179
2180 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2181 {
2182 if (mr->romd_mode != romd_mode) {
2183 memory_region_transaction_begin();
2184 mr->romd_mode = romd_mode;
2185 memory_region_update_pending |= mr->enabled;
2186 memory_region_transaction_commit();
2187 }
2188 }
2189
2190 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2191 hwaddr size, unsigned client)
2192 {
2193 assert(mr->ram_block);
2194 cpu_physical_memory_test_and_clear_dirty(
2195 memory_region_get_ram_addr(mr) + addr, size, client);
2196 }
2197
2198 int memory_region_get_fd(MemoryRegion *mr)
2199 {
2200 int fd;
2201
2202 RCU_READ_LOCK_GUARD();
2203 while (mr->alias) {
2204 mr = mr->alias;
2205 }
2206 fd = mr->ram_block->fd;
2207
2208 return fd;
2209 }
2210
2211 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2212 {
2213 void *ptr;
2214 uint64_t offset = 0;
2215
2216 RCU_READ_LOCK_GUARD();
2217 while (mr->alias) {
2218 offset += mr->alias_offset;
2219 mr = mr->alias;
2220 }
2221 assert(mr->ram_block);
2222 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2223
2224 return ptr;
2225 }
2226
2227 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2228 {
2229 RAMBlock *block;
2230
2231 block = qemu_ram_block_from_host(ptr, false, offset);
2232 if (!block) {
2233 return NULL;
2234 }
2235
2236 return block->mr;
2237 }
2238
2239 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2240 {
2241 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2242 }
2243
2244 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2245 {
2246 assert(mr->ram_block);
2247
2248 qemu_ram_resize(mr->ram_block, newsize, errp);
2249 }
2250
2251 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2252 {
2253 if (mr->ram_block) {
2254 qemu_ram_msync(mr->ram_block, addr, size);
2255 }
2256 }
2257
2258 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2259 {
2260 /*
2261 * Might be extended case needed to cover
2262 * different types of memory regions
2263 */
2264 if (mr->dirty_log_mask) {
2265 memory_region_msync(mr, addr, size);
2266 }
2267 }
2268
2269 /*
2270 * Call proper memory listeners about the change on the newly
2271 * added/removed CoalescedMemoryRange.
2272 */
2273 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2274 CoalescedMemoryRange *cmr,
2275 bool add)
2276 {
2277 AddressSpace *as;
2278 FlatView *view;
2279 FlatRange *fr;
2280
2281 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2282 view = address_space_get_flatview(as);
2283 FOR_EACH_FLAT_RANGE(fr, view) {
2284 if (fr->mr == mr) {
2285 flat_range_coalesced_io_notify(fr, as, cmr, add);
2286 }
2287 }
2288 flatview_unref(view);
2289 }
2290 }
2291
2292 void memory_region_set_coalescing(MemoryRegion *mr)
2293 {
2294 memory_region_clear_coalescing(mr);
2295 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2296 }
2297
2298 void memory_region_add_coalescing(MemoryRegion *mr,
2299 hwaddr offset,
2300 uint64_t size)
2301 {
2302 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2303
2304 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2305 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2306 memory_region_update_coalesced_range(mr, cmr, true);
2307 memory_region_set_flush_coalesced(mr);
2308 }
2309
2310 void memory_region_clear_coalescing(MemoryRegion *mr)
2311 {
2312 CoalescedMemoryRange *cmr;
2313
2314 if (QTAILQ_EMPTY(&mr->coalesced)) {
2315 return;
2316 }
2317
2318 qemu_flush_coalesced_mmio_buffer();
2319 mr->flush_coalesced_mmio = false;
2320
2321 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2322 cmr = QTAILQ_FIRST(&mr->coalesced);
2323 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2324 memory_region_update_coalesced_range(mr, cmr, false);
2325 g_free(cmr);
2326 }
2327 }
2328
2329 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2330 {
2331 mr->flush_coalesced_mmio = true;
2332 }
2333
2334 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2335 {
2336 qemu_flush_coalesced_mmio_buffer();
2337 if (QTAILQ_EMPTY(&mr->coalesced)) {
2338 mr->flush_coalesced_mmio = false;
2339 }
2340 }
2341
2342 static bool userspace_eventfd_warning;
2343
2344 void memory_region_add_eventfd(MemoryRegion *mr,
2345 hwaddr addr,
2346 unsigned size,
