]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/physmem.c
crypto: Add generic 8-bit carry-less multiply routines
[mirror_qemu.git] / softmmu / physmem.c
1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67
68 #include "qemu/pmem.h"
69
70 #include "migration/vmstate.h"
71
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76
77 #include "monitor/monitor.h"
78
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82
83 //#define DEBUG_SUBPAGE
84
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
87 */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95
96 static MemoryRegion io_mem_unassigned;
97
98 typedef struct PhysPageEntry PhysPageEntry;
99
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
105 };
106
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
111
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116
117 typedef PhysPageEntry Node[P_L2_SIZE];
118
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
121
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
129
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
134 */
135 PhysPageEntry phys_map;
136 PhysPageMap map;
137 };
138
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
146
147 #define PHYS_SECTION_UNASSIGNED 0
148
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153
154 /**
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 */
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
166 };
167
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
172 };
173
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
181 }
182 }
183
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
190
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
195
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
200 }
201 return ret;
202 }
203
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
207 {
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
213 }
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 }
226 ++lp;
227 }
228 }
229
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
233 {
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
242 */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
249
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
252 }
253
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
258 }
259
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
264 }
265 }
266
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
270 }
271
272 assert(valid_ptr < P_L2_SIZE);
273
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
278 }
279
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
287 */
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
291 }
292 }
293
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
298 }
299 }
300
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
303 {
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
306 */
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
310 }
311
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
319
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
323 }
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326 }
327
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
339 {
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
342
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
347 }
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 }
352 return section;
353 }
354
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
359 {
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
363
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
367
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
370
371 mr = section->mr;
372
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
379 *
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
383 */
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 }
388 return section;
389 }
390
391 /**
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
394 *
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
409 *
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
412 */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
421 {
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
424
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
430
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433 }
434
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
437
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
440 }
441
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
447
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
451
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
454
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
457 }
458 return *section;
459
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463
464 /**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
481 *
482 * This function is called from RCU critical section
483 */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
493 {
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
497
498 if (!plen_out) {
499 plen_out = &plen;
500 }
501
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
512 }
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
516 }
517
518 return *section;
519 }
520
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
524 {
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
527
528 /*
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
531 */
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
535
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
539 }
540
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
544
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
552 };
553
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
556 }
557
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
562 {
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
566
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
571
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
575 }
576
577 return mr;
578 }
579
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
587
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591
592 if (!notifier->active) {
593 return;
594 }
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
601 */
602 }
603
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
607 {
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
611 */
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
615
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
620 }
621 }
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
636 */
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
640 0,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
645 }
646
647 if (!notifier->active) {
648 notifier->active = true;
649 }
650 }
651
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
657
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
662 }
663 g_array_free(cpu->iommu_notifiers, true);
664 }
665
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
676 {
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
684
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
687
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
691 }
692
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
699 */
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
706 */
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
709 }
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
712 }
713
714 if (!*prot) {
715 goto translate_fail;
716 }
717
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
719 }
720
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
724
725 translate_fail:
726 /*
727 * We should be given a page-aligned address -- certainly
728 * tlb_set_page_with_attrs() does so. The page offset of xlat
729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730 * The page portion of xlat will be logged by memory_region_access_valid()
731 * when this memory access is rejected, so use the original untranslated
732 * physical address.
733 */
734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735 *xlat = orig_addr;
736 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
737 }
738
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740 const char *prefix, MemoryRegion *mr)
741 {
742 CPUAddressSpace *newas;
743 AddressSpace *as = g_new0(AddressSpace, 1);
744 char *as_name;
745
746 assert(mr);
747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748 address_space_init(as, mr, as_name);
749 g_free(as_name);
750
751 /* Target code should have set num_ases before calling us */
752 assert(asidx < cpu->num_ases);
753
754 if (asidx == 0) {
755 /* address space 0 gets the convenience alias */
756 cpu->as = as;
757 }
758
759 /* KVM cannot currently support multiple address spaces. */
760 assert(asidx == 0 || !kvm_enabled());
761
762 if (!cpu->cpu_ases) {
763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
764 }
765
766 newas = &cpu->cpu_ases[asidx];
767 newas->cpu = cpu;
768 newas->as = as;
769 if (tcg_enabled()) {
770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771 newas->tcg_as_listener.commit = tcg_commit;
772 newas->tcg_as_listener.name = "tcg";
773 memory_listener_register(&newas->tcg_as_listener, as);
774 }
775 }
776
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
778 {
779 /* Return the AddressSpace corresponding to the specified index */
780 return cpu->cpu_ases[asidx].as;
781 }
782
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
785 {
786 RAMBlock *block;
787
788 block = qatomic_rcu_read(&ram_list.mru_block);
789 if (block && addr - block->offset < block->max_length) {
790 return block;
791 }
792 RAMBLOCK_FOREACH(block) {
793 if (addr - block->offset < block->max_length) {
794 goto found;
795 }
796 }
797
798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799 abort();
800
801 found:
802 /* It is safe to write mru_block outside the iothread lock. This
803 * is what happens:
804 *
805 * mru_block = xxx
806 * rcu_read_unlock()
807 * xxx removed from list
808 * rcu_read_lock()
809 * read mru_block
810 * mru_block = NULL;
811 * call_rcu(reclaim_ramblock, xxx);
812 * rcu_read_unlock()
813 *
814 * qatomic_rcu_set is not needed here. The block was already published
815 * when it was placed into the list. Here we're just making an extra
816 * copy of the pointer.
817 */
818 ram_list.mru_block = block;
819 return block;
820 }
821
822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
823 {
824 CPUState *cpu;
825 ram_addr_t start1;
826 RAMBlock *block;
827 ram_addr_t end;
828
829 assert(tcg_enabled());
830 end = TARGET_PAGE_ALIGN(start + length);
831 start &= TARGET_PAGE_MASK;
832
833 RCU_READ_LOCK_GUARD();
834 block = qemu_get_ram_block(start);
835 assert(block == qemu_get_ram_block(end - 1));
836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837 CPU_FOREACH(cpu) {
838 tlb_reset_dirty(cpu, start1, length);
839 }
840 }
841
842 /* Note: start and end must be within the same ram block. */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844 ram_addr_t length,
845 unsigned client)
846 {
847 DirtyMemoryBlocks *blocks;
848 unsigned long end, page, start_page;
849 bool dirty = false;
850 RAMBlock *ramblock;
851 uint64_t mr_offset, mr_size;
852
853 if (length == 0) {
854 return false;
855 }
856
857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858 start_page = start >> TARGET_PAGE_BITS;
859 page = start_page;
860
861 WITH_RCU_READ_LOCK_GUARD() {
862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863 ramblock = qemu_get_ram_block(start);
864 /* Range sanity check on the ramblock */
865 assert(start >= ramblock->offset &&
866 start + length <= ramblock->offset + ramblock->used_length);
867
868 while (page < end) {
869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long num = MIN(end - page,
872 DIRTY_MEMORY_BLOCK_SIZE - offset);
873
874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875 offset, num);
876 page += num;
877 }
878
879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880 mr_size = (end - start_page) << TARGET_PAGE_BITS;
881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
882 }
883
884 if (dirty && tcg_enabled()) {
885 tlb_reset_dirty_range_all(start, length);
886 }
887
888 return dirty;
889 }
890
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
893 {
894 DirtyMemoryBlocks *blocks;
895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
899 DirtyBitmapSnapshot *snap;
900 unsigned long page, end, dest;
901
902 snap = g_malloc0(sizeof(*snap) +
903 ((last - first) >> (TARGET_PAGE_BITS + 3)));
904 snap->start = first;
905 snap->end = last;
906
907 page = first >> TARGET_PAGE_BITS;
908 end = last >> TARGET_PAGE_BITS;
909 dest = 0;
910
911 WITH_RCU_READ_LOCK_GUARD() {
912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
913
914 while (page < end) {
915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long num = MIN(end - page,
918 DIRTY_MEMORY_BLOCK_SIZE - offset);
919
920 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
922 offset >>= BITS_PER_LEVEL;
923
924 bitmap_copy_and_clear_atomic(snap->dirty + dest,
925 blocks->blocks[idx] + offset,
926 num);
927 page += num;
928 dest += num >> BITS_PER_LEVEL;
929 }
930 }
931
932 if (tcg_enabled()) {
933 tlb_reset_dirty_range_all(start, length);
934 }
935
936 memory_region_clear_dirty_bitmap(mr, offset, length);
937
938 return snap;
939 }
940
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942 ram_addr_t start,
943 ram_addr_t length)
944 {
945 unsigned long page, end;
946
947 assert(start >= snap->start);
948 assert(start + length <= snap->end);
949
950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951 page = (start - snap->start) >> TARGET_PAGE_BITS;
952
953 while (page < end) {
954 if (test_bit(page, snap->dirty)) {
955 return true;
956 }
957 page++;
958 }
959 return false;
960 }
961
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964 MemoryRegionSection *section)
965 {
966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967 return section - d->map.sections;
968 }
969
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971 uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
973
974 static uint16_t phys_section_add(PhysPageMap *map,
975 MemoryRegionSection *section)
976 {
977 /* The physical section number is ORed with a page-aligned
978 * pointer to produce the iotlb entries. Thus it should
979 * never overflow into the page-aligned value.
980 */
981 assert(map->sections_nb < TARGET_PAGE_SIZE);
982
983 if (map->sections_nb == map->sections_nb_alloc) {
984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985 map->sections = g_renew(MemoryRegionSection, map->sections,
986 map->sections_nb_alloc);
987 }
988 map->sections[map->sections_nb] = *section;
989 memory_region_ref(section->mr);
990 return map->sections_nb++;
991 }
992
993 static void phys_section_destroy(MemoryRegion *mr)
994 {
995 bool have_sub_page = mr->subpage;
996
997 memory_region_unref(mr);
998
999 if (have_sub_page) {
1000 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001 object_unref(OBJECT(&subpage->iomem));
1002 g_free(subpage);
1003 }
1004 }
1005
1006 static void phys_sections_free(PhysPageMap *map)
1007 {
1008 while (map->sections_nb > 0) {
1009 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010 phys_section_destroy(section->mr);
1011 }
1012 g_free(map->sections);
1013 g_free(map->nodes);
1014 }
1015
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1017 {
1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019 subpage_t *subpage;
1020 hwaddr base = section->offset_within_address_space
1021 & TARGET_PAGE_MASK;
1022 MemoryRegionSection *existing = phys_page_find(d, base);
1023 MemoryRegionSection subsection = {
1024 .offset_within_address_space = base,
1025 .size = int128_make64(TARGET_PAGE_SIZE),
1026 };
1027 hwaddr start, end;
1028
1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1030
1031 if (!(existing->mr->subpage)) {
1032 subpage = subpage_init(fv, base);
1033 subsection.fv = fv;
1034 subsection.mr = &subpage->iomem;
1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036 phys_section_add(&d->map, &subsection));
1037 } else {
1038 subpage = container_of(existing->mr, subpage_t, iomem);
1039 }
1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041 end = start + int128_get64(section->size) - 1;
1042 subpage_register(subpage, start, end,
1043 phys_section_add(&d->map, section));
1044 }
1045
1046
1047 static void register_multipage(FlatView *fv,
1048 MemoryRegionSection *section)
1049 {
1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051 hwaddr start_addr = section->offset_within_address_space;
1052 uint16_t section_index = phys_section_add(&d->map, section);
1053 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054 TARGET_PAGE_BITS));
1055
1056 assert(num_pages);
1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1058 }
1059
1060 /*
1061 * The range in *section* may look like this:
1062 *
1063 * |s|PPPPPPP|s|
1064 *
1065 * where s stands for subpage and P for page.
