]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/physmem.c
softmmu: Make qtest.c target independent
[mirror_qemu.git] / softmmu / physmem.c
1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67
68 #include "qemu/pmem.h"
69
70 #include "migration/vmstate.h"
71
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76
77 #include "monitor/monitor.h"
78
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82
83 //#define DEBUG_SUBPAGE
84
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
87 */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95
96 static MemoryRegion io_mem_unassigned;
97
98 typedef struct PhysPageEntry PhysPageEntry;
99
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
105 };
106
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
111
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116
117 typedef PhysPageEntry Node[P_L2_SIZE];
118
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
121
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
129
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
134 */
135 PhysPageEntry phys_map;
136 PhysPageMap map;
137 };
138
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
146
147 #define PHYS_SECTION_UNASSIGNED 0
148
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153
154 /**
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 */
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
166 };
167
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
172 };
173
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
181 }
182 }
183
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
190
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
195
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
200 }
201 return ret;
202 }
203
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
207 {
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
213 }
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 }
226 ++lp;
227 }
228 }
229
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
233 {
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
242 */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
249
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
252 }
253
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
258 }
259
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
264 }
265 }
266
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
270 }
271
272 assert(valid_ptr < P_L2_SIZE);
273
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
278 }
279
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
287 */
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
291 }
292 }
293
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
298 }
299 }
300
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
303 {
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
306 */
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
310 }
311
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
319
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
323 }
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326 }
327
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
339 {
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
342
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
347 }
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 }
352 return section;
353 }
354
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
359 {
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
363
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
367
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
370
371 mr = section->mr;
372
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
379 *
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
383 */
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 }
388 return section;
389 }
390
391 /**
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
394 *
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
409 *
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
412 */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
421 {
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
424
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
430
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433 }
434
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
437
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
440 }
441
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
447
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
451
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
454
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
457 }
458 return *section;
459
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463
464 /**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
481 *
482 * This function is called from RCU critical section
483 */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
493 {
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
497
498 if (!plen_out) {
499 plen_out = &plen;
500 }
501
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
512 }
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
516 }
517
518 return *section;
519 }
520
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
524 {
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
527
528 /*
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
531 */
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
535
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
539 }
540
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
544
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
552 };
553
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
556 }
557
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
562 {
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
566
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
571
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
575 }
576
577 return mr;
578 }
579
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
587
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591
592 if (!notifier->active) {
593 return;
594 }
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
601 */
602 }
603
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
607 {
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
611 */
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
615
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
620 }
621 }
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
636 */
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
640 0,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
645 }
646
647 if (!notifier->active) {
648 notifier->active = true;
649 }
650 }
651
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
657
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
662 }
663 g_array_free(cpu->iommu_notifiers, true);
664 }
665
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
676 {
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d =
684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685
686 for (;;) {
687 section = address_space_translate_internal(d, addr, &addr, plen, false);
688
689 iommu_mr = memory_region_get_iommu(section->mr);
690 if (!iommu_mr) {
691 break;
692 }
693
694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695
696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699 * doesn't short-cut its translation table walk.
700 */
701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703 | (addr & iotlb.addr_mask));
704 /* Update the caller's prot bits to remove permissions the IOMMU
705 * is giving us a failure response for. If we get down to no
706 * permissions left at all we can give up now.
707 */
708 if (!(iotlb.perm & IOMMU_RO)) {
709 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 }
711 if (!(iotlb.perm & IOMMU_WO)) {
712 *prot &= ~PAGE_WRITE;
713 }
714
715 if (!*prot) {
716 goto translate_fail;
717 }
718
719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720 }
721
722 assert(!memory_region_is_iommu(section->mr));
723 *xlat = addr;
724 return section;
725
726 translate_fail:
727 /*
728 * We should be given a page-aligned address -- certainly
729 * tlb_set_page_with_attrs() does so. The page offset of xlat
730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731 * The page portion of xlat will be logged by memory_region_access_valid()
732 * when this memory access is rejected, so use the original untranslated
733 * physical address.
734 */
735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736 *xlat = orig_addr;
737 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
738 }
739
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741 const char *prefix, MemoryRegion *mr)
742 {
743 CPUAddressSpace *newas;
744 AddressSpace *as = g_new0(AddressSpace, 1);
745 char *as_name;
746
747 assert(mr);
748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749 address_space_init(as, mr, as_name);
750 g_free(as_name);
751
752 /* Target code should have set num_ases before calling us */
753 assert(asidx < cpu->num_ases);
754
755 if (asidx == 0) {
756 /* address space 0 gets the convenience alias */
757 cpu->as = as;
758 }
759
760 /* KVM cannot currently support multiple address spaces. */
761 assert(asidx == 0 || !kvm_enabled());
762
763 if (!cpu->cpu_ases) {
764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
765 }
766
767 newas = &cpu->cpu_ases[asidx];
768 newas->cpu = cpu;
769 newas->as = as;
770 if (tcg_enabled()) {
771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772 newas->tcg_as_listener.commit = tcg_commit;
773 newas->tcg_as_listener.name = "tcg";
774 memory_listener_register(&newas->tcg_as_listener, as);
775 }
776 }
777
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 {
780 /* Return the AddressSpace corresponding to the specified index */
781 return cpu->cpu_ases[asidx].as;
782 }
783
784 /* Called from RCU critical section */
785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
786 {
787 RAMBlock *block;
788
789 block = qatomic_rcu_read(&ram_list.mru_block);
790 if (block && addr - block->offset < block->max_length) {
791 return block;
792 }
793 RAMBLOCK_FOREACH(block) {
794 if (addr - block->offset < block->max_length) {
795 goto found;
796 }
797 }
798
799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
800 abort();
801
802 found:
803 /* It is safe to write mru_block outside the iothread lock. This
804 * is what happens:
805 *
806 * mru_block = xxx
807 * rcu_read_unlock()
808 * xxx removed from list
809 * rcu_read_lock()
810 * read mru_block
811 * mru_block = NULL;
812 * call_rcu(reclaim_ramblock, xxx);
813 * rcu_read_unlock()
814 *
815 * qatomic_rcu_set is not needed here. The block was already published
816 * when it was placed into the list. Here we're just making an extra
817 * copy of the pointer.
818 */
819 ram_list.mru_block = block;
820 return block;
821 }
822
823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
824 {
825 CPUState *cpu;
826 ram_addr_t start1;
827 RAMBlock *block;
828 ram_addr_t end;
829
830 assert(tcg_enabled());
831 end = TARGET_PAGE_ALIGN(start + length);
832 start &= TARGET_PAGE_MASK;
833
834 RCU_READ_LOCK_GUARD();
835 block = qemu_get_ram_block(start);
836 assert(block == qemu_get_ram_block(end - 1));
837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
838 CPU_FOREACH(cpu) {
839 tlb_reset_dirty(cpu, start1, length);
840 }
841 }
842
843 /* Note: start and end must be within the same ram block. */
844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
845 ram_addr_t length,
846 unsigned client)
847 {
848 DirtyMemoryBlocks *blocks;
849 unsigned long end, page, start_page;
850 bool dirty = false;
851 RAMBlock *ramblock;
852 uint64_t mr_offset, mr_size;
853
854 if (length == 0) {
855 return false;
856 }
857
858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
859 start_page = start >> TARGET_PAGE_BITS;
860 page = start_page;
861
862 WITH_RCU_READ_LOCK_GUARD() {
863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
864 ramblock = qemu_get_ram_block(start);
865 /* Range sanity check on the ramblock */
866 assert(start >= ramblock->offset &&
867 start + length <= ramblock->offset + ramblock->used_length);
868
869 while (page < end) {
870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
872 unsigned long num = MIN(end - page,
873 DIRTY_MEMORY_BLOCK_SIZE - offset);
874
875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
876 offset, num);
877 page += num;
878 }
879
880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
881 mr_size = (end - start_page) << TARGET_PAGE_BITS;
882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
883 }
884
885 if (dirty && tcg_enabled()) {
886 tlb_reset_dirty_range_all(start, length);
887 }
888
889 return dirty;
890 }
891
892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
894 {
895 DirtyMemoryBlocks *blocks;
896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
900 DirtyBitmapSnapshot *snap;
901 unsigned long page, end, dest;
902
903 snap = g_malloc0(sizeof(*snap) +
904 ((last - first) >> (TARGET_PAGE_BITS + 3)));
905 snap->start = first;
906 snap->end = last;
907
908 page = first >> TARGET_PAGE_BITS;
909 end = last >> TARGET_PAGE_BITS;
910 dest = 0;
911
912 WITH_RCU_READ_LOCK_GUARD() {
913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
914
915 while (page < end) {
916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
918 unsigned long num = MIN(end - page,
919 DIRTY_MEMORY_BLOCK_SIZE - offset);
920
921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
923 offset >>= BITS_PER_LEVEL;
924
925 bitmap_copy_and_clear_atomic(snap->dirty + dest,
926 blocks->blocks[idx] + offset,
927 num);
928 page += num;
929 dest += num >> BITS_PER_LEVEL;
930 }
931 }
932
933 if (tcg_enabled()) {
934 tlb_reset_dirty_range_all(start, length);
935 }
936
937 memory_region_clear_dirty_bitmap(mr, offset, length);
938
939 return snap;
940 }
941
942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
943 ram_addr_t start,
944 ram_addr_t length)
945 {
946 unsigned long page, end;
947
948 assert(start >= snap->start);
949 assert(start + length <= snap->end);
950
951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
952 page = (start - snap->start) >> TARGET_PAGE_BITS;
953
954 while (page < end) {
955 if (test_bit(page, snap->dirty)) {
956 return true;
957 }
958 page++;
959 }
960 return false;
961 }
962
963 /* Called from RCU critical section */
964 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
965 MemoryRegionSection *section)
966 {
967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
968 return section - d->map.sections;
969 }
970
971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
972 uint16_t section);
973 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
974
975 static uint16_t phys_section_add(PhysPageMap *map,
976 MemoryRegionSection *section)
977 {
978 /* The physical section number is ORed with a page-aligned
979 * pointer to produce the iotlb entries. Thus it should
980 * never overflow into the page-aligned value.
