]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/memory.c
fa1c99f9badcdab9f4d89e0247a83ec2deb8f515
[mirror_qemu.git] / softmmu / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "exec/address-spaces.h"
37
38 //#define DEBUG_UNASSIGNED
39
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 unsigned int global_dirty_tracking;
44
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static GHashTable *flat_views;
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
161
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
172 };
173
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
176 {
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
194 }
195 }
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
200 }
201 return false;
202 }
203
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
206 {
207 if (int128_eq(a->addr.start, b->addr.start) &&
208 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209 (int128_eq(a->addr.size, b->addr.size) &&
210 (a->match_data == b->match_data) &&
211 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212 (a->e == b->e))))
213 return true;
214
215 return false;
216 }
217
218 /* Range of memory in the global map. Addresses are absolute. */
219 struct FlatRange {
220 MemoryRegion *mr;
221 hwaddr offset_in_region;
222 AddrRange addr;
223 uint8_t dirty_log_mask;
224 bool romd_mode;
225 bool readonly;
226 bool nonvolatile;
227 };
228
229 #define FOR_EACH_FLAT_RANGE(var, view) \
230 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
231
232 static inline MemoryRegionSection
233 section_from_flat_range(FlatRange *fr, FlatView *fv)
234 {
235 return (MemoryRegionSection) {
236 .mr = fr->mr,
237 .fv = fv,
238 .offset_within_region = fr->offset_in_region,
239 .size = fr->addr.size,
240 .offset_within_address_space = int128_get64(fr->addr.start),
241 .readonly = fr->readonly,
242 .nonvolatile = fr->nonvolatile,
243 };
244 }
245
246 static bool flatrange_equal(FlatRange *a, FlatRange *b)
247 {
248 return a->mr == b->mr
249 && addrrange_equal(a->addr, b->addr)
250 && a->offset_in_region == b->offset_in_region
251 && a->romd_mode == b->romd_mode
252 && a->readonly == b->readonly
253 && a->nonvolatile == b->nonvolatile;
254 }
255
256 static FlatView *flatview_new(MemoryRegion *mr_root)
257 {
258 FlatView *view;
259
260 view = g_new0(FlatView, 1);
261 view->ref = 1;
262 view->root = mr_root;
263 memory_region_ref(mr_root);
264 trace_flatview_new(view, mr_root);
265
266 return view;
267 }
268
269 /* Insert a range into a given position. Caller is responsible for maintaining
270 * sorting order.
271 */
272 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
273 {
274 if (view->nr == view->nr_allocated) {
275 view->nr_allocated = MAX(2 * view->nr, 10);
276 view->ranges = g_realloc(view->ranges,
277 view->nr_allocated * sizeof(*view->ranges));
278 }
279 memmove(view->ranges + pos + 1, view->ranges + pos,
280 (view->nr - pos) * sizeof(FlatRange));
281 view->ranges[pos] = *range;
282 memory_region_ref(range->mr);
283 ++view->nr;
284 }
285
286 static void flatview_destroy(FlatView *view)
287 {
288 int i;
289
290 trace_flatview_destroy(view, view->root);
291 if (view->dispatch) {
292 address_space_dispatch_free(view->dispatch);
293 }
294 for (i = 0; i < view->nr; i++) {
295 memory_region_unref(view->ranges[i].mr);
296 }
297 g_free(view->ranges);
298 memory_region_unref(view->root);
299 g_free(view);
300 }
301
302 static bool flatview_ref(FlatView *view)
303 {
304 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
305 }
306
307 void flatview_unref(FlatView *view)
308 {
309 if (qatomic_fetch_dec(&view->ref) == 1) {
310 trace_flatview_destroy_rcu(view, view->root);
311 assert(view->root);
312 call_rcu(view, flatview_destroy, rcu);
313 }
314 }
315
316 static bool can_merge(FlatRange *r1, FlatRange *r2)
317 {
318 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
319 && r1->mr == r2->mr
320 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
321 r1->addr.size),
322 int128_make64(r2->offset_in_region))
323 && r1->dirty_log_mask == r2->dirty_log_mask
324 && r1->romd_mode == r2->romd_mode
325 && r1->readonly == r2->readonly
326 && r1->nonvolatile == r2->nonvolatile;
327 }
328
329 /* Attempt to simplify a view by merging adjacent ranges */
330 static void flatview_simplify(FlatView *view)
331 {
332 unsigned i, j, k;
333
334 i = 0;
335 while (i < view->nr) {
336 j = i + 1;
337 while (j < view->nr
338 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
339 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
340 ++j;
341 }
342 ++i;
343 for (k = i; k < j; k++) {
344 memory_region_unref(view->ranges[k].mr);
345 }
346 memmove(&view->ranges[i], &view->ranges[j],
347 (view->nr - j) * sizeof(view->ranges[j]));
348 view->nr -= j - i;
349 }
350 }
351
352 static bool memory_region_big_endian(MemoryRegion *mr)
353 {
354 #if TARGET_BIG_ENDIAN
355 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
356 #else
357 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
358 #endif
359 }
360
361 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
362 {
363 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
364 switch (op & MO_SIZE) {
365 case MO_8:
366 break;
367 case MO_16:
368 *data = bswap16(*data);
369 break;
370 case MO_32:
371 *data = bswap32(*data);
372 break;
373 case MO_64:
374 *data = bswap64(*data);
375 break;
376 default:
377 g_assert_not_reached();
378 }
379 }
380 }
381
382 static inline void memory_region_shift_read_access(uint64_t *value,
383 signed shift,
384 uint64_t mask,
385 uint64_t tmp)
386 {
387 if (shift >= 0) {
388 *value |= (tmp & mask) << shift;
389 } else {
390 *value |= (tmp & mask) >> -shift;
391 }
392 }
393
394 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
395 signed shift,
396 uint64_t mask)
397 {
398 uint64_t tmp;
399
400 if (shift >= 0) {
401 tmp = (*value >> shift) & mask;
402 } else {
403 tmp = (*value << -shift) & mask;
404 }
405
406 return tmp;
407 }
408
409 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
410 {
411 MemoryRegion *root;
412 hwaddr abs_addr = offset;
413
414 abs_addr += mr->addr;
415 for (root = mr; root->container; ) {
416 root = root->container;
417 abs_addr += root->addr;
418 }
419
420 return abs_addr;
421 }
422
423 static int get_cpu_index(void)
424 {
425 if (current_cpu) {
426 return current_cpu->cpu_index;
427 }
428 return -1;
429 }
430
431 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
432 hwaddr addr,
433 uint64_t *value,
434 unsigned size,
435 signed shift,
436 uint64_t mask,
437 MemTxAttrs attrs)
438 {
439 uint64_t tmp;
440
441 tmp = mr->ops->read(mr->opaque, addr, size);
442 if (mr->subpage) {
443 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
444 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
445 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
446 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
447 memory_region_name(mr));
448 }
449 memory_region_shift_read_access(value, shift, mask, tmp);
450 return MEMTX_OK;
451 }
452
453 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
454 hwaddr addr,
455 uint64_t *value,
456 unsigned size,
457 signed shift,
458 uint64_t mask,
459 MemTxAttrs attrs)
460 {
461 uint64_t tmp = 0;
462 MemTxResult r;
463
464 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
465 if (mr->subpage) {
466 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
467 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
468 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
469 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
470 memory_region_name(mr));
471 }
472 memory_region_shift_read_access(value, shift, mask, tmp);
473 return r;
474 }
475
476 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
477 hwaddr addr,
478 uint64_t *value,
479 unsigned size,
480 signed shift,
481 uint64_t mask,
482 MemTxAttrs attrs)
483 {
484 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
485
486 if (mr->subpage) {
487 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
488 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
489 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
490 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
491 memory_region_name(mr));
492 }
493 mr->ops->write(mr->opaque, addr, tmp, size);
494 return MEMTX_OK;
495 }
496
497 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
498 hwaddr addr,
499 uint64_t *value,
500 unsigned size,
501 signed shift,
502 uint64_t mask,
503 MemTxAttrs attrs)
504 {
505 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
506
507 if (mr->subpage) {
508 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
509 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
510 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
511 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
512 memory_region_name(mr));
513 }
514 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
515 }
516
517 static MemTxResult access_with_adjusted_size(hwaddr addr,
518 uint64_t *value,
519 unsigned size,
520 unsigned access_size_min,
521 unsigned access_size_max,
522 MemTxResult (*access_fn)
523 (MemoryRegion *mr,
524 hwaddr addr,
525 uint64_t *value,
526 unsigned size,
527 signed shift,
528 uint64_t mask,
529 MemTxAttrs attrs),
530 MemoryRegion *mr,
531 MemTxAttrs attrs)
532 {
533 uint64_t access_mask;
534 unsigned access_size;
535 unsigned i;
536 MemTxResult r = MEMTX_OK;
537 bool reentrancy_guard_applied = false;
538
539 if (!access_size_min) {
540 access_size_min = 1;
541 }
542 if (!access_size_max) {
543 access_size_max = 4;
544 }
545
546 /* Do not allow more than one simultaneous access to a device's IO Regions */
547 if (mr->dev && !mr->disable_reentrancy_guard &&
548 !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
549 if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
550 warn_report_once("Blocked re-entrant IO on MemoryRegion: "
551 "%s at addr: 0x%" HWADDR_PRIX,
552 memory_region_name(mr), addr);
553 return MEMTX_ACCESS_ERROR;
554 }
555 mr->dev->mem_reentrancy_guard.engaged_in_io = true;
556 reentrancy_guard_applied = true;
557 }
558
559 /* FIXME: support unaligned access? */
560 access_size = MAX(MIN(size, access_size_max), access_size_min);
561 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
562 if (memory_region_big_endian(mr)) {
563 for (i = 0; i < size; i += access_size) {
564 r |= access_fn(mr, addr + i, value, access_size,
565 (size - access_size - i) * 8, access_mask, attrs);
566 }
567 } else {
568 for (i = 0; i < size; i += access_size) {
569 r |= access_fn(mr, addr + i, value, access_size, i * 8,
570 access_mask, attrs);
571 }
572 }
573 if (mr->dev && reentrancy_guard_applied) {
574 mr->dev->mem_reentrancy_guard.engaged_in_io = false;
575 }
576 return r;
577 }
578
579 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
580 {
581 AddressSpace *as;
582
583 while (mr->container) {
584 mr = mr->container;
585 }
586 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
587 if (mr == as->root) {
588 return as;
589 }
590 }
591 return NULL;
592 }
593
594 /* Render a memory region into the global view. Ranges in @view obscure
595 * ranges in @mr.
596 */
597 static void render_memory_region(FlatView *view,
598 MemoryRegion *mr,
599 Int128 base,
600 AddrRange clip,
601 bool readonly,
602 bool nonvolatile)
603 {
604 MemoryRegion *subregion;
605 unsigned i;
606 hwaddr offset_in_region;
607 Int128 remain;
608 Int128 now;
609 FlatRange fr;
610 AddrRange tmp;
611
612 if (!mr->enabled) {
613 return;
614 }
615
616 int128_addto(&base, int128_make64(mr->addr));
617 readonly |= mr->readonly;
618 nonvolatile |= mr->nonvolatile;
619
620 tmp = addrrange_make(base, mr->size);
621
622 if (!addrrange_intersects(tmp, clip)) {
623 return;
624 }
625
626 clip = addrrange_intersection(tmp, clip);
627
628 if (mr->alias) {
629 int128_subfrom(&base, int128_make64(mr->alias->addr));
630 int128_subfrom(&base, int128_make64(mr->alias_offset));
631 render_memory_region(view, mr->alias, base, clip,
632 readonly, nonvolatile);
633 return;
634 }
635
636 /* Render subregions in priority order. */
637 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
638 render_memory_region(view, subregion, base, clip,
639 readonly, nonvolatile);
640 }
641
642 if (!mr->terminates) {
643 return;
644 }
645
646 offset_in_region = int128_get64(int128_sub(clip.start, base));
647 base = clip.start;
648 remain = clip.size;
649
650 fr.mr = mr;
651 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
652 fr.romd_mode = mr->romd_mode;
653 fr.readonly = readonly;
654 fr.nonvolatile = nonvolatile;
655
656 /* Render the region itself into any gaps left by the current view. */
657 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
658 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
659 continue;
660 }
661 if (int128_lt(base, view->ranges[i].addr.start)) {
662 now = int128_min(remain,
663 int128_sub(view->ranges[i].addr.start, base));
664 fr.offset_in_region = offset_in_region;
665 fr.addr = addrrange_make(base, now);
666 flatview_insert(view, i, &fr);
667 ++i;
668 int128_addto(&base, now);
669 offset_in_region += int128_get64(now);
670 int128_subfrom(&remain, now);
671 }
672 now = int128_sub(int128_min(int128_add(base, remain),
673 addrrange_end(view->ranges[i].addr)),
674 base);
675 int128_addto(&base, now);
676 offset_in_region += int128_get64(now);
677 int128_subfrom(&remain, now);
678 }
679 if (int128_nz(remain)) {
680 fr.offset_in_region = offset_in_region;
681 fr.addr = addrrange_make(base, remain);
682 flatview_insert(view, i, &fr);
683 }
684 }
685
686 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
687 {
688 FlatRange *fr;
689
690 assert(fv);
691 assert(cb);
692
693 FOR_EACH_FLAT_RANGE(fr, fv) {
694 if (cb(fr->addr.start, fr->addr.size, fr->mr,
695 fr->offset_in_region, opaque)) {
696 break;
697 }
698 }
699 }
700
701 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
702 {
703 while (mr->enabled) {
704 if (mr->alias) {
705 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
706 /* The alias is included in its entirety. Use it as
707 * the "real" root, so that we can share more FlatViews.