1066 */
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1068 {
1069 MemoryRegionSection remain = *section;
1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1071
1072 /* register first subpage */
1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075 - remain.offset_within_address_space;
1076
1077 MemoryRegionSection now = remain;
1078 now.size = int128_min(int128_make64(left), now.size);
1079 register_subpage(fv, &now);
1080 if (int128_eq(remain.size, now.size)) {
1081 return;
1082 }
1083 remain.size = int128_sub(remain.size, now.size);
1084 remain.offset_within_address_space += int128_get64(now.size);
1085 remain.offset_within_region += int128_get64(now.size);
1086 }
1087
1088 /* register whole pages */
1089 if (int128_ge(remain.size, page_size)) {
1090 MemoryRegionSection now = remain;
1091 now.size = int128_and(now.size, int128_neg(page_size));
1092 register_multipage(fv, &now);
1093 if (int128_eq(remain.size, now.size)) {
1094 return;
1095 }
1096 remain.size = int128_sub(remain.size, now.size);
1097 remain.offset_within_address_space += int128_get64(now.size);
1098 remain.offset_within_region += int128_get64(now.size);
1099 }
1100
1101 /* register last subpage */
1102 register_subpage(fv, &remain);
1103 }
1104
1105 void qemu_flush_coalesced_mmio_buffer(void)
1106 {
1107 if (kvm_enabled())
1108 kvm_flush_coalesced_mmio_buffer();
1109 }
1110
1111 void qemu_mutex_lock_ramlist(void)
1112 {
1113 qemu_mutex_lock(&ram_list.mutex);
1114 }
1115
1116 void qemu_mutex_unlock_ramlist(void)
1117 {
1118 qemu_mutex_unlock(&ram_list.mutex);
1119 }
1120
1121 GString *ram_block_format(void)
1122 {
1123 RAMBlock *block;
1124 char *psize;
1125 GString *buf = g_string_new("");
1126
1127 RCU_READ_LOCK_GUARD();
1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1129 "Block Name", "PSize", "Offset", "Used", "Total",
1130 "HVA", "RO");
1131
1132 RAMBLOCK_FOREACH(block) {
1133 psize = size_to_str(block->page_size);
1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136 block->idstr, psize,
1137 (uint64_t)block->offset,
1138 (uint64_t)block->used_length,
1139 (uint64_t)block->max_length,
1140 (uint64_t)(uintptr_t)block->host,
1141 block->mr->readonly ? "ro" : "rw");
1142
1143 g_free(psize);
1144 }
1145
1146 return buf;
1147 }
1148
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1150 {
1151 long *hpsize_min = opaque;
1152
1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155 long hpsize = host_memory_backend_pagesize(backend);
1156
1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158 *hpsize_min = hpsize;
1159 }
1160 }
1161
1162 return 0;
1163 }
1164
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1166 {
1167 long *hpsize_max = opaque;
1168
1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171 long hpsize = host_memory_backend_pagesize(backend);
1172
1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174 *hpsize_max = hpsize;
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
1181 /*
1182 * TODO: We assume right now that all mapped host memory backends are
1183 * used as RAM, however some might be used for different purposes.
1184 */
1185 long qemu_minrampagesize(void)
1186 {
1187 long hpsize = LONG_MAX;
1188 Object *memdev_root = object_resolve_path("/objects", NULL);
1189
1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191 return hpsize;
1192 }
1193
1194 long qemu_maxrampagesize(void)
1195 {
1196 long pagesize = 0;
1197 Object *memdev_root = object_resolve_path("/objects", NULL);
1198
1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200 return pagesize;
1201 }
1202
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1205 {
1206 int64_t size;
1207 #if defined(__linux__)
1208 struct stat st;
1209
1210 if (fstat(fd, &st) < 0) {
1211 return -errno;
1212 }
1213
1214 /* Special handling for devdax character devices */
1215 if (S_ISCHR(st.st_mode)) {
1216 g_autofree char *subsystem_path = NULL;
1217 g_autofree char *subsystem = NULL;
1218
1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220 major(st.st_rdev), minor(st.st_rdev));
1221 subsystem = g_file_read_link(subsystem_path, NULL);
1222
1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224 g_autofree char *size_path = NULL;
1225 g_autofree char *size_str = NULL;
1226
1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228 major(st.st_rdev), minor(st.st_rdev));
1229
1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231 return g_ascii_strtoll(size_str, NULL, 0);
1232 }
1233 }
1234 }
1235 #endif /* defined(__linux__) */
1236
1237 /* st.st_size may be zero for special files yet lseek(2) works */
1238 size = lseek(fd, 0, SEEK_END);
1239 if (size < 0) {
1240 return -errno;
1241 }
1242 return size;
1243 }
1244
1245 static int64_t get_file_align(int fd)
1246 {
1247 int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249 struct stat st;
1250
1251 if (fstat(fd, &st) < 0) {
1252 return -errno;
1253 }
1254
1255 /* Special handling for devdax character devices */
1256 if (S_ISCHR(st.st_mode)) {
1257 g_autofree char *path = NULL;
1258 g_autofree char *rpath = NULL;
1259 struct daxctl_ctx *ctx;
1260 struct daxctl_region *region;
1261 int rc = 0;
1262
1263 path = g_strdup_printf("/sys/dev/char/%d:%d",
1264 major(st.st_rdev), minor(st.st_rdev));
1265 rpath = realpath(path, NULL);
1266 if (!rpath) {
1267 return -errno;
1268 }
1269
1270 rc = daxctl_new(&ctx);
1271 if (rc) {
1272 return -1;
1273 }
1274
1275 daxctl_region_foreach(ctx, region) {
1276 if (strstr(rpath, daxctl_region_get_path(region))) {
1277 align = daxctl_region_get_align(region);
1278 break;
1279 }
1280 }
1281 daxctl_unref(ctx);
1282 }
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1284
1285 return align;
1286 }
1287
1288 static int file_ram_open(const char *path,
1289 const char *region_name,
1290 bool readonly,
1291 bool *created,
1292 Error **errp)
1293 {
1294 char *filename;
1295 char *sanitized_name;
1296 char *c;
1297 int fd = -1;
1298
1299 *created = false;
1300 for (;;) {
1301 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1302 if (fd >= 0) {
1303 /* @path names an existing file, use it */
1304 break;
1305 }
1306 if (errno == ENOENT) {
1307 /* @path names a file that doesn't exist, create it */
1308 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1309 if (fd >= 0) {
1310 *created = true;
1311 break;
1312 }
1313 } else if (errno == EISDIR) {
1314 /* @path names a directory, create a file there */
1315 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1316 sanitized_name = g_strdup(region_name);
1317 for (c = sanitized_name; *c != '\0'; c++) {
1318 if (*c == '/') {
1319 *c = '_';
1320 }
1321 }
1322
1323 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1324 sanitized_name);
1325 g_free(sanitized_name);
1326
1327 fd = mkstemp(filename);
1328 if (fd >= 0) {
1329 unlink(filename);
1330 g_free(filename);
1331 break;
1332 }
1333 g_free(filename);
1334 }
1335 if (errno != EEXIST && errno != EINTR) {
1336 error_setg_errno(errp, errno,
1337 "can't open backing store %s for guest RAM",
1338 path);
1339 return -1;
1340 }
1341 /*
1342 * Try again on EINTR and EEXIST. The latter happens when
1343 * something else creates the file between our two open().
1344 */
1345 }
1346
1347 return fd;
1348 }
1349
1350 static void *file_ram_alloc(RAMBlock *block,
1351 ram_addr_t memory,
1352 int fd,
1353 bool readonly,
1354 bool truncate,
1355 off_t offset,
1356 Error **errp)
1357 {
1358 uint32_t qemu_map_flags;
1359 void *area;
1360
1361 block->page_size = qemu_fd_getpagesize(fd);
1362 if (block->mr->align % block->page_size) {
1363 error_setg(errp, "alignment 0x%" PRIx64
1364 " must be multiples of page size 0x%zx",
1365 block->mr->align, block->page_size);
1366 return NULL;
1367 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1368 error_setg(errp, "alignment 0x%" PRIx64
1369 " must be a power of two", block->mr->align);
1370 return NULL;
1371 } else if (offset % block->page_size) {
1372 error_setg(errp, "offset 0x%" PRIx64
1373 " must be multiples of page size 0x%zx",
1374 offset, block->page_size);
1375 return NULL;
1376 }
1377 block->mr->align = MAX(block->page_size, block->mr->align);
1378 #if defined(__s390x__)
1379 if (kvm_enabled()) {
1380 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1381 }
1382 #endif
1383
1384 if (memory < block->page_size) {
1385 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1386 "or larger than page size 0x%zx",
1387 memory, block->page_size);
1388 return NULL;
1389 }
1390
1391 memory = ROUND_UP(memory, block->page_size);
1392
1393 /*
1394 * ftruncate is not supported by hugetlbfs in older
1395 * hosts, so don't bother bailing out on errors.
1396 * If anything goes wrong with it under other filesystems,
1397 * mmap will fail.
1398 *
1399 * Do not truncate the non-empty backend file to avoid corrupting
1400 * the existing data in the file. Disabling shrinking is not
1401 * enough. For example, the current vNVDIMM implementation stores
1402 * the guest NVDIMM labels at the end of the backend file. If the
1403 * backend file is later extended, QEMU will not be able to find
1404 * those labels. Therefore, extending the non-empty backend file
1405 * is disabled as well.
1406 */
1407 if (truncate && ftruncate(fd, offset + memory)) {
1408 perror("ftruncate");
1409 }
1410
1411 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1412 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1413 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1414 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1415 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1416 if (area == MAP_FAILED) {
1417 error_setg_errno(errp, errno,
1418 "unable to map backing store for guest RAM");
1419 return NULL;
1420 }
1421
1422 block->fd = fd;
1423 block->fd_offset = offset;
1424 return area;
1425 }
1426 #endif
1427
1428 /* Allocate space within the ram_addr_t space that governs the
1429 * dirty bitmaps.
1430 * Called with the ramlist lock held.
1431 */
1432 static ram_addr_t find_ram_offset(ram_addr_t size)
1433 {
1434 RAMBlock *block, *next_block;
1435 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1436
1437 assert(size != 0); /* it would hand out same offset multiple times */
1438
1439 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1440 return 0;
1441 }
1442
1443 RAMBLOCK_FOREACH(block) {
1444 ram_addr_t candidate, next = RAM_ADDR_MAX;
1445
1446 /* Align blocks to start on a 'long' in the bitmap
1447 * which makes the bitmap sync'ing take the fast path.
1448 */
1449 candidate = block->offset + block->max_length;
1450 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1451
1452 /* Search for the closest following block
1453 * and find the gap.