2347 bool match_data,
2348 uint64_t data,
2349 EventNotifier *e)
2350 {
2351 MemoryRegionIoeventfd mrfd = {
2352 .addr.start = int128_make64(addr),
2353 .addr.size = int128_make64(size),
2354 .match_data = match_data,
2355 .data = data,
2356 .e = e,
2357 };
2358 unsigned i;
2359
2360 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2361 userspace_eventfd_warning))) {
2362 userspace_eventfd_warning = true;
2363 error_report("Using eventfd without MMIO binding in KVM. "
2364 "Suboptimal performance expected");
2365 }
2366
2367 if (size) {
2368 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2369 }
2370 memory_region_transaction_begin();
2371 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2372 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2373 break;
2374 }
2375 }
2376 ++mr->ioeventfd_nb;
2377 mr->ioeventfds = g_realloc(mr->ioeventfds,
2378 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2379 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2380 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2381 mr->ioeventfds[i] = mrfd;
2382 ioeventfd_update_pending |= mr->enabled;
2383 memory_region_transaction_commit();
2384 }
2385
2386 void memory_region_del_eventfd(MemoryRegion *mr,
2387 hwaddr addr,
2388 unsigned size,
2389 bool match_data,
2390 uint64_t data,
2391 EventNotifier *e)
2392 {
2393 MemoryRegionIoeventfd mrfd = {
2394 .addr.start = int128_make64(addr),
2395 .addr.size = int128_make64(size),
2396 .match_data = match_data,
2397 .data = data,
2398 .e = e,
2399 };
2400 unsigned i;
2401
2402 if (size) {
2403 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2404 }
2405 memory_region_transaction_begin();
2406 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2407 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2408 break;
2409 }
2410 }
2411 assert(i != mr->ioeventfd_nb);
2412 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2413 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2414 --mr->ioeventfd_nb;
2415 mr->ioeventfds = g_realloc(mr->ioeventfds,
2416 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2417 ioeventfd_update_pending |= mr->enabled;
2418 memory_region_transaction_commit();
2419 }
2420
2421 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2422 {
2423 MemoryRegion *mr = subregion->container;
2424 MemoryRegion *other;
2425
2426 memory_region_transaction_begin();
2427
2428 memory_region_ref(subregion);
2429 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2430 if (subregion->priority >= other->priority) {
2431 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2432 goto done;
2433 }
2434 }
2435 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2436 done:
2437 memory_region_update_pending |= mr->enabled && subregion->enabled;
2438 memory_region_transaction_commit();
2439 }
2440
2441 static void memory_region_add_subregion_common(MemoryRegion *mr,
2442 hwaddr offset,
2443 MemoryRegion *subregion)
2444 {
2445 assert(!subregion->container);
2446 subregion->container = mr;
2447 subregion->addr = offset;
2448 memory_region_update_container_subregions(subregion);
2449 }
2450
2451 void memory_region_add_subregion(MemoryRegion *mr,
2452 hwaddr offset,
2453 MemoryRegion *subregion)
2454 {
2455 subregion->priority = 0;
2456 memory_region_add_subregion_common(mr, offset, subregion);
2457 }
2458
2459 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2460 hwaddr offset,
2461 MemoryRegion *subregion,
2462 int priority)
2463 {
2464 subregion->priority = priority;
2465 memory_region_add_subregion_common(mr, offset, subregion);
2466 }
2467
2468 void memory_region_del_subregion(MemoryRegion *mr,
2469 MemoryRegion *subregion)
2470 {
2471 memory_region_transaction_begin();
2472 assert(subregion->container == mr);
2473 subregion->container = NULL;
2474 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2475 memory_region_unref(subregion);
2476 memory_region_update_pending |= mr->enabled && subregion->enabled;
2477 memory_region_transaction_commit();
2478 }
2479
2480 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2481 {
2482 if (enabled == mr->enabled) {
2483 return;
2484 }
2485 memory_region_transaction_begin();