708 */
709 mr = mr->alias;
710 continue;
711 }
712 } else if (!mr->terminates) {
713 unsigned int found = 0;
714 MemoryRegion *child, *next = NULL;
715 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
716 if (child->enabled) {
717 if (++found > 1) {
718 next = NULL;
719 break;
720 }
721 if (!child->addr && int128_ge(mr->size, child->size)) {
722 /* A child is included in its entirety. If it's the only
723 * enabled one, use it in the hope of finding an alias down the
724 * way. This will also let us share FlatViews.
725 */
726 next = child;
727 }
728 }
729 }
730 if (found == 0) {
731 return NULL;
732 }
733 if (next) {
734 mr = next;
735 continue;
736 }
737 }
738
739 return mr;
740 }
741
742 return NULL;
743 }
744
745 /* Render a memory topology into a list of disjoint absolute ranges. */
746 static FlatView *generate_memory_topology(MemoryRegion *mr)
747 {
748 int i;
749 FlatView *view;
750
751 view = flatview_new(mr);
752
753 if (mr) {
754 render_memory_region(view, mr, int128_zero(),
755 addrrange_make(int128_zero(), int128_2_64()),
756 false, false);
757 }
758 flatview_simplify(view);
759
760 view->dispatch = address_space_dispatch_new(view);
761 for (i = 0; i < view->nr; i++) {
762 MemoryRegionSection mrs =
763 section_from_flat_range(&view->ranges[i], view);
764 flatview_add_to_dispatch(view, &mrs);
765 }
766 address_space_dispatch_compact(view->dispatch);
767 g_hash_table_replace(flat_views, mr, view);
768
769 return view;
770 }
771
772 static void address_space_add_del_ioeventfds(AddressSpace *as,
773 MemoryRegionIoeventfd *fds_new,
774 unsigned fds_new_nb,
775 MemoryRegionIoeventfd *fds_old,
776 unsigned fds_old_nb)
777 {
778 unsigned iold, inew;
779 MemoryRegionIoeventfd *fd;
780 MemoryRegionSection section;
781
782 /* Generate a symmetric difference of the old and new fd sets, adding
783 * and deleting as necessary.
784 */
785
786 iold = inew = 0;
787 while (iold < fds_old_nb || inew < fds_new_nb) {
788 if (iold < fds_old_nb
789 && (inew == fds_new_nb
790 || memory_region_ioeventfd_before(&fds_old[iold],
791 &fds_new[inew]))) {
792 fd = &fds_old[iold];
793 section = (MemoryRegionSection) {
794 .fv = address_space_to_flatview(as),
795 .offset_within_address_space = int128_get64(fd->addr.start),
796 .size = fd->addr.size,
797 };
798 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
799 fd->match_data, fd->data, fd->e);
800 ++iold;
801 } else if (inew < fds_new_nb
802 && (iold == fds_old_nb
803 || memory_region_ioeventfd_before(&fds_new[inew],
804 &fds_old[iold]))) {
805 fd = &fds_new[inew];
806 section = (MemoryRegionSection) {
807 .fv = address_space_to_flatview(as),
808 .offset_within_address_space = int128_get64(fd->addr.start),
809 .size = fd->addr.size,
810 };
811 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
812 fd->match_data, fd->data, fd->e);
813 ++inew;
814 } else {
815 ++iold;
816 ++inew;
817 }
818 }
819 }
820
821 FlatView *address_space_get_flatview(AddressSpace *as)
822 {
823 FlatView *view;
824
825 RCU_READ_LOCK_GUARD();
826 do {
827 view = address_space_to_flatview(as);
828 /* If somebody has replaced as->current_map concurrently,
829 * flatview_ref returns false.
830 */
831 } while (!flatview_ref(view));
832 return view;
833 }
834
835 static void address_space_update_ioeventfds(AddressSpace *as)
836 {
837 FlatView *view;
838 FlatRange *fr;
839 unsigned ioeventfd_nb = 0;
840 unsigned ioeventfd_max;
841 MemoryRegionIoeventfd *ioeventfds;
842 AddrRange tmp;
843 unsigned i;
844
845 if (!as->ioeventfd_notifiers) {
846 return;
847 }
848
849 /*
850 * It is likely that the number of ioeventfds hasn't changed much, so use
851 * the previous size as the starting value, with some headroom to avoid
852 * gratuitous reallocations.
853 */
854 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
855 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
856
857 view = address_space_get_flatview(as);
858 FOR_EACH_FLAT_RANGE(fr, view) {
859 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
860 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
861 int128_sub(fr->addr.start,
862 int128_make64(fr->offset_in_region)));
863 if (addrrange_intersects(fr->addr, tmp)) {
864 ++ioeventfd_nb;
865 if (ioeventfd_nb > ioeventfd_max) {
866 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
867 ioeventfds = g_realloc(ioeventfds,
868 ioeventfd_max * sizeof(*ioeventfds));
869 }
870 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
871 ioeventfds[ioeventfd_nb-1].addr = tmp;
872 }
873 }
874 }
875
876 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
877 as->ioeventfds, as->ioeventfd_nb);
878
879 g_free(as->ioeventfds);
880 as->ioeventfds = ioeventfds;
881 as->ioeventfd_nb = ioeventfd_nb;
882 flatview_unref(view);
883 }
884
885 /*
886 * Notify the memory listeners about the coalesced IO change events of
887 * range `cmr'. Only the part that has intersection of the specified
888 * FlatRange will be sent.
889 */
890 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
891 CoalescedMemoryRange *cmr, bool add)
892 {
893 AddrRange tmp;
894
895 tmp = addrrange_shift(cmr->addr,
896 int128_sub(fr->addr.start,
897 int128_make64(fr->offset_in_region)));
898 if (!addrrange_intersects(tmp, fr->addr)) {
899 return;
900 }
901 tmp = addrrange_intersection(tmp, fr->addr);
902
903 if (add) {
904 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
905 int128_get64(tmp.start),
906 int128_get64(tmp.size));
907 } else {
908 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
909 int128_get64(tmp.start),
910 int128_get64(tmp.size));
911 }
912 }
913
914 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
915 {
916 CoalescedMemoryRange *cmr;
917
918 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
919 flat_range_coalesced_io_notify(fr, as, cmr, false);
920 }
921 }
922
923 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
924 {
925 MemoryRegion *mr = fr->mr;
926 CoalescedMemoryRange *cmr;
927
928 if (QTAILQ_EMPTY(&mr->coalesced)) {
929 return;
930 }
931
932 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
933 flat_range_coalesced_io_notify(fr, as, cmr, true);
934 }
935 }
936
937 static void address_space_update_topology_pass(AddressSpace *as,
938 const FlatView *old_view,
939 const FlatView *new_view,
940 bool adding)
941 {
942 unsigned iold, inew;
943 FlatRange *frold, *frnew;
944
945 /* Generate a symmetric difference of the old and new memory maps.
946 * Kill ranges in the old map, and instantiate ranges in the new map.
947 */
948 iold = inew = 0;
949 while (iold < old_view->nr || inew < new_view->nr) {
950 if (iold < old_view->nr) {
951 frold = &old_view->ranges[iold];
952 } else {
953 frold = NULL;
954 }
955 if (inew < new_view->nr) {
956 frnew = &new_view->ranges[inew];
957 } else {
958 frnew = NULL;
959 }
960
961 if (frold
962 && (!frnew
963 || int128_lt(frold->addr.start, frnew->addr.start)
964 || (int128_eq(frold->addr.start, frnew->addr.start)
965 && !flatrange_equal(frold, frnew)))) {
966 /* In old but not in new, or in both but attributes changed. */
967
968 if (!adding) {
969 flat_range_coalesced_io_del(frold, as);
970 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
971 }
972
973 ++iold;
974 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
975 /* In both and unchanged (except logging may have changed) */
976
977 if (adding) {
978 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
979 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
980 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
981 frold->dirty_log_mask,
982 frnew->dirty_log_mask);
983 }
984 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
985 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
986 frold->dirty_log_mask,
987 frnew->dirty_log_mask);
988 }
989 }
990
991 ++iold;
992 ++inew;
993 } else {
994 /* In new */
995
996 if (adding) {
997 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
998 flat_range_coalesced_io_add(frnew, as);
999 }
1000
1001 ++inew;
1002 }
1003 }
1004 }
1005
1006 static void flatviews_init(void)
1007 {
1008 static FlatView *empty_view;
1009
1010 if (flat_views) {
1011 return;
1012 }
1013
1014 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1015 (GDestroyNotify) flatview_unref);
1016 if (!empty_view) {
1017 empty_view = generate_memory_topology(NULL);
1018 /* We keep it alive forever in the global variable. */
1019 flatview_ref(empty_view);
1020 } else {
1021 g_hash_table_replace(flat_views, NULL, empty_view);
1022 flatview_ref(empty_view);
1023 }
1024 }
1025
1026 static void flatviews_reset(void)
1027 {
1028 AddressSpace *as;
1029
1030 if (flat_views) {
1031 g_hash_table_unref(flat_views);
1032 flat_views = NULL;
1033 }
1034 flatviews_init();
1035
1036 /* Render unique FVs */
1037 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1038 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1039
1040 if (g_hash_table_lookup(flat_views, physmr)) {
1041 continue;
1042 }
1043
1044 generate_memory_topology(physmr);
1045 }
1046 }
1047
1048 static void address_space_set_flatview(AddressSpace *as)
1049 {
1050 FlatView *old_view = address_space_to_flatview(as);
1051 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1052 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1053
1054 assert(new_view);
1055
1056 if (old_view == new_view) {
1057 return;
1058 }
1059
1060 if (old_view) {
1061 flatview_ref(old_view);
1062 }
1063
1064 flatview_ref(new_view);
1065
1066 if (!QTAILQ_EMPTY(&as->listeners)) {
1067 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1068
1069 if (!old_view2) {
1070 old_view2 = &tmpview;
1071 }
1072 address_space_update_topology_pass(as, old_view2, new_view, false);
1073 address_space_update_topology_pass(as, old_view2, new_view, true);
1074 }
1075
1076 /* Writes are protected by the BQL. */
1077 qatomic_rcu_set(&as->current_map, new_view);
1078 if (old_view) {
1079 flatview_unref(old_view);
1080 }
1081
1082 /* Note that all the old MemoryRegions are still alive up to this
1083 * point. This relieves most MemoryListeners from the need to
1084 * ref/unref the MemoryRegions they get---unless they use them
1085 * outside the iothread mutex, in which case precise reference
1086 * counting is necessary.