1454 */
1455 RAMBLOCK_FOREACH(next_block) {
1456 if (next_block->offset >= candidate) {
1457 next = MIN(next, next_block->offset);
1458 }
1459 }
1460
1461 /* If it fits remember our place and remember the size
1462 * of gap, but keep going so that we might find a smaller
1463 * gap to fill so avoiding fragmentation.
1464 */
1465 if (next - candidate >= size && next - candidate < mingap) {
1466 offset = candidate;
1467 mingap = next - candidate;
1468 }
1469
1470 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1471 }
1472
1473 if (offset == RAM_ADDR_MAX) {
1474 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1475 (uint64_t)size);
1476 abort();
1477 }
1478
1479 trace_find_ram_offset(size, offset);
1480
1481 return offset;
1482 }
1483
1484 static unsigned long last_ram_page(void)
1485 {
1486 RAMBlock *block;
1487 ram_addr_t last = 0;
1488
1489 RCU_READ_LOCK_GUARD();
1490 RAMBLOCK_FOREACH(block) {
1491 last = MAX(last, block->offset + block->max_length);
1492 }
1493 return last >> TARGET_PAGE_BITS;
1494 }
1495
1496 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1497 {
1498 int ret;
1499
1500 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1501 if (!machine_dump_guest_core(current_machine)) {
1502 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1503 if (ret) {
1504 perror("qemu_madvise");
1505 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1506 "but dump_guest_core=off specified\n");
1507 }
1508 }
1509 }
1510
1511 const char *qemu_ram_get_idstr(RAMBlock *rb)
1512 {
1513 return rb->idstr;
1514 }
1515
1516 void *qemu_ram_get_host_addr(RAMBlock *rb)
1517 {
1518 return rb->host;
1519 }
1520
1521 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1522 {
1523 return rb->offset;
1524 }
1525
1526 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1527 {
1528 return rb->used_length;
1529 }
1530
1531 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1532 {
1533 return rb->max_length;
1534 }
1535
1536 bool qemu_ram_is_shared(RAMBlock *rb)
1537 {
1538 return rb->flags & RAM_SHARED;
1539 }
1540
1541 bool qemu_ram_is_noreserve(RAMBlock *rb)
1542 {
1543 return rb->flags & RAM_NORESERVE;
1544 }
1545
1546 /* Note: Only set at the start of postcopy */
1547 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1548 {
1549 return rb->flags & RAM_UF_ZEROPAGE;
1550 }
1551
1552 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1553 {
1554 rb->flags |= RAM_UF_ZEROPAGE;
1555 }
1556
1557 bool qemu_ram_is_migratable(RAMBlock *rb)
1558 {
1559 return rb->flags & RAM_MIGRATABLE;
1560 }
1561
1562 void qemu_ram_set_migratable(RAMBlock *rb)
1563 {
1564 rb->flags |= RAM_MIGRATABLE;
1565 }
1566
1567 void qemu_ram_unset_migratable(RAMBlock *rb)
1568 {
1569 rb->flags &= ~RAM_MIGRATABLE;
1570 }
1571
1572 bool qemu_ram_is_named_file(RAMBlock *rb)
1573 {
1574 return rb->flags & RAM_NAMED_FILE;
1575 }
1576
1577 int qemu_ram_get_fd(RAMBlock *rb)
1578 {
1579 return rb->fd;
1580 }
1581
1582 /* Called with iothread lock held. */
1583 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1584 {
1585 RAMBlock *block;
1586
1587 assert(new_block);
1588 assert(!new_block->idstr[0]);
1589
1590 if (dev) {
1591 char *id = qdev_get_dev_path(dev);
1592 if (id) {
1593 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1594 g_free(id);
1595 }
1596 }
1597 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1598
1599 RCU_READ_LOCK_GUARD();
1600 RAMBLOCK_FOREACH(block) {
1601 if (block != new_block &&
1602 !strcmp(block->idstr, new_block->idstr)) {
1603 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1604 new_block->idstr);
1605 abort();
1606 }
1607 }
1608 }
1609
1610 /* Called with iothread lock held. */
1611 void qemu_ram_unset_idstr(RAMBlock *block)
1612 {
1613 /* FIXME: arch_init.c assumes that this is not called throughout
1614 * migration. Ignore the problem since hot-unplug during migration
1615 * does not work anyway.
1616 */
1617 if (block) {
1618 memset(block->idstr, 0, sizeof(block->idstr));
1619 }
1620 }
1621
1622 size_t qemu_ram_pagesize(RAMBlock *rb)
1623 {
1624 return rb->page_size;
1625 }
1626
1627 /* Returns the largest size of page in use */
1628 size_t qemu_ram_pagesize_largest(void)
1629 {
1630 RAMBlock *block;
1631 size_t largest = 0;
1632
1633 RAMBLOCK_FOREACH(block) {
1634 largest = MAX(largest, qemu_ram_pagesize(block));
1635 }
1636
1637 return largest;
1638 }
1639
1640 static int memory_try_enable_merging(void *addr, size_t len)
1641 {
1642 if (!machine_mem_merge(current_machine)) {
1643 /* disabled by the user */
1644 return 0;
1645 }
1646
1647 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1648 }
1649
1650 /*
1651 * Resizing RAM while migrating can result in the migration being canceled.
1652 * Care has to be taken if the guest might have already detected the memory.
1653 *
1654 * As memory core doesn't know how is memory accessed, it is up to
1655 * resize callback to update device state and/or add assertions to detect
1656 * misuse, if necessary.
1657 */
1658 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1659 {
1660 const ram_addr_t oldsize = block->used_length;
1661 const ram_addr_t unaligned_size = newsize;
1662
1663 assert(block);
1664
1665 newsize = HOST_PAGE_ALIGN(newsize);
1666
1667 if (block->used_length == newsize) {
1668 /*
1669 * We don't have to resize the ram block (which only knows aligned
1670 * sizes), however, we have to notify if the unaligned size changed.
1671 */
1672 if (unaligned_size != memory_region_size(block->mr)) {
1673 memory_region_set_size(block->mr, unaligned_size);
1674 if (block->resized) {
1675 block->resized(block->idstr, unaligned_size, block->host);
1676 }
1677 }
1678 return 0;
1679 }
1680
1681 if (!(block->flags & RAM_RESIZEABLE)) {
1682 error_setg_errno(errp, EINVAL,
1683 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1684 " != 0x" RAM_ADDR_FMT, block->idstr,
1685 newsize, block->used_length);
1686 return -EINVAL;
1687 }
1688
1689 if (block->max_length < newsize) {
1690 error_setg_errno(errp, EINVAL,
1691 "Size too large: %s: 0x" RAM_ADDR_FMT
1692 " > 0x" RAM_ADDR_FMT, block->idstr,
1693 newsize, block->max_length);
1694 return -EINVAL;
1695 }
1696
1697 /* Notify before modifying the ram block and touching the bitmaps. */
1698 if (block->host) {
1699 ram_block_notify_resize(block->host, oldsize, newsize);
1700 }
1701
1702 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1703 block->used_length = newsize;
1704 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1705 DIRTY_CLIENTS_ALL);
1706 memory_region_set_size(block->mr, unaligned_size);
1707 if (block->resized) {
1708 block->resized(block->idstr, unaligned_size, block->host);
1709 }
1710 return 0;
1711 }
1712
1713 /*
1714 * Trigger sync on the given ram block for range [start, start + length]
1715 * with the backing store if one is available.
1716 * Otherwise no-op.
1717 * @Note: this is supposed to be a synchronous op.
1718 */
1719 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1720 {
1721 /* The requested range should fit in within the block range */
1722 g_assert((start + length) <= block->used_length);
1723
1724 #ifdef CONFIG_LIBPMEM
1725 /* The lack of support for pmem should not block the sync */
1726 if (ramblock_is_pmem(block)) {
1727 void *addr = ramblock_ptr(block, start);
1728 pmem_persist(addr, length);
1729 return;
1730 }
1731 #endif
1732 if (block->fd >= 0) {
1733 /**
1734 * Case there is no support for PMEM or the memory has not been
1735 * specified as persistent (or is not one) - use the msync.
1736 * Less optimal but still achieves the same goal
1737 */
1738 void *addr = ramblock_ptr(block, start);
1739 if (qemu_msync(addr, length, block->fd)) {
1740 warn_report("%s: failed to sync memory range: start: "
1741 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1742 __func__, start, length);
1743 }
1744 }
1745 }
1746
1747 /* Called with ram_list.mutex held */
1748 static void dirty_memory_extend(ram_addr_t old_ram_size,
1749 ram_addr_t new_ram_size)
1750 {
1751 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1752 DIRTY_MEMORY_BLOCK_SIZE);
1753 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1754 DIRTY_MEMORY_BLOCK_SIZE);
1755 int i;
1756
1757 /* Only need to extend if block count increased */
1758 if (new_num_blocks <= old_num_blocks) {
1759 return;
1760 }
1761
1762 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1763 DirtyMemoryBlocks *old_blocks;
1764 DirtyMemoryBlocks *new_blocks;
1765 int j;
1766
1767 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1768 new_blocks = g_malloc(sizeof(*new_blocks) +
1769 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1770
1771 if (old_num_blocks) {
1772 memcpy(new_blocks->blocks, old_blocks->blocks,
1773 old_num_blocks * sizeof(old_blocks->blocks[0]));
1774 }
1775
1776 for (j = old_num_blocks; j < new_num_blocks; j++) {
1777 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1778 }
1779
1780 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1781
1782 if (old_blocks) {
1783 g_free_rcu(old_blocks, rcu);
1784 }
1785 }
1786 }
1787
1788 static void ram_block_add(RAMBlock *new_block, Error **errp)
1789 {
1790 const bool noreserve = qemu_ram_is_noreserve(new_block);
1791 const bool shared = qemu_ram_is_shared(new_block);
1792 RAMBlock *block;
1793 RAMBlock *last_block = NULL;
1794 ram_addr_t old_ram_size, new_ram_size;
1795 Error *err = NULL;
1796
1797 old_ram_size = last_ram_page();
1798
1799 qemu_mutex_lock_ramlist();
1800 new_block->offset = find_ram_offset(new_block->max_length);
1801
1802 if (!new_block->host) {
1803 if (xen_enabled()) {
1804 xen_ram_alloc(new_block->offset, new_block->max_length,
1805 new_block->mr, &err);
1806 if (err) {
1807 error_propagate(errp, err);
1808 qemu_mutex_unlock_ramlist();
1809 return;
1810 }
1811 } else {
1812 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1813 &new_block->mr->align,
1814 shared, noreserve);
1815 if (!new_block->host) {
1816 error_setg_errno(errp, errno,
1817 "cannot set up guest memory '%s'",
1818 memory_region_name(new_block->mr));
1819 qemu_mutex_unlock_ramlist();
1820 return;
1821 }
1822 memory_try_enable_merging(new_block->host, new_block->max_length);
1823 }
1824 }
1825
1826 new_ram_size = MAX(old_ram_size,
1827 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1828 if (new_ram_size > old_ram_size) {
1829 dirty_memory_extend(old_ram_size, new_ram_size);
1830 }
1831 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1832 * QLIST (which has an RCU-friendly variant) does not have insertion at
1833 * tail, so save the last element in last_block.