2486 mr->enabled = enabled;
2487 memory_region_update_pending = true;
2488 memory_region_transaction_commit();
2489 }
2490
2491 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2492 {
2493 Int128 s = int128_make64(size);
2494
2495 if (size == UINT64_MAX) {
2496 s = int128_2_64();
2497 }
2498 if (int128_eq(s, mr->size)) {
2499 return;
2500 }
2501 memory_region_transaction_begin();
2502 mr->size = s;
2503 memory_region_update_pending = true;
2504 memory_region_transaction_commit();
2505 }
2506
2507 static void memory_region_readd_subregion(MemoryRegion *mr)
2508 {
2509 MemoryRegion *container = mr->container;
2510
2511 if (container) {
2512 memory_region_transaction_begin();
2513 memory_region_ref(mr);
2514 memory_region_del_subregion(container, mr);
2515 mr->container = container;
2516 memory_region_update_container_subregions(mr);
2517 memory_region_unref(mr);
2518 memory_region_transaction_commit();
2519 }
2520 }
2521
2522 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2523 {
2524 if (addr != mr->addr) {
2525 mr->addr = addr;
2526 memory_region_readd_subregion(mr);
2527 }
2528 }
2529
2530 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2531 {
2532 assert(mr->alias);
2533
2534 if (offset == mr->alias_offset) {
2535 return;
2536 }
2537
2538 memory_region_transaction_begin();
2539 mr->alias_offset = offset;
2540 memory_region_update_pending |= mr->enabled;
2541 memory_region_transaction_commit();
2542 }
2543
2544 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2545 {
2546 return mr->align;
2547 }
2548
2549 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2550 {
2551 const AddrRange *addr = addr_;
2552 const FlatRange *fr = fr_;
2553
2554 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2555 return -1;
2556 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2557 return 1;
2558 }
2559 return 0;
2560 }
2561
2562 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2563 {
2564 return bsearch(&addr, view->ranges, view->nr,
2565 sizeof(FlatRange), cmp_flatrange_addr);
2566 }
2567
2568 bool memory_region_is_mapped(MemoryRegion *mr)
2569 {
2570 return mr->container ? true : false;
2571 }
2572
2573 /* Same as memory_region_find, but it does not add a reference to the
2574 * returned region. It must be called from an RCU critical section.
2575 */
2576 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2577 hwaddr addr, uint64_t size)
2578 {
2579 MemoryRegionSection ret = { .mr = NULL };
2580 MemoryRegion *root;
2581 AddressSpace *as;
2582 AddrRange range;
2583 FlatView *view;
2584 FlatRange *fr;
2585
2586 addr += mr->addr;
2587 for (root = mr; root->container; ) {
2588 root = root->container;
2589 addr += root->addr;
2590 }
2591
2592 as = memory_region_to_address_space(root);
2593 if (!as) {
2594 return ret;
2595 }
2596 range = addrrange_make(int128_make64(addr), int128_make64(size));
2597
2598 view = address_space_to_flatview(as);
2599 fr = flatview_lookup(view, range);
2600 if (!fr) {
2601 return ret;
2602 }
2603
2604 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2605 --fr;
2606 }
2607
2608 ret.mr = fr->mr;
2609 ret.fv = view;
2610 range = addrrange_intersection(range, fr->addr);
2611 ret.offset_within_region = fr->offset_in_region;
2612 ret.offset_within_region += int128_get64(int128_sub(range.start,
2613 fr->addr.start));
2614 ret.size = range.size;
2615 ret.offset_within_address_space = int128_get64(range.start);
2616 ret.readonly = fr->readonly;
2617 ret.nonvolatile = fr->nonvolatile;
2618 return ret;
2619 }
2620
2621 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2622 hwaddr addr, uint64_t size)
2623 {
2624 MemoryRegionSection ret;
2625 RCU_READ_LOCK_GUARD();
2626 ret = memory_region_find_rcu(mr, addr, size);
2627 if (ret.mr) {
2628 memory_region_ref(ret.mr);
2629 }
2630 return ret;
2631 }
2632
2633 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2634 {
2635 MemoryRegion *mr;
2636
2637 RCU_READ_LOCK_GUARD();
2638 mr = memory_region_find_rcu(container, addr, 1).mr;
2639 return mr && mr != container;
2640 }
2641
2642 void memory_global_dirty_log_sync(void)
2643 {
2644 memory_region_sync_dirty_bitmap(NULL);
2645 }
2646
2647 void memory_global_after_dirty_log_sync(void)