1087 */
1088 if (old_view) {
1089 flatview_unref(old_view);
1090 }
1091 }
1092
1093 static void address_space_update_topology(AddressSpace *as)
1094 {
1095 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1096
1097 flatviews_init();
1098 if (!g_hash_table_lookup(flat_views, physmr)) {
1099 generate_memory_topology(physmr);
1100 }
1101 address_space_set_flatview(as);
1102 }
1103
1104 void memory_region_transaction_begin(void)
1105 {
1106 qemu_flush_coalesced_mmio_buffer();
1107 ++memory_region_transaction_depth;
1108 }
1109
1110 void memory_region_transaction_commit(void)
1111 {
1112 AddressSpace *as;
1113
1114 assert(memory_region_transaction_depth);
1115 assert(qemu_mutex_iothread_locked());
1116
1117 --memory_region_transaction_depth;
1118 if (!memory_region_transaction_depth) {
1119 if (memory_region_update_pending) {
1120 flatviews_reset();
1121
1122 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1123
1124 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1125 address_space_set_flatview(as);
1126 address_space_update_ioeventfds(as);
1127 }
1128 memory_region_update_pending = false;
1129 ioeventfd_update_pending = false;
1130 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1131 } else if (ioeventfd_update_pending) {
1132 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1133 address_space_update_ioeventfds(as);
1134 }
1135 ioeventfd_update_pending = false;
1136 }
1137 }
1138 }
1139
1140 static void memory_region_destructor_none(MemoryRegion *mr)
1141 {
1142 }
1143
1144 static void memory_region_destructor_ram(MemoryRegion *mr)
1145 {
1146 qemu_ram_free(mr->ram_block);
1147 }
1148
1149 static bool memory_region_need_escape(char c)
1150 {
1151 return c == '/' || c == '[' || c == '\\' || c == ']';
1152 }
1153
1154 static char *memory_region_escape_name(const char *name)
1155 {
1156 const char *p;
1157 char *escaped, *q;
1158 uint8_t c;
1159 size_t bytes = 0;
1160
1161 for (p = name; *p; p++) {
1162 bytes += memory_region_need_escape(*p) ? 4 : 1;
1163 }
1164 if (bytes == p - name) {
1165 return g_memdup(name, bytes + 1);
1166 }
1167
1168 escaped = g_malloc(bytes + 1);
1169 for (p = name, q = escaped; *p; p++) {
1170 c = *p;
1171 if (unlikely(memory_region_need_escape(c))) {
1172 *q++ = '\\';
1173 *q++ = 'x';
1174 *q++ = "0123456789abcdef"[c >> 4];
1175 c = "0123456789abcdef"[c & 15];
1176 }
1177 *q++ = c;
1178 }
1179 *q = 0;
1180 return escaped;
1181 }
1182
1183 static void memory_region_do_init(MemoryRegion *mr,
1184 Object *owner,
1185 const char *name,
1186 uint64_t size)
1187 {
1188 mr->size = int128_make64(size);
1189 if (size == UINT64_MAX) {
1190 mr->size = int128_2_64();
1191 }
1192 mr->name = g_strdup(name);
1193 mr->owner = owner;
1194 mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1195 mr->ram_block = NULL;
1196
1197 if (name) {
1198 char *escaped_name = memory_region_escape_name(name);
1199 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1200
1201 if (!owner) {
1202 owner = container_get(qdev_get_machine(), "/unattached");
1203 }
1204
1205 object_property_add_child(owner, name_array, OBJECT(mr));
1206 object_unref(OBJECT(mr));
1207 g_free(name_array);
1208 g_free(escaped_name);
1209 }
1210 }
1211
1212 void memory_region_init(MemoryRegion *mr,
1213 Object *owner,
1214 const char *name,
1215 uint64_t size)
1216 {
1217 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1218 memory_region_do_init(mr, owner, name, size);
1219 }
1220
1221 static void memory_region_get_container(Object *obj, Visitor *v,
1222 const char *name, void *opaque,
1223 Error **errp)
1224 {
1225 MemoryRegion *mr = MEMORY_REGION(obj);
1226 char *path = (char *)"";
1227
1228 if (mr->container) {
1229 path = object_get_canonical_path(OBJECT(mr->container));
1230 }
1231 visit_type_str(v, name, &path, errp);
1232 if (mr->container) {
1233 g_free(path);
1234 }
1235 }
1236
1237 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1238 const char *part)
1239 {
1240 MemoryRegion *mr = MEMORY_REGION(obj);
1241
1242 return OBJECT(mr->container);
1243 }
1244
1245 static void memory_region_get_priority(Object *obj, Visitor *v,
1246 const char *name, void *opaque,
1247 Error **errp)
1248 {
1249 MemoryRegion *mr = MEMORY_REGION(obj);
1250 int32_t value = mr->priority;
1251
1252 visit_type_int32(v, name, &value, errp);
1253 }
1254
1255 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1256 void *opaque, Error **errp)
1257 {
1258 MemoryRegion *mr = MEMORY_REGION(obj);
1259 uint64_t value = memory_region_size(mr);
1260
1261 visit_type_uint64(v, name, &value, errp);
1262 }
1263
1264 static void memory_region_initfn(Object *obj)
1265 {
1266 MemoryRegion *mr = MEMORY_REGION(obj);
1267 ObjectProperty *op;
1268
1269 mr->ops = &unassigned_mem_ops;
1270 mr->enabled = true;
1271 mr->romd_mode = true;
1272 mr->destructor = memory_region_destructor_none;
1273 QTAILQ_INIT(&mr->subregions);
1274 QTAILQ_INIT(&mr->coalesced);
1275
1276 op = object_property_add(OBJECT(mr), "container",
1277 "link<" TYPE_MEMORY_REGION ">",
1278 memory_region_get_container,
1279 NULL, /* memory_region_set_container */
1280 NULL, NULL);
1281 op->resolve = memory_region_resolve_container;
1282
1283 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1284 &mr->addr, OBJ_PROP_FLAG_READ);
1285 object_property_add(OBJECT(mr), "priority", "uint32",
1286 memory_region_get_priority,
1287 NULL, /* memory_region_set_priority */
1288 NULL, NULL);
1289 object_property_add(OBJECT(mr), "size", "uint64",
1290 memory_region_get_size,
1291 NULL, /* memory_region_set_size, */
1292 NULL, NULL);
1293 }
1294
1295 static void iommu_memory_region_initfn(Object *obj)
1296 {
1297 MemoryRegion *mr = MEMORY_REGION(obj);
1298
1299 mr->is_iommu = true;
1300 }
1301
1302 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1303 unsigned size)
1304 {
1305 #ifdef DEBUG_UNASSIGNED
1306 printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1307 #endif
1308 return 0;
1309 }
1310
1311 static void unassigned_mem_write(void *opaque, hwaddr addr,
1312 uint64_t val, unsigned size)
1313 {
1314 #ifdef DEBUG_UNASSIGNED
1315 printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1316 #endif
1317 }
1318
1319 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1320 unsigned size, bool is_write,
1321 MemTxAttrs attrs)
1322 {
1323 return false;
1324 }
1325
1326 const MemoryRegionOps unassigned_mem_ops = {
1327 .valid.accepts = unassigned_mem_accepts,
1328 .endianness = DEVICE_NATIVE_ENDIAN,
1329 };
1330
1331 static uint64_t memory_region_ram_device_read(void *opaque,
1332 hwaddr addr, unsigned size)
1333 {
1334 MemoryRegion *mr = opaque;
1335 uint64_t data = (uint64_t)~0;
1336
1337 switch (size) {
1338 case 1:
1339 data = *(uint8_t *)(mr->ram_block->host + addr);
1340 break;
1341 case 2:
1342 data = *(uint16_t *)(mr->ram_block->host + addr);
1343 break;
1344 case 4:
1345 data = *(uint32_t *)(mr->ram_block->host + addr);
1346 break;
1347 case 8:
1348 data = *(uint64_t *)(mr->ram_block->host + addr);
1349 break;
1350 }
1351
1352 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1353
1354 return data;
1355 }
1356
1357 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1358 uint64_t data, unsigned size)
1359 {
1360 MemoryRegion *mr = opaque;
1361
1362 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1363
1364 switch (size) {
1365 case 1:
1366 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1367 break;
1368 case 2:
1369 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1370 break;
1371 case 4:
1372 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1373 break;
1374 case 8:
1375 *(uint64_t *)(mr->ram_block->host + addr) = data;
1376 break;
1377 }
1378 }
1379
1380 static const MemoryRegionOps ram_device_mem_ops = {
1381 .read = memory_region_ram_device_read,
1382 .write = memory_region_ram_device_write,
1383 .endianness = DEVICE_HOST_ENDIAN,
1384 .valid = {
1385 .min_access_size = 1,
1386 .max_access_size = 8,
1387 .unaligned = true,
1388 },
1389 .impl = {
1390 .min_access_size = 1,
1391 .max_access_size = 8,
1392 .unaligned = true,
1393 },
1394 };
1395
1396 bool memory_region_access_valid(MemoryRegion *mr,
1397 hwaddr addr,
1398 unsigned size,
1399 bool is_write,
1400 MemTxAttrs attrs)
1401 {
1402 if (mr->ops->valid.accepts
1403 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1404 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1405 ", size %u, region '%s', reason: rejected\n",
1406 is_write ? "write" : "read",
1407 addr, size, memory_region_name(mr));
1408 return false;
1409 }
1410
1411 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1412 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1413 ", size %u, region '%s', reason: unaligned\n",
1414 is_write ? "write" : "read",
1415 addr, size, memory_region_name(mr));
1416 return false;
1417 }
1418
1419 /* Treat zero as compatibility all valid */
1420 if (!mr->ops->valid.max_access_size) {
1421 return true;
1422 }
1423
1424 if (size > mr->ops->valid.max_access_size
1425 || size < mr->ops->valid.min_access_size) {
1426 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1427 ", size %u, region '%s', reason: invalid size "
1428 "(min:%u max:%u)\n",
1429 is_write ? "write" : "read",
1430 addr, size, memory_region_name(mr),
1431 mr->ops->valid.min_access_size,
1432 mr->ops->valid.max_access_size);
1433 return false;
1434 }
1435 return true;
1436 }
1437
1438 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1439 hwaddr addr,
1440 uint64_t *pval,
1441 unsigned size,
1442 MemTxAttrs attrs)
1443 {
1444 *pval = 0;
1445
1446 if (mr->ops->read) {
1447 return access_with_adjusted_size(addr, pval, size,
1448 mr->ops->impl.min_access_size,
1449 mr->ops->impl.max_access_size,
1450 memory_region_read_accessor,
1451 mr, attrs);
1452 } else {
1453 return access_with_adjusted_size(addr, pval, size,
1454 mr->ops->impl.min_access_size,
1455 mr->ops->impl.max_access_size,
1456 memory_region_read_with_attrs_accessor,
1457 mr, attrs);
1458 }
1459 }
1460
1461 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1462 hwaddr addr,
1463 uint64_t *pval,
1464 MemOp op,
1465 MemTxAttrs attrs)
1466 {
1467 unsigned size = memop_size(op);
1468 MemTxResult r;
1469
1470 if (mr->alias) {
1471 return memory_region_dispatch_read(mr->alias,
1472 mr->alias_offset + addr,
1473 pval, op, attrs);
1474 }
1475 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1476 *pval = unassigned_mem_read(mr, addr, size);
1477 return MEMTX_DECODE_ERROR;
1478 }
1479
1480 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1481 adjust_endianness(mr, pval, op);
1482 return r;
1483 }
1484
1485 /* Return true if an eventfd was signalled */
1486 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1487 hwaddr addr,
1488 uint64_t data,
1489 unsigned size,
1490 MemTxAttrs attrs)
1491 {
1492 MemoryRegionIoeventfd ioeventfd = {
1493 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1494 .data = data,
1495 };
1496 unsigned i;
1497
1498 for (i = 0; i < mr->ioeventfd_nb; i++) {
1499 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1500 ioeventfd.e = mr->ioeventfds[i].e;
1501
1502 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1503 event_notifier_set(ioeventfd.e);
1504 return true;
1505 }
1506 }
1507
1508 return false;
1509 }
1510
1511 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1512 hwaddr addr,
1513 uint64_t data,
1514 MemOp op,
1515 MemTxAttrs attrs)
1516 {
1517 unsigned size = memop_size(op);
1518
1519 if (mr->alias) {
1520 return memory_region_dispatch_write(mr->alias,
1521 mr->alias_offset + addr,
1522 data, op, attrs);
1523 }
1524 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1525 unassigned_mem_write(mr, addr, data, size);
1526 return MEMTX_DECODE_ERROR;
1527 }
1528
1529 adjust_endianness(mr, &data, op);
1530
1531 if ((!kvm_eventfds_enabled()) &&
1532 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1533 return MEMTX_OK;
1534 }
1535
1536 if (mr->ops->write) {
1537 return access_with_adjusted_size(addr, &data, size,
1538 mr->ops->impl.min_access_size,
1539 mr->ops->impl.max_access_size,
1540 memory_region_write_accessor, mr,
1541 attrs);
1542 } else {
1543 return
1544 access_with_adjusted_size(addr, &data, size,
1545 mr->ops->impl.min_access_size,
1546 mr->ops->impl.max_access_size,
1547 memory_region_write_with_attrs_accessor,
1548 mr, attrs);
1549 }
1550 }
1551
1552 void memory_region_init_io(MemoryRegion *mr,
1553 Object *owner,
1554 const MemoryRegionOps *ops,
