]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/physmem.c
bsd-user: Implement getrlimit(2) and setrlimit(2)
[mirror_qemu.git] / softmmu / physmem.c
1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67
68 #include "qemu/pmem.h"
69
70 #include "migration/vmstate.h"
71
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76
77 #include "monitor/monitor.h"
78
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82
83 //#define DEBUG_SUBPAGE
84
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
87 */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95
96 static MemoryRegion io_mem_unassigned;
97
98 typedef struct PhysPageEntry PhysPageEntry;
99
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
105 };
106
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
111
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116
117 typedef PhysPageEntry Node[P_L2_SIZE];
118
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
121
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
129
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
134 */
135 PhysPageEntry phys_map;
136 PhysPageMap map;
137 };
138
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
146
147 #define PHYS_SECTION_UNASSIGNED 0
148
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153
154 /**
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 */
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
166 };
167
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
172 };
173
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
181 }
182 }
183
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
190
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
195
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
200 }
201 return ret;
202 }
203
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
207 {
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
213 }
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225 }
226 ++lp;
227 }
228 }
229
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
233 {
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
242 */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
249
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
252 }
253
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
258 }
259
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
264 }
265 }
266
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
270 }
271
272 assert(valid_ptr < P_L2_SIZE);
273
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
278 }
279
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
287 */
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
291 }
292 }
293
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
298 }
299 }
300
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
303 {
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
306 */
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
310 }
311
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
319
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
323 }
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326 }
327
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
333 }
334
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
339 {
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
342
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
347 }
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351 }
352 return section;
353 }
354
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
359 {
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
363
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
367
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
370
371 mr = section->mr;
372
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
379 *
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
383 */
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 }
388 return section;
389 }
390
391 /**
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
394 *
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
409 *
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
412 */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
421 {
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
424
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
430
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433 }
434
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
437
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
440 }
441
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
447
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
451
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
454
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
457 }
458 return *section;
459
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463
464 /**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
481 *
482 * This function is called from RCU critical section
483 */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
493 {
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
497
498 if (!plen_out) {
499 plen_out = &plen;
500 }
501
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
512 }
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
516 }
517
518 return *section;
519 }
520
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
524 {
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
527
528 /*
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
531 */
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
535
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
539 }
540
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
544
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
552 };
553
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
556 }
557
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
562 {
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
566
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
571
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
575 }
576
577 return mr;
578 }
579
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
587
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591
592 if (!notifier->active) {
593 return;
594 }
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
601 */
602 }
603
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
607 {
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
611 */
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
615
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
620 }
621 }
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
636 */
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
640 0,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
645 }
646
647 if (!notifier->active) {
648 notifier->active = true;
649 }
650 }
651
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
657
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
662 }
663 g_array_free(cpu->iommu_notifiers, true);
664 }
665
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
676 {
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 hwaddr addr = orig_addr;
683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
684
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
687
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
691 }
692
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
699 */
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
706 */
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
709 }
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
712 }
713
714 if (!*prot) {
715 goto translate_fail;
716 }
717
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
719 }
720
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
724
725 translate_fail:
726 /*
727 * We should be given a page-aligned address -- certainly
728 * tlb_set_page_with_attrs() does so. The page offset of xlat
729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730 * The page portion of xlat will be logged by memory_region_access_valid()
731 * when this memory access is rejected, so use the original untranslated
732 * physical address.
733 */
734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735 *xlat = orig_addr;
736 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
737 }
738
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740 const char *prefix, MemoryRegion *mr)
741 {
742 CPUAddressSpace *newas;
743 AddressSpace *as = g_new0(AddressSpace, 1);
744 char *as_name;
745
746 assert(mr);
747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748 address_space_init(as, mr, as_name);
749 g_free(as_name);
750
751 /* Target code should have set num_ases before calling us */
752 assert(asidx < cpu->num_ases);
753
754 if (asidx == 0) {
755 /* address space 0 gets the convenience alias */
756 cpu->as = as;
757 }
758
759 /* KVM cannot currently support multiple address spaces. */
760 assert(asidx == 0 || !kvm_enabled());
761
762 if (!cpu->cpu_ases) {
763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
764 }
765
766 newas = &cpu->cpu_ases[asidx];
767 newas->cpu = cpu;
768 newas->as = as;
769 if (tcg_enabled()) {
770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771 newas->tcg_as_listener.commit = tcg_commit;
772 newas->tcg_as_listener.name = "tcg";
773 memory_listener_register(&newas->tcg_as_listener, as);
774 }
775 }
776
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
778 {
779 /* Return the AddressSpace corresponding to the specified index */
780 return cpu->cpu_ases[asidx].as;
781 }
782
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
785 {
786 RAMBlock *block;
787
788 block = qatomic_rcu_read(&ram_list.mru_block);
789 if (block && addr - block->offset < block->max_length) {
790 return block;
791 }
792 RAMBLOCK_FOREACH(block) {
793 if (addr - block->offset < block->max_length) {
794 goto found;
795 }
796 }
797
798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799 abort();
800
801 found:
802 /* It is safe to write mru_block outside the iothread lock. This
803 * is what happens:
804 *
805 * mru_block = xxx
806 * rcu_read_unlock()
807 * xxx removed from list
808 * rcu_read_lock()
809 * read mru_block
810 * mru_block = NULL;
811 * call_rcu(reclaim_ramblock, xxx);
812 * rcu_read_unlock()
813 *
814 * qatomic_rcu_set is not needed here. The block was already published
815 * when it was placed into the list. Here we're just making an extra
816 * copy of the pointer.
817 */
818 ram_list.mru_block = block;
819 return block;
820 }
821
822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
823 {
824 CPUState *cpu;
825 ram_addr_t start1;
826 RAMBlock *block;
827 ram_addr_t end;
828
829 assert(tcg_enabled());
830 end = TARGET_PAGE_ALIGN(start + length);
831 start &= TARGET_PAGE_MASK;
832
833 RCU_READ_LOCK_GUARD();
834 block = qemu_get_ram_block(start);
835 assert(block == qemu_get_ram_block(end - 1));
836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837 CPU_FOREACH(cpu) {
838 tlb_reset_dirty(cpu, start1, length);
839 }
840 }
841
842 /* Note: start and end must be within the same ram block. */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844 ram_addr_t length,
845 unsigned client)
846 {
847 DirtyMemoryBlocks *blocks;
848 unsigned long end, page, start_page;
849 bool dirty = false;
850 RAMBlock *ramblock;
851 uint64_t mr_offset, mr_size;
852
853 if (length == 0) {
854 return false;
855 }
856
857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858 start_page = start >> TARGET_PAGE_BITS;
859 page = start_page;
860
861 WITH_RCU_READ_LOCK_GUARD() {
862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863 ramblock = qemu_get_ram_block(start);
864 /* Range sanity check on the ramblock */
865 assert(start >= ramblock->offset &&
866 start + length <= ramblock->offset + ramblock->used_length);
867
868 while (page < end) {
869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long num = MIN(end - page,
872 DIRTY_MEMORY_BLOCK_SIZE - offset);
873
874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875 offset, num);
876 page += num;
877 }
878
879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880 mr_size = (end - start_page) << TARGET_PAGE_BITS;
881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
882 }
883
884 if (dirty && tcg_enabled()) {
885 tlb_reset_dirty_range_all(start, length);
886 }
887
888 return dirty;
889 }
890
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
893 {
894 DirtyMemoryBlocks *blocks;
895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
899 DirtyBitmapSnapshot *snap;
900 unsigned long page, end, dest;
901
902 snap = g_malloc0(sizeof(*snap) +
903 ((last - first) >> (TARGET_PAGE_BITS + 3)));
904 snap->start = first;
905 snap->end = last;
906
907 page = first >> TARGET_PAGE_BITS;
908 end = last >> TARGET_PAGE_BITS;
909 dest = 0;
910
911 WITH_RCU_READ_LOCK_GUARD() {
912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
913
914 while (page < end) {
915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long num = MIN(end - page,
918 DIRTY_MEMORY_BLOCK_SIZE - ofs);
919
920 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
922 ofs >>= BITS_PER_LEVEL;
923
924 bitmap_copy_and_clear_atomic(snap->dirty + dest,
925 blocks->blocks[idx] + ofs,
926 num);
927 page += num;
928 dest += num >> BITS_PER_LEVEL;
929 }
930 }
931
932 if (tcg_enabled()) {
933 tlb_reset_dirty_range_all(start, length);
934 }
935
936 memory_region_clear_dirty_bitmap(mr, offset, length);
937
938 return snap;
939 }
940
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942 ram_addr_t start,
943 ram_addr_t length)
944 {
945 unsigned long page, end;
946
947 assert(start >= snap->start);
948 assert(start + length <= snap->end);
949
950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951 page = (start - snap->start) >> TARGET_PAGE_BITS;
952
953 while (page < end) {
954 if (test_bit(page, snap->dirty)) {
955 return true;
956 }
957 page++;
958 }
959 return false;
960 }
961
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964 MemoryRegionSection *section)
965 {
966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967 return section - d->map.sections;
968 }
969
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971 uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
973
974 static uint16_t phys_section_add(PhysPageMap *map,
975 MemoryRegionSection *section)
976 {
977 /* The physical section number is ORed with a page-aligned
978 * pointer to produce the iotlb entries. Thus it should
979 * never overflow into the page-aligned value.