2648 {
2649 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2650 }
2651
2652 static VMChangeStateEntry *vmstate_change;
2653
2654 void memory_global_dirty_log_start(void)
2655 {
2656 if (vmstate_change) {
2657 qemu_del_vm_change_state_handler(vmstate_change);
2658 vmstate_change = NULL;
2659 }
2660
2661 global_dirty_log = true;
2662
2663 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2664
2665 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2666 memory_region_transaction_begin();
2667 memory_region_update_pending = true;
2668 memory_region_transaction_commit();
2669 }
2670
2671 static void memory_global_dirty_log_do_stop(void)
2672 {
2673 global_dirty_log = false;
2674
2675 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2676 memory_region_transaction_begin();
2677 memory_region_update_pending = true;
2678 memory_region_transaction_commit();
2679
2680 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2681 }
2682
2683 static void memory_vm_change_state_handler(void *opaque, bool running,
2684 RunState state)
2685 {
2686 if (running) {
2687 memory_global_dirty_log_do_stop();
2688
2689 if (vmstate_change) {
2690 qemu_del_vm_change_state_handler(vmstate_change);
2691 vmstate_change = NULL;
2692 }
2693 }
2694 }
2695
2696 void memory_global_dirty_log_stop(void)
2697 {
2698 if (!runstate_is_running()) {
2699 if (vmstate_change) {
2700 return;
2701 }
2702 vmstate_change = qemu_add_vm_change_state_handler(
2703 memory_vm_change_state_handler, NULL);
2704 return;
2705 }
2706
2707 memory_global_dirty_log_do_stop();
2708 }
2709
2710 static void listener_add_address_space(MemoryListener *listener,
2711 AddressSpace *as)
2712 {
2713 FlatView *view;
2714 FlatRange *fr;
2715
2716 if (listener->begin) {
2717 listener->begin(listener);
2718 }
2719 if (global_dirty_log) {
2720 if (listener->log_global_start) {
2721 listener->log_global_start(listener);
2722 }
2723 }
2724
2725 view = address_space_get_flatview(as);
2726 FOR_EACH_FLAT_RANGE(fr, view) {
2727 MemoryRegionSection section = section_from_flat_range(fr, view);
2728
2729 if (listener->region_add) {
2730 listener->region_add(listener, &section);
2731 }
2732 if (fr->dirty_log_mask && listener->log_start) {
2733 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2734 }
2735 }
2736 if (listener->commit) {
2737 listener->commit(listener);
2738 }
2739 flatview_unref(view);
2740 }
2741
2742 static void listener_del_address_space(MemoryListener *listener,
2743 AddressSpace *as)
2744 {
2745 FlatView *view;
2746 FlatRange *fr;
2747
2748 if (listener->begin) {
2749 listener->begin(listener);
2750 }
2751 view = address_space_get_flatview(as);
2752 FOR_EACH_FLAT_RANGE(fr, view) {
2753 MemoryRegionSection section = section_from_flat_range(fr, view);
2754
2755 if (fr->dirty_log_mask && listener->log_stop) {
2756 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2757 }
2758 if (listener->region_del) {
2759 listener->region_del(listener, &section);
2760 }
2761 }
2762 if (listener->commit) {
2763 listener->commit(listener);
2764 }
2765 flatview_unref(view);
2766 }
2767
2768 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2769 {
2770 MemoryListener *other = NULL;
2771
2772 listener->address_space = as;
2773 if (QTAILQ_EMPTY(&memory_listeners)
2774 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2775 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2776 } else {
2777 QTAILQ_FOREACH(other, &memory_listeners, link) {
2778 if (listener->priority < other->priority) {
2779 break;
2780 }
2781 }
2782 QTAILQ_INSERT_BEFORE(other, listener, link);
2783 }
2784
2785 if (QTAILQ_EMPTY(&as->listeners)
2786 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2787 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2788 } else {
2789 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2790 if (listener->priority < other->priority) {
2791 break;
2792 }
2793 }
2794 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2795 }
2796
2797 listener_add_address_space(listener, as);
2798 }
2799
2800 void memory_listener_unregister(MemoryListener *listener)
2801 {
2802 if (!listener->address_space) {
2803 return;
2804 }
2805