1555 void *opaque,
1556 const char *name,
1557 uint64_t size)
1558 {
1559 memory_region_init(mr, owner, name, size);
1560 mr->ops = ops ? ops : &unassigned_mem_ops;
1561 mr->opaque = opaque;
1562 mr->terminates = true;
1563 }
1564
1565 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1566 Object *owner,
1567 const char *name,
1568 uint64_t size,
1569 Error **errp)
1570 {
1571 memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1572 }
1573
1574 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1575 Object *owner,
1576 const char *name,
1577 uint64_t size,
1578 uint32_t ram_flags,
1579 Error **errp)
1580 {
1581 Error *err = NULL;
1582 memory_region_init(mr, owner, name, size);
1583 mr->ram = true;
1584 mr->terminates = true;
1585 mr->destructor = memory_region_destructor_ram;
1586 mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1587 if (err) {
1588 mr->size = int128_zero();
1589 object_unparent(OBJECT(mr));
1590 error_propagate(errp, err);
1591 }
1592 }
1593
1594 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1595 Object *owner,
1596 const char *name,
1597 uint64_t size,
1598 uint64_t max_size,
1599 void (*resized)(const char*,
1600 uint64_t length,
1601 void *host),
1602 Error **errp)
1603 {
1604 Error *err = NULL;
1605 memory_region_init(mr, owner, name, size);
1606 mr->ram = true;
1607 mr->terminates = true;
1608 mr->destructor = memory_region_destructor_ram;
1609 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1610 mr, &err);
1611 if (err) {
1612 mr->size = int128_zero();
1613 object_unparent(OBJECT(mr));
1614 error_propagate(errp, err);
1615 }
1616 }
1617
1618 #ifdef CONFIG_POSIX
1619 void memory_region_init_ram_from_file(MemoryRegion *mr,
1620 Object *owner,
1621 const char *name,
1622 uint64_t size,
1623 uint64_t align,
1624 uint32_t ram_flags,
1625 const char *path,
1626 ram_addr_t offset,
1627 Error **errp)
1628 {
1629 Error *err = NULL;
1630 memory_region_init(mr, owner, name, size);
1631 mr->ram = true;
1632 mr->readonly = !!(ram_flags & RAM_READONLY);
1633 mr->terminates = true;
1634 mr->destructor = memory_region_destructor_ram;
1635 mr->align = align;
1636 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1637 offset, &err);
1638 if (err) {
1639 mr->size = int128_zero();
1640 object_unparent(OBJECT(mr));
1641 error_propagate(errp, err);
1642 }
1643 }
1644
1645 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1646 Object *owner,
1647 const char *name,
1648 uint64_t size,
1649 uint32_t ram_flags,
1650 int fd,
1651 ram_addr_t offset,
1652 Error **errp)
1653 {
1654 Error *err = NULL;
1655 memory_region_init(mr, owner, name, size);
1656 mr->ram = true;
1657 mr->readonly = !!(ram_flags & RAM_READONLY);
1658 mr->terminates = true;
1659 mr->destructor = memory_region_destructor_ram;
1660 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1661 &err);
1662 if (err) {
1663 mr->size = int128_zero();
1664 object_unparent(OBJECT(mr));
1665 error_propagate(errp, err);
1666 }
1667 }
1668 #endif
1669
1670 void memory_region_init_ram_ptr(MemoryRegion *mr,
1671 Object *owner,
1672 const char *name,
1673 uint64_t size,
1674 void *ptr)
1675 {
1676 memory_region_init(mr, owner, name, size);
1677 mr->ram = true;
1678 mr->terminates = true;
1679 mr->destructor = memory_region_destructor_ram;
1680
1681 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1682 assert(ptr != NULL);
1683 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1684 }
1685
1686 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1687 Object *owner,
1688 const char *name,
1689 uint64_t size,
1690 void *ptr)
1691 {
1692 memory_region_init(mr, owner, name, size);
1693 mr->ram = true;
1694 mr->terminates = true;
1695 mr->ram_device = true;
1696 mr->ops = &ram_device_mem_ops;
1697 mr->opaque = mr;
1698 mr->destructor = memory_region_destructor_ram;
1699
1700 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1701 assert(ptr != NULL);
1702 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1703 }
1704
1705 void memory_region_init_alias(MemoryRegion *mr,
1706 Object *owner,
1707 const char *name,
1708 MemoryRegion *orig,
1709 hwaddr offset,
1710 uint64_t size)
1711 {
1712 memory_region_init(mr, owner, name, size);
1713 mr->alias = orig;
1714 mr->alias_offset = offset;
1715 }
1716
1717 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1718 Object *owner,
1719 const char *name,
1720 uint64_t size,
1721 Error **errp)
1722 {
1723 memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1724 mr->readonly = true;
1725 }
1726
1727 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1728 Object *owner,
1729 const MemoryRegionOps *ops,
1730 void *opaque,
1731 const char *name,
1732 uint64_t size,
1733 Error **errp)
1734 {
1735 Error *err = NULL;
1736 assert(ops);
1737 memory_region_init(mr, owner, name, size);
1738 mr->ops = ops;
1739 mr->opaque = opaque;
1740 mr->terminates = true;
1741 mr->rom_device = true;
1742 mr->destructor = memory_region_destructor_ram;
1743 mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1744 if (err) {
1745 mr->size = int128_zero();
1746 object_unparent(OBJECT(mr));
1747 error_propagate(errp, err);
1748 }
1749 }
1750
1751 void memory_region_init_iommu(void *_iommu_mr,
1752 size_t instance_size,
1753 const char *mrtypename,
1754 Object *owner,
1755 const char *name,
1756 uint64_t size)
1757 {
1758 struct IOMMUMemoryRegion *iommu_mr;
1759 struct MemoryRegion *mr;
1760
1761 object_initialize(_iommu_mr, instance_size, mrtypename);
1762 mr = MEMORY_REGION(_iommu_mr);
1763 memory_region_do_init(mr, owner, name, size);
1764 iommu_mr = IOMMU_MEMORY_REGION(mr);
1765 mr->terminates = true; /* then re-forwards */
1766 QLIST_INIT(&iommu_mr->iommu_notify);
1767 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1768 }
1769
1770 static void memory_region_finalize(Object *obj)
1771 {
1772 MemoryRegion *mr = MEMORY_REGION(obj);
1773
1774 assert(!mr->container);
1775
1776 /* We know the region is not visible in any address space (it
1777 * does not have a container and cannot be a root either because
1778 * it has no references, so we can blindly clear mr->enabled.
1779 * memory_region_set_enabled instead could trigger a transaction
1780 * and cause an infinite loop.
1781 */
1782 mr->enabled = false;
1783 memory_region_transaction_begin();
1784 while (!QTAILQ_EMPTY(&mr->subregions)) {
1785 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1786 memory_region_del_subregion(mr, subregion);
1787 }
1788 memory_region_transaction_commit();
1789
1790 mr->destructor(mr);
1791 memory_region_clear_coalescing(mr);
1792 g_free((char *)mr->name);
1793 g_free(mr->ioeventfds);
1794 }
1795
1796 Object *memory_region_owner(MemoryRegion *mr)
1797 {
1798 Object *obj = OBJECT(mr);
1799 return obj->parent;
1800 }
1801
1802 void memory_region_ref(MemoryRegion *mr)
1803 {
1804 /* MMIO callbacks most likely will access data that belongs
1805 * to the owner, hence the need to ref/unref the owner whenever
1806 * the memory region is in use.
1807 *
1808 * The memory region is a child of its owner. As long as the
1809 * owner doesn't call unparent itself on the memory region,
1810 * ref-ing the owner will also keep the memory region alive.
1811 * Memory regions without an owner are supposed to never go away;
1812 * we do not ref/unref them because it slows down DMA sensibly.
1813 */
1814 if (mr && mr->owner) {
1815 object_ref(mr->owner);
1816 }
1817 }
1818
1819 void memory_region_unref(MemoryRegion *mr)
1820 {
1821 if (mr && mr->owner) {
1822 object_unref(mr->owner);
1823 }
1824 }
1825
1826 uint64_t memory_region_size(MemoryRegion *mr)
1827 {
1828 if (int128_eq(mr->size, int128_2_64())) {
1829 return UINT64_MAX;
1830 }
1831 return int128_get64(mr->size);
1832 }
1833
1834 const char *memory_region_name(const MemoryRegion *mr)
1835 {
1836 if (!mr->name) {
1837 ((MemoryRegion *)mr)->name =
1838 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1839 }
1840 return mr->name;
1841 }
1842
1843 bool memory_region_is_ram_device(MemoryRegion *mr)
1844 {
1845 return mr->ram_device;
1846 }
1847
1848 bool memory_region_is_protected(MemoryRegion *mr)
1849 {
1850 return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1851 }
1852
1853 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1854 {
1855 uint8_t mask = mr->dirty_log_mask;
1856 RAMBlock *rb = mr->ram_block;
1857
1858 if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1859 memory_region_is_iommu(mr))) {
1860 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1861 }
1862
1863 if (tcg_enabled() && rb) {
1864 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1865 mask |= (1 << DIRTY_MEMORY_CODE);
1866 }
1867 return mask;
1868 }
1869
1870 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1871 {
1872 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1873 }
1874
1875 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1876 Error **errp)
1877 {
1878 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1879 IOMMUNotifier *iommu_notifier;
1880 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1881 int ret = 0;
1882
1883 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1884 flags |= iommu_notifier->notifier_flags;
1885 }
1886
1887 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1888 ret = imrc->notify_flag_changed(iommu_mr,
1889 iommu_mr->iommu_notify_flags,
1890 flags, errp);
1891 }
1892
1893 if (!ret) {
1894 iommu_mr->iommu_notify_flags = flags;
1895 }
1896 return ret;
1897 }
1898
1899 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1900 uint64_t page_size_mask,
1901 Error **errp)
1902 {
1903 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1904 int ret = 0;
1905
1906 if (imrc->iommu_set_page_size_mask) {
1907 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1908 }
1909 return ret;
1910 }
1911
1912 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1913 IOMMUNotifier *n, Error **errp)
1914 {
1915 IOMMUMemoryRegion *iommu_mr;
1916 int ret;
1917
1918 if (mr->alias) {
1919 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1920 }
1921
1922 /* We need to register for at least one bitfield */
1923 iommu_mr = IOMMU_MEMORY_REGION(mr);
1924 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1925 assert(n->start <= n->end);
1926 assert(n->iommu_idx >= 0 &&
1927 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1928
1929 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1930 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1931 if (ret) {
1932 QLIST_REMOVE(n, node);
1933 }
1934 return ret;
1935 }
1936
1937 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1938 {
1939 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1940
1941 if (imrc->get_min_page_size) {
1942 return imrc->get_min_page_size(iommu_mr);
1943 }
1944 return TARGET_PAGE_SIZE;
1945 }
1946
1947 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1948 {
1949 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1950 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1951 hwaddr addr, granularity;
1952 IOMMUTLBEntry iotlb;
1953
1954 /* If the IOMMU has its own replay callback, override */
1955 if (imrc->replay) {
1956 imrc->replay(iommu_mr, n);
1957 return;
1958 }
1959
1960 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1961
1962 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1963 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1964 if (iotlb.perm != IOMMU_NONE) {
1965 n->notify(n, &iotlb);
1966 }
1967
1968 /* if (2^64 - MR size) < granularity, it's possible to get an
1969 * infinite loop here. This should catch such a wraparound */
1970 if ((addr + granularity) < addr) {
1971 break;
1972 }
1973 }
1974 }
1975
1976 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1977 IOMMUNotifier *n)
1978 {
1979 IOMMUMemoryRegion *iommu_mr;
1980
1981 if (mr->alias) {
1982 memory_region_unregister_iommu_notifier(mr->alias, n);
1983 return;
1984 }
1985 QLIST_REMOVE(n, node);
1986 iommu_mr = IOMMU_MEMORY_REGION(mr);
1987 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1988 }
1989
1990 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1991 IOMMUTLBEvent *event)
1992 {
1993 IOMMUTLBEntry *entry = &event->entry;
1994 hwaddr entry_end = entry->iova + entry->addr_mask;
1995 IOMMUTLBEntry tmp = *entry;
1996
1997 if (event->type == IOMMU_NOTIFIER_UNMAP) {
1998 assert(entry->perm == IOMMU_NONE);
1999 }
2000
2001 /*
2002 * Skip the notification if the notification does not overlap
2003 * with registered range.