980 */
981 assert(map->sections_nb < TARGET_PAGE_SIZE);
982
983 if (map->sections_nb == map->sections_nb_alloc) {
984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985 map->sections = g_renew(MemoryRegionSection, map->sections,
986 map->sections_nb_alloc);
987 }
988 map->sections[map->sections_nb] = *section;
989 memory_region_ref(section->mr);
990 return map->sections_nb++;
991 }
992
993 static void phys_section_destroy(MemoryRegion *mr)
994 {
995 bool have_sub_page = mr->subpage;
996
997 memory_region_unref(mr);
998
999 if (have_sub_page) {
1000 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001 object_unref(OBJECT(&subpage->iomem));
1002 g_free(subpage);
1003 }
1004 }
1005
1006 static void phys_sections_free(PhysPageMap *map)
1007 {
1008 while (map->sections_nb > 0) {
1009 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010 phys_section_destroy(section->mr);
1011 }
1012 g_free(map->sections);
1013 g_free(map->nodes);
1014 }
1015
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1017 {
1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019 subpage_t *subpage;
1020 hwaddr base = section->offset_within_address_space
1021 & TARGET_PAGE_MASK;
1022 MemoryRegionSection *existing = phys_page_find(d, base);
1023 MemoryRegionSection subsection = {
1024 .offset_within_address_space = base,
1025 .size = int128_make64(TARGET_PAGE_SIZE),
1026 };
1027 hwaddr start, end;
1028
1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1030
1031 if (!(existing->mr->subpage)) {
1032 subpage = subpage_init(fv, base);
1033 subsection.fv = fv;
1034 subsection.mr = &subpage->iomem;
1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036 phys_section_add(&d->map, &subsection));
1037 } else {
1038 subpage = container_of(existing->mr, subpage_t, iomem);
1039 }
1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041 end = start + int128_get64(section->size) - 1;
1042 subpage_register(subpage, start, end,
1043 phys_section_add(&d->map, section));
1044 }
1045
1046
1047 static void register_multipage(FlatView *fv,
1048 MemoryRegionSection *section)
1049 {
1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051 hwaddr start_addr = section->offset_within_address_space;
1052 uint16_t section_index = phys_section_add(&d->map, section);
1053 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054 TARGET_PAGE_BITS));
1055
1056 assert(num_pages);
1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1058 }
1059
1060 /*
1061 * The range in *section* may look like this:
1062 *
1063 * |s|PPPPPPP|s|
1064 *
1065 * where s stands for subpage and P for page.
1066 */
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1068 {
1069 MemoryRegionSection remain = *section;
1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1071
1072 /* register first subpage */
1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075 - remain.offset_within_address_space;
1076
1077 MemoryRegionSection now = remain;
1078 now.size = int128_min(int128_make64(left), now.size);
1079 register_subpage(fv, &now);
1080 if (int128_eq(remain.size, now.size)) {
1081 return;
1082 }
1083 remain.size = int128_sub(remain.size, now.size);
1084 remain.offset_within_address_space += int128_get64(now.size);
1085 remain.offset_within_region += int128_get64(now.size);
1086 }
1087
1088 /* register whole pages */
1089 if (int128_ge(remain.size, page_size)) {
1090 MemoryRegionSection now = remain;
1091 now.size = int128_and(now.size, int128_neg(page_size));
1092 register_multipage(fv, &now);
1093 if (int128_eq(remain.size, now.size)) {
1094 return;
1095 }
1096 remain.size = int128_sub(remain.size, now.size);
1097 remain.offset_within_address_space += int128_get64(now.size);
1098 remain.offset_within_region += int128_get64(now.size);
1099 }
1100
1101 /* register last subpage */
1102 register_subpage(fv, &remain);
1103 }
1104
1105 void qemu_flush_coalesced_mmio_buffer(void)
1106 {
1107 if (kvm_enabled())
1108 kvm_flush_coalesced_mmio_buffer();
1109 }
1110
1111 void qemu_mutex_lock_ramlist(void)
1112 {
1113 qemu_mutex_lock(&ram_list.mutex);
1114 }
1115
1116 void qemu_mutex_unlock_ramlist(void)
1117 {
1118 qemu_mutex_unlock(&ram_list.mutex);
1119 }
1120
1121 GString *ram_block_format(void)
1122 {
1123 RAMBlock *block;
1124 char *psize;
1125 GString *buf = g_string_new("");
1126
1127 RCU_READ_LOCK_GUARD();
1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1129 "Block Name", "PSize", "Offset", "Used", "Total",
1130 "HVA", "RO");
1131
1132 RAMBLOCK_FOREACH(block) {
1133 psize = size_to_str(block->page_size);
1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136 block->idstr, psize,
1137 (uint64_t)block->offset,
1138 (uint64_t)block->used_length,
1139 (uint64_t)block->max_length,
1140 (uint64_t)(uintptr_t)block->host,
1141 block->mr->readonly ? "ro" : "rw");
1142
1143 g_free(psize);
1144 }
1145
1146 return buf;
1147 }
1148
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1150 {
1151 long *hpsize_min = opaque;
1152
1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155 long hpsize = host_memory_backend_pagesize(backend);
1156
1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158 *hpsize_min = hpsize;
1159 }
1160 }
1161
1162 return 0;
1163 }
1164
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1166 {
1167 long *hpsize_max = opaque;
1168
1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171 long hpsize = host_memory_backend_pagesize(backend);
1172
1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174 *hpsize_max = hpsize;
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
1181 /*
1182 * TODO: We assume right now that all mapped host memory backends are
1183 * used as RAM, however some might be used for different purposes.
1184 */
1185 long qemu_minrampagesize(void)
1186 {
1187 long hpsize = LONG_MAX;
1188 Object *memdev_root = object_resolve_path("/objects", NULL);
1189
1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191 return hpsize;
1192 }
1193
1194 long qemu_maxrampagesize(void)
1195 {
1196 long pagesize = 0;
1197 Object *memdev_root = object_resolve_path("/objects", NULL);
1198
1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200 return pagesize;
1201 }
1202
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1205 {
1206 int64_t size;
1207 #if defined(__linux__)
1208 struct stat st;
1209
1210 if (fstat(fd, &st) < 0) {
1211 return -errno;
1212 }
1213
1214 /* Special handling for devdax character devices */
1215 if (S_ISCHR(st.st_mode)) {
1216 g_autofree char *subsystem_path = NULL;
1217 g_autofree char *subsystem = NULL;
1218
1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220 major(st.st_rdev), minor(st.st_rdev));
1221 subsystem = g_file_read_link(subsystem_path, NULL);
1222
1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224 g_autofree char *size_path = NULL;
1225 g_autofree char *size_str = NULL;
1226
1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228 major(st.st_rdev), minor(st.st_rdev));
1229
1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231 return g_ascii_strtoll(size_str, NULL, 0);
1232 }
1233 }
1234 }
1235 #endif /* defined(__linux__) */
1236
1237 /* st.st_size may be zero for special files yet lseek(2) works */
1238 size = lseek(fd, 0, SEEK_END);
1239 if (size < 0) {
1240 return -errno;
1241 }
1242 return size;
1243 }
1244
1245 static int64_t get_file_align(int fd)
1246 {
1247 int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249 struct stat st;
1250
1251 if (fstat(fd, &st) < 0) {
1252 return -errno;
1253 }
1254
1255 /* Special handling for devdax character devices */
1256 if (S_ISCHR(st.st_mode)) {
1257 g_autofree char *path = NULL;
1258 g_autofree char *rpath = NULL;
1259 struct daxctl_ctx *ctx;
1260 struct daxctl_region *region;
1261 int rc = 0;
1262
1263 path = g_strdup_printf("/sys/dev/char/%d:%d",
1264 major(st.st_rdev), minor(st.st_rdev));
1265 rpath = realpath(path, NULL);
1266 if (!rpath) {
1267 return -errno;
1268 }
1269
1270 rc = daxctl_new(&ctx);
1271 if (rc) {
1272 return -1;
1273 }
1274
1275 daxctl_region_foreach(ctx, region) {
1276 if (strstr(rpath, daxctl_region_get_path(region))) {
1277 align = daxctl_region_get_align(region);
1278 break;
1279 }
1280 }
1281 daxctl_unref(ctx);
1282 }
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1284
1285 return align;
1286 }
1287
1288 static int file_ram_open(const char *path,
1289 const char *region_name,
1290 bool readonly,
1291 bool *created)
1292 {
1293 char *filename;
1294 char *sanitized_name;
1295 char *c;
1296 int fd = -1;
1297
1298 *created = false;
1299 for (;;) {
1300 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1301 if (fd >= 0) {
1302 /*
1303 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1304 * opened a directory and fail similarly to how we fail ENOENT
1305 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1306 */
1307 if (readonly) {
1308 struct stat file_stat;
1309
1310 if (fstat(fd, &file_stat)) {
1311 close(fd);
1312 if (errno == EINTR) {
1313 continue;
1314 }
1315 return -errno;
1316 } else if (S_ISDIR(file_stat.st_mode)) {
1317 close(fd);
1318 return -EISDIR;
1319 }
1320 }
1321 /* @path names an existing file, use it */
1322 break;
1323 }
1324 if (errno == ENOENT) {
1325 if (readonly) {
1326 /* Refuse to create new, readonly files. */
1327 return -ENOENT;
1328 }
1329 /* @path names a file that doesn't exist, create it */
1330 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1331 if (fd >= 0) {
1332 *created = true;
1333 break;
1334 }
1335 } else if (errno == EISDIR) {
1336 /* @path names a directory, create a file there */
1337 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1338 sanitized_name = g_strdup(region_name);
1339 for (c = sanitized_name; *c != '\0'; c++) {
1340 if (*c == '/') {
1341 *c = '_';
1342 }
1343 }
1344
1345 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1346 sanitized_name);
1347 g_free(sanitized_name);
1348
1349 fd = mkstemp(filename);
1350 if (fd >= 0) {
1351 unlink(filename);
1352 g_free(filename);
1353 break;
1354 }
1355 g_free(filename);
1356 }
1357 if (errno != EEXIST && errno != EINTR) {
1358 return -errno;
1359 }
1360 /*
1361 * Try again on EINTR and EEXIST. The latter happens when
1362 * something else creates the file between our two open().