1834 */
1835 RAMBLOCK_FOREACH(block) {
1836 last_block = block;
1837 if (block->max_length < new_block->max_length) {
1838 break;
1839 }
1840 }
1841 if (block) {
1842 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1843 } else if (last_block) {
1844 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1845 } else { /* list is empty */
1846 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1847 }
1848 ram_list.mru_block = NULL;
1849
1850 /* Write list before version */
1851 smp_wmb();
1852 ram_list.version++;
1853 qemu_mutex_unlock_ramlist();
1854
1855 cpu_physical_memory_set_dirty_range(new_block->offset,
1856 new_block->used_length,
1857 DIRTY_CLIENTS_ALL);
1858
1859 if (new_block->host) {
1860 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1861 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1862 /*
1863 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1864 * Configure it unless the machine is a qtest server, in which case
1865 * KVM is not used and it may be forked (eg for fuzzing purposes).
1866 */
1867 if (!qtest_enabled()) {
1868 qemu_madvise(new_block->host, new_block->max_length,
1869 QEMU_MADV_DONTFORK);
1870 }
1871 ram_block_notify_add(new_block->host, new_block->used_length,
1872 new_block->max_length);
1873 }
1874 }
1875
1876 #ifdef CONFIG_POSIX
1877 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1878 uint32_t ram_flags, int fd, off_t offset,
1879 bool readonly, Error **errp)
1880 {
1881 RAMBlock *new_block;
1882 Error *local_err = NULL;
1883 int64_t file_size, file_align;
1884
1885 /* Just support these ram flags by now. */
1886 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1887 RAM_PROTECTED | RAM_NAMED_FILE)) == 0);
1888
1889 if (xen_enabled()) {
1890 error_setg(errp, "-mem-path not supported with Xen");
1891 return NULL;
1892 }
1893
1894 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1895 error_setg(errp,
1896 "host lacks kvm mmu notifiers, -mem-path unsupported");
1897 return NULL;
1898 }
1899
1900 size = HOST_PAGE_ALIGN(size);
1901 file_size = get_file_size(fd);
1902 if (file_size > offset && file_size < (offset + size)) {
1903 error_setg(errp, "backing store size 0x%" PRIx64
1904 " does not match 'size' option 0x" RAM_ADDR_FMT,
1905 file_size, size);
1906 return NULL;
1907 }
1908
1909 file_align = get_file_align(fd);
1910 if (file_align > 0 && file_align > mr->align) {
1911 error_setg(errp, "backing store align 0x%" PRIx64
1912 " is larger than 'align' option 0x%" PRIx64,
1913 file_align, mr->align);
1914 return NULL;
1915 }
1916
1917 new_block = g_malloc0(sizeof(*new_block));
1918 new_block->mr = mr;
1919 new_block->used_length = size;
1920 new_block->max_length = size;
1921 new_block->flags = ram_flags;
1922 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1923 !file_size, offset, errp);
1924 if (!new_block->host) {
1925 g_free(new_block);
1926 return NULL;
1927 }
1928
1929 ram_block_add(new_block, &local_err);
1930 if (local_err) {
1931 g_free(new_block);
1932 error_propagate(errp, local_err);
1933 return NULL;
1934 }
1935 return new_block;
1936
1937 }
1938
1939
1940 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1941 uint32_t ram_flags, const char *mem_path,
1942 off_t offset, bool readonly, Error **errp)
1943 {
1944 int fd;
1945 bool created;
1946 RAMBlock *block;
1947
1948 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1949 errp);
1950 if (fd < 0) {
1951 return NULL;
1952 }
1953
1954 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly,
1955 errp);
1956 if (!block) {
1957 if (created) {
1958 unlink(mem_path);
1959 }
1960 close(fd);
1961 return NULL;
1962 }
1963
1964 return block;
1965 }
1966 #endif
1967
1968 static
1969 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1970 void (*resized)(const char*,
1971 uint64_t length,
1972 void *host),
1973 void *host, uint32_t ram_flags,
1974 MemoryRegion *mr, Error **errp)
1975 {
1976 RAMBlock *new_block;
1977 Error *local_err = NULL;
1978
1979 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1980 RAM_NORESERVE)) == 0);
1981 assert(!host ^ (ram_flags & RAM_PREALLOC));
1982
1983 size = HOST_PAGE_ALIGN(size);
1984 max_size = HOST_PAGE_ALIGN(max_size);
1985 new_block = g_malloc0(sizeof(*new_block));
1986 new_block->mr = mr;
1987 new_block->resized = resized;
1988 new_block->used_length = size;
1989 new_block->max_length = max_size;
1990 assert(max_size >= size);
1991 new_block->fd = -1;
1992 new_block->page_size = qemu_real_host_page_size();
1993 new_block->host = host;
1994 new_block->flags = ram_flags;
1995 ram_block_add(new_block, &local_err);
1996 if (local_err) {
1997 g_free(new_block);
1998 error_propagate(errp, local_err);
1999 return NULL;
2000 }
2001 return new_block;
2002 }
2003
2004 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2005 MemoryRegion *mr, Error **errp)
2006 {
2007 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2008 errp);
2009 }
2010
2011 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2012 MemoryRegion *mr, Error **errp)
2013 {
2014 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2015 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2016 }
2017
2018 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2019 void (*resized)(const char*,
2020 uint64_t length,
2021 void *host),
2022 MemoryRegion *mr, Error **errp)
2023 {
2024 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2025 RAM_RESIZEABLE, mr, errp);
2026 }
2027
2028 static void reclaim_ramblock(RAMBlock *block)
2029 {
2030 if (block->flags & RAM_PREALLOC) {
2031 ;
2032 } else if (xen_enabled()) {
2033 xen_invalidate_map_cache_entry(block->host);
2034 #ifndef _WIN32
2035 } else if (block->fd >= 0) {
2036 qemu_ram_munmap(block->fd, block->host, block->max_length);
2037 close(block->fd);
2038 #endif
2039 } else {
2040 qemu_anon_ram_free(block->host, block->max_length);
2041 }
2042 g_free(block);
2043 }
2044
2045 void qemu_ram_free(RAMBlock *block)
2046 {
2047 if (!block) {
2048 return;
2049 }
2050
2051 if (block->host) {
2052 ram_block_notify_remove(block->host, block->used_length,
2053 block->max_length);
2054 }
2055
2056 qemu_mutex_lock_ramlist();
2057 QLIST_REMOVE_RCU(block, next);
2058 ram_list.mru_block = NULL;
2059 /* Write list before version */
2060 smp_wmb();
2061 ram_list.version++;
2062 call_rcu(block, reclaim_ramblock, rcu);
2063 qemu_mutex_unlock_ramlist();
2064 }
2065
2066 #ifndef _WIN32
2067 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2068 {
2069 RAMBlock *block;
2070 ram_addr_t offset;
2071 int flags;
2072 void *area, *vaddr;
2073
2074 RAMBLOCK_FOREACH(block) {
2075 offset = addr - block->offset;
2076 if (offset < block->max_length) {
2077 vaddr = ramblock_ptr(block, offset);
2078 if (block->flags & RAM_PREALLOC) {
2079 ;
2080 } else if (xen_enabled()) {
2081 abort();
2082 } else {
2083 flags = MAP_FIXED;
2084 flags |= block->flags & RAM_SHARED ?
2085 MAP_SHARED : MAP_PRIVATE;
2086 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2087 if (block->fd >= 0) {
2088 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2089 flags, block->fd, offset + block->fd_offset);
2090 } else {
2091 flags |= MAP_ANONYMOUS;
2092 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2093 flags, -1, 0);
2094 }
2095 if (area != vaddr) {
2096 error_report("Could not remap addr: "
2097 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2098 length, addr);
2099 exit(1);
2100 }
2101 memory_try_enable_merging(vaddr, length);
2102 qemu_ram_setup_dump(vaddr, length);
2103 }
2104 }
2105 }
2106 }
2107 #endif /* !_WIN32 */
2108
2109 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2110 * This should not be used for general purpose DMA. Use address_space_map
2111 * or address_space_rw instead. For local memory (e.g. video ram) that the
2112 * device owns, use memory_region_get_ram_ptr.
2113 *
2114 * Called within RCU critical section.
2115 */
2116 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2117 {
2118 RAMBlock *block = ram_block;
2119
2120 if (block == NULL) {
2121 block = qemu_get_ram_block(addr);
2122 addr -= block->offset;
2123 }
2124
2125 if (xen_enabled() && block->host == NULL) {
2126 /* We need to check if the requested address is in the RAM
2127 * because we don't want to map the entire memory in QEMU.
2128 * In that case just map until the end of the page.
2129 */
2130 if (block->offset == 0) {
2131 return xen_map_cache(addr, 0, 0, false);
2132 }
2133
2134 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2135 }
2136 return ramblock_ptr(block, addr);
2137 }
2138
2139 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2140 * but takes a size argument.
2141 *
2142 * Called within RCU critical section.
2143 */
2144 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2145 hwaddr *size, bool lock)
2146 {
2147 RAMBlock *block = ram_block;
2148 if (*size == 0) {
2149 return NULL;
2150 }
2151
2152 if (block == NULL) {
2153 block = qemu_get_ram_block(addr);
2154 addr -= block->offset;
2155 }
2156 *size = MIN(*size, block->max_length - addr);
2157
2158 if (xen_enabled() && block->host == NULL) {
2159 /* We need to check if the requested address is in the RAM
2160 * because we don't want to map the entire memory in QEMU.
2161 * In that case just map the requested area.
2162 */
2163 if (block->offset == 0) {
2164 return xen_map_cache(addr, *size, lock, lock);
2165 }
2166
2167 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2168 }
2169
2170 return ramblock_ptr(block, addr);
2171 }
2172
2173 /* Return the offset of a hostpointer within a ramblock */
2174 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2175 {
2176 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2177 assert((uintptr_t)host >= (uintptr_t)rb->host);
2178 assert(res < rb->max_length);
2179
2180 return res;
2181 }
2182
2183 /*
2184 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2185 * in that RAMBlock.
2186 *
2187 * ptr: Host pointer to look up
2188 * round_offset: If true round the result offset down to a page boundary
2189 * *ram_addr: set to result ram_addr
2190 * *offset: set to result offset within the RAMBlock
2191 *
2192 * Returns: RAMBlock (or NULL if not found)
2193 *
2194 * By the time this function returns, the returned pointer is not protected
2195 * by RCU anymore. If the caller is not within an RCU critical section and
2196 * does not hold the iothread lock, it must have other means of protecting the
2197 * pointer, such as a reference to the region that includes the incoming
2198 * ram_addr_t.