2004 */
2005 if (notifier->start > entry_end || notifier->end < entry->iova) {
2006 return;
2007 }
2008
2009 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2010 /* Crop (iova, addr_mask) to range */
2011 tmp.iova = MAX(tmp.iova, notifier->start);
2012 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2013 } else {
2014 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2015 }
2016
2017 if (event->type & notifier->notifier_flags) {
2018 notifier->notify(notifier, &tmp);
2019 }
2020 }
2021
2022 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2023 {
2024 IOMMUTLBEvent event;
2025
2026 event.type = IOMMU_NOTIFIER_UNMAP;
2027 event.entry.target_as = &address_space_memory;
2028 event.entry.iova = notifier->start;
2029 event.entry.perm = IOMMU_NONE;
2030 event.entry.addr_mask = notifier->end - notifier->start;
2031
2032 memory_region_notify_iommu_one(notifier, &event);
2033 }
2034
2035 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2036 int iommu_idx,
2037 IOMMUTLBEvent event)
2038 {
2039 IOMMUNotifier *iommu_notifier;
2040
2041 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2042
2043 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2044 if (iommu_notifier->iommu_idx == iommu_idx) {
2045 memory_region_notify_iommu_one(iommu_notifier, &event);
2046 }
2047 }
2048 }
2049
2050 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2051 enum IOMMUMemoryRegionAttr attr,
2052 void *data)
2053 {
2054 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2055
2056 if (!imrc->get_attr) {
2057 return -EINVAL;
2058 }
2059
2060 return imrc->get_attr(iommu_mr, attr, data);
2061 }
2062
2063 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2064 MemTxAttrs attrs)
2065 {
2066 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2067
2068 if (!imrc->attrs_to_index) {
2069 return 0;
2070 }
2071
2072 return imrc->attrs_to_index(iommu_mr, attrs);
2073 }
2074
2075 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2076 {
2077 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2078
2079 if (!imrc->num_indexes) {
2080 return 1;
2081 }
2082
2083 return imrc->num_indexes(iommu_mr);
2084 }
2085
2086 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2087 {
2088 if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
2089 return NULL;
2090 }
2091 return mr->rdm;
2092 }
2093
2094 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2095 RamDiscardManager *rdm)
2096 {
2097 g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
2098 g_assert(!rdm || !mr->rdm);
2099 mr->rdm = rdm;
2100 }
2101
2102 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2103 const MemoryRegion *mr)
2104 {
2105 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2106
2107 g_assert(rdmc->get_min_granularity);
2108 return rdmc->get_min_granularity(rdm, mr);
2109 }
2110
2111 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2112 const MemoryRegionSection *section)
2113 {
2114 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2115
2116 g_assert(rdmc->is_populated);
2117 return rdmc->is_populated(rdm, section);
2118 }
2119
2120 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2121 MemoryRegionSection *section,
2122 ReplayRamPopulate replay_fn,
2123 void *opaque)
2124 {
2125 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2126
2127 g_assert(rdmc->replay_populated);
2128 return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2129 }
2130
2131 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2132 MemoryRegionSection *section,
2133 ReplayRamDiscard replay_fn,
2134 void *opaque)
2135 {
2136 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2137
2138 g_assert(rdmc->replay_discarded);
2139 rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2140 }
2141
2142 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2143 RamDiscardListener *rdl,
2144 MemoryRegionSection *section)
2145 {
2146 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2147
2148 g_assert(rdmc->register_listener);
2149 rdmc->register_listener(rdm, rdl, section);
2150 }
2151
2152 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2153 RamDiscardListener *rdl)
2154 {
2155 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2156
2157 g_assert(rdmc->unregister_listener);
2158 rdmc->unregister_listener(rdm, rdl);
2159 }
2160
2161 /* Called with rcu_read_lock held. */
2162 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2163 ram_addr_t *ram_addr, bool *read_only,
2164 bool *mr_has_discard_manager)
2165 {
2166 MemoryRegion *mr;
2167 hwaddr xlat;
2168 hwaddr len = iotlb->addr_mask + 1;
2169 bool writable = iotlb->perm & IOMMU_WO;
2170
2171 if (mr_has_discard_manager) {
2172 *mr_has_discard_manager = false;
2173 }
2174 /*
2175 * The IOMMU TLB entry we have just covers translation through
2176 * this IOMMU to its immediate target. We need to translate
2177 * it the rest of the way through to memory.
2178 */
2179 mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2180 &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2181 if (!memory_region_is_ram(mr)) {
2182 error_report("iommu map to non memory area %" HWADDR_PRIx "", xlat);
2183 return false;
2184 } else if (memory_region_has_ram_discard_manager(mr)) {
2185 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2186 MemoryRegionSection tmp = {
2187 .mr = mr,
2188 .offset_within_region = xlat,
2189 .size = int128_make64(len),
2190 };
2191 if (mr_has_discard_manager) {
2192 *mr_has_discard_manager = true;
2193 }
2194 /*
2195 * Malicious VMs can map memory into the IOMMU, which is expected
2196 * to remain discarded. vfio will pin all pages, populating memory.
2197 * Disallow that. vmstate priorities make sure any RamDiscardManager
2198 * were already restored before IOMMUs are restored.
2199 */
2200 if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2201 error_report("iommu map to discarded memory (e.g., unplugged via"
2202 " virtio-mem): %" HWADDR_PRIx "",
2203 iotlb->translated_addr);
2204 return false;
2205 }
2206 }
2207
2208 /*
2209 * Translation truncates length to the IOMMU page size,
2210 * check that it did not truncate too much.
2211 */
2212 if (len & iotlb->addr_mask) {
2213 error_report("iommu has granularity incompatible with target AS");
2214 return false;
2215 }
2216
2217 if (vaddr) {
2218 *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2219 }
2220
2221 if (ram_addr) {
2222 *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2223 }
2224
2225 if (read_only) {
2226 *read_only = !writable || mr->readonly;
2227 }
2228
2229 return true;
2230 }
2231
2232 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2233 {
2234 uint8_t mask = 1 << client;
2235 uint8_t old_logging;
2236
2237 assert(client == DIRTY_MEMORY_VGA);
2238 old_logging = mr->vga_logging_count;
2239 mr->vga_logging_count += log ? 1 : -1;
2240 if (!!old_logging == !!mr->vga_logging_count) {
2241 return;
2242 }
2243
2244 memory_region_transaction_begin();
2245 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2246 memory_region_update_pending |= mr->enabled;
2247 memory_region_transaction_commit();
2248 }
2249
2250 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2251 hwaddr size)
2252 {
2253 assert(mr->ram_block);
2254 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2255 size,
2256 memory_region_get_dirty_log_mask(mr));
2257 }
2258
2259 /*
2260 * If memory region `mr' is NULL, do global sync. Otherwise, sync
2261 * dirty bitmap for the specified memory region.
2262 */
2263 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2264 {
2265 MemoryListener *listener;
2266 AddressSpace *as;
2267 FlatView *view;
2268 FlatRange *fr;
2269
2270 /* If the same address space has multiple log_sync listeners, we
2271 * visit that address space's FlatView multiple times. But because
2272 * log_sync listeners are rare, it's still cheaper than walking each
2273 * address space once.
2274 */
2275 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2276 if (listener->log_sync) {
2277 as = listener->address_space;
2278 view = address_space_get_flatview(as);
2279 FOR_EACH_FLAT_RANGE(fr, view) {
2280 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2281 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2282 listener->log_sync(listener, &mrs);
2283 }
2284 }
2285 flatview_unref(view);
2286 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2287 } else if (listener->log_sync_global) {
2288 /*
2289 * No matter whether MR is specified, what we can do here
2290 * is to do a global sync, because we are not capable to
2291 * sync in a finer granularity.
2292 */
2293 listener->log_sync_global(listener, last_stage);
2294 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2295 }
2296 }
2297 }
2298
2299 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2300 hwaddr len)
2301 {
2302 MemoryRegionSection mrs;
2303 MemoryListener *listener;
2304 AddressSpace *as;
2305 FlatView *view;
2306 FlatRange *fr;
2307 hwaddr sec_start, sec_end, sec_size;
2308
2309 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2310 if (!listener->log_clear) {
2311 continue;
2312 }
2313 as = listener->address_space;
2314 view = address_space_get_flatview(as);
2315 FOR_EACH_FLAT_RANGE(fr, view) {
2316 if (!fr->dirty_log_mask || fr->mr != mr) {
2317 /*
2318 * Clear dirty bitmap operation only applies to those
2319 * regions whose dirty logging is at least enabled
2320 */
2321 continue;
2322 }
2323
2324 mrs = section_from_flat_range(fr, view);
2325
2326 sec_start = MAX(mrs.offset_within_region, start);
2327 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2328 sec_end = MIN(sec_end, start + len);
2329
2330 if (sec_start >= sec_end) {
2331 /*
2332 * If this memory region section has no intersection
2333 * with the requested range, skip.
2334 */
2335 continue;
2336 }
2337
2338 /* Valid case; shrink the section if needed */
2339 mrs.offset_within_address_space +=
2340 sec_start - mrs.offset_within_region;
2341 mrs.offset_within_region = sec_start;
2342 sec_size = sec_end - sec_start;
2343 mrs.size = int128_make64(sec_size);
2344 listener->log_clear(listener, &mrs);
2345 }
2346 flatview_unref(view);
2347 }
2348 }
2349
2350 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2351 hwaddr addr,
2352 hwaddr size,
2353 unsigned client)
2354 {
2355 DirtyBitmapSnapshot *snapshot;
2356 assert(mr->ram_block);
2357 memory_region_sync_dirty_bitmap(mr, false);
2358 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2359 memory_global_after_dirty_log_sync();
2360 return snapshot;
2361 }
2362
2363 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2364 hwaddr addr, hwaddr size)
2365 {
2366 assert(mr->ram_block);
2367 return cpu_physical_memory_snapshot_get_dirty(snap,
2368 memory_region_get_ram_addr(mr) + addr, size);
2369 }
2370
2371 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2372 {
2373 if (mr->readonly != readonly) {
2374 memory_region_transaction_begin();
2375 mr->readonly = readonly;
2376 memory_region_update_pending |= mr->enabled;
2377 memory_region_transaction_commit();
2378 }
2379 }
2380
2381 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2382 {
2383 if (mr->nonvolatile != nonvolatile) {
2384 memory_region_transaction_begin();
2385 mr->nonvolatile = nonvolatile;
2386 memory_region_update_pending |= mr->enabled;
2387 memory_region_transaction_commit();
2388 }
2389 }
2390
2391 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2392 {
2393 if (mr->romd_mode != romd_mode) {
2394 memory_region_transaction_begin();
2395 mr->romd_mode = romd_mode;
2396 memory_region_update_pending |= mr->enabled;
2397 memory_region_transaction_commit();
2398 }
2399 }
2400
2401 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2402 hwaddr size, unsigned client)
2403 {
2404 assert(mr->ram_block);
2405 cpu_physical_memory_test_and_clear_dirty(
2406 memory_region_get_ram_addr(mr) + addr, size, client);
2407 }
2408
2409 int memory_region_get_fd(MemoryRegion *mr)
2410 {
2411 RCU_READ_LOCK_GUARD();
2412 while (mr->alias) {
2413 mr = mr->alias;
2414 }
2415 return mr->ram_block->fd;
2416 }
2417
2418 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2419 {
2420 uint64_t offset = 0;
2421
2422 RCU_READ_LOCK_GUARD();
2423 while (mr->alias) {
2424 offset += mr->alias_offset;
2425 mr = mr->alias;
2426 }
2427 assert(mr->ram_block);
2428 return qemu_map_ram_ptr(mr->ram_block, offset);
2429 }
2430
2431 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2432 {
2433 RAMBlock *block;
2434
2435 block = qemu_ram_block_from_host(ptr, false, offset);
2436 if (!block) {
2437 return NULL;
2438 }
2439
2440 return block->mr;
2441 }
2442
2443 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2444 {
2445 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2446 }
2447
2448 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2449 {
2450 assert(mr->ram_block);
2451
2452 qemu_ram_resize(mr->ram_block, newsize, errp);
2453 }
2454
2455 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2456 {
2457 if (mr->ram_block) {
2458 qemu_ram_msync(mr->ram_block, addr, size);
2459 }
2460 }
2461
2462 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2463 {
2464 /*
2465 * Might be extended case needed to cover
2466 * different types of memory regions
2467 */
2468 if (mr->dirty_log_mask) {
2469 memory_region_msync(mr, addr, size);
2470 }
2471 }
2472
2473 /*
2474 * Call proper memory listeners about the change on the newly
2475 * added/removed CoalescedMemoryRange.