1363 */
1364 }
1365
1366 return fd;
1367 }
1368
1369 static void *file_ram_alloc(RAMBlock *block,
1370 ram_addr_t memory,
1371 int fd,
1372 bool truncate,
1373 off_t offset,
1374 Error **errp)
1375 {
1376 uint32_t qemu_map_flags;
1377 void *area;
1378
1379 block->page_size = qemu_fd_getpagesize(fd);
1380 if (block->mr->align % block->page_size) {
1381 error_setg(errp, "alignment 0x%" PRIx64
1382 " must be multiples of page size 0x%zx",
1383 block->mr->align, block->page_size);
1384 return NULL;
1385 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1386 error_setg(errp, "alignment 0x%" PRIx64
1387 " must be a power of two", block->mr->align);
1388 return NULL;
1389 } else if (offset % block->page_size) {
1390 error_setg(errp, "offset 0x%" PRIx64
1391 " must be multiples of page size 0x%zx",
1392 offset, block->page_size);
1393 return NULL;
1394 }
1395 block->mr->align = MAX(block->page_size, block->mr->align);
1396 #if defined(__s390x__)
1397 if (kvm_enabled()) {
1398 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1399 }
1400 #endif
1401
1402 if (memory < block->page_size) {
1403 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1404 "or larger than page size 0x%zx",
1405 memory, block->page_size);
1406 return NULL;
1407 }
1408
1409 memory = ROUND_UP(memory, block->page_size);
1410
1411 /*
1412 * ftruncate is not supported by hugetlbfs in older
1413 * hosts, so don't bother bailing out on errors.
1414 * If anything goes wrong with it under other filesystems,
1415 * mmap will fail.
1416 *
1417 * Do not truncate the non-empty backend file to avoid corrupting
1418 * the existing data in the file. Disabling shrinking is not
1419 * enough. For example, the current vNVDIMM implementation stores
1420 * the guest NVDIMM labels at the end of the backend file. If the
1421 * backend file is later extended, QEMU will not be able to find
1422 * those labels. Therefore, extending the non-empty backend file
1423 * is disabled as well.
1424 */
1425 if (truncate && ftruncate(fd, offset + memory)) {
1426 perror("ftruncate");
1427 }
1428
1429 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1430 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1431 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1432 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1433 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1434 if (area == MAP_FAILED) {
1435 error_setg_errno(errp, errno,
1436 "unable to map backing store for guest RAM");
1437 return NULL;
1438 }
1439
1440 block->fd = fd;
1441 block->fd_offset = offset;
1442 return area;
1443 }
1444 #endif
1445
1446 /* Allocate space within the ram_addr_t space that governs the
1447 * dirty bitmaps.
1448 * Called with the ramlist lock held.
1449 */
1450 static ram_addr_t find_ram_offset(ram_addr_t size)
1451 {
1452 RAMBlock *block, *next_block;
1453 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1454
1455 assert(size != 0); /* it would hand out same offset multiple times */
1456
1457 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1458 return 0;
1459 }
1460
1461 RAMBLOCK_FOREACH(block) {
1462 ram_addr_t candidate, next = RAM_ADDR_MAX;
1463
1464 /* Align blocks to start on a 'long' in the bitmap
1465 * which makes the bitmap sync'ing take the fast path.
1466 */
1467 candidate = block->offset + block->max_length;
1468 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1469
1470 /* Search for the closest following block
1471 * and find the gap.
1472 */
1473 RAMBLOCK_FOREACH(next_block) {
1474 if (next_block->offset >= candidate) {
1475 next = MIN(next, next_block->offset);
1476 }
1477 }
1478
1479 /* If it fits remember our place and remember the size
1480 * of gap, but keep going so that we might find a smaller
1481 * gap to fill so avoiding fragmentation.
1482 */
1483 if (next - candidate >= size && next - candidate < mingap) {
1484 offset = candidate;
1485 mingap = next - candidate;
1486 }
1487
1488 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1489 }
1490
1491 if (offset == RAM_ADDR_MAX) {
1492 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1493 (uint64_t)size);
1494 abort();
1495 }
1496
1497 trace_find_ram_offset(size, offset);
1498
1499 return offset;
1500 }
1501
1502 static unsigned long last_ram_page(void)
1503 {
1504 RAMBlock *block;
1505 ram_addr_t last = 0;
1506
1507 RCU_READ_LOCK_GUARD();
1508 RAMBLOCK_FOREACH(block) {
1509 last = MAX(last, block->offset + block->max_length);
1510 }
1511 return last >> TARGET_PAGE_BITS;
1512 }
1513
1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1515 {
1516 int ret;
1517
1518 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1519 if (!machine_dump_guest_core(current_machine)) {
1520 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1521 if (ret) {
1522 perror("qemu_madvise");
1523 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1524 "but dump_guest_core=off specified\n");
1525 }
1526 }
1527 }
1528
1529 const char *qemu_ram_get_idstr(RAMBlock *rb)
1530 {
1531 return rb->idstr;
1532 }
1533
1534 void *qemu_ram_get_host_addr(RAMBlock *rb)
1535 {
1536 return rb->host;
1537 }
1538
1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1540 {
1541 return rb->offset;
1542 }
1543
1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1545 {
1546 return rb->used_length;
1547 }
1548
1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1550 {
1551 return rb->max_length;
1552 }
1553
1554 bool qemu_ram_is_shared(RAMBlock *rb)
1555 {
1556 return rb->flags & RAM_SHARED;
1557 }
1558
1559 bool qemu_ram_is_noreserve(RAMBlock *rb)
1560 {
1561 return rb->flags & RAM_NORESERVE;
1562 }
1563
1564 /* Note: Only set at the start of postcopy */
1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1566 {
1567 return rb->flags & RAM_UF_ZEROPAGE;
1568 }
1569
1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1571 {
1572 rb->flags |= RAM_UF_ZEROPAGE;
1573 }
1574
1575 bool qemu_ram_is_migratable(RAMBlock *rb)
1576 {
1577 return rb->flags & RAM_MIGRATABLE;
1578 }
1579
1580 void qemu_ram_set_migratable(RAMBlock *rb)
1581 {
1582 rb->flags |= RAM_MIGRATABLE;
1583 }
1584
1585 void qemu_ram_unset_migratable(RAMBlock *rb)
1586 {
1587 rb->flags &= ~RAM_MIGRATABLE;
1588 }
1589
1590 bool qemu_ram_is_named_file(RAMBlock *rb)
1591 {
1592 return rb->flags & RAM_NAMED_FILE;
1593 }
1594
1595 int qemu_ram_get_fd(RAMBlock *rb)
1596 {
1597 return rb->fd;
1598 }
1599
1600 /* Called with iothread lock held. */
1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1602 {
1603 RAMBlock *block;
1604
1605 assert(new_block);
1606 assert(!new_block->idstr[0]);
1607
1608 if (dev) {
1609 char *id = qdev_get_dev_path(dev);
1610 if (id) {
1611 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1612 g_free(id);
1613 }
1614 }
1615 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1616
1617 RCU_READ_LOCK_GUARD();
1618 RAMBLOCK_FOREACH(block) {
1619 if (block != new_block &&
1620 !strcmp(block->idstr, new_block->idstr)) {
1621 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1622 new_block->idstr);
1623 abort();
1624 }
1625 }
1626 }
1627
1628 /* Called with iothread lock held. */
1629 void qemu_ram_unset_idstr(RAMBlock *block)
1630 {
1631 /* FIXME: arch_init.c assumes that this is not called throughout
1632 * migration. Ignore the problem since hot-unplug during migration
1633 * does not work anyway.
1634 */
1635 if (block) {
1636 memset(block->idstr, 0, sizeof(block->idstr));
1637 }
1638 }
1639
1640 size_t qemu_ram_pagesize(RAMBlock *rb)
1641 {
1642 return rb->page_size;
1643 }
1644
1645 /* Returns the largest size of page in use */
1646 size_t qemu_ram_pagesize_largest(void)
1647 {
1648 RAMBlock *block;
1649 size_t largest = 0;
1650
1651 RAMBLOCK_FOREACH(block) {
1652 largest = MAX(largest, qemu_ram_pagesize(block));
1653 }
1654
1655 return largest;
1656 }
1657
1658 static int memory_try_enable_merging(void *addr, size_t len)
1659 {
1660 if (!machine_mem_merge(current_machine)) {
1661 /* disabled by the user */
1662 return 0;
1663 }
1664
1665 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1666 }
1667
1668 /*
1669 * Resizing RAM while migrating can result in the migration being canceled.