2199 */
2200 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2201 ram_addr_t *offset)
2202 {
2203 RAMBlock *block;
2204 uint8_t *host = ptr;
2205
2206 if (xen_enabled()) {
2207 ram_addr_t ram_addr;
2208 RCU_READ_LOCK_GUARD();
2209 ram_addr = xen_ram_addr_from_mapcache(ptr);
2210 block = qemu_get_ram_block(ram_addr);
2211 if (block) {
2212 *offset = ram_addr - block->offset;
2213 }
2214 return block;
2215 }
2216
2217 RCU_READ_LOCK_GUARD();
2218 block = qatomic_rcu_read(&ram_list.mru_block);
2219 if (block && block->host && host - block->host < block->max_length) {
2220 goto found;
2221 }
2222
2223 RAMBLOCK_FOREACH(block) {
2224 /* This case append when the block is not mapped. */
2225 if (block->host == NULL) {
2226 continue;
2227 }
2228 if (host - block->host < block->max_length) {
2229 goto found;
2230 }
2231 }
2232
2233 return NULL;
2234
2235 found:
2236 *offset = (host - block->host);
2237 if (round_offset) {
2238 *offset &= TARGET_PAGE_MASK;
2239 }
2240 return block;
2241 }
2242
2243 /*
2244 * Finds the named RAMBlock
2245 *
2246 * name: The name of RAMBlock to find
2247 *
2248 * Returns: RAMBlock (or NULL if not found)
2249 */
2250 RAMBlock *qemu_ram_block_by_name(const char *name)
2251 {
2252 RAMBlock *block;
2253
2254 RAMBLOCK_FOREACH(block) {
2255 if (!strcmp(name, block->idstr)) {
2256 return block;
2257 }
2258 }
2259
2260 return NULL;
2261 }
2262
2263 /* Some of the softmmu routines need to translate from a host pointer
2264 (typically a TLB entry) back to a ram offset. */
2265 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2266 {
2267 RAMBlock *block;
2268 ram_addr_t offset;
2269
2270 block = qemu_ram_block_from_host(ptr, false, &offset);
2271 if (!block) {
2272 return RAM_ADDR_INVALID;
2273 }
2274
2275 return block->offset + offset;
2276 }
2277
2278 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2279 {
2280 ram_addr_t ram_addr;
2281
2282 ram_addr = qemu_ram_addr_from_host(ptr);
2283 if (ram_addr == RAM_ADDR_INVALID) {
2284 error_report("Bad ram pointer %p", ptr);
2285 abort();
2286 }
2287 return ram_addr;
2288 }
2289
2290 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2291 MemTxAttrs attrs, void *buf, hwaddr len);
2292 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2293 const void *buf, hwaddr len);
2294 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2295 bool is_write, MemTxAttrs attrs);
2296
2297 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2298 unsigned len, MemTxAttrs attrs)
2299 {
2300 subpage_t *subpage = opaque;
2301 uint8_t buf[8];
2302 MemTxResult res;
2303
2304 #if defined(DEBUG_SUBPAGE)
2305 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2306 subpage, len, addr);
2307 #endif
2308 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2309 if (res) {
2310 return res;
2311 }
2312 *data = ldn_p(buf, len);
2313 return MEMTX_OK;
2314 }
2315
2316 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2317 uint64_t value, unsigned len, MemTxAttrs attrs)
2318 {
2319 subpage_t *subpage = opaque;
2320 uint8_t buf[8];
2321
2322 #if defined(DEBUG_SUBPAGE)
2323 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2324 " value %"PRIx64"\n",
2325 __func__, subpage, len, addr, value);
2326 #endif
2327 stn_p(buf, len, value);
2328 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2329 }
2330
2331 static bool subpage_accepts(void *opaque, hwaddr addr,
2332 unsigned len, bool is_write,
2333 MemTxAttrs attrs)
2334 {
2335 subpage_t *subpage = opaque;
2336 #if defined(DEBUG_SUBPAGE)
2337 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2338 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2339 #endif
2340
2341 return flatview_access_valid(subpage->fv, addr + subpage->base,
2342 len, is_write, attrs);
2343 }
2344
2345 static const MemoryRegionOps subpage_ops = {
2346 .read_with_attrs = subpage_read,
2347 .write_with_attrs = subpage_write,
2348 .impl.min_access_size = 1,
2349 .impl.max_access_size = 8,
2350 .valid.min_access_size = 1,
2351 .valid.max_access_size = 8,
2352 .valid.accepts = subpage_accepts,
2353 .endianness = DEVICE_NATIVE_ENDIAN,
2354 };
2355
2356 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2357 uint16_t section)
2358 {
2359 int idx, eidx;
2360
2361 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2362 return -1;
2363 idx = SUBPAGE_IDX(start);
2364 eidx = SUBPAGE_IDX(end);
2365 #if defined(DEBUG_SUBPAGE)
2366 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2367 __func__, mmio, start, end, idx, eidx, section);
2368 #endif
2369 for (; idx <= eidx; idx++) {
2370 mmio->sub_section[idx] = section;
2371 }
2372
2373 return 0;
2374 }
2375
2376 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2377 {
2378 subpage_t *mmio;
2379
2380 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2381 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2382 mmio->fv = fv;
2383 mmio->base = base;
2384 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2385 NULL, TARGET_PAGE_SIZE);
2386 mmio->iomem.subpage = true;
2387 #if defined(DEBUG_SUBPAGE)
2388 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2389 mmio, base, TARGET_PAGE_SIZE);
2390 #endif
2391
2392 return mmio;
2393 }
2394
2395 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2396 {
2397 assert(fv);
2398 MemoryRegionSection section = {
2399 .fv = fv,
2400 .mr = mr,
2401 .offset_within_address_space = 0,
2402 .offset_within_region = 0,
2403 .size = int128_2_64(),
2404 };
2405
2406 return phys_section_add(map, &section);
2407 }
2408
2409 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2410 hwaddr index, MemTxAttrs attrs)
2411 {
2412 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2413 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2414 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2415 int section_index = index & ~TARGET_PAGE_MASK;
2416 MemoryRegionSection *ret;
2417
2418 assert(section_index < d->map.sections_nb);
2419 ret = d->map.sections + section_index;
2420 assert(ret->mr);
2421 assert(ret->mr->ops);
2422
2423 return ret;
2424 }
2425
2426 static void io_mem_init(void)
2427 {
2428 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2429 NULL, UINT64_MAX);
2430 }
2431
2432 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2433 {
2434 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2435 uint16_t n;
2436
2437 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2438 assert(n == PHYS_SECTION_UNASSIGNED);
2439
2440 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2441
2442 return d;
2443 }
2444
2445 void address_space_dispatch_free(AddressSpaceDispatch *d)
2446 {
2447 phys_sections_free(&d->map);
2448 g_free(d);
2449 }
2450
2451 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2452 {
2453 }
2454
2455 static void tcg_log_global_after_sync(MemoryListener *listener)
2456 {
2457 CPUAddressSpace *cpuas;
2458
2459 /* Wait for the CPU to end the current TB. This avoids the following
2460 * incorrect race:
2461 *
2462 * vCPU migration
2463 * ---------------------- -------------------------
2464 * TLB check -> slow path
2465 * notdirty_mem_write
2466 * write to RAM
2467 * mark dirty
2468 * clear dirty flag
2469 * TLB check -> fast path
2470 * read memory
2471 * write to RAM
2472 *
2473 * by pushing the migration thread's memory read after the vCPU thread has
2474 * written the memory.
2475 */
2476 if (replay_mode == REPLAY_MODE_NONE) {
2477 /*
2478 * VGA can make calls to this function while updating the screen.
2479 * In record/replay mode this causes a deadlock, because
2480 * run_on_cpu waits for rr mutex. Therefore no races are possible
2481 * in this case and no need for making run_on_cpu when
2482 * record/replay is enabled.
2483 */
2484 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2485 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2486 }
2487 }
2488
2489 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2490 {
2491 CPUAddressSpace *cpuas = data.host_ptr;
2492
2493 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2494 tlb_flush(cpu);
2495 }
2496
2497 static void tcg_commit(MemoryListener *listener)
2498 {
2499 CPUAddressSpace *cpuas;
2500 CPUState *cpu;
2501
2502 assert(tcg_enabled());
2503 /* since each CPU stores ram addresses in its TLB cache, we must
2504 reset the modified entries */
2505 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2506 cpu = cpuas->cpu;
2507
2508 /*
2509 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2510 * Otherwise we race between (1) other cpu threads and (2) ongoing
2511 * i/o for the current cpu thread, with data cached by mmu_lookup().
2512 *
2513 * In addition, queueing the work function will kick the cpu back to
2514 * the main loop, which will end the RCU critical section and reclaim
2515 * the memory data structures.
2516 *
2517 * That said, the listener is also called during realize, before
2518 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2519 */
2520 if (cpu->halt_cond) {
2521 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2522 } else {
2523 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2524 }
2525 }
2526
2527 static void memory_map_init(void)
2528 {
2529 system_memory = g_malloc(sizeof(*system_memory));
2530
2531 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2532 address_space_init(&address_space_memory, system_memory, "memory");
2533
2534 system_io = g_malloc(sizeof(*system_io));
2535 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2536 65536);
2537 address_space_init(&address_space_io, system_io, "I/O");
2538 }
2539
2540 MemoryRegion *get_system_memory(void)
2541 {
2542 return system_memory;
2543 }
2544
2545 MemoryRegion *get_system_io(void)
2546 {
2547 return system_io;
2548 }
2549
2550 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2551 hwaddr length)
2552 {
2553 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2554 addr += memory_region_get_ram_addr(mr);
2555
2556 /* No early return if dirty_log_mask is or becomes 0, because
2557 * cpu_physical_memory_set_dirty_range will still call
2558 * xen_modified_memory.
2559 */
2560 if (dirty_log_mask) {
2561 dirty_log_mask =
2562 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2563 }
2564 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2565 assert(tcg_enabled());
2566 tb_invalidate_phys_range(addr, addr + length - 1);
2567 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2568 }
2569 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2570 }
2571
2572 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2573 {
2574 /*
2575 * In principle this function would work on other memory region types too,
2576 * but the ROM device use case is the only one where this operation is
2577 * necessary. Other memory regions should use the
2578 * address_space_read/write() APIs.
2579 */
2580 assert(memory_region_is_romd(mr));
2581
2582 invalidate_and_set_dirty(mr, addr, size);
2583 }
2584
2585 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2586 {
2587 unsigned access_size_max = mr->ops->valid.max_access_size;
2588
2589 /* Regions are assumed to support 1-4 byte accesses unless
2590 otherwise specified. */
2591 if (access_size_max == 0) {
2592 access_size_max = 4;
2593 }
2594
2595 /* Bound the maximum access by the alignment of the address. */
2596 if (!mr->ops->impl.unaligned) {
2597 unsigned align_size_max = addr & -addr;
2598 if (align_size_max != 0 && align_size_max < access_size_max) {
2599 access_size_max = align_size_max;
2600 }
2601 }
2602
2603 /* Don't attempt accesses larger than the maximum. */
2604 if (l > access_size_max) {
2605 l = access_size_max;
2606 }
2607 l = pow2floor(l);
2608
2609 return l;
2610 }
2611
2612 bool prepare_mmio_access(MemoryRegion *mr)
2613 {
2614 bool release_lock = false;
2615
2616 if (!qemu_mutex_iothread_locked()) {
2617 qemu_mutex_lock_iothread();
2618 release_lock = true;
2619 }
2620 if (mr->flush_coalesced_mmio) {
2621 qemu_flush_coalesced_mmio_buffer();
2622 }
2623
2624 return release_lock;
2625 }
2626
2627 /**
2628 * flatview_access_allowed
2629 * @mr: #MemoryRegion to be accessed
2630 * @attrs: memory transaction attributes
2631 * @addr: address within that memory region
2632 * @len: the number of bytes to access
2633 *
2634 * Check if a memory transaction is allowed.