2476 */
2477 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2478 CoalescedMemoryRange *cmr,
2479 bool add)
2480 {
2481 AddressSpace *as;
2482 FlatView *view;
2483 FlatRange *fr;
2484
2485 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2486 view = address_space_get_flatview(as);
2487 FOR_EACH_FLAT_RANGE(fr, view) {
2488 if (fr->mr == mr) {
2489 flat_range_coalesced_io_notify(fr, as, cmr, add);
2490 }
2491 }
2492 flatview_unref(view);
2493 }
2494 }
2495
2496 void memory_region_set_coalescing(MemoryRegion *mr)
2497 {
2498 memory_region_clear_coalescing(mr);
2499 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2500 }
2501
2502 void memory_region_add_coalescing(MemoryRegion *mr,
2503 hwaddr offset,
2504 uint64_t size)
2505 {
2506 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2507
2508 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2509 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2510 memory_region_update_coalesced_range(mr, cmr, true);
2511 memory_region_set_flush_coalesced(mr);
2512 }
2513
2514 void memory_region_clear_coalescing(MemoryRegion *mr)
2515 {
2516 CoalescedMemoryRange *cmr;
2517
2518 if (QTAILQ_EMPTY(&mr->coalesced)) {
2519 return;
2520 }
2521
2522 qemu_flush_coalesced_mmio_buffer();
2523 mr->flush_coalesced_mmio = false;
2524
2525 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2526 cmr = QTAILQ_FIRST(&mr->coalesced);
2527 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2528 memory_region_update_coalesced_range(mr, cmr, false);
2529 g_free(cmr);
2530 }
2531 }
2532
2533 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2534 {
2535 mr->flush_coalesced_mmio = true;
2536 }
2537
2538 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2539 {
2540 qemu_flush_coalesced_mmio_buffer();
2541 if (QTAILQ_EMPTY(&mr->coalesced)) {
2542 mr->flush_coalesced_mmio = false;
2543 }
2544 }
2545
2546 static bool userspace_eventfd_warning;
2547
2548 void memory_region_add_eventfd(MemoryRegion *mr,
2549 hwaddr addr,
2550 unsigned size,
2551 bool match_data,
2552 uint64_t data,
2553 EventNotifier *e)
2554 {
2555 MemoryRegionIoeventfd mrfd = {
2556 .addr.start = int128_make64(addr),
2557 .addr.size = int128_make64(size),
2558 .match_data = match_data,
2559 .data = data,
2560 .e = e,
2561 };
2562 unsigned i;
2563
2564 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2565 userspace_eventfd_warning))) {
2566 userspace_eventfd_warning = true;
2567 error_report("Using eventfd without MMIO binding in KVM. "
2568 "Suboptimal performance expected");
2569 }
2570
2571 if (size) {
2572 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2573 }
2574 memory_region_transaction_begin();
2575 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2576 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2577 break;
2578 }
2579 }
2580 ++mr->ioeventfd_nb;
2581 mr->ioeventfds = g_realloc(mr->ioeventfds,
2582 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2583 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2584 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2585 mr->ioeventfds[i] = mrfd;
2586 ioeventfd_update_pending |= mr->enabled;
2587 memory_region_transaction_commit();
2588 }
2589
2590 void memory_region_del_eventfd(MemoryRegion *mr,
2591 hwaddr addr,
2592 unsigned size,
2593 bool match_data,
2594 uint64_t data,
2595 EventNotifier *e)
2596 {
2597 MemoryRegionIoeventfd mrfd = {
2598 .addr.start = int128_make64(addr),
2599 .addr.size = int128_make64(size),
2600 .match_data = match_data,
2601 .data = data,
2602 .e = e,
2603 };
2604 unsigned i;
2605
2606 if (size) {
2607 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2608 }
2609 memory_region_transaction_begin();
2610 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2611 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2612 break;
2613 }
2614 }
2615 assert(i != mr->ioeventfd_nb);
2616 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2617 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2618 --mr->ioeventfd_nb;
2619 mr->ioeventfds = g_realloc(mr->ioeventfds,
2620 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2621 ioeventfd_update_pending |= mr->enabled;
2622 memory_region_transaction_commit();
2623 }
2624
2625 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2626 {
2627 MemoryRegion *mr = subregion->container;
2628 MemoryRegion *other;
2629
2630 memory_region_transaction_begin();
2631
2632 memory_region_ref(subregion);
2633 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2634 if (subregion->priority >= other->priority) {
2635 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2636 goto done;
2637 }
2638 }
2639 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2640 done:
2641 memory_region_update_pending |= mr->enabled && subregion->enabled;
2642 memory_region_transaction_commit();
2643 }
2644
2645 static void memory_region_add_subregion_common(MemoryRegion *mr,
2646 hwaddr offset,
2647 MemoryRegion *subregion)
2648 {
2649 MemoryRegion *alias;
2650
2651 assert(!subregion->container);
2652 subregion->container = mr;
2653 for (alias = subregion->alias; alias; alias = alias->alias) {
2654 alias->mapped_via_alias++;
2655 }
2656 subregion->addr = offset;
2657 memory_region_update_container_subregions(subregion);
2658 }
2659
2660 void memory_region_add_subregion(MemoryRegion *mr,
2661 hwaddr offset,
2662 MemoryRegion *subregion)
2663 {
2664 subregion->priority = 0;
2665 memory_region_add_subregion_common(mr, offset, subregion);
2666 }
2667
2668 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2669 hwaddr offset,
2670 MemoryRegion *subregion,
2671 int priority)
2672 {
2673 subregion->priority = priority;
2674 memory_region_add_subregion_common(mr, offset, subregion);
2675 }
2676
2677 void memory_region_del_subregion(MemoryRegion *mr,
2678 MemoryRegion *subregion)
2679 {
2680 MemoryRegion *alias;
2681
2682 memory_region_transaction_begin();
2683 assert(subregion->container == mr);
2684 subregion->container = NULL;
2685 for (alias = subregion->alias; alias; alias = alias->alias) {
2686 alias->mapped_via_alias--;
2687 assert(alias->mapped_via_alias >= 0);
2688 }
2689 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2690 memory_region_unref(subregion);
2691 memory_region_update_pending |= mr->enabled && subregion->enabled;
2692 memory_region_transaction_commit();
2693 }
2694
2695 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2696 {
2697 if (enabled == mr->enabled) {
2698 return;
2699 }
2700 memory_region_transaction_begin();
2701 mr->enabled = enabled;
2702 memory_region_update_pending = true;
2703 memory_region_transaction_commit();
2704 }
2705
2706 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2707 {
2708 Int128 s = int128_make64(size);
2709
2710 if (size == UINT64_MAX) {
2711 s = int128_2_64();
2712 }
2713 if (int128_eq(s, mr->size)) {
2714 return;
2715 }
2716 memory_region_transaction_begin();
2717 mr->size = s;
2718 memory_region_update_pending = true;
2719 memory_region_transaction_commit();
2720 }
2721
2722 static void memory_region_readd_subregion(MemoryRegion *mr)
2723 {
2724 MemoryRegion *container = mr->container;
2725
2726 if (container) {
2727 memory_region_transaction_begin();
2728 memory_region_ref(mr);
2729 memory_region_del_subregion(container, mr);
2730 memory_region_add_subregion_common(container, mr->addr, mr);
2731 memory_region_unref(mr);
2732 memory_region_transaction_commit();
2733 }
2734 }
2735
2736 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2737 {
2738 if (addr != mr->addr) {
2739 mr->addr = addr;
2740 memory_region_readd_subregion(mr);
2741 }
2742 }
2743
2744 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2745 {
2746 assert(mr->alias);
2747
2748 if (offset == mr->alias_offset) {
2749 return;
2750 }
2751
2752 memory_region_transaction_begin();
2753 mr->alias_offset = offset;
2754 memory_region_update_pending |= mr->enabled;
2755 memory_region_transaction_commit();
2756 }
2757
2758 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2759 {
2760 return mr->align;
2761 }
2762
2763 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2764 {
2765 const AddrRange *addr = addr_;
2766 const FlatRange *fr = fr_;
2767
2768 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2769 return -1;
2770 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2771 return 1;
2772 }
2773 return 0;
2774 }
2775
2776 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2777 {
2778 return bsearch(&addr, view->ranges, view->nr,
2779 sizeof(FlatRange), cmp_flatrange_addr);
2780 }
2781
2782 bool memory_region_is_mapped(MemoryRegion *mr)
2783 {
2784 return !!mr->container || mr->mapped_via_alias;
2785 }
2786
2787 /* Same as memory_region_find, but it does not add a reference to the
2788 * returned region. It must be called from an RCU critical section.
2789 */
2790 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2791 hwaddr addr, uint64_t size)
2792 {
2793 MemoryRegionSection ret = { .mr = NULL };
2794 MemoryRegion *root;
2795 AddressSpace *as;
2796 AddrRange range;
2797 FlatView *view;
2798 FlatRange *fr;
2799
2800 addr += mr->addr;
2801 for (root = mr; root->container; ) {
2802 root = root->container;
2803 addr += root->addr;
2804 }
2805
2806 as = memory_region_to_address_space(root);
2807 if (!as) {
2808 return ret;
2809 }
2810 range = addrrange_make(int128_make64(addr), int128_make64(size));
2811
2812 view = address_space_to_flatview(as);
2813 fr = flatview_lookup(view, range);
2814 if (!fr) {
2815 return ret;
2816 }
2817
2818 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2819 --fr;
2820 }
2821
2822 ret.mr = fr->mr;
2823 ret.fv = view;
2824 range = addrrange_intersection(range, fr->addr);
2825 ret.offset_within_region = fr->offset_in_region;
2826 ret.offset_within_region += int128_get64(int128_sub(range.start,
2827 fr->addr.start));
2828 ret.size = range.size;
2829 ret.offset_within_address_space = int128_get64(range.start);
2830 ret.readonly = fr->readonly;
2831 ret.nonvolatile = fr->nonvolatile;
2832 return ret;
2833 }
2834
2835 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2836 hwaddr addr, uint64_t size)
2837 {
2838 MemoryRegionSection ret;
2839 RCU_READ_LOCK_GUARD();
2840 ret = memory_region_find_rcu(mr, addr, size);
2841 if (ret.mr) {
2842 memory_region_ref(ret.mr);
2843 }
2844 return ret;
2845 }
2846
2847 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2848 {
2849 MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2850
2851 *tmp = *s;
2852 if (tmp->mr) {
2853 memory_region_ref(tmp->mr);
2854 }
2855 if (tmp->fv) {
2856 bool ret = flatview_ref(tmp->fv);
2857
2858 g_assert(ret);
2859 }
2860 return tmp;
2861 }
2862
2863 void memory_region_section_free_copy(MemoryRegionSection *s)
2864 {
2865 if (s->fv) {
2866 flatview_unref(s->fv);
2867 }
2868 if (s->mr) {
2869 memory_region_unref(s->mr);
2870 }
2871 g_free(s);
2872 }
2873
2874 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2875 {
2876 MemoryRegion *mr;
2877
2878 RCU_READ_LOCK_GUARD();
2879 mr = memory_region_find_rcu(container, addr, 1).mr;
2880 return mr && mr != container;
2881 }
2882
2883 void memory_global_dirty_log_sync(bool last_stage)
2884 {
2885 memory_region_sync_dirty_bitmap(NULL, last_stage);
2886 }
2887
2888 void memory_global_after_dirty_log_sync(void)
2889 {
2890 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2891 }
2892
2893 /*
2894 * Dirty track stop flags that are postponed due to VM being stopped. Should
2895 * only be used within vmstate_change hook.