1670 * Care has to be taken if the guest might have already detected the memory.
1671 *
1672 * As memory core doesn't know how is memory accessed, it is up to
1673 * resize callback to update device state and/or add assertions to detect
1674 * misuse, if necessary.
1675 */
1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1677 {
1678 const ram_addr_t oldsize = block->used_length;
1679 const ram_addr_t unaligned_size = newsize;
1680
1681 assert(block);
1682
1683 newsize = HOST_PAGE_ALIGN(newsize);
1684
1685 if (block->used_length == newsize) {
1686 /*
1687 * We don't have to resize the ram block (which only knows aligned
1688 * sizes), however, we have to notify if the unaligned size changed.
1689 */
1690 if (unaligned_size != memory_region_size(block->mr)) {
1691 memory_region_set_size(block->mr, unaligned_size);
1692 if (block->resized) {
1693 block->resized(block->idstr, unaligned_size, block->host);
1694 }
1695 }
1696 return 0;
1697 }
1698
1699 if (!(block->flags & RAM_RESIZEABLE)) {
1700 error_setg_errno(errp, EINVAL,
1701 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1702 " != 0x" RAM_ADDR_FMT, block->idstr,
1703 newsize, block->used_length);
1704 return -EINVAL;
1705 }
1706
1707 if (block->max_length < newsize) {
1708 error_setg_errno(errp, EINVAL,
1709 "Size too large: %s: 0x" RAM_ADDR_FMT
1710 " > 0x" RAM_ADDR_FMT, block->idstr,
1711 newsize, block->max_length);
1712 return -EINVAL;
1713 }
1714
1715 /* Notify before modifying the ram block and touching the bitmaps. */
1716 if (block->host) {
1717 ram_block_notify_resize(block->host, oldsize, newsize);
1718 }
1719
1720 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1721 block->used_length = newsize;
1722 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1723 DIRTY_CLIENTS_ALL);
1724 memory_region_set_size(block->mr, unaligned_size);
1725 if (block->resized) {
1726 block->resized(block->idstr, unaligned_size, block->host);
1727 }
1728 return 0;
1729 }
1730
1731 /*
1732 * Trigger sync on the given ram block for range [start, start + length]
1733 * with the backing store if one is available.
1734 * Otherwise no-op.
1735 * @Note: this is supposed to be a synchronous op.
1736 */
1737 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1738 {
1739 /* The requested range should fit in within the block range */
1740 g_assert((start + length) <= block->used_length);
1741
1742 #ifdef CONFIG_LIBPMEM
1743 /* The lack of support for pmem should not block the sync */
1744 if (ramblock_is_pmem(block)) {
1745 void *addr = ramblock_ptr(block, start);
1746 pmem_persist(addr, length);
1747 return;
1748 }
1749 #endif
1750 if (block->fd >= 0) {
1751 /**
1752 * Case there is no support for PMEM or the memory has not been
1753 * specified as persistent (or is not one) - use the msync.
1754 * Less optimal but still achieves the same goal
1755 */
1756 void *addr = ramblock_ptr(block, start);
1757 if (qemu_msync(addr, length, block->fd)) {
1758 warn_report("%s: failed to sync memory range: start: "
1759 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1760 __func__, start, length);
1761 }
1762 }
1763 }
1764
1765 /* Called with ram_list.mutex held */
1766 static void dirty_memory_extend(ram_addr_t old_ram_size,
1767 ram_addr_t new_ram_size)
1768 {
1769 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1770 DIRTY_MEMORY_BLOCK_SIZE);
1771 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1772 DIRTY_MEMORY_BLOCK_SIZE);
1773 int i;
1774
1775 /* Only need to extend if block count increased */
1776 if (new_num_blocks <= old_num_blocks) {
1777 return;
1778 }
1779
1780 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1781 DirtyMemoryBlocks *old_blocks;
1782 DirtyMemoryBlocks *new_blocks;
1783 int j;
1784
1785 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1786 new_blocks = g_malloc(sizeof(*new_blocks) +
1787 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1788
1789 if (old_num_blocks) {
1790 memcpy(new_blocks->blocks, old_blocks->blocks,
1791 old_num_blocks * sizeof(old_blocks->blocks[0]));
1792 }
1793
1794 for (j = old_num_blocks; j < new_num_blocks; j++) {
1795 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1796 }
1797
1798 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1799
1800 if (old_blocks) {
1801 g_free_rcu(old_blocks, rcu);
1802 }
1803 }
1804 }
1805
1806 static void ram_block_add(RAMBlock *new_block, Error **errp)
1807 {
1808 const bool noreserve = qemu_ram_is_noreserve(new_block);
1809 const bool shared = qemu_ram_is_shared(new_block);
1810 RAMBlock *block;
1811 RAMBlock *last_block = NULL;
1812 ram_addr_t old_ram_size, new_ram_size;
1813 Error *err = NULL;
1814
1815 old_ram_size = last_ram_page();
1816
1817 qemu_mutex_lock_ramlist();
1818 new_block->offset = find_ram_offset(new_block->max_length);
1819
1820 if (!new_block->host) {
1821 if (xen_enabled()) {
1822 xen_ram_alloc(new_block->offset, new_block->max_length,
1823 new_block->mr, &err);
1824 if (err) {
1825 error_propagate(errp, err);
1826 qemu_mutex_unlock_ramlist();
1827 return;
1828 }
1829 } else {
1830 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1831 &new_block->mr->align,
1832 shared, noreserve);
1833 if (!new_block->host) {
1834 error_setg_errno(errp, errno,
1835 "cannot set up guest memory '%s'",
1836 memory_region_name(new_block->mr));
1837 qemu_mutex_unlock_ramlist();
1838 return;
1839 }
1840 memory_try_enable_merging(new_block->host, new_block->max_length);
1841 }
1842 }
1843
1844 new_ram_size = MAX(old_ram_size,
1845 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1846 if (new_ram_size > old_ram_size) {
1847 dirty_memory_extend(old_ram_size, new_ram_size);
1848 }
1849 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1850 * QLIST (which has an RCU-friendly variant) does not have insertion at
1851 * tail, so save the last element in last_block.
1852 */
1853 RAMBLOCK_FOREACH(block) {
1854 last_block = block;
1855 if (block->max_length < new_block->max_length) {
1856 break;
1857 }
1858 }
1859 if (block) {
1860 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1861 } else if (last_block) {
1862 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1863 } else { /* list is empty */
1864 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1865 }
1866 ram_list.mru_block = NULL;
1867
1868 /* Write list before version */
1869 smp_wmb();
1870 ram_list.version++;
1871 qemu_mutex_unlock_ramlist();
1872
1873 cpu_physical_memory_set_dirty_range(new_block->offset,
1874 new_block->used_length,
1875 DIRTY_CLIENTS_ALL);
1876
1877 if (new_block->host) {
1878 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1879 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1880 /*
1881 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1882 * Configure it unless the machine is a qtest server, in which case
1883 * KVM is not used and it may be forked (eg for fuzzing purposes).
1884 */
1885 if (!qtest_enabled()) {
1886 qemu_madvise(new_block->host, new_block->max_length,
1887 QEMU_MADV_DONTFORK);
1888 }
1889 ram_block_notify_add(new_block->host, new_block->used_length,
1890 new_block->max_length);
1891 }
1892 }
1893
1894 #ifdef CONFIG_POSIX
1895 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1896 uint32_t ram_flags, int fd, off_t offset,
1897 Error **errp)
1898 {
1899 RAMBlock *new_block;
1900 Error *local_err = NULL;
1901 int64_t file_size, file_align;
1902
1903 /* Just support these ram flags by now. */
1904 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1905 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1906 RAM_READONLY_FD)) == 0);
1907
1908 if (xen_enabled()) {
1909 error_setg(errp, "-mem-path not supported with Xen");
1910 return NULL;
1911 }
1912
1913 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1914 error_setg(errp,
1915 "host lacks kvm mmu notifiers, -mem-path unsupported");
1916 return NULL;
1917 }
1918
1919 size = HOST_PAGE_ALIGN(size);
1920 file_size = get_file_size(fd);
1921 if (file_size > offset && file_size < (offset + size)) {
1922 error_setg(errp, "backing store size 0x%" PRIx64
1923 " does not match 'size' option 0x" RAM_ADDR_FMT,
1924 file_size, size);
1925 return NULL;
1926 }
1927
1928 file_align = get_file_align(fd);
1929 if (file_align > 0 && file_align > mr->align) {
1930 error_setg(errp, "backing store align 0x%" PRIx64
1931 " is larger than 'align' option 0x%" PRIx64,
1932 file_align, mr->align);
1933 return NULL;
1934 }
1935
1936 new_block = g_malloc0(sizeof(*new_block));
1937 new_block->mr = mr;
1938 new_block->used_length = size;
1939 new_block->max_length = size;
1940 new_block->flags = ram_flags;
1941 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1942 errp);
1943 if (!new_block->host) {
1944 g_free(new_block);
1945 return NULL;
1946 }
1947
1948 ram_block_add(new_block, &local_err);
1949 if (local_err) {
1950 g_free(new_block);
1951 error_propagate(errp, local_err);
1952 return NULL;
1953 }
1954 return new_block;
1955
1956 }
1957
1958
1959 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1960 uint32_t ram_flags, const char *mem_path,
1961 off_t offset, Error **errp)
1962 {
1963 int fd;
1964 bool created;
1965 RAMBlock *block;
1966
1967 fd = file_ram_open(mem_path, memory_region_name(mr),
1968 !!(ram_flags & RAM_READONLY_FD), &created);
1969 if (fd < 0) {
1970 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
1971 mem_path);
1972 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
1973 fd == -EACCES) {
1974 /*
1975 * If we can open the file R/O (note: will never create a new file)
1976 * and we are dealing with a private mapping, there are still ways
1977 * to consume such files and get RAM instead of ROM.