2806 listener_del_address_space(listener, listener->address_space);
2807 QTAILQ_REMOVE(&memory_listeners, listener, link);
2808 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2809 listener->address_space = NULL;
2810 }
2811
2812 void address_space_remove_listeners(AddressSpace *as)
2813 {
2814 while (!QTAILQ_EMPTY(&as->listeners)) {
2815 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2816 }
2817 }
2818
2819 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2820 {
2821 memory_region_ref(root);
2822 as->root = root;
2823 as->current_map = NULL;
2824 as->ioeventfd_nb = 0;
2825 as->ioeventfds = NULL;
2826 QTAILQ_INIT(&as->listeners);
2827 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2828 as->name = g_strdup(name ? name : "anonymous");
2829 address_space_update_topology(as);
2830 address_space_update_ioeventfds(as);
2831 }
2832
2833 static void do_address_space_destroy(AddressSpace *as)
2834 {
2835 assert(QTAILQ_EMPTY(&as->listeners));
2836
2837 flatview_unref(as->current_map);
2838 g_free(as->name);
2839 g_free(as->ioeventfds);
2840 memory_region_unref(as->root);
2841 }
2842
2843 void address_space_destroy(AddressSpace *as)
2844 {
2845 MemoryRegion *root = as->root;
2846
2847 /* Flush out anything from MemoryListeners listening in on this */
2848 memory_region_transaction_begin();
2849 as->root = NULL;
2850 memory_region_transaction_commit();
2851 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2852
2853 /* At this point, as->dispatch and as->current_map are dummy
2854 * entries that the guest should never use. Wait for the old
2855 * values to expire before freeing the data.
2856 */
2857 as->root = root;
2858 call_rcu(as, do_address_space_destroy, rcu);
2859 }
2860
2861 static const char *memory_region_type(MemoryRegion *mr)
2862 {
2863 if (mr->alias) {
2864 return memory_region_type(mr->alias);
2865 }
2866 if (memory_region_is_ram_device(mr)) {
2867 return "ramd";
2868 } else if (memory_region_is_romd(mr)) {
2869 return "romd";
2870 } else if (memory_region_is_rom(mr)) {
2871 return "rom";
2872 } else if (memory_region_is_ram(mr)) {
2873 return "ram";
2874 } else {
2875 return "i/o";
2876 }
2877 }
2878
2879 typedef struct MemoryRegionList MemoryRegionList;
2880
2881 struct MemoryRegionList {
2882 const MemoryRegion *mr;
2883 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2884 };
2885
2886 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2887
2888 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2889 int128_sub((size), int128_one())) : 0)
2890 #define MTREE_INDENT " "
2891
2892 static void mtree_expand_owner(const char *label, Object *obj)
2893 {
2894 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2895
2896 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2897 if (dev && dev->id) {
2898 qemu_printf(" id=%s", dev->id);
2899 } else {
2900 char *canonical_path = object_get_canonical_path(obj);
2901 if (canonical_path) {
2902 qemu_printf(" path=%s", canonical_path);
2903 g_free(canonical_path);
2904 } else {
2905 qemu_printf(" type=%s", object_get_typename(obj));
2906 }
2907 }
2908 qemu_printf("}");
2909 }
2910
2911 static void mtree_print_mr_owner(const MemoryRegion *mr)
2912 {
2913 Object *owner = mr->owner;
2914 Object *parent = memory_region_owner((MemoryRegion *)mr);
2915
2916 if (!owner && !parent) {
2917 qemu_printf(" orphan");
2918 return;
2919 }
2920 if (owner) {
2921 mtree_expand_owner("owner", owner);
2922 }
2923 if (parent && parent != owner) {
2924 mtree_expand_owner("parent", parent);
2925 }
2926 }
2927
2928 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2929 hwaddr base,
2930 MemoryRegionListHead *alias_print_queue,
2931 bool owner, bool display_disabled)
2932 {
2933 MemoryRegionList *new_ml, *ml, *next_ml;
2934 MemoryRegionListHead submr_print_queue;
2935 const MemoryRegion *submr;
2936 unsigned int i;
2937 hwaddr cur_start, cur_end;
2938
2939 if (!mr) {
2940 return;
2941 }
2942
2943 cur_start = base + mr->addr;
2944 cur_end = cur_start + MR_SIZE(mr->size);
2945
2946 /*
2947 * Try to detect overflow of memory region. This should never
2948 * happen normally. When it happens, we dump something to warn the
2949 * user who is observing this.