2896 */
2897 static unsigned int postponed_stop_flags;
2898 static VMChangeStateEntry *vmstate_change;
2899 static void memory_global_dirty_log_stop_postponed_run(void);
2900
2901 void memory_global_dirty_log_start(unsigned int flags)
2902 {
2903 unsigned int old_flags;
2904
2905 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2906
2907 if (vmstate_change) {
2908 /* If there is postponed stop(), operate on it first */
2909 postponed_stop_flags &= ~flags;
2910 memory_global_dirty_log_stop_postponed_run();
2911 }
2912
2913 flags &= ~global_dirty_tracking;
2914 if (!flags) {
2915 return;
2916 }
2917
2918 old_flags = global_dirty_tracking;
2919 global_dirty_tracking |= flags;
2920 trace_global_dirty_changed(global_dirty_tracking);
2921
2922 if (!old_flags) {
2923 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2924 memory_region_transaction_begin();
2925 memory_region_update_pending = true;
2926 memory_region_transaction_commit();
2927 }
2928 }
2929
2930 static void memory_global_dirty_log_do_stop(unsigned int flags)
2931 {
2932 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2933 assert((global_dirty_tracking & flags) == flags);
2934 global_dirty_tracking &= ~flags;
2935
2936 trace_global_dirty_changed(global_dirty_tracking);
2937
2938 if (!global_dirty_tracking) {
2939 memory_region_transaction_begin();
2940 memory_region_update_pending = true;
2941 memory_region_transaction_commit();
2942 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2943 }
2944 }
2945
2946 /*
2947 * Execute the postponed dirty log stop operations if there is, then reset
2948 * everything (including the flags and the vmstate change hook).
2949 */
2950 static void memory_global_dirty_log_stop_postponed_run(void)
2951 {
2952 /* This must be called with the vmstate handler registered */
2953 assert(vmstate_change);
2954
2955 /* Note: postponed_stop_flags can be cleared in log start routine */
2956 if (postponed_stop_flags) {
2957 memory_global_dirty_log_do_stop(postponed_stop_flags);
2958 postponed_stop_flags = 0;
2959 }
2960
2961 qemu_del_vm_change_state_handler(vmstate_change);
2962 vmstate_change = NULL;
2963 }
2964
2965 static void memory_vm_change_state_handler(void *opaque, bool running,
2966 RunState state)
2967 {
2968 if (running) {
2969 memory_global_dirty_log_stop_postponed_run();
2970 }
2971 }
2972
2973 void memory_global_dirty_log_stop(unsigned int flags)
2974 {
2975 if (!runstate_is_running()) {
2976 /* Postpone the dirty log stop, e.g., to when VM starts again */
2977 if (vmstate_change) {
2978 /* Batch with previous postponed flags */
2979 postponed_stop_flags |= flags;
2980 } else {
2981 postponed_stop_flags = flags;
2982 vmstate_change = qemu_add_vm_change_state_handler(
2983 memory_vm_change_state_handler, NULL);
2984 }
2985 return;
2986 }
2987
2988 memory_global_dirty_log_do_stop(flags);
2989 }
2990
2991 static void listener_add_address_space(MemoryListener *listener,
2992 AddressSpace *as)
2993 {
2994 FlatView *view;
2995 FlatRange *fr;
2996
2997 if (listener->begin) {
2998 listener->begin(listener);
2999 }
3000 if (global_dirty_tracking) {
3001 if (listener->log_global_start) {
3002 listener->log_global_start(listener);
3003 }
3004 }
3005
3006 view = address_space_get_flatview(as);
3007 FOR_EACH_FLAT_RANGE(fr, view) {
3008 MemoryRegionSection section = section_from_flat_range(fr, view);
3009
3010 if (listener->region_add) {
3011 listener->region_add(listener, &section);
3012 }
3013 if (fr->dirty_log_mask && listener->log_start) {
3014 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3015 }
3016 }
3017 if (listener->commit) {
3018 listener->commit(listener);
3019 }
3020 flatview_unref(view);
3021 }
3022
3023 static void listener_del_address_space(MemoryListener *listener,
3024 AddressSpace *as)
3025 {
3026 FlatView *view;
3027 FlatRange *fr;
3028
3029 if (listener->begin) {
3030 listener->begin(listener);
3031 }
3032 view = address_space_get_flatview(as);
3033 FOR_EACH_FLAT_RANGE(fr, view) {
3034 MemoryRegionSection section = section_from_flat_range(fr, view);
3035
3036 if (fr->dirty_log_mask && listener->log_stop) {
3037 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3038 }
3039 if (listener->region_del) {
3040 listener->region_del(listener, &section);
3041 }
3042 }
3043 if (listener->commit) {
3044 listener->commit(listener);
3045 }
3046 flatview_unref(view);
3047 }
3048
3049 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3050 {
3051 MemoryListener *other = NULL;
3052
3053 /* Only one of them can be defined for a listener */
3054 assert(!(listener->log_sync && listener->log_sync_global));
3055
3056 listener->address_space = as;
3057 if (QTAILQ_EMPTY(&memory_listeners)
3058 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3059 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3060 } else {
3061 QTAILQ_FOREACH(other, &memory_listeners, link) {
3062 if (listener->priority < other->priority) {
3063 break;
3064 }
3065 }
3066 QTAILQ_INSERT_BEFORE(other, listener, link);
3067 }
3068
3069 if (QTAILQ_EMPTY(&as->listeners)
3070 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3071 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3072 } else {
3073 QTAILQ_FOREACH(other, &as->listeners, link_as) {
3074 if (listener->priority < other->priority) {
3075 break;
3076 }
3077 }
3078 QTAILQ_INSERT_BEFORE(other, listener, link_as);
3079 }
3080
3081 listener_add_address_space(listener, as);
3082
3083 if (listener->eventfd_add || listener->eventfd_del) {
3084 as->ioeventfd_notifiers++;
3085 }
3086 }
3087
3088 void memory_listener_unregister(MemoryListener *listener)
3089 {
3090 if (!listener->address_space) {
3091 return;
3092 }
3093
3094 if (listener->eventfd_add || listener->eventfd_del) {
3095 listener->address_space->ioeventfd_notifiers--;
3096 }
3097
3098 listener_del_address_space(listener, listener->address_space);
3099 QTAILQ_REMOVE(&memory_listeners, listener, link);
3100 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3101 listener->address_space = NULL;
3102 }
3103
3104 void address_space_remove_listeners(AddressSpace *as)
3105 {
3106 while (!QTAILQ_EMPTY(&as->listeners)) {
3107 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3108 }
3109 }
3110
3111 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3112 {
3113 memory_region_ref(root);
3114 as->root = root;
3115 as->current_map = NULL;
3116 as->ioeventfd_nb = 0;
3117 as->ioeventfds = NULL;
3118 QTAILQ_INIT(&as->listeners);
3119 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3120 as->name = g_strdup(name ? name : "anonymous");
3121 address_space_update_topology(as);
3122 address_space_update_ioeventfds(as);
3123 }
3124
3125 static void do_address_space_destroy(AddressSpace *as)
3126 {
3127 assert(QTAILQ_EMPTY(&as->listeners));
3128
3129 flatview_unref(as->current_map);
3130 g_free(as->name);
3131 g_free(as->ioeventfds);
3132 memory_region_unref(as->root);
3133 }
3134
3135 void address_space_destroy(AddressSpace *as)
3136 {
3137 MemoryRegion *root = as->root;
3138
3139 /* Flush out anything from MemoryListeners listening in on this */
3140 memory_region_transaction_begin();
3141 as->root = NULL;
3142 memory_region_transaction_commit();
3143 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3144
3145 /* At this point, as->dispatch and as->current_map are dummy
3146 * entries that the guest should never use. Wait for the old
3147 * values to expire before freeing the data.
3148 */
3149 as->root = root;
3150 call_rcu(as, do_address_space_destroy, rcu);
3151 }
3152
3153 static const char *memory_region_type(MemoryRegion *mr)
3154 {
3155 if (mr->alias) {
3156 return memory_region_type(mr->alias);
3157 }
3158 if (memory_region_is_ram_device(mr)) {
3159 return "ramd";
3160 } else if (memory_region_is_romd(mr)) {
3161 return "romd";
3162 } else if (memory_region_is_rom(mr)) {
3163 return "rom";
3164 } else if (memory_region_is_ram(mr)) {
3165 return "ram";
3166 } else {
3167 return "i/o";
3168 }
3169 }
3170
3171 typedef struct MemoryRegionList MemoryRegionList;
3172
3173 struct MemoryRegionList {
3174 const MemoryRegion *mr;
3175 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3176 };
3177
3178 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3179
3180 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3181 int128_sub((size), int128_one())) : 0)
3182 #define MTREE_INDENT " "
3183
3184 static void mtree_expand_owner(const char *label, Object *obj)
3185 {
3186 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3187
3188 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3189 if (dev && dev->id) {
3190 qemu_printf(" id=%s", dev->id);
3191 } else {
3192 char *canonical_path = object_get_canonical_path(obj);
3193 if (canonical_path) {
3194 qemu_printf(" path=%s", canonical_path);
3195 g_free(canonical_path);
3196 } else {
3197 qemu_printf(" type=%s", object_get_typename(obj));
3198 }
3199 }
3200 qemu_printf("}");
3201 }
3202
3203 static void mtree_print_mr_owner(const MemoryRegion *mr)
3204 {
3205 Object *owner = mr->owner;
3206 Object *parent = memory_region_owner((MemoryRegion *)mr);
3207
3208 if (!owner && !parent) {
3209 qemu_printf(" orphan");
3210 return;
3211 }
3212 if (owner) {
3213 mtree_expand_owner("owner", owner);
3214 }
3215 if (parent && parent != owner) {
3216 mtree_expand_owner("parent", parent);
3217 }
3218 }
3219
3220 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3221 hwaddr base,
3222 MemoryRegionListHead *alias_print_queue,
3223 bool owner, bool display_disabled)
3224 {
3225 MemoryRegionList *new_ml, *ml, *next_ml;
3226 MemoryRegionListHead submr_print_queue;
3227 const MemoryRegion *submr;
3228 unsigned int i;
3229 hwaddr cur_start, cur_end;
3230
3231 if (!mr) {
3232 return;
3233 }
3234
3235 cur_start = base + mr->addr;
3236 cur_end = cur_start + MR_SIZE(mr->size);
3237
3238 /*
3239 * Try to detect overflow of memory region. This should never
3240 * happen normally. When it happens, we dump something to warn the
3241 * user who is observing this.