1978 */
1979 fd = file_ram_open(mem_path, memory_region_name(mr), true,
1980 &created);
1981 if (fd < 0) {
1982 return NULL;
1983 }
1984 assert(!created);
1985 close(fd);
1986 error_append_hint(errp, "Consider opening the backing store"
1987 " read-only but still creating writable RAM using"
1988 " '-object memory-backend-file,readonly=on,rom=off...'"
1989 " (see \"VM templating\" documentation)\n");
1990 }
1991 return NULL;
1992 }
1993
1994 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
1995 if (!block) {
1996 if (created) {
1997 unlink(mem_path);
1998 }
1999 close(fd);
2000 return NULL;
2001 }
2002
2003 return block;
2004 }
2005 #endif
2006
2007 static
2008 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2009 void (*resized)(const char*,
2010 uint64_t length,
2011 void *host),
2012 void *host, uint32_t ram_flags,
2013 MemoryRegion *mr, Error **errp)
2014 {
2015 RAMBlock *new_block;
2016 Error *local_err = NULL;
2017
2018 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2019 RAM_NORESERVE)) == 0);
2020 assert(!host ^ (ram_flags & RAM_PREALLOC));
2021
2022 size = HOST_PAGE_ALIGN(size);
2023 max_size = HOST_PAGE_ALIGN(max_size);
2024 new_block = g_malloc0(sizeof(*new_block));
2025 new_block->mr = mr;
2026 new_block->resized = resized;
2027 new_block->used_length = size;
2028 new_block->max_length = max_size;
2029 assert(max_size >= size);
2030 new_block->fd = -1;
2031 new_block->page_size = qemu_real_host_page_size();
2032 new_block->host = host;
2033 new_block->flags = ram_flags;
2034 ram_block_add(new_block, &local_err);
2035 if (local_err) {
2036 g_free(new_block);
2037 error_propagate(errp, local_err);
2038 return NULL;
2039 }
2040 return new_block;
2041 }
2042
2043 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2044 MemoryRegion *mr, Error **errp)
2045 {
2046 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2047 errp);
2048 }
2049
2050 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2051 MemoryRegion *mr, Error **errp)
2052 {
2053 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2054 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2055 }
2056
2057 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2058 void (*resized)(const char*,
2059 uint64_t length,
2060 void *host),
2061 MemoryRegion *mr, Error **errp)
2062 {
2063 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2064 RAM_RESIZEABLE, mr, errp);
2065 }
2066
2067 static void reclaim_ramblock(RAMBlock *block)
2068 {
2069 if (block->flags & RAM_PREALLOC) {
2070 ;
2071 } else if (xen_enabled()) {
2072 xen_invalidate_map_cache_entry(block->host);
2073 #ifndef _WIN32
2074 } else if (block->fd >= 0) {
2075 qemu_ram_munmap(block->fd, block->host, block->max_length);
2076 close(block->fd);
2077 #endif
2078 } else {
2079 qemu_anon_ram_free(block->host, block->max_length);
2080 }
2081 g_free(block);
2082 }
2083
2084 void qemu_ram_free(RAMBlock *block)
2085 {
2086 if (!block) {
2087 return;
2088 }
2089
2090 if (block->host) {
2091 ram_block_notify_remove(block->host, block->used_length,
2092 block->max_length);
2093 }
2094
2095 qemu_mutex_lock_ramlist();
2096 QLIST_REMOVE_RCU(block, next);
2097 ram_list.mru_block = NULL;
2098 /* Write list before version */
2099 smp_wmb();
2100 ram_list.version++;
2101 call_rcu(block, reclaim_ramblock, rcu);
2102 qemu_mutex_unlock_ramlist();
2103 }
2104
2105 #ifndef _WIN32
2106 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2107 {
2108 RAMBlock *block;
2109 ram_addr_t offset;
2110 int flags;
2111 void *area, *vaddr;
2112 int prot;
2113
2114 RAMBLOCK_FOREACH(block) {
2115 offset = addr - block->offset;
2116 if (offset < block->max_length) {
2117 vaddr = ramblock_ptr(block, offset);
2118 if (block->flags & RAM_PREALLOC) {
2119 ;
2120 } else if (xen_enabled()) {
2121 abort();
2122 } else {
2123 flags = MAP_FIXED;
2124 flags |= block->flags & RAM_SHARED ?
2125 MAP_SHARED : MAP_PRIVATE;
2126 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2127 prot = PROT_READ;
2128 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2129 if (block->fd >= 0) {
2130 area = mmap(vaddr, length, prot, flags, block->fd,
2131 offset + block->fd_offset);
2132 } else {
2133 flags |= MAP_ANONYMOUS;
2134 area = mmap(vaddr, length, prot, flags, -1, 0);
2135 }
2136 if (area != vaddr) {
2137 error_report("Could not remap addr: "
2138 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2139 length, addr);
2140 exit(1);
2141 }
2142 memory_try_enable_merging(vaddr, length);
2143 qemu_ram_setup_dump(vaddr, length);
2144 }
2145 }
2146 }
2147 }
2148 #endif /* !_WIN32 */
2149
2150 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2151 * This should not be used for general purpose DMA. Use address_space_map
2152 * or address_space_rw instead. For local memory (e.g. video ram) that the
2153 * device owns, use memory_region_get_ram_ptr.
2154 *
2155 * Called within RCU critical section.
2156 */
2157 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2158 {
2159 RAMBlock *block = ram_block;
2160
2161 if (block == NULL) {
2162 block = qemu_get_ram_block(addr);
2163 addr -= block->offset;
2164 }
2165
2166 if (xen_enabled() && block->host == NULL) {
2167 /* We need to check if the requested address is in the RAM
2168 * because we don't want to map the entire memory in QEMU.
2169 * In that case just map until the end of the page.
2170 */
2171 if (block->offset == 0) {
2172 return xen_map_cache(addr, 0, 0, false);
2173 }
2174
2175 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2176 }
2177 return ramblock_ptr(block, addr);
2178 }
2179
2180 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2181 * but takes a size argument.
2182 *
2183 * Called within RCU critical section.
2184 */
2185 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2186 hwaddr *size, bool lock)
2187 {
2188 RAMBlock *block = ram_block;
2189 if (*size == 0) {
2190 return NULL;
2191 }
2192
2193 if (block == NULL) {
2194 block = qemu_get_ram_block(addr);
2195 addr -= block->offset;
2196 }
2197 *size = MIN(*size, block->max_length - addr);
2198
2199 if (xen_enabled() && block->host == NULL) {
2200 /* We need to check if the requested address is in the RAM
2201 * because we don't want to map the entire memory in QEMU.
2202 * In that case just map the requested area.
2203 */
2204 if (block->offset == 0) {
2205 return xen_map_cache(addr, *size, lock, lock);
2206 }
2207
2208 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2209 }
2210
2211 return ramblock_ptr(block, addr);
2212 }
2213
2214 /* Return the offset of a hostpointer within a ramblock */
2215 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2216 {
2217 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2218 assert((uintptr_t)host >= (uintptr_t)rb->host);
2219 assert(res < rb->max_length);
2220
2221 return res;
2222 }
2223
2224 /*
2225 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2226 * in that RAMBlock.
2227 *
2228 * ptr: Host pointer to look up
2229 * round_offset: If true round the result offset down to a page boundary
2230 * *ram_addr: set to result ram_addr
2231 * *offset: set to result offset within the RAMBlock
2232 *
2233 * Returns: RAMBlock (or NULL if not found)
2234 *
2235 * By the time this function returns, the returned pointer is not protected
2236 * by RCU anymore. If the caller is not within an RCU critical section and
2237 * does not hold the iothread lock, it must have other means of protecting the
2238 * pointer, such as a reference to the region that includes the incoming
2239 * ram_addr_t.