981 */
982 assert(map->sections_nb < TARGET_PAGE_SIZE);
983
984 if (map->sections_nb == map->sections_nb_alloc) {
985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
986 map->sections = g_renew(MemoryRegionSection, map->sections,
987 map->sections_nb_alloc);
988 }
989 map->sections[map->sections_nb] = *section;
990 memory_region_ref(section->mr);
991 return map->sections_nb++;
992 }
993
994 static void phys_section_destroy(MemoryRegion *mr)
995 {
996 bool have_sub_page = mr->subpage;
997
998 memory_region_unref(mr);
999
1000 if (have_sub_page) {
1001 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1002 object_unref(OBJECT(&subpage->iomem));
1003 g_free(subpage);
1004 }
1005 }
1006
1007 static void phys_sections_free(PhysPageMap *map)
1008 {
1009 while (map->sections_nb > 0) {
1010 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1011 phys_section_destroy(section->mr);
1012 }
1013 g_free(map->sections);
1014 g_free(map->nodes);
1015 }
1016
1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1018 {
1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1020 subpage_t *subpage;
1021 hwaddr base = section->offset_within_address_space
1022 & TARGET_PAGE_MASK;
1023 MemoryRegionSection *existing = phys_page_find(d, base);
1024 MemoryRegionSection subsection = {
1025 .offset_within_address_space = base,
1026 .size = int128_make64(TARGET_PAGE_SIZE),
1027 };
1028 hwaddr start, end;
1029
1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1031
1032 if (!(existing->mr->subpage)) {
1033 subpage = subpage_init(fv, base);
1034 subsection.fv = fv;
1035 subsection.mr = &subpage->iomem;
1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1037 phys_section_add(&d->map, &subsection));
1038 } else {
1039 subpage = container_of(existing->mr, subpage_t, iomem);
1040 }
1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1042 end = start + int128_get64(section->size) - 1;
1043 subpage_register(subpage, start, end,
1044 phys_section_add(&d->map, section));
1045 }
1046
1047
1048 static void register_multipage(FlatView *fv,
1049 MemoryRegionSection *section)
1050 {
1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1052 hwaddr start_addr = section->offset_within_address_space;
1053 uint16_t section_index = phys_section_add(&d->map, section);
1054 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055 TARGET_PAGE_BITS));
1056
1057 assert(num_pages);
1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1059 }
1060
1061 /*
1062 * The range in *section* may look like this:
1063 *
1064 * |s|PPPPPPP|s|
1065 *
1066 * where s stands for subpage and P for page.
1067 */
1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1069 {
1070 MemoryRegionSection remain = *section;
1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1072
1073 /* register first subpage */
1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076 - remain.offset_within_address_space;
1077
1078 MemoryRegionSection now = remain;
1079 now.size = int128_min(int128_make64(left), now.size);
1080 register_subpage(fv, &now);
1081 if (int128_eq(remain.size, now.size)) {
1082 return;
1083 }
1084 remain.size = int128_sub(remain.size, now.size);
1085 remain.offset_within_address_space += int128_get64(now.size);
1086 remain.offset_within_region += int128_get64(now.size);
1087 }
1088
1089 /* register whole pages */
1090 if (int128_ge(remain.size, page_size)) {
1091 MemoryRegionSection now = remain;
1092 now.size = int128_and(now.size, int128_neg(page_size));
1093 register_multipage(fv, &now);
1094 if (int128_eq(remain.size, now.size)) {
1095 return;
1096 }
1097 remain.size = int128_sub(remain.size, now.size);
1098 remain.offset_within_address_space += int128_get64(now.size);
1099 remain.offset_within_region += int128_get64(now.size);
1100 }
1101
1102 /* register last subpage */
1103 register_subpage(fv, &remain);
1104 }
1105
1106 void qemu_flush_coalesced_mmio_buffer(void)
1107 {
1108 if (kvm_enabled())
1109 kvm_flush_coalesced_mmio_buffer();
1110 }
1111
1112 void qemu_mutex_lock_ramlist(void)
1113 {
1114 qemu_mutex_lock(&ram_list.mutex);
1115 }
1116
1117 void qemu_mutex_unlock_ramlist(void)
1118 {
1119 qemu_mutex_unlock(&ram_list.mutex);
1120 }
1121
1122 GString *ram_block_format(void)
1123 {
1124 RAMBlock *block;
1125 char *psize;
1126 GString *buf = g_string_new("");
1127
1128 RCU_READ_LOCK_GUARD();
1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1130 "Block Name", "PSize", "Offset", "Used", "Total",
1131 "HVA", "RO");
1132
1133 RAMBLOCK_FOREACH(block) {
1134 psize = size_to_str(block->page_size);
1135 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1136 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1137 block->idstr, psize,
1138 (uint64_t)block->offset,
1139 (uint64_t)block->used_length,
1140 (uint64_t)block->max_length,
1141 (uint64_t)(uintptr_t)block->host,
1142 block->mr->readonly ? "ro" : "rw");
1143
1144 g_free(psize);
1145 }
1146
1147 return buf;
1148 }
1149
1150 static int find_min_backend_pagesize(Object *obj, void *opaque)
1151 {
1152 long *hpsize_min = opaque;
1153
1154 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1155 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1156 long hpsize = host_memory_backend_pagesize(backend);
1157
1158 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1159 *hpsize_min = hpsize;
1160 }
1161 }
1162
1163 return 0;
1164 }
1165
1166 static int find_max_backend_pagesize(Object *obj, void *opaque)
1167 {
1168 long *hpsize_max = opaque;
1169
1170 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1171 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1172 long hpsize = host_memory_backend_pagesize(backend);
1173
1174 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1175 *hpsize_max = hpsize;
1176 }
1177 }
1178
1179 return 0;
1180 }
1181
1182 /*
1183 * TODO: We assume right now that all mapped host memory backends are
1184 * used as RAM, however some might be used for different purposes.
1185 */
1186 long qemu_minrampagesize(void)
1187 {
1188 long hpsize = LONG_MAX;
1189 Object *memdev_root = object_resolve_path("/objects", NULL);
1190
1191 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1192 return hpsize;
1193 }
1194
1195 long qemu_maxrampagesize(void)
1196 {
1197 long pagesize = 0;
1198 Object *memdev_root = object_resolve_path("/objects", NULL);
1199
1200 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1201 return pagesize;
1202 }
1203
1204 #ifdef CONFIG_POSIX
1205 static int64_t get_file_size(int fd)
1206 {
1207 int64_t size;
1208 #if defined(__linux__)
1209 struct stat st;
1210
1211 if (fstat(fd, &st) < 0) {
1212 return -errno;
1213 }
1214
1215 /* Special handling for devdax character devices */
1216 if (S_ISCHR(st.st_mode)) {
1217 g_autofree char *subsystem_path = NULL;
1218 g_autofree char *subsystem = NULL;
1219
1220 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1221 major(st.st_rdev), minor(st.st_rdev));
1222 subsystem = g_file_read_link(subsystem_path, NULL);
1223
1224 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1225 g_autofree char *size_path = NULL;
1226 g_autofree char *size_str = NULL;
1227
1228 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1229 major(st.st_rdev), minor(st.st_rdev));
1230
1231 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1232 return g_ascii_strtoll(size_str, NULL, 0);
1233 }
1234 }
1235 }
1236 #endif /* defined(__linux__) */
1237
1238 /* st.st_size may be zero for special files yet lseek(2) works */
1239 size = lseek(fd, 0, SEEK_END);
1240 if (size < 0) {
1241 return -errno;
1242 }
1243 return size;
1244 }
1245
1246 static int64_t get_file_align(int fd)
1247 {
1248 int64_t align = -1;
1249 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1250 struct stat st;
1251
1252 if (fstat(fd, &st) < 0) {
1253 return -errno;
1254 }
1255
1256 /* Special handling for devdax character devices */
1257 if (S_ISCHR(st.st_mode)) {
1258 g_autofree char *path = NULL;
1259 g_autofree char *rpath = NULL;
1260 struct daxctl_ctx *ctx;
1261 struct daxctl_region *region;
1262 int rc = 0;
1263
1264 path = g_strdup_printf("/sys/dev/char/%d:%d",
1265 major(st.st_rdev), minor(st.st_rdev));
1266 rpath = realpath(path, NULL);
1267 if (!rpath) {
1268 return -errno;
1269 }
1270
1271 rc = daxctl_new(&ctx);
1272 if (rc) {
1273 return -1;
1274 }
1275
1276 daxctl_region_foreach(ctx, region) {
1277 if (strstr(rpath, daxctl_region_get_path(region))) {
1278 align = daxctl_region_get_align(region);
1279 break;
1280 }
1281 }
1282 daxctl_unref(ctx);
1283 }
1284 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1285
1286 return align;
1287 }
1288
1289 static int file_ram_open(const char *path,
1290 const char *region_name,
1291 bool readonly,
1292 bool *created,
1293 Error **errp)
1294 {
1295 char *filename;
1296 char *sanitized_name;
1297 char *c;
1298 int fd = -1;
1299
1300 *created = false;
1301 for (;;) {
1302 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1303 if (fd >= 0) {
1304 /* @path names an existing file, use it */
1305 break;
1306 }
1307 if (errno == ENOENT) {
1308 /* @path names a file that doesn't exist, create it */
1309 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1310 if (fd >= 0) {
1311 *created = true;
1312 break;
1313 }
1314 } else if (errno == EISDIR) {
1315 /* @path names a directory, create a file there */
1316 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1317 sanitized_name = g_strdup(region_name);
1318 for (c = sanitized_name; *c != '\0'; c++) {
1319 if (*c == '/') {
1320 *c = '_';
1321 }
1322 }
1323
1324 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1325 sanitized_name);
1326 g_free(sanitized_name);
1327
1328 fd = mkstemp(filename);
1329 if (fd >= 0) {
1330 unlink(filename);
1331 g_free(filename);
1332 break;
1333 }
1334 g_free(filename);
1335 }
1336 if (errno != EEXIST && errno != EINTR) {
1337 error_setg_errno(errp, errno,
1338 "can't open backing store %s for guest RAM",
1339 path);
1340 return -1;
1341 }
1342 /*
1343 * Try again on EINTR and EEXIST. The latter happens when
1344 * something else creates the file between our two open().
1345 */
1346 }
1347
1348 return fd;
1349 }
1350
1351 static void *file_ram_alloc(RAMBlock *block,
1352 ram_addr_t memory,
1353 int fd,
1354 bool readonly,
1355 bool truncate,
1356 off_t offset,
1357 Error **errp)
1358 {
1359 uint32_t qemu_map_flags;
1360 void *area;
1361
1362 block->page_size = qemu_fd_getpagesize(fd);
1363 if (block->mr->align % block->page_size) {
1364 error_setg(errp, "alignment 0x%" PRIx64
1365 " must be multiples of page size 0x%zx",
1366 block->mr->align, block->page_size);
1367 return NULL;
1368 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1369 error_setg(errp, "alignment 0x%" PRIx64
1370 " must be a power of two", block->mr->align);
1371 return NULL;
1372 }
1373 block->mr->align = MAX(block->page_size, block->mr->align);
1374 #if defined(__s390x__)
1375 if (kvm_enabled()) {
1376 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1377 }
1378 #endif
1379
1380 if (memory < block->page_size) {
1381 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1382 "or larger than page size 0x%zx",
1383 memory, block->page_size);
1384 return NULL;
1385 }
1386
1387 memory = ROUND_UP(memory, block->page_size);
1388
1389 /*
1390 * ftruncate is not supported by hugetlbfs in older
1391 * hosts, so don't bother bailing out on errors.
1392 * If anything goes wrong with it under other filesystems,
1393 * mmap will fail.
1394 *
1395 * Do not truncate the non-empty backend file to avoid corrupting
1396 * the existing data in the file. Disabling shrinking is not
1397 * enough. For example, the current vNVDIMM implementation stores
1398 * the guest NVDIMM labels at the end of the backend file. If the
1399 * backend file is later extended, QEMU will not be able to find
1400 * those labels. Therefore, extending the non-empty backend file
1401 * is disabled as well.