3242 */
3243 if (cur_start < base || cur_end < cur_start) {
3244 qemu_printf("[DETECTED OVERFLOW!] ");
3245 }
3246
3247 if (mr->alias) {
3248 bool found = false;
3249
3250 /* check if the alias is already in the queue */
3251 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3252 if (ml->mr == mr->alias) {
3253 found = true;
3254 }
3255 }
3256
3257 if (!found) {
3258 ml = g_new(MemoryRegionList, 1);
3259 ml->mr = mr->alias;
3260 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3261 }
3262 if (mr->enabled || display_disabled) {
3263 for (i = 0; i < level; i++) {
3264 qemu_printf(MTREE_INDENT);
3265 }
3266 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3267 " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3268 "-" HWADDR_FMT_plx "%s",
3269 cur_start, cur_end,
3270 mr->priority,
3271 mr->nonvolatile ? "nv-" : "",
3272 memory_region_type((MemoryRegion *)mr),
3273 memory_region_name(mr),
3274 memory_region_name(mr->alias),
3275 mr->alias_offset,
3276 mr->alias_offset + MR_SIZE(mr->size),
3277 mr->enabled ? "" : " [disabled]");
3278 if (owner) {
3279 mtree_print_mr_owner(mr);
3280 }
3281 qemu_printf("\n");
3282 }
3283 } else {
3284 if (mr->enabled || display_disabled) {
3285 for (i = 0; i < level; i++) {
3286 qemu_printf(MTREE_INDENT);
3287 }
3288 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3289 " (prio %d, %s%s): %s%s",
3290 cur_start, cur_end,
3291 mr->priority,
3292 mr->nonvolatile ? "nv-" : "",
3293 memory_region_type((MemoryRegion *)mr),
3294 memory_region_name(mr),
3295 mr->enabled ? "" : " [disabled]");
3296 if (owner) {
3297 mtree_print_mr_owner(mr);
3298 }
3299 qemu_printf("\n");
3300 }
3301 }
3302
3303 QTAILQ_INIT(&submr_print_queue);
3304
3305 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3306 new_ml = g_new(MemoryRegionList, 1);
3307 new_ml->mr = submr;
3308 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3309 if (new_ml->mr->addr < ml->mr->addr ||
3310 (new_ml->mr->addr == ml->mr->addr &&
3311 new_ml->mr->priority > ml->mr->priority)) {
3312 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3313 new_ml = NULL;
3314 break;
3315 }
3316 }
3317 if (new_ml) {
3318 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3319 }
3320 }
3321
3322 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3323 mtree_print_mr(ml->mr, level + 1, cur_start,
3324 alias_print_queue, owner, display_disabled);
3325 }
3326
3327 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3328 g_free(ml);
3329 }
3330 }
3331
3332 struct FlatViewInfo {
3333 int counter;
3334 bool dispatch_tree;
3335 bool owner;
3336 AccelClass *ac;
3337 };
3338
3339 static void mtree_print_flatview(gpointer key, gpointer value,
3340 gpointer user_data)
3341 {
3342 FlatView *view = key;
3343 GArray *fv_address_spaces = value;
3344 struct FlatViewInfo *fvi = user_data;
3345 FlatRange *range = &view->ranges[0];
3346 MemoryRegion *mr;
3347 int n = view->nr;
3348 int i;
3349 AddressSpace *as;
3350
3351 qemu_printf("FlatView #%d\n", fvi->counter);
3352 ++fvi->counter;
3353
3354 for (i = 0; i < fv_address_spaces->len; ++i) {
3355 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3356 qemu_printf(" AS \"%s\", root: %s",
3357 as->name, memory_region_name(as->root));
3358 if (as->root->alias) {
3359 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3360 }
3361 qemu_printf("\n");
3362 }
3363
3364 qemu_printf(" Root memory region: %s\n",
3365 view->root ? memory_region_name(view->root) : "(none)");
3366
3367 if (n <= 0) {
3368 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3369 return;
3370 }
3371
3372 while (n--) {
3373 mr = range->mr;
3374 if (range->offset_in_region) {
3375 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3376 " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3377 int128_get64(range->addr.start),
3378 int128_get64(range->addr.start)
3379 + MR_SIZE(range->addr.size),
3380 mr->priority,
3381 range->nonvolatile ? "nv-" : "",
3382 range->readonly ? "rom" : memory_region_type(mr),
3383 memory_region_name(mr),
3384 range->offset_in_region);
3385 } else {
3386 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3387 " (prio %d, %s%s): %s",
3388 int128_get64(range->addr.start),
3389 int128_get64(range->addr.start)
3390 + MR_SIZE(range->addr.size),
3391 mr->priority,
3392 range->nonvolatile ? "nv-" : "",
3393 range->readonly ? "rom" : memory_region_type(mr),
3394 memory_region_name(mr));
3395 }
3396 if (fvi->owner) {
3397 mtree_print_mr_owner(mr);
3398 }
3399
3400 if (fvi->ac) {
3401 for (i = 0; i < fv_address_spaces->len; ++i) {
3402 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3403 if (fvi->ac->has_memory(current_machine, as,
3404 int128_get64(range->addr.start),
3405 MR_SIZE(range->addr.size) + 1)) {
3406 qemu_printf(" %s", fvi->ac->name);
3407 }
3408 }
3409 }
3410 qemu_printf("\n");
3411 range++;
3412 }
3413
3414 #if !defined(CONFIG_USER_ONLY)
3415 if (fvi->dispatch_tree && view->root) {
3416 mtree_print_dispatch(view->dispatch, view->root);
3417 }
3418 #endif
3419
3420 qemu_printf("\n");
3421 }
3422
3423 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3424 gpointer user_data)
3425 {
3426 FlatView *view = key;
3427 GArray *fv_address_spaces = value;
3428
3429 g_array_unref(fv_address_spaces);
3430 flatview_unref(view);
3431
3432 return true;
3433 }
3434
3435 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3436 {
3437 struct FlatViewInfo fvi = {
3438 .counter = 0,
3439 .dispatch_tree = dispatch_tree,
3440 .owner = owner,
3441 };
3442 AddressSpace *as;
3443 FlatView *view;
3444 GArray *fv_address_spaces;
3445 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3446 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3447
3448 if (ac->has_memory) {
3449 fvi.ac = ac;
3450 }
3451
3452 /* Gather all FVs in one table */
3453 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3454 view = address_space_get_flatview(as);
3455
3456 fv_address_spaces = g_hash_table_lookup(views, view);
3457 if (!fv_address_spaces) {
3458 fv_address_spaces = g_array_new(false, false, sizeof(as));
3459 g_hash_table_insert(views, view, fv_address_spaces);
3460 }
3461
3462 g_array_append_val(fv_address_spaces, as);
3463 }
3464
3465 /* Print */
3466 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3467
3468 /* Free */
3469 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3470 g_hash_table_unref(views);
3471 }
3472
3473 struct AddressSpaceInfo {
3474 MemoryRegionListHead *ml_head;
3475 bool owner;
3476 bool disabled;
3477 };
3478
3479 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3480 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3481 {
3482 const AddressSpace *as_a = a;
3483 const AddressSpace *as_b = b;
3484
3485 return g_strcmp0(as_a->name, as_b->name);
3486 }
3487
3488 static void mtree_print_as_name(gpointer data, gpointer user_data)
3489 {
3490 AddressSpace *as = data;
3491
3492 qemu_printf("address-space: %s\n", as->name);
3493 }
3494
3495 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3496 {
3497 MemoryRegion *mr = key;
3498 GSList *as_same_root_mr_list = value;
3499 struct AddressSpaceInfo *asi = user_data;
3500
3501 g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3502 mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3503 qemu_printf("\n");
3504 }
3505
3506 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3507 gpointer user_data)
3508 {
3509 GSList *as_same_root_mr_list = value;
3510
3511 g_slist_free(as_same_root_mr_list);
3512
3513 return true;
3514 }
3515
3516 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3517 {
3518 MemoryRegionListHead ml_head;
3519 MemoryRegionList *ml, *ml2;
3520 AddressSpace *as;
3521 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3522 GSList *as_same_root_mr_list;
3523 struct AddressSpaceInfo asi = {
3524 .ml_head = &ml_head,
3525 .owner = owner,
3526 .disabled = disabled,
3527 };
3528
3529 QTAILQ_INIT(&ml_head);
3530
3531 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3532 /* Create hashtable, key=AS root MR, value = list of AS */
3533 as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3534 as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3535 address_space_compare_name);
3536 g_hash_table_insert(views, as->root, as_same_root_mr_list);
3537 }
3538
3539 /* print address spaces */
3540 g_hash_table_foreach(views, mtree_print_as, &asi);
3541 g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3542 g_hash_table_unref(views);
3543
3544 /* print aliased regions */
3545 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3546 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3547 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3548 qemu_printf("\n");
3549 }
3550
3551 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3552 g_free(ml);
3553 }
3554 }
3555
3556 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3557 {
3558 if (flatview) {
3559 mtree_info_flatview(dispatch_tree, owner);
3560 } else {
3561 mtree_info_as(dispatch_tree, owner, disabled);
3562 }
3563 }
3564
3565 void memory_region_init_ram(MemoryRegion *mr,
3566 Object *owner,
3567 const char *name,
3568 uint64_t size,
3569 Error **errp)
3570 {
3571 DeviceState *owner_dev;
3572 Error *err = NULL;
3573
3574 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3575 if (err) {
3576 error_propagate(errp, err);
3577 return;
3578 }
3579 /* This will assert if owner is neither NULL nor a DeviceState.
3580 * We only want the owner here for the purposes of defining a
3581 * unique name for migration. TODO: Ideally we should implement
3582 * a naming scheme for Objects which are not DeviceStates, in
3583 * which case we can relax this restriction.
3584 */
3585 owner_dev = DEVICE(owner);
3586 vmstate_register_ram(mr, owner_dev);
3587 }
3588
3589 void memory_region_init_rom(MemoryRegion *mr,
3590 Object *owner,
3591 const char *name,
3592 uint64_t size,
3593 Error **errp)
3594 {
3595 DeviceState *owner_dev;
3596 Error *err = NULL;
3597
3598 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3599 if (err) {
3600 error_propagate(errp, err);
3601 return;
3602 }
3603 /* This will assert if owner is neither NULL nor a DeviceState.
3604 * We only want the owner here for the purposes of defining a
3605 * unique name for migration. TODO: Ideally we should implement
3606 * a naming scheme for Objects which are not DeviceStates, in
3607 * which case we can relax this restriction.
3608 */
3609 owner_dev = DEVICE(owner);
3610 vmstate_register_ram(mr, owner_dev);
3611 }
3612
3613 void memory_region_init_rom_device(MemoryRegion *mr,
3614 Object *owner,
3615 const MemoryRegionOps *ops,
3616 void *opaque,
3617 const char *name,
3618 uint64_t size,
3619 Error **errp)
3620 {
3621 DeviceState *owner_dev;
3622 Error *err = NULL;
3623
3624 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3625 name, size, &err);
3626 if (err) {
3627 error_propagate(errp, err);
3628 return;
3629 }
3630 /* This will assert if owner is neither NULL nor a DeviceState.
3631 * We only want the owner here for the purposes of defining a
3632 * unique name for migration. TODO: Ideally we should implement
3633 * a naming scheme for Objects which are not DeviceStates, in
3634 * which case we can relax this restriction.
3635 */
3636 owner_dev = DEVICE(owner);
3637 vmstate_register_ram(mr, owner_dev);
3638 }
3639
3640 /*
3641 * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3642 * the fuzz_dma_read_cb callback
3643 */
3644 #ifdef CONFIG_FUZZ
3645 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3646 size_t len,
3647 MemoryRegion *mr)
3648 {
3649 }
3650 #endif
3651
3652 static const TypeInfo memory_region_info = {
3653 .parent = TYPE_OBJECT,
3654 .name = TYPE_MEMORY_REGION,
3655 .class_size = sizeof(MemoryRegionClass),
3656 .instance_size = sizeof(MemoryRegion),
3657 .instance_init = memory_region_initfn,
3658 .instance_finalize = memory_region_finalize,
3659 };
3660
3661 static const TypeInfo iommu_memory_region_info = {
3662 .parent = TYPE_MEMORY_REGION,
3663 .name = TYPE_IOMMU_MEMORY_REGION,
3664 .class_size = sizeof(IOMMUMemoryRegionClass),
3665 .instance_size = sizeof(IOMMUMemoryRegion),
3666 .instance_init = iommu_memory_region_initfn,
3667 .abstract = true,
3668 };
3669
3670 static const TypeInfo ram_discard_manager_info = {
3671 .parent = TYPE_INTERFACE,
3672 .name = TYPE_RAM_DISCARD_MANAGER,
3673 .class_size = sizeof(RamDiscardManagerClass),
3674 };
3675
3676 static void memory_register_types(void)
3677 {
3678 type_register_static(&memory_region_info);
3679 type_register_static(&iommu_memory_region_info);
3680 type_register_static(&ram_discard_manager_info);
3681 }
3682
3683 type_init(memory_register_types)