2240 */
2241 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2242 ram_addr_t *offset)
2243 {
2244 RAMBlock *block;
2245 uint8_t *host = ptr;
2246
2247 if (xen_enabled()) {
2248 ram_addr_t ram_addr;
2249 RCU_READ_LOCK_GUARD();
2250 ram_addr = xen_ram_addr_from_mapcache(ptr);
2251 block = qemu_get_ram_block(ram_addr);
2252 if (block) {
2253 *offset = ram_addr - block->offset;
2254 }
2255 return block;
2256 }
2257
2258 RCU_READ_LOCK_GUARD();
2259 block = qatomic_rcu_read(&ram_list.mru_block);
2260 if (block && block->host && host - block->host < block->max_length) {
2261 goto found;
2262 }
2263
2264 RAMBLOCK_FOREACH(block) {
2265 /* This case append when the block is not mapped. */
2266 if (block->host == NULL) {
2267 continue;
2268 }
2269 if (host - block->host < block->max_length) {
2270 goto found;
2271 }
2272 }
2273
2274 return NULL;
2275
2276 found:
2277 *offset = (host - block->host);
2278 if (round_offset) {
2279 *offset &= TARGET_PAGE_MASK;
2280 }
2281 return block;
2282 }
2283
2284 /*
2285 * Finds the named RAMBlock
2286 *
2287 * name: The name of RAMBlock to find
2288 *
2289 * Returns: RAMBlock (or NULL if not found)
2290 */
2291 RAMBlock *qemu_ram_block_by_name(const char *name)
2292 {
2293 RAMBlock *block;
2294
2295 RAMBLOCK_FOREACH(block) {
2296 if (!strcmp(name, block->idstr)) {
2297 return block;
2298 }
2299 }
2300
2301 return NULL;
2302 }
2303
2304 /* Some of the softmmu routines need to translate from a host pointer
2305 (typically a TLB entry) back to a ram offset. */
2306 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2307 {
2308 RAMBlock *block;
2309 ram_addr_t offset;
2310
2311 block = qemu_ram_block_from_host(ptr, false, &offset);
2312 if (!block) {
2313 return RAM_ADDR_INVALID;
2314 }
2315
2316 return block->offset + offset;
2317 }
2318
2319 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2320 {
2321 ram_addr_t ram_addr;
2322
2323 ram_addr = qemu_ram_addr_from_host(ptr);
2324 if (ram_addr == RAM_ADDR_INVALID) {
2325 error_report("Bad ram pointer %p", ptr);
2326 abort();
2327 }
2328 return ram_addr;
2329 }
2330
2331 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2332 MemTxAttrs attrs, void *buf, hwaddr len);
2333 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2334 const void *buf, hwaddr len);
2335 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2336 bool is_write, MemTxAttrs attrs);
2337
2338 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2339 unsigned len, MemTxAttrs attrs)
2340 {
2341 subpage_t *subpage = opaque;
2342 uint8_t buf[8];
2343 MemTxResult res;
2344
2345 #if defined(DEBUG_SUBPAGE)
2346 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2347 subpage, len, addr);
2348 #endif
2349 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2350 if (res) {
2351 return res;
2352 }
2353 *data = ldn_p(buf, len);
2354 return MEMTX_OK;
2355 }
2356
2357 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2358 uint64_t value, unsigned len, MemTxAttrs attrs)
2359 {
2360 subpage_t *subpage = opaque;
2361 uint8_t buf[8];
2362
2363 #if defined(DEBUG_SUBPAGE)
2364 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2365 " value %"PRIx64"\n",
2366 __func__, subpage, len, addr, value);
2367 #endif
2368 stn_p(buf, len, value);
2369 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2370 }
2371
2372 static bool subpage_accepts(void *opaque, hwaddr addr,
2373 unsigned len, bool is_write,
2374 MemTxAttrs attrs)
2375 {
2376 subpage_t *subpage = opaque;
2377 #if defined(DEBUG_SUBPAGE)
2378 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2379 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2380 #endif
2381
2382 return flatview_access_valid(subpage->fv, addr + subpage->base,
2383 len, is_write, attrs);
2384 }
2385
2386 static const MemoryRegionOps subpage_ops = {
2387 .read_with_attrs = subpage_read,
2388 .write_with_attrs = subpage_write,
2389 .impl.min_access_size = 1,
2390 .impl.max_access_size = 8,
2391 .valid.min_access_size = 1,
2392 .valid.max_access_size = 8,
2393 .valid.accepts = subpage_accepts,
2394 .endianness = DEVICE_NATIVE_ENDIAN,
2395 };
2396
2397 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2398 uint16_t section)
2399 {
2400 int idx, eidx;
2401
2402 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2403 return -1;
2404 idx = SUBPAGE_IDX(start);
2405 eidx = SUBPAGE_IDX(end);
2406 #if defined(DEBUG_SUBPAGE)
2407 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2408 __func__, mmio, start, end, idx, eidx, section);
2409 #endif
2410 for (; idx <= eidx; idx++) {
2411 mmio->sub_section[idx] = section;
2412 }
2413
2414 return 0;
2415 }
2416
2417 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2418 {
2419 subpage_t *mmio;
2420
2421 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2422 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2423 mmio->fv = fv;
2424 mmio->base = base;
2425 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2426 NULL, TARGET_PAGE_SIZE);
2427 mmio->iomem.subpage = true;
2428 #if defined(DEBUG_SUBPAGE)
2429 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2430 mmio, base, TARGET_PAGE_SIZE);
2431 #endif
2432
2433 return mmio;
2434 }
2435
2436 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2437 {
2438 assert(fv);
2439 MemoryRegionSection section = {
2440 .fv = fv,
2441 .mr = mr,
2442 .offset_within_address_space = 0,
2443 .offset_within_region = 0,
2444 .size = int128_2_64(),
2445 };
2446
2447 return phys_section_add(map, &section);
2448 }
2449
2450 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2451 hwaddr index, MemTxAttrs attrs)
2452 {
2453 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2454 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2455 AddressSpaceDispatch *d = cpuas->memory_dispatch;
2456 int section_index = index & ~TARGET_PAGE_MASK;
2457 MemoryRegionSection *ret;
2458
2459 assert(section_index < d->map.sections_nb);
2460 ret = d->map.sections + section_index;
2461 assert(ret->mr);
2462 assert(ret->mr->ops);
2463
2464 return ret;
2465 }
2466
2467 static void io_mem_init(void)
2468 {
2469 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2470 NULL, UINT64_MAX);
2471 }
2472
2473 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2474 {
2475 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2476 uint16_t n;
2477
2478 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2479 assert(n == PHYS_SECTION_UNASSIGNED);
2480
2481 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2482
2483 return d;
2484 }
2485
2486 void address_space_dispatch_free(AddressSpaceDispatch *d)
2487 {
2488 phys_sections_free(&d->map);
2489 g_free(d);
2490 }
2491
2492 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2493 {
2494 }
2495
2496 static void tcg_log_global_after_sync(MemoryListener *listener)
2497 {
2498 CPUAddressSpace *cpuas;
2499
2500 /* Wait for the CPU to end the current TB. This avoids the following
2501 * incorrect race:
2502 *
2503 * vCPU migration
2504 * ---------------------- -------------------------
2505 * TLB check -> slow path
2506 * notdirty_mem_write
2507 * write to RAM
2508 * mark dirty
2509 * clear dirty flag
2510 * TLB check -> fast path
2511 * read memory
2512 * write to RAM
2513 *
2514 * by pushing the migration thread's memory read after the vCPU thread has
2515 * written the memory.
2516 */
2517 if (replay_mode == REPLAY_MODE_NONE) {
2518 /*
2519 * VGA can make calls to this function while updating the screen.
2520 * In record/replay mode this causes a deadlock, because
2521 * run_on_cpu waits for rr mutex. Therefore no races are possible
2522 * in this case and no need for making run_on_cpu when
2523 * record/replay is enabled.
2524 */
2525 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2526 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2527 }
2528 }
2529
2530 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2531 {
2532 CPUAddressSpace *cpuas = data.host_ptr;
2533
2534 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2535 tlb_flush(cpu);
2536 }
2537
2538 static void tcg_commit(MemoryListener *listener)
2539 {
2540 CPUAddressSpace *cpuas;
2541 CPUState *cpu;
2542
2543 assert(tcg_enabled());
2544 /* since each CPU stores ram addresses in its TLB cache, we must
2545 reset the modified entries */
2546 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2547 cpu = cpuas->cpu;
2548
2549 /*
2550 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2551 * Otherwise we race between (1) other cpu threads and (2) ongoing
2552 * i/o for the current cpu thread, with data cached by mmu_lookup().
2553 *
2554 * In addition, queueing the work function will kick the cpu back to
2555 * the main loop, which will end the RCU critical section and reclaim
2556 * the memory data structures.
2557 *
2558 * That said, the listener is also called during realize, before
2559 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2560 */
2561 if (cpu->halt_cond) {
2562 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2563 } else {
2564 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2565 }
2566 }
2567
2568 static void memory_map_init(void)
2569 {
2570 system_memory = g_malloc(sizeof(*system_memory));
2571
2572 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2573 address_space_init(&address_space_memory, system_memory, "memory");
2574
2575 system_io = g_malloc(sizeof(*system_io));
2576 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2577 65536);
2578 address_space_init(&address_space_io, system_io, "I/O");
2579 }
2580
2581 MemoryRegion *get_system_memory(void)
2582 {
2583 return system_memory;
2584 }
2585
2586 MemoryRegion *get_system_io(void)
2587 {
2588 return system_io;
2589 }
2590
2591 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2592 hwaddr length)
2593 {
2594 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2595 addr += memory_region_get_ram_addr(mr);
2596
2597 /* No early return if dirty_log_mask is or becomes 0, because
2598 * cpu_physical_memory_set_dirty_range will still call
2599 * xen_modified_memory.
2600 */
2601 if (dirty_log_mask) {
2602 dirty_log_mask =
2603 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2604 }
2605 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2606 assert(tcg_enabled());
2607 tb_invalidate_phys_range(addr, addr + length - 1);
2608 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2609 }
2610 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2611 }
2612
2613 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2614 {
2615 /*
2616 * In principle this function would work on other memory region types too,
2617 * but the ROM device use case is the only one where this operation is
2618 * necessary. Other memory regions should use the
2619 * address_space_read/write() APIs.