1402 */
1403 if (truncate && ftruncate(fd, memory)) {
1404 perror("ftruncate");
1405 }
1406
1407 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1408 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1409 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1410 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1411 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1412 if (area == MAP_FAILED) {
1413 error_setg_errno(errp, errno,
1414 "unable to map backing store for guest RAM");
1415 return NULL;
1416 }
1417
1418 block->fd = fd;
1419 return area;
1420 }
1421 #endif
1422
1423 /* Allocate space within the ram_addr_t space that governs the
1424 * dirty bitmaps.
1425 * Called with the ramlist lock held.
1426 */
1427 static ram_addr_t find_ram_offset(ram_addr_t size)
1428 {
1429 RAMBlock *block, *next_block;
1430 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1431
1432 assert(size != 0); /* it would hand out same offset multiple times */
1433
1434 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1435 return 0;
1436 }
1437
1438 RAMBLOCK_FOREACH(block) {
1439 ram_addr_t candidate, next = RAM_ADDR_MAX;
1440
1441 /* Align blocks to start on a 'long' in the bitmap
1442 * which makes the bitmap sync'ing take the fast path.
1443 */
1444 candidate = block->offset + block->max_length;
1445 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1446
1447 /* Search for the closest following block
1448 * and find the gap.
1449 */
1450 RAMBLOCK_FOREACH(next_block) {
1451 if (next_block->offset >= candidate) {
1452 next = MIN(next, next_block->offset);
1453 }
1454 }
1455
1456 /* If it fits remember our place and remember the size
1457 * of gap, but keep going so that we might find a smaller
1458 * gap to fill so avoiding fragmentation.
1459 */
1460 if (next - candidate >= size && next - candidate < mingap) {
1461 offset = candidate;
1462 mingap = next - candidate;
1463 }
1464
1465 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1466 }
1467
1468 if (offset == RAM_ADDR_MAX) {
1469 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1470 (uint64_t)size);
1471 abort();
1472 }
1473
1474 trace_find_ram_offset(size, offset);
1475
1476 return offset;
1477 }
1478
1479 static unsigned long last_ram_page(void)
1480 {
1481 RAMBlock *block;
1482 ram_addr_t last = 0;
1483
1484 RCU_READ_LOCK_GUARD();
1485 RAMBLOCK_FOREACH(block) {
1486 last = MAX(last, block->offset + block->max_length);
1487 }
1488 return last >> TARGET_PAGE_BITS;
1489 }
1490
1491 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1492 {
1493 int ret;
1494
1495 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1496 if (!machine_dump_guest_core(current_machine)) {
1497 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1498 if (ret) {
1499 perror("qemu_madvise");
1500 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1501 "but dump_guest_core=off specified\n");
1502 }
1503 }
1504 }
1505
1506 const char *qemu_ram_get_idstr(RAMBlock *rb)
1507 {
1508 return rb->idstr;
1509 }
1510
1511 void *qemu_ram_get_host_addr(RAMBlock *rb)
1512 {
1513 return rb->host;
1514 }
1515
1516 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1517 {
1518 return rb->offset;
1519 }
1520
1521 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1522 {
1523 return rb->used_length;
1524 }
1525
1526 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1527 {
1528 return rb->max_length;
1529 }
1530
1531 bool qemu_ram_is_shared(RAMBlock *rb)
1532 {
1533 return rb->flags & RAM_SHARED;
1534 }
1535
1536 bool qemu_ram_is_noreserve(RAMBlock *rb)
1537 {
1538 return rb->flags & RAM_NORESERVE;
1539 }
1540
1541 /* Note: Only set at the start of postcopy */
1542 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1543 {
1544 return rb->flags & RAM_UF_ZEROPAGE;
1545 }
1546
1547 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1548 {
1549 rb->flags |= RAM_UF_ZEROPAGE;
1550 }
1551
1552 bool qemu_ram_is_migratable(RAMBlock *rb)
1553 {
1554 return rb->flags & RAM_MIGRATABLE;
1555 }
1556
1557 void qemu_ram_set_migratable(RAMBlock *rb)
1558 {
1559 rb->flags |= RAM_MIGRATABLE;
1560 }
1561
1562 void qemu_ram_unset_migratable(RAMBlock *rb)
1563 {
1564 rb->flags &= ~RAM_MIGRATABLE;
1565 }
1566
1567 int qemu_ram_get_fd(RAMBlock *rb)
1568 {
1569 return rb->fd;
1570 }
1571
1572 /* Called with iothread lock held. */
1573 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1574 {
1575 RAMBlock *block;
1576
1577 assert(new_block);
1578 assert(!new_block->idstr[0]);
1579
1580 if (dev) {
1581 char *id = qdev_get_dev_path(dev);
1582 if (id) {
1583 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1584 g_free(id);
1585 }
1586 }
1587 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1588
1589 RCU_READ_LOCK_GUARD();
1590 RAMBLOCK_FOREACH(block) {
1591 if (block != new_block &&
1592 !strcmp(block->idstr, new_block->idstr)) {
1593 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1594 new_block->idstr);
1595 abort();
1596 }
1597 }
1598 }
1599
1600 /* Called with iothread lock held. */
1601 void qemu_ram_unset_idstr(RAMBlock *block)
1602 {
1603 /* FIXME: arch_init.c assumes that this is not called throughout
1604 * migration. Ignore the problem since hot-unplug during migration
1605 * does not work anyway.
1606 */
1607 if (block) {
1608 memset(block->idstr, 0, sizeof(block->idstr));
1609 }
1610 }
1611
1612 size_t qemu_ram_pagesize(RAMBlock *rb)
1613 {
1614 return rb->page_size;
1615 }
1616
1617 /* Returns the largest size of page in use */
1618 size_t qemu_ram_pagesize_largest(void)
1619 {
1620 RAMBlock *block;
1621 size_t largest = 0;
1622
1623 RAMBLOCK_FOREACH(block) {
1624 largest = MAX(largest, qemu_ram_pagesize(block));
1625 }
1626
1627 return largest;
1628 }
1629
1630 static int memory_try_enable_merging(void *addr, size_t len)
1631 {
1632 if (!machine_mem_merge(current_machine)) {
1633 /* disabled by the user */
1634 return 0;
1635 }
1636
1637 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1638 }
1639
1640 /*
1641 * Resizing RAM while migrating can result in the migration being canceled.
1642 * Care has to be taken if the guest might have already detected the memory.
1643 *
1644 * As memory core doesn't know how is memory accessed, it is up to
1645 * resize callback to update device state and/or add assertions to detect
1646 * misuse, if necessary.
1647 */
1648 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1649 {
1650 const ram_addr_t oldsize = block->used_length;
1651 const ram_addr_t unaligned_size = newsize;
1652
1653 assert(block);
1654
1655 newsize = HOST_PAGE_ALIGN(newsize);
1656
1657 if (block->used_length == newsize) {
1658 /*
1659 * We don't have to resize the ram block (which only knows aligned
1660 * sizes), however, we have to notify if the unaligned size changed.
1661 */
1662 if (unaligned_size != memory_region_size(block->mr)) {
1663 memory_region_set_size(block->mr, unaligned_size);
1664 if (block->resized) {
1665 block->resized(block->idstr, unaligned_size, block->host);
1666 }
1667 }
1668 return 0;
1669 }
1670
1671 if (!(block->flags & RAM_RESIZEABLE)) {
1672 error_setg_errno(errp, EINVAL,
1673 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1674 " != 0x" RAM_ADDR_FMT, block->idstr,
1675 newsize, block->used_length);
1676 return -EINVAL;
1677 }
1678
1679 if (block->max_length < newsize) {
1680 error_setg_errno(errp, EINVAL,
1681 "Size too large: %s: 0x" RAM_ADDR_FMT
1682 " > 0x" RAM_ADDR_FMT, block->idstr,
1683 newsize, block->max_length);
1684 return -EINVAL;
1685 }
1686
1687 /* Notify before modifying the ram block and touching the bitmaps. */
1688 if (block->host) {
1689 ram_block_notify_resize(block->host, oldsize, newsize);
1690 }
1691
1692 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1693 block->used_length = newsize;
1694 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1695 DIRTY_CLIENTS_ALL);
1696 memory_region_set_size(block->mr, unaligned_size);
1697 if (block->resized) {
1698 block->resized(block->idstr, unaligned_size, block->host);
1699 }
1700 return 0;
1701 }
1702
1703 /*
1704 * Trigger sync on the given ram block for range [start, start + length]
1705 * with the backing store if one is available.
1706 * Otherwise no-op.
1707 * @Note: this is supposed to be a synchronous op.
1708 */
1709 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1710 {
1711 /* The requested range should fit in within the block range */
1712 g_assert((start + length) <= block->used_length);
1713
1714 #ifdef CONFIG_LIBPMEM
1715 /* The lack of support for pmem should not block the sync */
1716 if (ramblock_is_pmem(block)) {
1717 void *addr = ramblock_ptr(block, start);
1718 pmem_persist(addr, length);
1719 return;
1720 }
1721 #endif
1722 if (block->fd >= 0) {
1723 /**
1724 * Case there is no support for PMEM or the memory has not been
1725 * specified as persistent (or is not one) - use the msync.
1726 * Less optimal but still achieves the same goal
1727 */
1728 void *addr = ramblock_ptr(block, start);
1729 if (qemu_msync(addr, length, block->fd)) {
1730 warn_report("%s: failed to sync memory range: start: "
1731 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1732 __func__, start, length);
1733 }
1734 }
1735 }
1736
1737 /* Called with ram_list.mutex held */
1738 static void dirty_memory_extend(ram_addr_t old_ram_size,
1739 ram_addr_t new_ram_size)
1740 {
1741 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1742 DIRTY_MEMORY_BLOCK_SIZE);
1743 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1744 DIRTY_MEMORY_BLOCK_SIZE);
1745 int i;
1746
1747 /* Only need to extend if block count increased */
1748 if (new_num_blocks <= old_num_blocks) {
1749 return;
1750 }
1751
1752 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1753 DirtyMemoryBlocks *old_blocks;
1754 DirtyMemoryBlocks *new_blocks;
1755 int j;
1756
1757 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1758 new_blocks = g_malloc(sizeof(*new_blocks) +
1759 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1760
1761 if (old_num_blocks) {
1762 memcpy(new_blocks->blocks, old_blocks->blocks,
1763 old_num_blocks * sizeof(old_blocks->blocks[0]));
1764 }
1765
1766 for (j = old_num_blocks; j < new_num_blocks; j++) {
1767 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1768 }
1769
1770 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1771
1772 if (old_blocks) {
1773 g_free_rcu(old_blocks, rcu);
1774 }
1775 }
1776 }
1777
1778 static void ram_block_add(RAMBlock *new_block, Error **errp)
1779 {
1780 const bool noreserve = qemu_ram_is_noreserve(new_block);
1781 const bool shared = qemu_ram_is_shared(new_block);
1782 RAMBlock *block;
1783 RAMBlock *last_block = NULL;
1784 ram_addr_t old_ram_size, new_ram_size;
1785 Error *err = NULL;
1786
1787 old_ram_size = last_ram_page();
1788
1789 qemu_mutex_lock_ramlist();
1790 new_block->offset = find_ram_offset(new_block->max_length);
1791
1792 if (!new_block->host) {
1793 if (xen_enabled()) {
1794 xen_ram_alloc(new_block->offset, new_block->max_length,
1795 new_block->mr, &err);
1796 if (err) {
1797 error_propagate(errp, err);
1798 qemu_mutex_unlock_ramlist();
1799 return;
1800 }
1801 } else {
1802 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1803 &new_block->mr->align,
1804 shared, noreserve);
1805 if (!new_block->host) {
1806 error_setg_errno(errp, errno,
1807 "cannot set up guest memory '%s'",
1808 memory_region_name(new_block->mr));
1809 qemu_mutex_unlock_ramlist();
1810 return;
1811 }
1812 memory_try_enable_merging(new_block->host, new_block->max_length);
1813 }
1814 }
1815
1816 new_ram_size = MAX(old_ram_size,
1817 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1818 if (new_ram_size > old_ram_size) {
1819 dirty_memory_extend(old_ram_size, new_ram_size);
1820 }
1821 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1822 * QLIST (which has an RCU-friendly variant) does not have insertion at
1823 * tail, so save the last element in last_block.