2635 *
2636 * Returns: true if transaction is allowed, false if denied.
2637 */
2638 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2639 hwaddr addr, hwaddr len)
2640 {
2641 if (likely(!attrs.memory)) {
2642 return true;
2643 }
2644 if (memory_region_is_ram(mr)) {
2645 return true;
2646 }
2647 qemu_log_mask(LOG_GUEST_ERROR,
2648 "Invalid access to non-RAM device at "
2649 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2650 "region '%s'\n", addr, len, memory_region_name(mr));
2651 return false;
2652 }
2653
2654 /* Called within RCU critical section. */
2655 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2656 MemTxAttrs attrs,
2657 const void *ptr,
2658 hwaddr len, hwaddr addr1,
2659 hwaddr l, MemoryRegion *mr)
2660 {
2661 uint8_t *ram_ptr;
2662 uint64_t val;
2663 MemTxResult result = MEMTX_OK;
2664 bool release_lock = false;
2665 const uint8_t *buf = ptr;
2666
2667 for (;;) {
2668 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2669 result |= MEMTX_ACCESS_ERROR;
2670 /* Keep going. */
2671 } else if (!memory_access_is_direct(mr, true)) {
2672 release_lock |= prepare_mmio_access(mr);
2673 l = memory_access_size(mr, l, addr1);
2674 /* XXX: could force current_cpu to NULL to avoid
2675 potential bugs */
2676 val = ldn_he_p(buf, l);
2677 result |= memory_region_dispatch_write(mr, addr1, val,
2678 size_memop(l), attrs);
2679 } else {
2680 /* RAM case */
2681 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2682 memmove(ram_ptr, buf, l);
2683 invalidate_and_set_dirty(mr, addr1, l);
2684 }
2685
2686 if (release_lock) {
2687 qemu_mutex_unlock_iothread();
2688 release_lock = false;
2689 }
2690
2691 len -= l;
2692 buf += l;
2693 addr += l;
2694
2695 if (!len) {
2696 break;
2697 }
2698
2699 l = len;
2700 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2701 }
2702
2703 return result;
2704 }
2705
2706 /* Called from RCU critical section. */
2707 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2708 const void *buf, hwaddr len)
2709 {
2710 hwaddr l;
2711 hwaddr addr1;
2712 MemoryRegion *mr;
2713
2714 l = len;
2715 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2716 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2717 return MEMTX_ACCESS_ERROR;
2718 }
2719 return flatview_write_continue(fv, addr, attrs, buf, len,
2720 addr1, l, mr);
2721 }
2722
2723 /* Called within RCU critical section. */
2724 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2725 MemTxAttrs attrs, void *ptr,
2726 hwaddr len, hwaddr addr1, hwaddr l,
2727 MemoryRegion *mr)
2728 {
2729 uint8_t *ram_ptr;
2730 uint64_t val;
2731 MemTxResult result = MEMTX_OK;
2732 bool release_lock = false;
2733 uint8_t *buf = ptr;
2734
2735 fuzz_dma_read_cb(addr, len, mr);
2736 for (;;) {
2737 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2738 result |= MEMTX_ACCESS_ERROR;
2739 /* Keep going. */
2740 } else if (!memory_access_is_direct(mr, false)) {
2741 /* I/O case */
2742 release_lock |= prepare_mmio_access(mr);
2743 l = memory_access_size(mr, l, addr1);
2744 result |= memory_region_dispatch_read(mr, addr1, &val,
2745 size_memop(l), attrs);
2746 stn_he_p(buf, l, val);
2747 } else {
2748 /* RAM case */
2749 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2750 memcpy(buf, ram_ptr, l);
2751 }
2752
2753 if (release_lock) {
2754 qemu_mutex_unlock_iothread();
2755 release_lock = false;
2756 }
2757
2758 len -= l;
2759 buf += l;
2760 addr += l;
2761
2762 if (!len) {
2763 break;
2764 }
2765
2766 l = len;
2767 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2768 }
2769
2770 return result;
2771 }
2772
2773 /* Called from RCU critical section. */
2774 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2775 MemTxAttrs attrs, void *buf, hwaddr len)
2776 {
2777 hwaddr l;
2778 hwaddr addr1;
2779 MemoryRegion *mr;
2780
2781 l = len;
2782 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2783 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2784 return MEMTX_ACCESS_ERROR;
2785 }
2786 return flatview_read_continue(fv, addr, attrs, buf, len,
2787 addr1, l, mr);
2788 }
2789
2790 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2791 MemTxAttrs attrs, void *buf, hwaddr len)
2792 {
2793 MemTxResult result = MEMTX_OK;
2794 FlatView *fv;
2795
2796 if (len > 0) {
2797 RCU_READ_LOCK_GUARD();
2798 fv = address_space_to_flatview(as);
2799 result = flatview_read(fv, addr, attrs, buf, len);
2800 }
2801
2802 return result;
2803 }
2804
2805 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2806 MemTxAttrs attrs,
2807 const void *buf, hwaddr len)
2808 {
2809 MemTxResult result = MEMTX_OK;
2810 FlatView *fv;
2811
2812 if (len > 0) {
2813 RCU_READ_LOCK_GUARD();
2814 fv = address_space_to_flatview(as);
2815 result = flatview_write(fv, addr, attrs, buf, len);
2816 }
2817
2818 return result;
2819 }
2820
2821 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2822 void *buf, hwaddr len, bool is_write)
2823 {
2824 if (is_write) {
2825 return address_space_write(as, addr, attrs, buf, len);
2826 } else {
2827 return address_space_read_full(as, addr, attrs, buf, len);
2828 }
2829 }
2830
2831 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2832 uint8_t c, hwaddr len, MemTxAttrs attrs)
2833 {
2834 #define FILLBUF_SIZE 512
2835 uint8_t fillbuf[FILLBUF_SIZE];
2836 int l;
2837 MemTxResult error = MEMTX_OK;
2838
2839 memset(fillbuf, c, FILLBUF_SIZE);
2840 while (len > 0) {
2841 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2842 error |= address_space_write(as, addr, attrs, fillbuf, l);
2843 len -= l;
2844 addr += l;
2845 }
2846
2847 return error;
2848 }
2849
2850 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2851 hwaddr len, bool is_write)
2852 {
2853 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2854 buf, len, is_write);
2855 }
2856
2857 enum write_rom_type {
2858 WRITE_DATA,
2859 FLUSH_CACHE,
2860 };
2861
2862 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2863 hwaddr addr,
2864 MemTxAttrs attrs,
2865 const void *ptr,
2866 hwaddr len,
2867 enum write_rom_type type)
2868 {
2869 hwaddr l;
2870 uint8_t *ram_ptr;
2871 hwaddr addr1;
2872 MemoryRegion *mr;
2873 const uint8_t *buf = ptr;
2874
2875 RCU_READ_LOCK_GUARD();
2876 while (len > 0) {
2877 l = len;
2878 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2879
2880 if (!(memory_region_is_ram(mr) ||
2881 memory_region_is_romd(mr))) {
2882 l = memory_access_size(mr, l, addr1);
2883 } else {
2884 /* ROM/RAM case */
2885 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2886 switch (type) {
2887 case WRITE_DATA:
2888 memcpy(ram_ptr, buf, l);
2889 invalidate_and_set_dirty(mr, addr1, l);
2890 break;
2891 case FLUSH_CACHE:
2892 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2893 break;
2894 }
2895 }
2896 len -= l;
2897 buf += l;
2898 addr += l;
2899 }
2900 return MEMTX_OK;
2901 }
2902
2903 /* used for ROM loading : can write in RAM and ROM */
2904 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2905 MemTxAttrs attrs,
2906 const void *buf, hwaddr len)
2907 {
2908 return address_space_write_rom_internal(as, addr, attrs,
2909 buf, len, WRITE_DATA);
2910 }
2911
2912 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2913 {
2914 /*
2915 * This function should do the same thing as an icache flush that was
2916 * triggered from within the guest. For TCG we are always cache coherent,
2917 * so there is no need to flush anything. For KVM / Xen we need to flush
2918 * the host's instruction cache at least.
2919 */
2920 if (tcg_enabled()) {
2921 return;
2922 }
2923
2924 address_space_write_rom_internal(&address_space_memory,
2925 start, MEMTXATTRS_UNSPECIFIED,
2926 NULL, len, FLUSH_CACHE);
2927 }
2928
2929 typedef struct {
2930 MemoryRegion *mr;
2931 void *buffer;
2932 hwaddr addr;
2933 hwaddr len;
2934 bool in_use;
2935 } BounceBuffer;
2936
2937 static BounceBuffer bounce;
2938
2939 typedef struct MapClient {
2940 QEMUBH *bh;
2941 QLIST_ENTRY(MapClient) link;
2942 } MapClient;
2943
2944 QemuMutex map_client_list_lock;
2945 static QLIST_HEAD(, MapClient) map_client_list
2946 = QLIST_HEAD_INITIALIZER(map_client_list);
2947
2948 static void cpu_unregister_map_client_do(MapClient *client)
2949 {
2950 QLIST_REMOVE(client, link);
2951 g_free(client);
2952 }
2953
2954 static void cpu_notify_map_clients_locked(void)
2955 {
2956 MapClient *client;
2957
2958 while (!QLIST_EMPTY(&map_client_list)) {
2959 client = QLIST_FIRST(&map_client_list);
2960 qemu_bh_schedule(client->bh);
2961 cpu_unregister_map_client_do(client);
2962 }
2963 }
2964
2965 void cpu_register_map_client(QEMUBH *bh)
2966 {
2967 MapClient *client = g_malloc(sizeof(*client));
2968
2969 qemu_mutex_lock(&map_client_list_lock);
2970 client->bh = bh;
2971 QLIST_INSERT_HEAD(&map_client_list, client, link);
2972 /* Write map_client_list before reading in_use. */
2973 smp_mb();
2974 if (!qatomic_read(&bounce.in_use)) {
2975 cpu_notify_map_clients_locked();
2976 }
2977 qemu_mutex_unlock(&map_client_list_lock);
2978 }
2979
2980 void cpu_exec_init_all(void)
2981 {
2982 qemu_mutex_init(&ram_list.mutex);
2983 /* The data structures we set up here depend on knowing the page size,
2984 * so no more changes can be made after this point.
2985 * In an ideal world, nothing we did before we had finished the
2986 * machine setup would care about the target page size, and we could
2987 * do this much later, rather than requiring board models to state
2988 * up front what their requirements are.