2620 */
2621 assert(memory_region_is_romd(mr));
2622
2623 invalidate_and_set_dirty(mr, addr, size);
2624 }
2625
2626 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2627 {
2628 unsigned access_size_max = mr->ops->valid.max_access_size;
2629
2630 /* Regions are assumed to support 1-4 byte accesses unless
2631 otherwise specified. */
2632 if (access_size_max == 0) {
2633 access_size_max = 4;
2634 }
2635
2636 /* Bound the maximum access by the alignment of the address. */
2637 if (!mr->ops->impl.unaligned) {
2638 unsigned align_size_max = addr & -addr;
2639 if (align_size_max != 0 && align_size_max < access_size_max) {
2640 access_size_max = align_size_max;
2641 }
2642 }
2643
2644 /* Don't attempt accesses larger than the maximum. */
2645 if (l > access_size_max) {
2646 l = access_size_max;
2647 }
2648 l = pow2floor(l);
2649
2650 return l;
2651 }
2652
2653 bool prepare_mmio_access(MemoryRegion *mr)
2654 {
2655 bool release_lock = false;
2656
2657 if (!qemu_mutex_iothread_locked()) {
2658 qemu_mutex_lock_iothread();
2659 release_lock = true;
2660 }
2661 if (mr->flush_coalesced_mmio) {
2662 qemu_flush_coalesced_mmio_buffer();
2663 }
2664
2665 return release_lock;
2666 }
2667
2668 /**
2669 * flatview_access_allowed
2670 * @mr: #MemoryRegion to be accessed
2671 * @attrs: memory transaction attributes
2672 * @addr: address within that memory region
2673 * @len: the number of bytes to access
2674 *
2675 * Check if a memory transaction is allowed.
2676 *
2677 * Returns: true if transaction is allowed, false if denied.
2678 */
2679 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2680 hwaddr addr, hwaddr len)
2681 {
2682 if (likely(!attrs.memory)) {
2683 return true;
2684 }
2685 if (memory_region_is_ram(mr)) {
2686 return true;
2687 }
2688 qemu_log_mask(LOG_GUEST_ERROR,
2689 "Invalid access to non-RAM device at "
2690 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2691 "region '%s'\n", addr, len, memory_region_name(mr));
2692 return false;
2693 }
2694
2695 /* Called within RCU critical section. */
2696 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2697 MemTxAttrs attrs,
2698 const void *ptr,
2699 hwaddr len, hwaddr addr1,
2700 hwaddr l, MemoryRegion *mr)
2701 {
2702 uint8_t *ram_ptr;
2703 uint64_t val;
2704 MemTxResult result = MEMTX_OK;
2705 bool release_lock = false;
2706 const uint8_t *buf = ptr;
2707
2708 for (;;) {
2709 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2710 result |= MEMTX_ACCESS_ERROR;
2711 /* Keep going. */
2712 } else if (!memory_access_is_direct(mr, true)) {
2713 release_lock |= prepare_mmio_access(mr);
2714 l = memory_access_size(mr, l, addr1);
2715 /* XXX: could force current_cpu to NULL to avoid
2716 potential bugs */
2717 val = ldn_he_p(buf, l);
2718 result |= memory_region_dispatch_write(mr, addr1, val,
2719 size_memop(l), attrs);
2720 } else {
2721 /* RAM case */
2722 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2723 memmove(ram_ptr, buf, l);
2724 invalidate_and_set_dirty(mr, addr1, l);
2725 }
2726
2727 if (release_lock) {
2728 qemu_mutex_unlock_iothread();
2729 release_lock = false;
2730 }
2731
2732 len -= l;
2733 buf += l;
2734 addr += l;
2735
2736 if (!len) {
2737 break;
2738 }
2739
2740 l = len;
2741 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2742 }
2743
2744 return result;
2745 }
2746
2747 /* Called from RCU critical section. */
2748 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2749 const void *buf, hwaddr len)
2750 {
2751 hwaddr l;
2752 hwaddr addr1;
2753 MemoryRegion *mr;
2754
2755 l = len;
2756 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2757 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2758 return MEMTX_ACCESS_ERROR;
2759 }
2760 return flatview_write_continue(fv, addr, attrs, buf, len,
2761 addr1, l, mr);
2762 }
2763
2764 /* Called within RCU critical section. */
2765 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2766 MemTxAttrs attrs, void *ptr,
2767 hwaddr len, hwaddr addr1, hwaddr l,
2768 MemoryRegion *mr)
2769 {
2770 uint8_t *ram_ptr;
2771 uint64_t val;
2772 MemTxResult result = MEMTX_OK;
2773 bool release_lock = false;
2774 uint8_t *buf = ptr;
2775
2776 fuzz_dma_read_cb(addr, len, mr);
2777 for (;;) {
2778 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2779 result |= MEMTX_ACCESS_ERROR;
2780 /* Keep going. */
2781 } else if (!memory_access_is_direct(mr, false)) {
2782 /* I/O case */
2783 release_lock |= prepare_mmio_access(mr);
2784 l = memory_access_size(mr, l, addr1);
2785 result |= memory_region_dispatch_read(mr, addr1, &val,
2786 size_memop(l), attrs);
2787 stn_he_p(buf, l, val);
2788 } else {
2789 /* RAM case */
2790 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2791 memcpy(buf, ram_ptr, l);
2792 }
2793
2794 if (release_lock) {
2795 qemu_mutex_unlock_iothread();
2796 release_lock = false;
2797 }
2798
2799 len -= l;
2800 buf += l;
2801 addr += l;
2802
2803 if (!len) {
2804 break;
2805 }
2806
2807 l = len;
2808 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2809 }
2810
2811 return result;
2812 }
2813
2814 /* Called from RCU critical section. */
2815 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2816 MemTxAttrs attrs, void *buf, hwaddr len)
2817 {
2818 hwaddr l;
2819 hwaddr addr1;
2820 MemoryRegion *mr;
2821
2822 l = len;
2823 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2824 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2825 return MEMTX_ACCESS_ERROR;
2826 }
2827 return flatview_read_continue(fv, addr, attrs, buf, len,
2828 addr1, l, mr);
2829 }
2830
2831 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2832 MemTxAttrs attrs, void *buf, hwaddr len)
2833 {
2834 MemTxResult result = MEMTX_OK;
2835 FlatView *fv;
2836
2837 if (len > 0) {
2838 RCU_READ_LOCK_GUARD();
2839 fv = address_space_to_flatview(as);
2840 result = flatview_read(fv, addr, attrs, buf, len);
2841 }
2842
2843 return result;
2844 }
2845
2846 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2847 MemTxAttrs attrs,
2848 const void *buf, hwaddr len)
2849 {
2850 MemTxResult result = MEMTX_OK;
2851 FlatView *fv;
2852
2853 if (len > 0) {
2854 RCU_READ_LOCK_GUARD();
2855 fv = address_space_to_flatview(as);
2856 result = flatview_write(fv, addr, attrs, buf, len);
2857 }
2858
2859 return result;
2860 }
2861
2862 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2863 void *buf, hwaddr len, bool is_write)
2864 {
2865 if (is_write) {
2866 return address_space_write(as, addr, attrs, buf, len);
2867 } else {
2868 return address_space_read_full(as, addr, attrs, buf, len);
2869 }
2870 }
2871
2872 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2873 uint8_t c, hwaddr len, MemTxAttrs attrs)
2874 {
2875 #define FILLBUF_SIZE 512
2876 uint8_t fillbuf[FILLBUF_SIZE];
2877 int l;
2878 MemTxResult error = MEMTX_OK;
2879
2880 memset(fillbuf, c, FILLBUF_SIZE);
2881 while (len > 0) {
2882 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2883 error |= address_space_write(as, addr, attrs, fillbuf, l);
2884 len -= l;
2885 addr += l;
2886 }
2887
2888 return error;
2889 }
2890
2891 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2892 hwaddr len, bool is_write)
2893 {
2894 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2895 buf, len, is_write);
2896 }
2897
2898 enum write_rom_type {
2899 WRITE_DATA,
2900 FLUSH_CACHE,
2901 };
2902
2903 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2904 hwaddr addr,
2905 MemTxAttrs attrs,
2906 const void *ptr,
2907 hwaddr len,
2908 enum write_rom_type type)
2909 {
2910 hwaddr l;
2911 uint8_t *ram_ptr;
2912 hwaddr addr1;
2913 MemoryRegion *mr;
2914 const uint8_t *buf = ptr;
2915
2916 RCU_READ_LOCK_GUARD();
2917 while (len > 0) {
2918 l = len;
2919 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2920
2921 if (!(memory_region_is_ram(mr) ||
2922 memory_region_is_romd(mr))) {
2923 l = memory_access_size(mr, l, addr1);
2924 } else {
2925 /* ROM/RAM case */
2926 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2927 switch (type) {
2928 case WRITE_DATA:
2929 memcpy(ram_ptr, buf, l);
2930 invalidate_and_set_dirty(mr, addr1, l);
2931 break;
2932 case FLUSH_CACHE:
2933 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2934 break;
2935 }
2936 }
2937 len -= l;
2938 buf += l;
2939 addr += l;
2940 }
2941 return MEMTX_OK;
2942 }
2943
2944 /* used for ROM loading : can write in RAM and ROM */
2945 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2946 MemTxAttrs attrs,
2947 const void *buf, hwaddr len)
2948 {
2949 return address_space_write_rom_internal(as, addr, attrs,
2950 buf, len, WRITE_DATA);
2951 }
2952
2953 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2954 {
2955 /*
2956 * This function should do the same thing as an icache flush that was
2957 * triggered from within the guest. For TCG we are always cache coherent,
2958 * so there is no need to flush anything. For KVM / Xen we need to flush
2959 * the host's instruction cache at least.