1824 */
1825 RAMBLOCK_FOREACH(block) {
1826 last_block = block;
1827 if (block->max_length < new_block->max_length) {
1828 break;
1829 }
1830 }
1831 if (block) {
1832 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1833 } else if (last_block) {
1834 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1835 } else { /* list is empty */
1836 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1837 }
1838 ram_list.mru_block = NULL;
1839
1840 /* Write list before version */
1841 smp_wmb();
1842 ram_list.version++;
1843 qemu_mutex_unlock_ramlist();
1844
1845 cpu_physical_memory_set_dirty_range(new_block->offset,
1846 new_block->used_length,
1847 DIRTY_CLIENTS_ALL);
1848
1849 if (new_block->host) {
1850 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1851 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1852 /*
1853 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1854 * Configure it unless the machine is a qtest server, in which case
1855 * KVM is not used and it may be forked (eg for fuzzing purposes).
1856 */
1857 if (!qtest_enabled()) {
1858 qemu_madvise(new_block->host, new_block->max_length,
1859 QEMU_MADV_DONTFORK);
1860 }
1861 ram_block_notify_add(new_block->host, new_block->used_length,
1862 new_block->max_length);
1863 }
1864 }
1865
1866 #ifdef CONFIG_POSIX
1867 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1868 uint32_t ram_flags, int fd, off_t offset,
1869 bool readonly, Error **errp)
1870 {
1871 RAMBlock *new_block;
1872 Error *local_err = NULL;
1873 int64_t file_size, file_align;
1874
1875 /* Just support these ram flags by now. */
1876 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1877 RAM_PROTECTED)) == 0);
1878
1879 if (xen_enabled()) {
1880 error_setg(errp, "-mem-path not supported with Xen");
1881 return NULL;
1882 }
1883
1884 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1885 error_setg(errp,
1886 "host lacks kvm mmu notifiers, -mem-path unsupported");
1887 return NULL;
1888 }
1889
1890 size = HOST_PAGE_ALIGN(size);
1891 file_size = get_file_size(fd);
1892 if (file_size > 0 && file_size < size) {
1893 error_setg(errp, "backing store size 0x%" PRIx64
1894 " does not match 'size' option 0x" RAM_ADDR_FMT,
1895 file_size, size);
1896 return NULL;
1897 }
1898
1899 file_align = get_file_align(fd);
1900 if (file_align > 0 && file_align > mr->align) {
1901 error_setg(errp, "backing store align 0x%" PRIx64
1902 " is larger than 'align' option 0x%" PRIx64,
1903 file_align, mr->align);
1904 return NULL;
1905 }
1906
1907 new_block = g_malloc0(sizeof(*new_block));
1908 new_block->mr = mr;
1909 new_block->used_length = size;
1910 new_block->max_length = size;
1911 new_block->flags = ram_flags;
1912 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1913 !file_size, offset, errp);
1914 if (!new_block->host) {
1915 g_free(new_block);
1916 return NULL;
1917 }
1918
1919 ram_block_add(new_block, &local_err);
1920 if (local_err) {
1921 g_free(new_block);
1922 error_propagate(errp, local_err);
1923 return NULL;
1924 }
1925 return new_block;
1926
1927 }
1928
1929
1930 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1931 uint32_t ram_flags, const char *mem_path,
1932 bool readonly, Error **errp)
1933 {
1934 int fd;
1935 bool created;
1936 RAMBlock *block;
1937
1938 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1939 errp);
1940 if (fd < 0) {
1941 return NULL;
1942 }
1943
1944 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
1945 if (!block) {
1946 if (created) {
1947 unlink(mem_path);
1948 }
1949 close(fd);
1950 return NULL;
1951 }
1952
1953 return block;
1954 }
1955 #endif
1956
1957 static
1958 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1959 void (*resized)(const char*,
1960 uint64_t length,
1961 void *host),
1962 void *host, uint32_t ram_flags,
1963 MemoryRegion *mr, Error **errp)
1964 {
1965 RAMBlock *new_block;
1966 Error *local_err = NULL;
1967
1968 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1969 RAM_NORESERVE)) == 0);
1970 assert(!host ^ (ram_flags & RAM_PREALLOC));
1971
1972 size = HOST_PAGE_ALIGN(size);
1973 max_size = HOST_PAGE_ALIGN(max_size);
1974 new_block = g_malloc0(sizeof(*new_block));
1975 new_block->mr = mr;
1976 new_block->resized = resized;
1977 new_block->used_length = size;
1978 new_block->max_length = max_size;
1979 assert(max_size >= size);
1980 new_block->fd = -1;
1981 new_block->page_size = qemu_real_host_page_size();
1982 new_block->host = host;
1983 new_block->flags = ram_flags;
1984 ram_block_add(new_block, &local_err);
1985 if (local_err) {
1986 g_free(new_block);
1987 error_propagate(errp, local_err);
1988 return NULL;
1989 }
1990 return new_block;
1991 }
1992
1993 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1994 MemoryRegion *mr, Error **errp)
1995 {
1996 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
1997 errp);
1998 }
1999
2000 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2001 MemoryRegion *mr, Error **errp)
2002 {
2003 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2004 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2005 }
2006
2007 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2008 void (*resized)(const char*,
2009 uint64_t length,
2010 void *host),
2011 MemoryRegion *mr, Error **errp)
2012 {
2013 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2014 RAM_RESIZEABLE, mr, errp);
2015 }
2016
2017 static void reclaim_ramblock(RAMBlock *block)
2018 {
2019 if (block->flags & RAM_PREALLOC) {
2020 ;
2021 } else if (xen_enabled()) {
2022 xen_invalidate_map_cache_entry(block->host);
2023 #ifndef _WIN32
2024 } else if (block->fd >= 0) {
2025 qemu_ram_munmap(block->fd, block->host, block->max_length);
2026 close(block->fd);
2027 #endif
2028 } else {
2029 qemu_anon_ram_free(block->host, block->max_length);
2030 }
2031 g_free(block);
2032 }
2033
2034 void qemu_ram_free(RAMBlock *block)
2035 {
2036 if (!block) {
2037 return;
2038 }
2039
2040 if (block->host) {
2041 ram_block_notify_remove(block->host, block->used_length,
2042 block->max_length);
2043 }
2044
2045 qemu_mutex_lock_ramlist();
2046 QLIST_REMOVE_RCU(block, next);
2047 ram_list.mru_block = NULL;
2048 /* Write list before version */
2049 smp_wmb();
2050 ram_list.version++;
2051 call_rcu(block, reclaim_ramblock, rcu);
2052 qemu_mutex_unlock_ramlist();
2053 }
2054
2055 #ifndef _WIN32
2056 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2057 {
2058 RAMBlock *block;
2059 ram_addr_t offset;
2060 int flags;
2061 void *area, *vaddr;
2062
2063 RAMBLOCK_FOREACH(block) {
2064 offset = addr - block->offset;
2065 if (offset < block->max_length) {
2066 vaddr = ramblock_ptr(block, offset);
2067 if (block->flags & RAM_PREALLOC) {
2068 ;
2069 } else if (xen_enabled()) {
2070 abort();
2071 } else {
2072 flags = MAP_FIXED;
2073 flags |= block->flags & RAM_SHARED ?
2074 MAP_SHARED : MAP_PRIVATE;
2075 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2076 if (block->fd >= 0) {
2077 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2078 flags, block->fd, offset);
2079 } else {
2080 flags |= MAP_ANONYMOUS;
2081 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2082 flags, -1, 0);
2083 }
2084 if (area != vaddr) {
2085 error_report("Could not remap addr: "
2086 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2087 length, addr);
2088 exit(1);
2089 }
2090 memory_try_enable_merging(vaddr, length);
2091 qemu_ram_setup_dump(vaddr, length);
2092 }
2093 }
2094 }
2095 }
2096 #endif /* !_WIN32 */
2097
2098 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2099 * This should not be used for general purpose DMA. Use address_space_map
2100 * or address_space_rw instead. For local memory (e.g. video ram) that the
2101 * device owns, use memory_region_get_ram_ptr.
2102 *
2103 * Called within RCU critical section.
2104 */
2105 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2106 {
2107 RAMBlock *block = ram_block;
2108
2109 if (block == NULL) {
2110 block = qemu_get_ram_block(addr);
2111 addr -= block->offset;
2112 }
2113
2114 if (xen_enabled() && block->host == NULL) {
2115 /* We need to check if the requested address is in the RAM
2116 * because we don't want to map the entire memory in QEMU.
2117 * In that case just map until the end of the page.
2118 */
2119 if (block->offset == 0) {
2120 return xen_map_cache(addr, 0, 0, false);
2121 }
2122
2123 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2124 }
2125 return ramblock_ptr(block, addr);
2126 }
2127
2128 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2129 * but takes a size argument.
2130 *
2131 * Called within RCU critical section.
2132 */
2133 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2134 hwaddr *size, bool lock)
2135 {
2136 RAMBlock *block = ram_block;
2137 if (*size == 0) {
2138 return NULL;
2139 }
2140
2141 if (block == NULL) {
2142 block = qemu_get_ram_block(addr);
2143 addr -= block->offset;
2144 }
2145 *size = MIN(*size, block->max_length - addr);
2146
2147 if (xen_enabled() && block->host == NULL) {
2148 /* We need to check if the requested address is in the RAM
2149 * because we don't want to map the entire memory in QEMU.
2150 * In that case just map the requested area.
2151 */
2152 if (block->offset == 0) {
2153 return xen_map_cache(addr, *size, lock, lock);
2154 }
2155
2156 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2157 }
2158
2159 return ramblock_ptr(block, addr);
2160 }
2161
2162 /* Return the offset of a hostpointer within a ramblock */
2163 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2164 {
2165 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2166 assert((uintptr_t)host >= (uintptr_t)rb->host);
2167 assert(res < rb->max_length);
2168
2169 return res;
2170 }
2171
2172 /*
2173 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2174 * in that RAMBlock.