2989 */
2990 finalize_target_page_bits();
2991 io_mem_init();
2992 memory_map_init();
2993 qemu_mutex_init(&map_client_list_lock);
2994 }
2995
2996 void cpu_unregister_map_client(QEMUBH *bh)
2997 {
2998 MapClient *client;
2999
3000 qemu_mutex_lock(&map_client_list_lock);
3001 QLIST_FOREACH(client, &map_client_list, link) {
3002 if (client->bh == bh) {
3003 cpu_unregister_map_client_do(client);
3004 break;
3005 }
3006 }
3007 qemu_mutex_unlock(&map_client_list_lock);
3008 }
3009
3010 static void cpu_notify_map_clients(void)
3011 {
3012 qemu_mutex_lock(&map_client_list_lock);
3013 cpu_notify_map_clients_locked();
3014 qemu_mutex_unlock(&map_client_list_lock);
3015 }
3016
3017 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3018 bool is_write, MemTxAttrs attrs)
3019 {
3020 MemoryRegion *mr;
3021 hwaddr l, xlat;
3022
3023 while (len > 0) {
3024 l = len;
3025 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3026 if (!memory_access_is_direct(mr, is_write)) {
3027 l = memory_access_size(mr, l, addr);
3028 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3029 return false;
3030 }
3031 }
3032
3033 len -= l;
3034 addr += l;
3035 }
3036 return true;
3037 }
3038
3039 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3040 hwaddr len, bool is_write,
3041 MemTxAttrs attrs)
3042 {
3043 FlatView *fv;
3044
3045 RCU_READ_LOCK_GUARD();
3046 fv = address_space_to_flatview(as);
3047 return flatview_access_valid(fv, addr, len, is_write, attrs);
3048 }
3049
3050 static hwaddr
3051 flatview_extend_translation(FlatView *fv, hwaddr addr,
3052 hwaddr target_len,
3053 MemoryRegion *mr, hwaddr base, hwaddr len,
3054 bool is_write, MemTxAttrs attrs)
3055 {
3056 hwaddr done = 0;
3057 hwaddr xlat;
3058 MemoryRegion *this_mr;
3059
3060 for (;;) {
3061 target_len -= len;
3062 addr += len;
3063 done += len;
3064 if (target_len == 0) {
3065 return done;
3066 }
3067
3068 len = target_len;
3069 this_mr = flatview_translate(fv, addr, &xlat,
3070 &len, is_write, attrs);
3071 if (this_mr != mr || xlat != base + done) {
3072 return done;
3073 }
3074 }
3075 }
3076
3077 /* Map a physical memory region into a host virtual address.
3078 * May map a subset of the requested range, given by and returned in *plen.
3079 * May return NULL if resources needed to perform the mapping are exhausted.
3080 * Use only for reads OR writes - not for read-modify-write operations.
3081 * Use cpu_register_map_client() to know when retrying the map operation is
3082 * likely to succeed.
3083 */
3084 void *address_space_map(AddressSpace *as,
3085 hwaddr addr,
3086 hwaddr *plen,
3087 bool is_write,
3088 MemTxAttrs attrs)
3089 {
3090 hwaddr len = *plen;
3091 hwaddr l, xlat;
3092 MemoryRegion *mr;
3093 FlatView *fv;
3094
3095 if (len == 0) {
3096 return NULL;
3097 }
3098
3099 l = len;
3100 RCU_READ_LOCK_GUARD();
3101 fv = address_space_to_flatview(as);
3102 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3103
3104 if (!memory_access_is_direct(mr, is_write)) {
3105 if (qatomic_xchg(&bounce.in_use, true)) {
3106 *plen = 0;
3107 return NULL;
3108 }
3109 /* Avoid unbounded allocations */
3110 l = MIN(l, TARGET_PAGE_SIZE);
3111 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3112 bounce.addr = addr;
3113 bounce.len = l;
3114
3115 memory_region_ref(mr);
3116 bounce.mr = mr;
3117 if (!is_write) {
3118 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3119 bounce.buffer, l);
3120 }
3121
3122 *plen = l;
3123 return bounce.buffer;
3124 }
3125
3126
3127 memory_region_ref(mr);
3128 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3129 l, is_write, attrs);
3130 fuzz_dma_read_cb(addr, *plen, mr);
3131 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3132 }
3133
3134 /* Unmaps a memory region previously mapped by address_space_map().
3135 * Will also mark the memory as dirty if is_write is true. access_len gives
3136 * the amount of memory that was actually read or written by the caller.
3137 */
3138 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3139 bool is_write, hwaddr access_len)
3140 {
3141 if (buffer != bounce.buffer) {
3142 MemoryRegion *mr;
3143 ram_addr_t addr1;
3144
3145 mr = memory_region_from_host(buffer, &addr1);
3146 assert(mr != NULL);
3147 if (is_write) {
3148 invalidate_and_set_dirty(mr, addr1, access_len);
3149 }
3150 if (xen_enabled()) {
3151 xen_invalidate_map_cache_entry(buffer);
3152 }
3153 memory_region_unref(mr);
3154 return;
3155 }
3156 if (is_write) {
3157 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3158 bounce.buffer, access_len);
3159 }
3160 qemu_vfree(bounce.buffer);
3161 bounce.buffer = NULL;
3162 memory_region_unref(bounce.mr);
3163 /* Clear in_use before reading map_client_list. */
3164 qatomic_set_mb(&bounce.in_use, false);
3165 cpu_notify_map_clients();
3166 }
3167
3168 void *cpu_physical_memory_map(hwaddr addr,
3169 hwaddr *plen,
3170 bool is_write)
3171 {
3172 return address_space_map(&address_space_memory, addr, plen, is_write,
3173 MEMTXATTRS_UNSPECIFIED);
3174 }
3175
3176 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3177 bool is_write, hwaddr access_len)
3178 {
3179 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3180 }
3181
3182 #define ARG1_DECL AddressSpace *as
3183 #define ARG1 as
3184 #define SUFFIX
3185 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3186 #define RCU_READ_LOCK(...) rcu_read_lock()
3187 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3188 #include "memory_ldst.c.inc"
3189
3190 int64_t address_space_cache_init(MemoryRegionCache *cache,
3191 AddressSpace *as,
3192 hwaddr addr,
3193 hwaddr len,
3194 bool is_write)
3195 {
3196 AddressSpaceDispatch *d;
3197 hwaddr l;
3198 MemoryRegion *mr;
3199 Int128 diff;
3200
3201 assert(len > 0);
3202
3203 l = len;
3204 cache->fv = address_space_get_flatview(as);
3205 d = flatview_to_dispatch(cache->fv);
3206 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3207
3208 /*
3209 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3210 * Take that into account to compute how many bytes are there between
3211 * cache->xlat and the end of the section.
3212 */
3213 diff = int128_sub(cache->mrs.size,
3214 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3215 l = int128_get64(int128_min(diff, int128_make64(l)));
3216
3217 mr = cache->mrs.mr;
3218 memory_region_ref(mr);
3219 if (memory_access_is_direct(mr, is_write)) {
3220 /* We don't care about the memory attributes here as we're only
3221 * doing this if we found actual RAM, which behaves the same
3222 * regardless of attributes; so UNSPECIFIED is fine.
3223 */
3224 l = flatview_extend_translation(cache->fv, addr, len, mr,
3225 cache->xlat, l, is_write,
3226 MEMTXATTRS_UNSPECIFIED);
3227 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3228 } else {
3229 cache->ptr = NULL;
3230 }
3231
3232 cache->len = l;
3233 cache->is_write = is_write;
3234 return l;
3235 }
3236
3237 void address_space_cache_invalidate(MemoryRegionCache *cache,
3238 hwaddr addr,
3239 hwaddr access_len)
3240 {
3241 assert(cache->is_write);
3242 if (likely(cache->ptr)) {
3243 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3244 }
3245 }
3246
3247 void address_space_cache_destroy(MemoryRegionCache *cache)
3248 {
3249 if (!cache->mrs.mr) {
3250 return;
3251 }
3252
3253 if (xen_enabled()) {
3254 xen_invalidate_map_cache_entry(cache->ptr);
3255 }
3256 memory_region_unref(cache->mrs.mr);
3257 flatview_unref(cache->fv);
3258 cache->mrs.mr = NULL;
3259 cache->fv = NULL;
3260 }
3261
3262 /* Called from RCU critical section. This function has the same
3263 * semantics as address_space_translate, but it only works on a
3264 * predefined range of a MemoryRegion that was mapped with
3265 * address_space_cache_init.
3266 */
3267 static inline MemoryRegion *address_space_translate_cached(
3268 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3269 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3270 {
3271 MemoryRegionSection section;
3272 MemoryRegion *mr;
3273 IOMMUMemoryRegion *iommu_mr;
3274 AddressSpace *target_as;
3275
3276 assert(!cache->ptr);
3277 *xlat = addr + cache->xlat;
3278
3279 mr = cache->mrs.mr;
3280 iommu_mr = memory_region_get_iommu(mr);
3281 if (!iommu_mr) {
3282 /* MMIO region. */
3283 return mr;
3284 }
3285
3286 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3287 NULL, is_write, true,
3288 &target_as, attrs);
3289 return section.mr;
3290 }
3291
3292 /* Called from RCU critical section. address_space_read_cached uses this
3293 * out of line function when the target is an MMIO or IOMMU region.
3294 */
3295 MemTxResult
3296 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3297 void *buf, hwaddr len)
3298 {
3299 hwaddr addr1, l;
3300 MemoryRegion *mr;
3301
3302 l = len;
3303 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3304 MEMTXATTRS_UNSPECIFIED);
3305 return flatview_read_continue(cache->fv,
3306 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3307 addr1, l, mr);
3308 }
3309
3310 /* Called from RCU critical section. address_space_write_cached uses this
3311 * out of line function when the target is an MMIO or IOMMU region.
3312 */
3313 MemTxResult
3314 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3315 const void *buf, hwaddr len)
3316 {
3317 hwaddr addr1, l;
3318 MemoryRegion *mr;
3319
3320 l = len;
3321 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3322 MEMTXATTRS_UNSPECIFIED);
3323 return flatview_write_continue(cache->fv,
3324 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3325 addr1, l, mr);
3326 }
3327
3328 #define ARG1_DECL MemoryRegionCache *cache
3329 #define ARG1 cache
3330 #define SUFFIX _cached_slow
3331 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3332 #define RCU_READ_LOCK() ((void)0)
3333 #define RCU_READ_UNLOCK() ((void)0)
3334 #include "memory_ldst.c.inc"
3335
3336 /* virtual memory access for debug (includes writing to ROM) */
3337 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3338 void *ptr, size_t len, bool is_write)
3339 {
3340 hwaddr phys_addr;
3341 vaddr l, page;
3342 uint8_t *buf = ptr;
3343
3344 cpu_synchronize_state(cpu);
3345 while (len > 0) {
3346 int asidx;
3347 MemTxAttrs attrs;
3348 MemTxResult res;
3349
3350 page = addr & TARGET_PAGE_MASK;
3351 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3352 asidx = cpu_asidx_from_attrs(cpu, attrs);
3353 /* if no physical page mapped, return an error */
3354 if (phys_addr == -1)
3355 return -1;
3356 l = (page + TARGET_PAGE_SIZE) - addr;
3357 if (l > len)
3358 l = len;
3359 phys_addr += (addr & ~TARGET_PAGE_MASK);
3360 if (is_write) {
3361 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3362 attrs, buf, l);
3363 } else {
3364 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3365 attrs, buf, l);
3366 }
3367 if (res != MEMTX_OK) {
3368 return -1;
3369 }
3370 len -= l;
3371 buf += l;
3372 addr += l;
3373 }
3374 return 0;
3375 }
3376
3377 /*
3378 * Allows code that needs to deal with migration bitmaps etc to still be built
3379 * target independent.