2950 */
2951 if (cur_start < base || cur_end < cur_start) {
2952 qemu_printf("[DETECTED OVERFLOW!] ");
2953 }
2954
2955 if (mr->alias) {
2956 MemoryRegionList *ml;
2957 bool found = false;
2958
2959 /* check if the alias is already in the queue */
2960 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2961 if (ml->mr == mr->alias) {
2962 found = true;
2963 }
2964 }
2965
2966 if (!found) {
2967 ml = g_new(MemoryRegionList, 1);
2968 ml->mr = mr->alias;
2969 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2970 }
2971 if (mr->enabled || display_disabled) {
2972 for (i = 0; i < level; i++) {
2973 qemu_printf(MTREE_INDENT);
2974 }
2975 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2976 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2977 "-" TARGET_FMT_plx "%s",
2978 cur_start, cur_end,
2979 mr->priority,
2980 mr->nonvolatile ? "nv-" : "",
2981 memory_region_type((MemoryRegion *)mr),
2982 memory_region_name(mr),
2983 memory_region_name(mr->alias),
2984 mr->alias_offset,
2985 mr->alias_offset + MR_SIZE(mr->size),
2986 mr->enabled ? "" : " [disabled]");
2987 if (owner) {
2988 mtree_print_mr_owner(mr);
2989 }
2990 qemu_printf("\n");
2991 }
2992 } else {
2993 if (mr->enabled || display_disabled) {
2994 for (i = 0; i < level; i++) {
2995 qemu_printf(MTREE_INDENT);
2996 }
2997 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2998 " (prio %d, %s%s): %s%s",
2999 cur_start, cur_end,
3000 mr->priority,
3001 mr->nonvolatile ? "nv-" : "",
3002 memory_region_type((MemoryRegion *)mr),
3003 memory_region_name(mr),
3004 mr->enabled ? "" : " [disabled]");
3005 if (owner) {
3006 mtree_print_mr_owner(mr);
3007 }
3008 qemu_printf("\n");
3009 }
3010 }
3011
3012 QTAILQ_INIT(&submr_print_queue);
3013
3014 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3015 new_ml = g_new(MemoryRegionList, 1);
3016 new_ml->mr = submr;
3017 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3018 if (new_ml->mr->addr < ml->mr->addr ||
3019 (new_ml->mr->addr == ml->mr->addr &&
3020 new_ml->mr->priority > ml->mr->priority)) {
3021 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3022 new_ml = NULL;
3023 break;
3024 }
3025 }
3026 if (new_ml) {
3027 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3028 }
3029 }
3030
3031 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3032 mtree_print_mr(ml->mr, level + 1, cur_start,
3033 alias_print_queue, owner, display_disabled);
3034 }
3035
3036 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3037 g_free(ml);
3038 }
3039 }
3040
3041 struct FlatViewInfo {
3042 int counter;
3043 bool dispatch_tree;
3044 bool owner;
3045 AccelClass *ac;
3046 };
3047
3048 static void mtree_print_flatview(gpointer key, gpointer value,
3049 gpointer user_data)
3050 {
3051 FlatView *view = key;
3052 GArray *fv_address_spaces = value;
3053 struct FlatViewInfo *fvi = user_data;
3054 FlatRange *range = &view->ranges[0];
3055 MemoryRegion *mr;
3056 int n = view->nr;
3057 int i;
3058 AddressSpace *as;
3059
3060 qemu_printf("FlatView #%d\n", fvi->counter);
3061 ++fvi->counter;
3062
3063 for (i = 0; i < fv_address_spaces->len; ++i) {
3064 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3065 qemu_printf(" AS \"%s\", root: %s",
3066 as->name, memory_region_name(as->root));
3067 if (as->root->alias) {
3068 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3069 }
3070 qemu_printf("\n");
3071 }
3072
3073 qemu_printf(" Root memory region: %s\n",
3074 view->root ? memory_region_name(view->root) : "(none)");
3075
3076 if (n <= 0) {
3077 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3078 return;
3079 }
3080
3081 while (n--) {
3082 mr = range->mr;
3083 if (range->offset_in_region) {