2175 *
2176 * ptr: Host pointer to look up
2177 * round_offset: If true round the result offset down to a page boundary
2178 * *ram_addr: set to result ram_addr
2179 * *offset: set to result offset within the RAMBlock
2180 *
2181 * Returns: RAMBlock (or NULL if not found)
2182 *
2183 * By the time this function returns, the returned pointer is not protected
2184 * by RCU anymore. If the caller is not within an RCU critical section and
2185 * does not hold the iothread lock, it must have other means of protecting the
2186 * pointer, such as a reference to the region that includes the incoming
2187 * ram_addr_t.
2188 */
2189 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2190 ram_addr_t *offset)
2191 {
2192 RAMBlock *block;
2193 uint8_t *host = ptr;
2194
2195 if (xen_enabled()) {
2196 ram_addr_t ram_addr;
2197 RCU_READ_LOCK_GUARD();
2198 ram_addr = xen_ram_addr_from_mapcache(ptr);
2199 block = qemu_get_ram_block(ram_addr);
2200 if (block) {
2201 *offset = ram_addr - block->offset;
2202 }
2203 return block;
2204 }
2205
2206 RCU_READ_LOCK_GUARD();
2207 block = qatomic_rcu_read(&ram_list.mru_block);
2208 if (block && block->host && host - block->host < block->max_length) {
2209 goto found;
2210 }
2211
2212 RAMBLOCK_FOREACH(block) {
2213 /* This case append when the block is not mapped. */
2214 if (block->host == NULL) {
2215 continue;
2216 }
2217 if (host - block->host < block->max_length) {
2218 goto found;
2219 }
2220 }
2221
2222 return NULL;
2223
2224 found:
2225 *offset = (host - block->host);
2226 if (round_offset) {
2227 *offset &= TARGET_PAGE_MASK;
2228 }
2229 return block;
2230 }
2231
2232 /*
2233 * Finds the named RAMBlock
2234 *
2235 * name: The name of RAMBlock to find
2236 *
2237 * Returns: RAMBlock (or NULL if not found)
2238 */
2239 RAMBlock *qemu_ram_block_by_name(const char *name)
2240 {
2241 RAMBlock *block;
2242
2243 RAMBLOCK_FOREACH(block) {
2244 if (!strcmp(name, block->idstr)) {
2245 return block;
2246 }
2247 }
2248
2249 return NULL;
2250 }
2251
2252 /* Some of the softmmu routines need to translate from a host pointer
2253 (typically a TLB entry) back to a ram offset. */
2254 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2255 {
2256 RAMBlock *block;
2257 ram_addr_t offset;
2258
2259 block = qemu_ram_block_from_host(ptr, false, &offset);
2260 if (!block) {
2261 return RAM_ADDR_INVALID;
2262 }
2263
2264 return block->offset + offset;
2265 }
2266
2267 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2268 {
2269 ram_addr_t ram_addr;
2270
2271 ram_addr = qemu_ram_addr_from_host(ptr);
2272 if (ram_addr == RAM_ADDR_INVALID) {
2273 error_report("Bad ram pointer %p", ptr);
2274 abort();
2275 }
2276 return ram_addr;
2277 }
2278
2279 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2280 MemTxAttrs attrs, void *buf, hwaddr len);
2281 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2282 const void *buf, hwaddr len);
2283 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2284 bool is_write, MemTxAttrs attrs);
2285
2286 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2287 unsigned len, MemTxAttrs attrs)
2288 {
2289 subpage_t *subpage = opaque;
2290 uint8_t buf[8];
2291 MemTxResult res;
2292
2293 #if defined(DEBUG_SUBPAGE)
2294 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2295 subpage, len, addr);
2296 #endif
2297 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2298 if (res) {
2299 return res;
2300 }
2301 *data = ldn_p(buf, len);
2302 return MEMTX_OK;
2303 }
2304
2305 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2306 uint64_t value, unsigned len, MemTxAttrs attrs)
2307 {
2308 subpage_t *subpage = opaque;
2309 uint8_t buf[8];
2310
2311 #if defined(DEBUG_SUBPAGE)
2312 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2313 " value %"PRIx64"\n",
2314 __func__, subpage, len, addr, value);
2315 #endif
2316 stn_p(buf, len, value);
2317 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2318 }
2319
2320 static bool subpage_accepts(void *opaque, hwaddr addr,
2321 unsigned len, bool is_write,
2322 MemTxAttrs attrs)
2323 {
2324 subpage_t *subpage = opaque;
2325 #if defined(DEBUG_SUBPAGE)
2326 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2327 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2328 #endif
2329
2330 return flatview_access_valid(subpage->fv, addr + subpage->base,
2331 len, is_write, attrs);
2332 }
2333
2334 static const MemoryRegionOps subpage_ops = {
2335 .read_with_attrs = subpage_read,
2336 .write_with_attrs = subpage_write,
2337 .impl.min_access_size = 1,
2338 .impl.max_access_size = 8,
2339 .valid.min_access_size = 1,
2340 .valid.max_access_size = 8,
2341 .valid.accepts = subpage_accepts,
2342 .endianness = DEVICE_NATIVE_ENDIAN,
2343 };
2344
2345 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2346 uint16_t section)
2347 {
2348 int idx, eidx;
2349
2350 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2351 return -1;
2352 idx = SUBPAGE_IDX(start);
2353 eidx = SUBPAGE_IDX(end);
2354 #if defined(DEBUG_SUBPAGE)
2355 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2356 __func__, mmio, start, end, idx, eidx, section);
2357 #endif
2358 for (; idx <= eidx; idx++) {
2359 mmio->sub_section[idx] = section;
2360 }
2361
2362 return 0;
2363 }
2364
2365 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2366 {
2367 subpage_t *mmio;
2368
2369 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2370 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2371 mmio->fv = fv;
2372 mmio->base = base;
2373 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2374 NULL, TARGET_PAGE_SIZE);
2375 mmio->iomem.subpage = true;
2376 #if defined(DEBUG_SUBPAGE)
2377 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2378 mmio, base, TARGET_PAGE_SIZE);
2379 #endif
2380
2381 return mmio;
2382 }
2383
2384 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2385 {
2386 assert(fv);
2387 MemoryRegionSection section = {
2388 .fv = fv,
2389 .mr = mr,
2390 .offset_within_address_space = 0,
2391 .offset_within_region = 0,
2392 .size = int128_2_64(),
2393 };
2394
2395 return phys_section_add(map, &section);
2396 }
2397
2398 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2399 hwaddr index, MemTxAttrs attrs)
2400 {
2401 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2402 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2403 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2404 MemoryRegionSection *sections = d->map.sections;
2405
2406 return &sections[index & ~TARGET_PAGE_MASK];
2407 }
2408
2409 static void io_mem_init(void)
2410 {
2411 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2412 NULL, UINT64_MAX);
2413 }
2414
2415 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2416 {
2417 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2418 uint16_t n;
2419
2420 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2421 assert(n == PHYS_SECTION_UNASSIGNED);
2422
2423 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2424
2425 return d;
2426 }
2427
2428 void address_space_dispatch_free(AddressSpaceDispatch *d)
2429 {
2430 phys_sections_free(&d->map);
2431 g_free(d);
2432 }
2433
2434 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2435 {
2436 }
2437
2438 static void tcg_log_global_after_sync(MemoryListener *listener)
2439 {
2440 CPUAddressSpace *cpuas;
2441
2442 /* Wait for the CPU to end the current TB. This avoids the following
2443 * incorrect race:
2444 *
2445 * vCPU migration
2446 * ---------------------- -------------------------
2447 * TLB check -> slow path
2448 * notdirty_mem_write
2449 * write to RAM
2450 * mark dirty
2451 * clear dirty flag
2452 * TLB check -> fast path
2453 * read memory
2454 * write to RAM
2455 *
2456 * by pushing the migration thread's memory read after the vCPU thread has
2457 * written the memory.
2458 */
2459 if (replay_mode == REPLAY_MODE_NONE) {
2460 /*
2461 * VGA can make calls to this function while updating the screen.
2462 * In record/replay mode this causes a deadlock, because
2463 * run_on_cpu waits for rr mutex. Therefore no races are possible
2464 * in this case and no need for making run_on_cpu when
2465 * record/replay is enabled.
2466 */
2467 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2468 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2469 }
2470 }
2471
2472 static void tcg_commit(MemoryListener *listener)
2473 {
2474 CPUAddressSpace *cpuas;
2475 AddressSpaceDispatch *d;
2476
2477 assert(tcg_enabled());
2478 /* since each CPU stores ram addresses in its TLB cache, we must
2479 reset the modified entries */
2480 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2481 cpu_reloading_memory_map();
2482 /* The CPU and TLB are protected by the iothread lock.
2483 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2484 * may have split the RCU critical section.
2485 */
2486 d = address_space_to_dispatch(cpuas->as);
2487 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2488 tlb_flush(cpuas->cpu);
2489 }
2490
2491 static void memory_map_init(void)
2492 {
2493 system_memory = g_malloc(sizeof(*system_memory));
2494
2495 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2496 address_space_init(&address_space_memory, system_memory, "memory");
2497
2498 system_io = g_malloc(sizeof(*system_io));
2499 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2500 65536);
2501 address_space_init(&address_space_io, system_io, "I/O");
2502 }
2503
2504 MemoryRegion *get_system_memory(void)
2505 {
2506 return system_memory;
2507 }
2508
2509 MemoryRegion *get_system_io(void)
2510 {
2511 return system_io;
2512 }
2513
2514 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2515 hwaddr length)
2516 {
2517 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2518 addr += memory_region_get_ram_addr(mr);
2519
2520 /* No early return if dirty_log_mask is or becomes 0, because
2521 * cpu_physical_memory_set_dirty_range will still call
2522 * xen_modified_memory.
2523 */
2524 if (dirty_log_mask) {
2525 dirty_log_mask =
2526 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2527 }
2528 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2529 assert(tcg_enabled());
2530 tb_invalidate_phys_range(addr, addr + length - 1);
2531 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2532 }
2533 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2534 }
2535
2536 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2537 {
2538 /*
2539 * In principle this function would work on other memory region types too,
2540 * but the ROM device use case is the only one where this operation is
2541 * necessary. Other memory regions should use the
2542 * address_space_read/write() APIs.