3380 */
3381 size_t qemu_target_page_size(void)
3382 {
3383 return TARGET_PAGE_SIZE;
3384 }
3385
3386 int qemu_target_page_mask(void)
3387 {
3388 return TARGET_PAGE_MASK;
3389 }
3390
3391 int qemu_target_page_bits(void)
3392 {
3393 return TARGET_PAGE_BITS;
3394 }
3395
3396 int qemu_target_page_bits_min(void)
3397 {
3398 return TARGET_PAGE_BITS_MIN;
3399 }
3400
3401 /* Convert target pages to MiB (2**20). */
3402 size_t qemu_target_pages_to_MiB(size_t pages)
3403 {
3404 int page_bits = TARGET_PAGE_BITS;
3405
3406 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3407 g_assert(page_bits < 20);
3408
3409 return pages >> (20 - page_bits);
3410 }
3411
3412 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3413 {
3414 MemoryRegion*mr;
3415 hwaddr l = 1;
3416
3417 RCU_READ_LOCK_GUARD();
3418 mr = address_space_translate(&address_space_memory,
3419 phys_addr, &phys_addr, &l, false,
3420 MEMTXATTRS_UNSPECIFIED);
3421
3422 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3423 }
3424
3425 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3426 {
3427 RAMBlock *block;
3428 int ret = 0;
3429
3430 RCU_READ_LOCK_GUARD();
3431 RAMBLOCK_FOREACH(block) {
3432 ret = func(block, opaque);
3433 if (ret) {
3434 break;
3435 }
3436 }
3437 return ret;
3438 }
3439
3440 /*
3441 * Unmap pages of memory from start to start+length such that
3442 * they a) read as 0, b) Trigger whatever fault mechanism
3443 * the OS provides for postcopy.
3444 * The pages must be unmapped by the end of the function.
3445 * Returns: 0 on success, none-0 on failure
3446 *
3447 */
3448 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3449 {
3450 int ret = -1;
3451
3452 uint8_t *host_startaddr = rb->host + start;
3453
3454 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3455 error_report("ram_block_discard_range: Unaligned start address: %p",
3456 host_startaddr);
3457 goto err;
3458 }
3459
3460 if ((start + length) <= rb->max_length) {
3461 bool need_madvise, need_fallocate;
3462 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3463 error_report("ram_block_discard_range: Unaligned length: %zx",
3464 length);
3465 goto err;
3466 }
3467
3468 errno = ENOTSUP; /* If we are missing MADVISE etc */
3469
3470 /* The logic here is messy;
3471 * madvise DONTNEED fails for hugepages
3472 * fallocate works on hugepages and shmem
3473 * shared anonymous memory requires madvise REMOVE
3474 */
3475 need_madvise = (rb->page_size == qemu_host_page_size);
3476 need_fallocate = rb->fd != -1;
3477 if (need_fallocate) {
3478 /* For a file, this causes the area of the file to be zero'd
3479 * if read, and for hugetlbfs also causes it to be unmapped
3480 * so a userfault will trigger.
3481 */
3482 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3483 /*
3484 * We'll discard data from the actual file, even though we only
3485 * have a MAP_PRIVATE mapping, possibly messing with other
3486 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3487 * change that behavior whithout violating the promised
3488 * semantics of ram_block_discard_range().
3489 *
3490 * Only warn, because it works as long as nobody else uses that
3491 * file.
3492 */
3493 if (!qemu_ram_is_shared(rb)) {
3494 warn_report_once("ram_block_discard_range: Discarding RAM"
3495 " in private file mappings is possibly"
3496 " dangerous, because it will modify the"
3497 " underlying file and will affect other"
3498 " users of the file");
3499 }
3500
3501 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3502 start, length);
3503 if (ret) {
3504 ret = -errno;
3505 error_report("ram_block_discard_range: Failed to fallocate "
3506 "%s:%" PRIx64 " +%zx (%d)",
3507 rb->idstr, start, length, ret);
3508 goto err;
3509 }
3510 #else
3511 ret = -ENOSYS;
3512 error_report("ram_block_discard_range: fallocate not available/file"
3513 "%s:%" PRIx64 " +%zx (%d)",
3514 rb->idstr, start, length, ret);
3515 goto err;
3516 #endif
3517 }
3518 if (need_madvise) {
3519 /* For normal RAM this causes it to be unmapped,
3520 * for shared memory it causes the local mapping to disappear
3521 * and to fall back on the file contents (which we just
3522 * fallocate'd away).
3523 */
3524 #if defined(CONFIG_MADVISE)
3525 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3526 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3527 } else {
3528 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3529 }
3530 if (ret) {
3531 ret = -errno;
3532 error_report("ram_block_discard_range: Failed to discard range "
3533 "%s:%" PRIx64 " +%zx (%d)",
3534 rb->idstr, start, length, ret);
3535 goto err;
3536 }
3537 #else
3538 ret = -ENOSYS;
3539 error_report("ram_block_discard_range: MADVISE not available"
3540 "%s:%" PRIx64 " +%zx (%d)",
3541 rb->idstr, start, length, ret);
3542 goto err;
3543 #endif
3544 }
3545 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3546 need_madvise, need_fallocate, ret);
3547 } else {
3548 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3549 "/%zx/" RAM_ADDR_FMT")",
3550 rb->idstr, start, length, rb->max_length);
3551 }
3552
3553 err:
3554 return ret;
3555 }
3556
3557 bool ramblock_is_pmem(RAMBlock *rb)
3558 {
3559 return rb->flags & RAM_PMEM;
3560 }
3561
3562 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3563 {
3564 if (start == end - 1) {
3565 qemu_printf("\t%3d ", start);
3566 } else {
3567 qemu_printf("\t%3d..%-3d ", start, end - 1);
3568 }
3569 qemu_printf(" skip=%d ", skip);
3570 if (ptr == PHYS_MAP_NODE_NIL) {
3571 qemu_printf(" ptr=NIL");
3572 } else if (!skip) {
3573 qemu_printf(" ptr=#%d", ptr);
3574 } else {
3575 qemu_printf(" ptr=[%d]", ptr);
3576 }
3577 qemu_printf("\n");
3578 }
3579
3580 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3581 int128_sub((size), int128_one())) : 0)
3582
3583 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3584 {
3585 int i;
3586
3587 qemu_printf(" Dispatch\n");
3588 qemu_printf(" Physical sections\n");
3589
3590 for (i = 0; i < d->map.sections_nb; ++i) {
3591 MemoryRegionSection *s = d->map.sections + i;
3592 const char *names[] = { " [unassigned]", " [not dirty]",
3593 " [ROM]", " [watch]" };
3594
3595 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3596 " %s%s%s%s%s",
3597 i,
3598 s->offset_within_address_space,
3599 s->offset_within_address_space + MR_SIZE(s->size),
3600 s->mr->name ? s->mr->name : "(noname)",
3601 i < ARRAY_SIZE(names) ? names[i] : "",
3602 s->mr == root ? " [ROOT]" : "",
3603 s == d->mru_section ? " [MRU]" : "",
3604 s->mr->is_iommu ? " [iommu]" : "");
3605
3606 if (s->mr->alias) {
3607 qemu_printf(" alias=%s", s->mr->alias->name ?
3608 s->mr->alias->name : "noname");
3609 }
3610 qemu_printf("\n");
3611 }
3612
3613 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3614 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3615 for (i = 0; i < d->map.nodes_nb; ++i) {
3616 int j, jprev;
3617 PhysPageEntry prev;
3618 Node *n = d->map.nodes + i;
3619
3620 qemu_printf(" [%d]\n", i);
3621
3622 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3623 PhysPageEntry *pe = *n + j;
3624
3625 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3626 continue;
3627 }
3628
3629 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3630
3631 jprev = j;
3632 prev = *pe;
3633 }
3634
3635 if (jprev != ARRAY_SIZE(*n)) {
3636 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3637 }
3638 }
3639 }
3640
3641 /* Require any discards to work. */
3642 static unsigned int ram_block_discard_required_cnt;
3643 /* Require only coordinated discards to work. */
3644 static unsigned int ram_block_coordinated_discard_required_cnt;
3645 /* Disable any discards. */
3646 static unsigned int ram_block_discard_disabled_cnt;
3647 /* Disable only uncoordinated discards. */
3648 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3649 static QemuMutex ram_block_discard_disable_mutex;
3650
3651 static void ram_block_discard_disable_mutex_lock(void)
3652 {
3653 static gsize initialized;
3654
3655 if (g_once_init_enter(&initialized)) {
3656 qemu_mutex_init(&ram_block_discard_disable_mutex);
3657 g_once_init_leave(&initialized, 1);
3658 }
3659 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3660 }
3661
3662 static void ram_block_discard_disable_mutex_unlock(void)
3663 {
3664 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3665 }
3666
3667 int ram_block_discard_disable(bool state)
3668 {
3669 int ret = 0;
3670
3671 ram_block_discard_disable_mutex_lock();
3672 if (!state) {
3673 ram_block_discard_disabled_cnt--;
3674 } else if (ram_block_discard_required_cnt ||
3675 ram_block_coordinated_discard_required_cnt) {
3676 ret = -EBUSY;
3677 } else {
3678 ram_block_discard_disabled_cnt++;
3679 }
3680 ram_block_discard_disable_mutex_unlock();
3681 return ret;
3682 }
3683
3684 int ram_block_uncoordinated_discard_disable(bool state)
3685 {
3686 int ret = 0;
3687
3688 ram_block_discard_disable_mutex_lock();
3689 if (!state) {
3690 ram_block_uncoordinated_discard_disabled_cnt--;
3691 } else if (ram_block_discard_required_cnt) {
3692 ret = -EBUSY;
3693 } else {
3694 ram_block_uncoordinated_discard_disabled_cnt++;
3695 }
3696 ram_block_discard_disable_mutex_unlock();
3697 return ret;
3698 }
3699
3700 int ram_block_discard_require(bool state)
3701 {
3702 int ret = 0;
3703
3704 ram_block_discard_disable_mutex_lock();
3705 if (!state) {
3706 ram_block_discard_required_cnt--;
3707 } else if (ram_block_discard_disabled_cnt ||
3708 ram_block_uncoordinated_discard_disabled_cnt) {
3709 ret = -EBUSY;
3710 } else {
3711 ram_block_discard_required_cnt++;
3712 }
3713 ram_block_discard_disable_mutex_unlock();
3714 return ret;
3715 }
3716
3717 int ram_block_coordinated_discard_require(bool state)
3718 {
3719 int ret = 0;
3720
3721 ram_block_discard_disable_mutex_lock();
3722 if (!state) {
3723 ram_block_coordinated_discard_required_cnt--;
3724 } else if (ram_block_discard_disabled_cnt) {
3725 ret = -EBUSY;
3726 } else {
3727 ram_block_coordinated_discard_required_cnt++;
3728 }
3729 ram_block_discard_disable_mutex_unlock();
3730 return ret;
3731 }
3732
3733 bool ram_block_discard_is_disabled(void)
3734 {
3735 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3736 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3737 }
3738
3739 bool ram_block_discard_is_required(void)
3740 {
3741 return qatomic_read(&ram_block_discard_required_cnt) ||
3742 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3743 }