3084 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3085 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3086 int128_get64(range->addr.start),
3087 int128_get64(range->addr.start)
3088 + MR_SIZE(range->addr.size),
3089 mr->priority,
3090 range->nonvolatile ? "nv-" : "",
3091 range->readonly ? "rom" : memory_region_type(mr),
3092 memory_region_name(mr),
3093 range->offset_in_region);
3094 } else {
3095 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3096 " (prio %d, %s%s): %s",
3097 int128_get64(range->addr.start),
3098 int128_get64(range->addr.start)
3099 + MR_SIZE(range->addr.size),
3100 mr->priority,
3101 range->nonvolatile ? "nv-" : "",
3102 range->readonly ? "rom" : memory_region_type(mr),
3103 memory_region_name(mr));
3104 }
3105 if (fvi->owner) {
3106 mtree_print_mr_owner(mr);
3107 }
3108
3109 if (fvi->ac) {
3110 for (i = 0; i < fv_address_spaces->len; ++i) {
3111 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3112 if (fvi->ac->has_memory(current_machine, as,
3113 int128_get64(range->addr.start),
3114 MR_SIZE(range->addr.size) + 1)) {
3115 qemu_printf(" %s", fvi->ac->name);
3116 }
3117 }
3118 }
3119 qemu_printf("\n");
3120 range++;
3121 }
3122
3123 #if !defined(CONFIG_USER_ONLY)
3124 if (fvi->dispatch_tree && view->root) {
3125 mtree_print_dispatch(view->dispatch, view->root);
3126 }
3127 #endif
3128
3129 qemu_printf("\n");
3130 }
3131
3132 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3133 gpointer user_data)
3134 {
3135 FlatView *view = key;
3136 GArray *fv_address_spaces = value;
3137
3138 g_array_unref(fv_address_spaces);
3139 flatview_unref(view);
3140
3141 return true;
3142 }
3143
3144 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3145 {
3146 MemoryRegionListHead ml_head;
3147 MemoryRegionList *ml, *ml2;
3148 AddressSpace *as;
3149
3150 if (flatview) {
3151 FlatView *view;
3152 struct FlatViewInfo fvi = {
3153 .counter = 0,
3154 .dispatch_tree = dispatch_tree,
3155 .owner = owner,
3156 };
3157 GArray *fv_address_spaces;
3158 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3159 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3160
3161 if (ac->has_memory) {
3162 fvi.ac = ac;
3163 }
3164
3165 /* Gather all FVs in one table */
3166 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3167 view = address_space_get_flatview(as);
3168
3169 fv_address_spaces = g_hash_table_lookup(views, view);
3170 if (!fv_address_spaces) {
3171 fv_address_spaces = g_array_new(false, false, sizeof(as));
3172 g_hash_table_insert(views, view, fv_address_spaces);
3173 }
3174
3175 g_array_append_val(fv_address_spaces, as);
3176 }
3177
3178 /* Print */
3179 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3180
3181 /* Free */
3182 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3183 g_hash_table_unref(views);
3184
3185 return;
3186 }
3187
3188 QTAILQ_INIT(&ml_head);
3189
3190 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3191 qemu_printf("address-space: %s\n", as->name);
3192 mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3193 qemu_printf("\n");
3194 }
3195
3196 /* print aliased regions */
3197 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3198 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3199 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3200 qemu_printf("\n");
3201 }
3202
3203 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3204 g_free(ml);
3205 }
3206 }
3207
3208 void memory_region_init_ram(MemoryRegion *mr,
3209 Object *owner,
3210 const char *name,
3211 uint64_t size,
3212 Error **errp)
3213 {
3214 DeviceState *owner_dev;
3215 Error *err = NULL;
3216
3217 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3218 if (err) {
3219 error_propagate(errp, err);
3220 return;
3221 }
3222 /* This will assert if owner is neither NULL nor a DeviceState.