2543 */
2544 assert(memory_region_is_romd(mr));
2545
2546 invalidate_and_set_dirty(mr, addr, size);
2547 }
2548
2549 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2550 {
2551 unsigned access_size_max = mr->ops->valid.max_access_size;
2552
2553 /* Regions are assumed to support 1-4 byte accesses unless
2554 otherwise specified. */
2555 if (access_size_max == 0) {
2556 access_size_max = 4;
2557 }
2558
2559 /* Bound the maximum access by the alignment of the address. */
2560 if (!mr->ops->impl.unaligned) {
2561 unsigned align_size_max = addr & -addr;
2562 if (align_size_max != 0 && align_size_max < access_size_max) {
2563 access_size_max = align_size_max;
2564 }
2565 }
2566
2567 /* Don't attempt accesses larger than the maximum. */
2568 if (l > access_size_max) {
2569 l = access_size_max;
2570 }
2571 l = pow2floor(l);
2572
2573 return l;
2574 }
2575
2576 bool prepare_mmio_access(MemoryRegion *mr)
2577 {
2578 bool release_lock = false;
2579
2580 if (!qemu_mutex_iothread_locked()) {
2581 qemu_mutex_lock_iothread();
2582 release_lock = true;
2583 }
2584 if (mr->flush_coalesced_mmio) {
2585 qemu_flush_coalesced_mmio_buffer();
2586 }
2587
2588 return release_lock;
2589 }
2590
2591 /**
2592 * flatview_access_allowed
2593 * @mr: #MemoryRegion to be accessed
2594 * @attrs: memory transaction attributes
2595 * @addr: address within that memory region
2596 * @len: the number of bytes to access
2597 *
2598 * Check if a memory transaction is allowed.
2599 *
2600 * Returns: true if transaction is allowed, false if denied.
2601 */
2602 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2603 hwaddr addr, hwaddr len)
2604 {
2605 if (likely(!attrs.memory)) {
2606 return true;
2607 }
2608 if (memory_region_is_ram(mr)) {
2609 return true;
2610 }
2611 qemu_log_mask(LOG_GUEST_ERROR,
2612 "Invalid access to non-RAM device at "
2613 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2614 "region '%s'\n", addr, len, memory_region_name(mr));
2615 return false;
2616 }
2617
2618 /* Called within RCU critical section. */
2619 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2620 MemTxAttrs attrs,
2621 const void *ptr,
2622 hwaddr len, hwaddr addr1,
2623 hwaddr l, MemoryRegion *mr)
2624 {
2625 uint8_t *ram_ptr;
2626 uint64_t val;
2627 MemTxResult result = MEMTX_OK;
2628 bool release_lock = false;
2629 const uint8_t *buf = ptr;
2630
2631 for (;;) {
2632 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2633 result |= MEMTX_ACCESS_ERROR;
2634 /* Keep going. */
2635 } else if (!memory_access_is_direct(mr, true)) {
2636 release_lock |= prepare_mmio_access(mr);
2637 l = memory_access_size(mr, l, addr1);
2638 /* XXX: could force current_cpu to NULL to avoid
2639 potential bugs */
2640 val = ldn_he_p(buf, l);
2641 result |= memory_region_dispatch_write(mr, addr1, val,
2642 size_memop(l), attrs);
2643 } else {
2644 /* RAM case */
2645 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2646 memmove(ram_ptr, buf, l);
2647 invalidate_and_set_dirty(mr, addr1, l);
2648 }
2649
2650 if (release_lock) {
2651 qemu_mutex_unlock_iothread();
2652 release_lock = false;
2653 }
2654
2655 len -= l;
2656 buf += l;
2657 addr += l;
2658
2659 if (!len) {
2660 break;
2661 }
2662
2663 l = len;
2664 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2665 }
2666
2667 return result;
2668 }
2669
2670 /* Called from RCU critical section. */
2671 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2672 const void *buf, hwaddr len)
2673 {
2674 hwaddr l;
2675 hwaddr addr1;
2676 MemoryRegion *mr;
2677
2678 l = len;
2679 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2680 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2681 return MEMTX_ACCESS_ERROR;
2682 }
2683 return flatview_write_continue(fv, addr, attrs, buf, len,
2684 addr1, l, mr);
2685 }
2686
2687 /* Called within RCU critical section. */
2688 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2689 MemTxAttrs attrs, void *ptr,
2690 hwaddr len, hwaddr addr1, hwaddr l,
2691 MemoryRegion *mr)
2692 {
2693 uint8_t *ram_ptr;
2694 uint64_t val;
2695 MemTxResult result = MEMTX_OK;
2696 bool release_lock = false;
2697 uint8_t *buf = ptr;
2698
2699 fuzz_dma_read_cb(addr, len, mr);
2700 for (;;) {
2701 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2702 result |= MEMTX_ACCESS_ERROR;
2703 /* Keep going. */
2704 } else if (!memory_access_is_direct(mr, false)) {
2705 /* I/O case */
2706 release_lock |= prepare_mmio_access(mr);
2707 l = memory_access_size(mr, l, addr1);
2708 result |= memory_region_dispatch_read(mr, addr1, &val,
2709 size_memop(l), attrs);
2710 stn_he_p(buf, l, val);
2711 } else {
2712 /* RAM case */
2713 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2714 memcpy(buf, ram_ptr, l);
2715 }
2716
2717 if (release_lock) {
2718 qemu_mutex_unlock_iothread();
2719 release_lock = false;
2720 }
2721
2722 len -= l;
2723 buf += l;
2724 addr += l;
2725
2726 if (!len) {
2727 break;
2728 }
2729
2730 l = len;
2731 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2732 }
2733
2734 return result;
2735 }
2736
2737 /* Called from RCU critical section. */
2738 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2739 MemTxAttrs attrs, void *buf, hwaddr len)
2740 {
2741 hwaddr l;
2742 hwaddr addr1;
2743 MemoryRegion *mr;
2744
2745 l = len;
2746 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2747 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2748 return MEMTX_ACCESS_ERROR;
2749 }
2750 return flatview_read_continue(fv, addr, attrs, buf, len,
2751 addr1, l, mr);
2752 }
2753
2754 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2755 MemTxAttrs attrs, void *buf, hwaddr len)
2756 {
2757 MemTxResult result = MEMTX_OK;
2758 FlatView *fv;
2759
2760 if (len > 0) {
2761 RCU_READ_LOCK_GUARD();
2762 fv = address_space_to_flatview(as);
2763 result = flatview_read(fv, addr, attrs, buf, len);
2764 }
2765
2766 return result;
2767 }
2768
2769 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2770 MemTxAttrs attrs,
2771 const void *buf, hwaddr len)
2772 {
2773 MemTxResult result = MEMTX_OK;
2774 FlatView *fv;
2775
2776 if (len > 0) {
2777 RCU_READ_LOCK_GUARD();
2778 fv = address_space_to_flatview(as);
2779 result = flatview_write(fv, addr, attrs, buf, len);
2780 }
2781
2782 return result;
2783 }
2784
2785 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2786 void *buf, hwaddr len, bool is_write)
2787 {
2788 if (is_write) {
2789 return address_space_write(as, addr, attrs, buf, len);
2790 } else {
2791 return address_space_read_full(as, addr, attrs, buf, len);
2792 }
2793 }
2794
2795 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2796 uint8_t c, hwaddr len, MemTxAttrs attrs)
2797 {
2798 #define FILLBUF_SIZE 512
2799 uint8_t fillbuf[FILLBUF_SIZE];
2800 int l;
2801 MemTxResult error = MEMTX_OK;
2802
2803 memset(fillbuf, c, FILLBUF_SIZE);
2804 while (len > 0) {
2805 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2806 error |= address_space_write(as, addr, attrs, fillbuf, l);
2807 len -= l;
2808 addr += l;
2809 }
2810
2811 return error;
2812 }
2813
2814 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2815 hwaddr len, bool is_write)
2816 {
2817 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2818 buf, len, is_write);
2819 }
2820
2821 enum write_rom_type {
2822 WRITE_DATA,
2823 FLUSH_CACHE,
2824 };
2825
2826 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2827 hwaddr addr,
2828 MemTxAttrs attrs,
2829 const void *ptr,
2830 hwaddr len,
2831 enum write_rom_type type)
2832 {
2833 hwaddr l;
2834 uint8_t *ram_ptr;
2835 hwaddr addr1;
2836 MemoryRegion *mr;
2837 const uint8_t *buf = ptr;
2838
2839 RCU_READ_LOCK_GUARD();
2840 while (len > 0) {
2841 l = len;
2842 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2843
2844 if (!(memory_region_is_ram(mr) ||
2845 memory_region_is_romd(mr))) {
2846 l = memory_access_size(mr, l, addr1);
2847 } else {
2848 /* ROM/RAM case */
2849 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2850 switch (type) {
2851 case WRITE_DATA:
2852 memcpy(ram_ptr, buf, l);
2853 invalidate_and_set_dirty(mr, addr1, l);
2854 break;
2855 case FLUSH_CACHE:
2856 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2857 break;
2858 }
2859 }
2860 len -= l;
2861 buf += l;
2862 addr += l;
2863 }
2864 return MEMTX_OK;
2865 }
2866
2867 /* used for ROM loading : can write in RAM and ROM */
2868 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2869 MemTxAttrs attrs,
2870 const void *buf, hwaddr len)
2871 {
2872 return address_space_write_rom_internal(as, addr, attrs,
2873 buf, len, WRITE_DATA);
2874 }
2875
2876 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2877 {
2878 /*
2879 * This function should do the same thing as an icache flush that was
2880 * triggered from within the guest. For TCG we are always cache coherent,
2881 * so there is no need to flush anything. For KVM / Xen we need to flush
2882 * the host's instruction cache at least.
2883 */
2884 if (tcg_enabled()) {
2885 return;
2886 }
2887
2888 address_space_write_rom_internal(&address_space_memory,
2889 start, MEMTXATTRS_UNSPECIFIED,
2890 NULL, len, FLUSH_CACHE);
2891 }
2892
2893 typedef struct {
2894 MemoryRegion *mr;
2895 void *buffer;
2896 hwaddr addr;
2897 hwaddr len;
2898 bool in_use;
2899 } BounceBuffer;
2900
2901 static BounceBuffer bounce;
2902
2903 typedef struct MapClient {
2904 QEMUBH *bh;
2905 QLIST_ENTRY(MapClient) link;
2906 } MapClient;
2907
2908 QemuMutex map_client_list_lock;
2909 static QLIST_HEAD(, MapClient) map_client_list
2910 = QLIST_HEAD_INITIALIZER(map_client_list);
2911
2912 static void cpu_unregister_map_client_do(MapClient *client)
2913 {
2914 QLIST_REMOVE(client, link);
2915 g_free(client);
2916 }
2917
2918 static void cpu_notify_map_clients_locked(void)
2919 {
2920 MapClient *client;
2921
2922 while (!QLIST_EMPTY(&map_client_list)) {
2923 client = QLIST_FIRST(&map_client_list);
2924 qemu_bh_schedule(client->bh);
2925 cpu_unregister_map_client_do(client);
2926 }
2927 }
2928
2929 void cpu_register_map_client(QEMUBH *bh)
2930 {
2931 MapClient *client = g_malloc(sizeof(*client));
2932
2933 qemu_mutex_lock(&map_client_list_lock);
2934 client->bh = bh;
2935 QLIST_INSERT_HEAD(&map_client_list, client, link);
2936 /* Write map_client_list before reading in_use. */
2937 smp_mb();
2938 if (!qatomic_read(&bounce.in_use)) {
2939 cpu_notify_map_clients_locked();
2940 }
2941 qemu_mutex_unlock(&map_client_list_lock);
2942 }
2943
2944 void cpu_exec_init_all(void)
2945 {
2946 qemu_mutex_init(&ram_list.mutex);
2947 /* The data structures we set up here depend on knowing the page size,
2948 * so no more changes can be made after this point.
2949 * In an ideal world, nothing we did before we had finished the
2950 * machine setup would care about the target page size, and we could
2951 * do this much later, rather than requiring board models to state
2952 * up front what their requirements are.
2953 */
2954 finalize_target_page_bits();
2955 io_mem_init();
2956 memory_map_init();
2957 qemu_mutex_init(&map_client_list_lock);
2958 }
2959
2960 void cpu_unregister_map_client(QEMUBH *bh)
2961 {
2962 MapClient *client;
2963
2964 qemu_mutex_lock(&map_client_list_lock);
2965 QLIST_FOREACH(client, &map_client_list, link) {
2966 if (client->bh == bh) {
2967 cpu_unregister_map_client_do(client);
2968 break;
2969 }
2970 }
2971 qemu_mutex_unlock(&map_client_list_lock);
2972 }
2973
2974 static void cpu_notify_map_clients(void)
2975 {
2976 qemu_mutex_lock(&map_client_list_lock);
2977 cpu_notify_map_clients_locked();
2978 qemu_mutex_unlock(&map_client_list_lock);
2979 }
2980
2981 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2982 bool is_write, MemTxAttrs attrs)
2983 {
2984 MemoryRegion *mr;
2985 hwaddr l, xlat;
2986
2987 while (len > 0) {
2988 l = len;
2989 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
2990 if (!memory_access_is_direct(mr, is_write)) {
2991 l = memory_access_size(mr, l, addr);
2992 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
2993 return false;
2994 }
2995 }
2996
2997 len -= l;
2998 addr += l;
2999 }
3000 return true;
3001 }
3002
3003 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3004 hwaddr len, bool is_write,
3005 MemTxAttrs attrs)
3006 {
3007 FlatView *fv;
3008
3009 RCU_READ_LOCK_GUARD();
3010 fv = address_space_to_flatview(as);
3011 return flatview_access_valid(fv, addr, len, is_write, attrs);
3012 }
3013
3014 static hwaddr
3015 flatview_extend_translation(FlatView *fv, hwaddr addr,
3016 hwaddr target_len,
3017 MemoryRegion *mr, hwaddr base, hwaddr len,
3018 bool is_write, MemTxAttrs attrs)
3019 {
3020 hwaddr done = 0;
3021 hwaddr xlat;
3022 MemoryRegion *this_mr;
3023
3024 for (;;) {
3025 target_len -= len;
3026 addr += len;
3027 done += len;
3028 if (target_len == 0) {
3029 return done;
3030 }
3031
3032 len = target_len;
3033 this_mr = flatview_translate(fv, addr, &xlat,
3034 &len, is_write, attrs);
3035 if (this_mr != mr || xlat != base + done) {
3036 return done;
3037 }
3038 }
3039 }
3040
3041 /* Map a physical memory region into a host virtual address.
3042 * May map a subset of the requested range, given by and returned in *plen.
3043 * May return NULL if resources needed to perform the mapping are exhausted.
3044 * Use only for reads OR writes - not for read-modify-write operations.
3045 * Use cpu_register_map_client() to know when retrying the map operation is
3046 * likely to succeed.
3047 */
3048 void *address_space_map(AddressSpace *as,
3049 hwaddr addr,
3050 hwaddr *plen,
3051 bool is_write,
3052 MemTxAttrs attrs)
3053 {
3054 hwaddr len = *plen;
3055 hwaddr l, xlat;
3056 MemoryRegion *mr;
3057 FlatView *fv;
3058
3059 if (len == 0) {
3060 return NULL;
3061 }
3062
3063 l = len;
3064 RCU_READ_LOCK_GUARD();
3065 fv = address_space_to_flatview(as);
3066 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3067
3068 if (!memory_access_is_direct(mr, is_write)) {
3069 if (qatomic_xchg(&bounce.in_use, true)) {
3070 *plen = 0;
3071 return NULL;
3072 }
3073 /* Avoid unbounded allocations */
3074 l = MIN(l, TARGET_PAGE_SIZE);
3075 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3076 bounce.addr = addr;
3077 bounce.len = l;
3078
3079 memory_region_ref(mr);
3080 bounce.mr = mr;
3081 if (!is_write) {
3082 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3083 bounce.buffer, l);
3084 }
3085
3086 *plen = l;
3087 return bounce.buffer;
3088 }
3089
3090
3091 memory_region_ref(mr);
3092 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3093 l, is_write, attrs);
3094 fuzz_dma_read_cb(addr, *plen, mr);
3095 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3096 }
3097
3098 /* Unmaps a memory region previously mapped by address_space_map().
3099 * Will also mark the memory as dirty if is_write is true. access_len gives
3100 * the amount of memory that was actually read or written by the caller.
3101 */
3102 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3103 bool is_write, hwaddr access_len)
3104 {
3105 if (buffer != bounce.buffer) {
3106 MemoryRegion *mr;
3107 ram_addr_t addr1;
3108
3109 mr = memory_region_from_host(buffer, &addr1);
3110 assert(mr != NULL);
3111 if (is_write) {
3112 invalidate_and_set_dirty(mr, addr1, access_len);
3113 }
3114 if (xen_enabled()) {
3115 xen_invalidate_map_cache_entry(buffer);
3116 }
3117 memory_region_unref(mr);
3118 return;
3119 }
3120 if (is_write) {
3121 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3122 bounce.buffer, access_len);
3123 }
3124 qemu_vfree(bounce.buffer);
3125 bounce.buffer = NULL;
3126 memory_region_unref(bounce.mr);
3127 /* Clear in_use before reading map_client_list. */
3128 qatomic_mb_set(&bounce.in_use, false);
3129 cpu_notify_map_clients();
3130 }
3131
3132 void *cpu_physical_memory_map(hwaddr addr,
3133 hwaddr *plen,
3134 bool is_write)
3135 {
3136 return address_space_map(&address_space_memory, addr, plen, is_write,
3137 MEMTXATTRS_UNSPECIFIED);
3138 }
3139
3140 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3141 bool is_write, hwaddr access_len)
3142 {
3143 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3144 }
3145
3146 #define ARG1_DECL AddressSpace *as
3147 #define ARG1 as
3148 #define SUFFIX
3149 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3150 #define RCU_READ_LOCK(...) rcu_read_lock()
3151 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3152 #include "memory_ldst.c.inc"
3153
3154 int64_t address_space_cache_init(MemoryRegionCache *cache,
3155 AddressSpace *as,
3156 hwaddr addr,
3157 hwaddr len,
3158 bool is_write)
3159 {
3160 AddressSpaceDispatch *d;
3161 hwaddr l;
3162 MemoryRegion *mr;
3163 Int128 diff;
3164
3165 assert(len > 0);
3166
3167 l = len;
3168 cache->fv = address_space_get_flatview(as);
3169 d = flatview_to_dispatch(cache->fv);
3170 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3171
3172 /*
3173 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3174 * Take that into account to compute how many bytes are there between
3175 * cache->xlat and the end of the section.
3176 */
3177 diff = int128_sub(cache->mrs.size,
3178 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3179 l = int128_get64(int128_min(diff, int128_make64(l)));
3180
3181 mr = cache->mrs.mr;
3182 memory_region_ref(mr);
3183 if (memory_access_is_direct(mr, is_write)) {
3184 /* We don't care about the memory attributes here as we're only
3185 * doing this if we found actual RAM, which behaves the same
3186 * regardless of attributes; so UNSPECIFIED is fine.
3187 */
3188 l = flatview_extend_translation(cache->fv, addr, len, mr,
3189 cache->xlat, l, is_write,
3190 MEMTXATTRS_UNSPECIFIED);
3191 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3192 } else {
3193 cache->ptr = NULL;
3194 }
3195
3196 cache->len = l;
3197 cache->is_write = is_write;
3198 return l;
3199 }
3200
3201 void address_space_cache_invalidate(MemoryRegionCache *cache,
3202 hwaddr addr,
3203 hwaddr access_len)
3204 {
3205 assert(cache->is_write);
3206 if (likely(cache->ptr)) {
3207 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3208 }
3209 }
3210
3211 void address_space_cache_destroy(MemoryRegionCache *cache)
3212 {
3213 if (!cache->mrs.mr) {
3214 return;
3215 }
3216
3217 if (xen_enabled()) {
3218 xen_invalidate_map_cache_entry(cache->ptr);
3219 }
3220 memory_region_unref(cache->mrs.mr);
3221 flatview_unref(cache->fv);
3222 cache->mrs.mr = NULL;
3223 cache->fv = NULL;
3224 }
3225
3226 /* Called from RCU critical section. This function has the same
3227 * semantics as address_space_translate, but it only works on a
3228 * predefined range of a MemoryRegion that was mapped with
3229 * address_space_cache_init.
3230 */
3231 static inline MemoryRegion *address_space_translate_cached(
3232 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3233 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3234 {
3235 MemoryRegionSection section;
3236 MemoryRegion *mr;
3237 IOMMUMemoryRegion *iommu_mr;
3238 AddressSpace *target_as;
3239
3240 assert(!cache->ptr);
3241 *xlat = addr + cache->xlat;
3242
3243 mr = cache->mrs.mr;
3244 iommu_mr = memory_region_get_iommu(mr);
3245 if (!iommu_mr) {
3246 /* MMIO region. */
3247 return mr;
3248 }
3249
3250 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3251 NULL, is_write, true,
3252 &target_as, attrs);
3253 return section.mr;
3254 }
3255
3256 /* Called from RCU critical section. address_space_read_cached uses this
3257 * out of line function when the target is an MMIO or IOMMU region.
3258 */
3259 MemTxResult
3260 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3261 void *buf, hwaddr len)
3262 {
3263 hwaddr addr1, l;
3264 MemoryRegion *mr;
3265
3266 l = len;
3267 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3268 MEMTXATTRS_UNSPECIFIED);
3269 return flatview_read_continue(cache->fv,
3270 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3271 addr1, l, mr);
3272 }
3273
3274 /* Called from RCU critical section. address_space_write_cached uses this
3275 * out of line function when the target is an MMIO or IOMMU region.
3276 */
3277 MemTxResult
3278 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3279 const void *buf, hwaddr len)
3280 {
3281 hwaddr addr1, l;
3282 MemoryRegion *mr;
3283
3284 l = len;
3285 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3286 MEMTXATTRS_UNSPECIFIED);
3287 return flatview_write_continue(cache->fv,
3288 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3289 addr1, l, mr);
3290 }
3291
3292 #define ARG1_DECL MemoryRegionCache *cache
3293 #define ARG1 cache
3294 #define SUFFIX _cached_slow
3295 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3296 #define RCU_READ_LOCK() ((void)0)
3297 #define RCU_READ_UNLOCK() ((void)0)
3298 #include "memory_ldst.c.inc"
3299
3300 /* virtual memory access for debug (includes writing to ROM) */
3301 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3302 void *ptr, size_t len, bool is_write)
3303 {
3304 hwaddr phys_addr;
3305 vaddr l, page;
3306 uint8_t *buf = ptr;
3307
3308 cpu_synchronize_state(cpu);
3309 while (len > 0) {
3310 int asidx;
3311 MemTxAttrs attrs;
3312 MemTxResult res;
3313
3314 page = addr & TARGET_PAGE_MASK;
3315 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3316 asidx = cpu_asidx_from_attrs(cpu, attrs);
3317 /* if no physical page mapped, return an error */
3318 if (phys_addr == -1)
3319 return -1;
3320 l = (page + TARGET_PAGE_SIZE) - addr;
3321 if (l > len)
3322 l = len;
3323 phys_addr += (addr & ~TARGET_PAGE_MASK);
3324 if (is_write) {
3325 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3326 attrs, buf, l);
3327 } else {
3328 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3329 attrs, buf, l);
3330 }
3331 if (res != MEMTX_OK) {
3332 return -1;
3333 }
3334 len -= l;
3335 buf += l;
3336 addr += l;
3337 }
3338 return 0;
3339 }
3340
3341 /*
3342 * Allows code that needs to deal with migration bitmaps etc to still be built
3343 * target independent.