3223 * We only want the owner here for the purposes of defining a
3224 * unique name for migration. TODO: Ideally we should implement
3225 * a naming scheme for Objects which are not DeviceStates, in
3226 * which case we can relax this restriction.
3227 */
3228 owner_dev = DEVICE(owner);
3229 vmstate_register_ram(mr, owner_dev);
3230 }
3231
3232 void memory_region_init_rom(MemoryRegion *mr,
3233 Object *owner,
3234 const char *name,
3235 uint64_t size,
3236 Error **errp)
3237 {
3238 DeviceState *owner_dev;
3239 Error *err = NULL;
3240
3241 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3242 if (err) {
3243 error_propagate(errp, err);
3244 return;
3245 }
3246 /* This will assert if owner is neither NULL nor a DeviceState.
3247 * We only want the owner here for the purposes of defining a
3248 * unique name for migration. TODO: Ideally we should implement
3249 * a naming scheme for Objects which are not DeviceStates, in
3250 * which case we can relax this restriction.
3251 */
3252 owner_dev = DEVICE(owner);
3253 vmstate_register_ram(mr, owner_dev);
3254 }
3255
3256 void memory_region_init_rom_device(MemoryRegion *mr,
3257 Object *owner,
3258 const MemoryRegionOps *ops,
3259 void *opaque,
3260 const char *name,
3261 uint64_t size,
3262 Error **errp)
3263 {
3264 DeviceState *owner_dev;
3265 Error *err = NULL;
3266
3267 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3268 name, size, &err);
3269 if (err) {
3270 error_propagate(errp, err);
3271 return;
3272 }
3273 /* This will assert if owner is neither NULL nor a DeviceState.
3274 * We only want the owner here for the purposes of defining a
3275 * unique name for migration. TODO: Ideally we should implement
3276 * a naming scheme for Objects which are not DeviceStates, in
3277 * which case we can relax this restriction.
3278 */
3279 owner_dev = DEVICE(owner);
3280 vmstate_register_ram(mr, owner_dev);
3281 }
3282
3283 /*
3284 * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3285 * the fuzz_dma_read_cb callback
3286 */
3287 #ifdef CONFIG_FUZZ
3288 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3289 size_t len,
3290 MemoryRegion *mr)
3291 {
3292 }
3293 #endif
3294
3295 static const TypeInfo memory_region_info = {
3296 .parent = TYPE_OBJECT,
3297 .name = TYPE_MEMORY_REGION,
3298 .class_size = sizeof(MemoryRegionClass),
3299 .instance_size = sizeof(MemoryRegion),
3300 .instance_init = memory_region_initfn,
3301 .instance_finalize = memory_region_finalize,
3302 };
3303
3304 static const TypeInfo iommu_memory_region_info = {
3305 .parent = TYPE_MEMORY_REGION,
3306 .name = TYPE_IOMMU_MEMORY_REGION,
3307 .class_size = sizeof(IOMMUMemoryRegionClass),
3308 .instance_size = sizeof(IOMMUMemoryRegion),
3309 .instance_init = iommu_memory_region_initfn,
3310 .abstract = true,
3311 };
3312
3313 static void memory_register_types(void)
3314 {
3315 type_register_static(&memory_region_info);
3316 type_register_static(&iommu_memory_region_info);
3317 }
3318
3319 type_init(memory_register_types)