3344 */
3345 size_t qemu_target_page_size(void)
3346 {
3347 return TARGET_PAGE_SIZE;
3348 }
3349
3350 int qemu_target_page_bits(void)
3351 {
3352 return TARGET_PAGE_BITS;
3353 }
3354
3355 int qemu_target_page_bits_min(void)
3356 {
3357 return TARGET_PAGE_BITS_MIN;
3358 }
3359
3360 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3361 {
3362 MemoryRegion*mr;
3363 hwaddr l = 1;
3364
3365 RCU_READ_LOCK_GUARD();
3366 mr = address_space_translate(&address_space_memory,
3367 phys_addr, &phys_addr, &l, false,
3368 MEMTXATTRS_UNSPECIFIED);
3369
3370 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3371 }
3372
3373 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3374 {
3375 RAMBlock *block;
3376 int ret = 0;
3377
3378 RCU_READ_LOCK_GUARD();
3379 RAMBLOCK_FOREACH(block) {
3380 ret = func(block, opaque);
3381 if (ret) {
3382 break;
3383 }
3384 }
3385 return ret;
3386 }
3387
3388 /*
3389 * Unmap pages of memory from start to start+length such that
3390 * they a) read as 0, b) Trigger whatever fault mechanism
3391 * the OS provides for postcopy.
3392 * The pages must be unmapped by the end of the function.
3393 * Returns: 0 on success, none-0 on failure
3394 *
3395 */
3396 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3397 {
3398 int ret = -1;
3399
3400 uint8_t *host_startaddr = rb->host + start;
3401
3402 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3403 error_report("ram_block_discard_range: Unaligned start address: %p",
3404 host_startaddr);
3405 goto err;
3406 }
3407
3408 if ((start + length) <= rb->max_length) {
3409 bool need_madvise, need_fallocate;
3410 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3411 error_report("ram_block_discard_range: Unaligned length: %zx",
3412 length);
3413 goto err;
3414 }
3415
3416 errno = ENOTSUP; /* If we are missing MADVISE etc */
3417
3418 /* The logic here is messy;
3419 * madvise DONTNEED fails for hugepages
3420 * fallocate works on hugepages and shmem
3421 * shared anonymous memory requires madvise REMOVE
3422 */
3423 need_madvise = (rb->page_size == qemu_host_page_size);
3424 need_fallocate = rb->fd != -1;
3425 if (need_fallocate) {
3426 /* For a file, this causes the area of the file to be zero'd
3427 * if read, and for hugetlbfs also causes it to be unmapped
3428 * so a userfault will trigger.
3429 */
3430 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3431 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3432 start, length);
3433 if (ret) {
3434 ret = -errno;
3435 error_report("ram_block_discard_range: Failed to fallocate "
3436 "%s:%" PRIx64 " +%zx (%d)",
3437 rb->idstr, start, length, ret);
3438 goto err;
3439 }
3440 #else
3441 ret = -ENOSYS;
3442 error_report("ram_block_discard_range: fallocate not available/file"
3443 "%s:%" PRIx64 " +%zx (%d)",
3444 rb->idstr, start, length, ret);
3445 goto err;
3446 #endif
3447 }
3448 if (need_madvise) {
3449 /* For normal RAM this causes it to be unmapped,
3450 * for shared memory it causes the local mapping to disappear
3451 * and to fall back on the file contents (which we just
3452 * fallocate'd away).
3453 */
3454 #if defined(CONFIG_MADVISE)
3455 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3456 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3457 } else {
3458 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3459 }
3460 if (ret) {
3461 ret = -errno;
3462 error_report("ram_block_discard_range: Failed to discard range "
3463 "%s:%" PRIx64 " +%zx (%d)",
3464 rb->idstr, start, length, ret);
3465 goto err;
3466 }
3467 #else
3468 ret = -ENOSYS;
3469 error_report("ram_block_discard_range: MADVISE not available"
3470 "%s:%" PRIx64 " +%zx (%d)",
3471 rb->idstr, start, length, ret);
3472 goto err;
3473 #endif
3474 }
3475 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3476 need_madvise, need_fallocate, ret);
3477 } else {
3478 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3479 "/%zx/" RAM_ADDR_FMT")",
3480 rb->idstr, start, length, rb->max_length);
3481 }
3482
3483 err:
3484 return ret;
3485 }
3486
3487 bool ramblock_is_pmem(RAMBlock *rb)
3488 {
3489 return rb->flags & RAM_PMEM;
3490 }
3491
3492 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3493 {
3494 if (start == end - 1) {
3495 qemu_printf("\t%3d ", start);
3496 } else {
3497 qemu_printf("\t%3d..%-3d ", start, end - 1);
3498 }
3499 qemu_printf(" skip=%d ", skip);
3500 if (ptr == PHYS_MAP_NODE_NIL) {
3501 qemu_printf(" ptr=NIL");
3502 } else if (!skip) {
3503 qemu_printf(" ptr=#%d", ptr);
3504 } else {
3505 qemu_printf(" ptr=[%d]", ptr);
3506 }
3507 qemu_printf("\n");
3508 }
3509
3510 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3511 int128_sub((size), int128_one())) : 0)
3512
3513 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3514 {
3515 int i;
3516
3517 qemu_printf(" Dispatch\n");
3518 qemu_printf(" Physical sections\n");
3519
3520 for (i = 0; i < d->map.sections_nb; ++i) {
3521 MemoryRegionSection *s = d->map.sections + i;
3522 const char *names[] = { " [unassigned]", " [not dirty]",
3523 " [ROM]", " [watch]" };
3524
3525 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3526 " %s%s%s%s%s",
3527 i,
3528 s->offset_within_address_space,
3529 s->offset_within_address_space + MR_SIZE(s->size),
3530 s->mr->name ? s->mr->name : "(noname)",
3531 i < ARRAY_SIZE(names) ? names[i] : "",
3532 s->mr == root ? " [ROOT]" : "",
3533 s == d->mru_section ? " [MRU]" : "",
3534 s->mr->is_iommu ? " [iommu]" : "");
3535
3536 if (s->mr->alias) {
3537 qemu_printf(" alias=%s", s->mr->alias->name ?
3538 s->mr->alias->name : "noname");
3539 }
3540 qemu_printf("\n");
3541 }
3542
3543 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3544 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3545 for (i = 0; i < d->map.nodes_nb; ++i) {
3546 int j, jprev;
3547 PhysPageEntry prev;
3548 Node *n = d->map.nodes + i;
3549
3550 qemu_printf(" [%d]\n", i);
3551
3552 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3553 PhysPageEntry *pe = *n + j;
3554
3555 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3556 continue;
3557 }
3558
3559 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3560
3561 jprev = j;
3562 prev = *pe;
3563 }
3564
3565 if (jprev != ARRAY_SIZE(*n)) {
3566 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3567 }
3568 }
3569 }
3570
3571 /* Require any discards to work. */
3572 static unsigned int ram_block_discard_required_cnt;
3573 /* Require only coordinated discards to work. */
3574 static unsigned int ram_block_coordinated_discard_required_cnt;
3575 /* Disable any discards. */
3576 static unsigned int ram_block_discard_disabled_cnt;
3577 /* Disable only uncoordinated discards. */
3578 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3579 static QemuMutex ram_block_discard_disable_mutex;
3580
3581 static void ram_block_discard_disable_mutex_lock(void)
3582 {
3583 static gsize initialized;
3584
3585 if (g_once_init_enter(&initialized)) {
3586 qemu_mutex_init(&ram_block_discard_disable_mutex);
3587 g_once_init_leave(&initialized, 1);
3588 }
3589 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3590 }
3591
3592 static void ram_block_discard_disable_mutex_unlock(void)
3593 {
3594 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3595 }
3596
3597 int ram_block_discard_disable(bool state)
3598 {
3599 int ret = 0;
3600
3601 ram_block_discard_disable_mutex_lock();
3602 if (!state) {
3603 ram_block_discard_disabled_cnt--;
3604 } else if (ram_block_discard_required_cnt ||
3605 ram_block_coordinated_discard_required_cnt) {
3606 ret = -EBUSY;
3607 } else {
3608 ram_block_discard_disabled_cnt++;
3609 }
3610 ram_block_discard_disable_mutex_unlock();
3611 return ret;
3612 }
3613
3614 int ram_block_uncoordinated_discard_disable(bool state)
3615 {
3616 int ret = 0;
3617
3618 ram_block_discard_disable_mutex_lock();
3619 if (!state) {
3620 ram_block_uncoordinated_discard_disabled_cnt--;
3621 } else if (ram_block_discard_required_cnt) {
3622 ret = -EBUSY;
3623 } else {
3624 ram_block_uncoordinated_discard_disabled_cnt++;
3625 }
3626 ram_block_discard_disable_mutex_unlock();
3627 return ret;
3628 }
3629
3630 int ram_block_discard_require(bool state)
3631 {
3632 int ret = 0;
3633
3634 ram_block_discard_disable_mutex_lock();
3635 if (!state) {
3636 ram_block_discard_required_cnt--;
3637 } else if (ram_block_discard_disabled_cnt ||
3638 ram_block_uncoordinated_discard_disabled_cnt) {
3639 ret = -EBUSY;
3640 } else {
3641 ram_block_discard_required_cnt++;
3642 }
3643 ram_block_discard_disable_mutex_unlock();
3644 return ret;
3645 }
3646
3647 int ram_block_coordinated_discard_require(bool state)
3648 {
3649 int ret = 0;
3650
3651 ram_block_discard_disable_mutex_lock();
3652 if (!state) {
3653 ram_block_coordinated_discard_required_cnt--;
3654 } else if (ram_block_discard_disabled_cnt) {
3655 ret = -EBUSY;
3656 } else {
3657 ram_block_coordinated_discard_required_cnt++;
3658 }
3659 ram_block_discard_disable_mutex_unlock();
3660 return ret;
3661 }
3662
3663 bool ram_block_discard_is_disabled(void)
3664 {
3665 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3666 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3667 }
3668
3669 bool ram_block_discard_is_required(void)
3670 {
3671 return qatomic_read(&ram_block_discard_required_cnt) ||
3672 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3673 }