2960 */
2961 if (tcg_enabled()) {
2962 return;
2963 }
2964
2965 address_space_write_rom_internal(&address_space_memory,
2966 start, MEMTXATTRS_UNSPECIFIED,
2967 NULL, len, FLUSH_CACHE);
2968 }
2969
2970 typedef struct {
2971 MemoryRegion *mr;
2972 void *buffer;
2973 hwaddr addr;
2974 hwaddr len;
2975 bool in_use;
2976 } BounceBuffer;
2977
2978 static BounceBuffer bounce;
2979
2980 typedef struct MapClient {
2981 QEMUBH *bh;
2982 QLIST_ENTRY(MapClient) link;
2983 } MapClient;
2984
2985 QemuMutex map_client_list_lock;
2986 static QLIST_HEAD(, MapClient) map_client_list
2987 = QLIST_HEAD_INITIALIZER(map_client_list);
2988
2989 static void cpu_unregister_map_client_do(MapClient *client)
2990 {
2991 QLIST_REMOVE(client, link);
2992 g_free(client);
2993 }
2994
2995 static void cpu_notify_map_clients_locked(void)
2996 {
2997 MapClient *client;
2998
2999 while (!QLIST_EMPTY(&map_client_list)) {
3000 client = QLIST_FIRST(&map_client_list);
3001 qemu_bh_schedule(client->bh);
3002 cpu_unregister_map_client_do(client);
3003 }
3004 }
3005
3006 void cpu_register_map_client(QEMUBH *bh)
3007 {
3008 MapClient *client = g_malloc(sizeof(*client));
3009
3010 qemu_mutex_lock(&map_client_list_lock);
3011 client->bh = bh;
3012 QLIST_INSERT_HEAD(&map_client_list, client, link);
3013 /* Write map_client_list before reading in_use. */
3014 smp_mb();
3015 if (!qatomic_read(&bounce.in_use)) {
3016 cpu_notify_map_clients_locked();
3017 }
3018 qemu_mutex_unlock(&map_client_list_lock);
3019 }
3020
3021 void cpu_exec_init_all(void)
3022 {
3023 qemu_mutex_init(&ram_list.mutex);
3024 /* The data structures we set up here depend on knowing the page size,
3025 * so no more changes can be made after this point.
3026 * In an ideal world, nothing we did before we had finished the
3027 * machine setup would care about the target page size, and we could
3028 * do this much later, rather than requiring board models to state
3029 * up front what their requirements are.
3030 */
3031 finalize_target_page_bits();
3032 io_mem_init();
3033 memory_map_init();
3034 qemu_mutex_init(&map_client_list_lock);
3035 }
3036
3037 void cpu_unregister_map_client(QEMUBH *bh)
3038 {
3039 MapClient *client;
3040
3041 qemu_mutex_lock(&map_client_list_lock);
3042 QLIST_FOREACH(client, &map_client_list, link) {
3043 if (client->bh == bh) {
3044 cpu_unregister_map_client_do(client);
3045 break;
3046 }
3047 }
3048 qemu_mutex_unlock(&map_client_list_lock);
3049 }
3050
3051 static void cpu_notify_map_clients(void)
3052 {
3053 qemu_mutex_lock(&map_client_list_lock);
3054 cpu_notify_map_clients_locked();
3055 qemu_mutex_unlock(&map_client_list_lock);
3056 }
3057
3058 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3059 bool is_write, MemTxAttrs attrs)
3060 {
3061 MemoryRegion *mr;
3062 hwaddr l, xlat;
3063
3064 while (len > 0) {
3065 l = len;
3066 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3067 if (!memory_access_is_direct(mr, is_write)) {
3068 l = memory_access_size(mr, l, addr);
3069 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3070 return false;
3071 }
3072 }
3073
3074 len -= l;
3075 addr += l;
3076 }
3077 return true;
3078 }
3079
3080 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3081 hwaddr len, bool is_write,
3082 MemTxAttrs attrs)
3083 {
3084 FlatView *fv;
3085
3086 RCU_READ_LOCK_GUARD();
3087 fv = address_space_to_flatview(as);
3088 return flatview_access_valid(fv, addr, len, is_write, attrs);
3089 }
3090
3091 static hwaddr
3092 flatview_extend_translation(FlatView *fv, hwaddr addr,
3093 hwaddr target_len,
3094 MemoryRegion *mr, hwaddr base, hwaddr len,
3095 bool is_write, MemTxAttrs attrs)
3096 {
3097 hwaddr done = 0;
3098 hwaddr xlat;
3099 MemoryRegion *this_mr;
3100
3101 for (;;) {
3102 target_len -= len;
3103 addr += len;
3104 done += len;
3105 if (target_len == 0) {
3106 return done;
3107 }
3108
3109 len = target_len;
3110 this_mr = flatview_translate(fv, addr, &xlat,
3111 &len, is_write, attrs);
3112 if (this_mr != mr || xlat != base + done) {
3113 return done;
3114 }
3115 }
3116 }
3117
3118 /* Map a physical memory region into a host virtual address.
3119 * May map a subset of the requested range, given by and returned in *plen.
3120 * May return NULL if resources needed to perform the mapping are exhausted.
3121 * Use only for reads OR writes - not for read-modify-write operations.
3122 * Use cpu_register_map_client() to know when retrying the map operation is
3123 * likely to succeed.
3124 */
3125 void *address_space_map(AddressSpace *as,
3126 hwaddr addr,
3127 hwaddr *plen,
3128 bool is_write,
3129 MemTxAttrs attrs)
3130 {
3131 hwaddr len = *plen;
3132 hwaddr l, xlat;
3133 MemoryRegion *mr;
3134 FlatView *fv;
3135
3136 if (len == 0) {
3137 return NULL;
3138 }
3139
3140 l = len;
3141 RCU_READ_LOCK_GUARD();
3142 fv = address_space_to_flatview(as);
3143 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3144
3145 if (!memory_access_is_direct(mr, is_write)) {
3146 if (qatomic_xchg(&bounce.in_use, true)) {
3147 *plen = 0;
3148 return NULL;
3149 }
3150 /* Avoid unbounded allocations */
3151 l = MIN(l, TARGET_PAGE_SIZE);
3152 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3153 bounce.addr = addr;
3154 bounce.len = l;
3155
3156 memory_region_ref(mr);
3157 bounce.mr = mr;
3158 if (!is_write) {
3159 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3160 bounce.buffer, l);
3161 }
3162
3163 *plen = l;
3164 return bounce.buffer;
3165 }
3166
3167
3168 memory_region_ref(mr);
3169 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3170 l, is_write, attrs);
3171 fuzz_dma_read_cb(addr, *plen, mr);
3172 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3173 }
3174
3175 /* Unmaps a memory region previously mapped by address_space_map().
3176 * Will also mark the memory as dirty if is_write is true. access_len gives
3177 * the amount of memory that was actually read or written by the caller.
3178 */
3179 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3180 bool is_write, hwaddr access_len)
3181 {
3182 if (buffer != bounce.buffer) {
3183 MemoryRegion *mr;
3184 ram_addr_t addr1;
3185
3186 mr = memory_region_from_host(buffer, &addr1);
3187 assert(mr != NULL);
3188 if (is_write) {
3189 invalidate_and_set_dirty(mr, addr1, access_len);
3190 }
3191 if (xen_enabled()) {
3192 xen_invalidate_map_cache_entry(buffer);
3193 }
3194 memory_region_unref(mr);
3195 return;
3196 }
3197 if (is_write) {
3198 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3199 bounce.buffer, access_len);
3200 }
3201 qemu_vfree(bounce.buffer);
3202 bounce.buffer = NULL;
3203 memory_region_unref(bounce.mr);
3204 /* Clear in_use before reading map_client_list. */
3205 qatomic_set_mb(&bounce.in_use, false);
3206 cpu_notify_map_clients();
3207 }
3208
3209 void *cpu_physical_memory_map(hwaddr addr,
3210 hwaddr *plen,
3211 bool is_write)
3212 {
3213 return address_space_map(&address_space_memory, addr, plen, is_write,
3214 MEMTXATTRS_UNSPECIFIED);
3215 }
3216
3217 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3218 bool is_write, hwaddr access_len)
3219 {
3220 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3221 }
3222
3223 #define ARG1_DECL AddressSpace *as
3224 #define ARG1 as
3225 #define SUFFIX
3226 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3227 #define RCU_READ_LOCK(...) rcu_read_lock()
3228 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3229 #include "memory_ldst.c.inc"
3230
3231 int64_t address_space_cache_init(MemoryRegionCache *cache,
3232 AddressSpace *as,
3233 hwaddr addr,
3234 hwaddr len,
3235 bool is_write)
3236 {
3237 AddressSpaceDispatch *d;
3238 hwaddr l;
3239 MemoryRegion *mr;
3240 Int128 diff;
3241
3242 assert(len > 0);
3243
3244 l = len;
3245 cache->fv = address_space_get_flatview(as);
3246 d = flatview_to_dispatch(cache->fv);
3247 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3248
3249 /*
3250 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3251 * Take that into account to compute how many bytes are there between
3252 * cache->xlat and the end of the section.
3253 */
3254 diff = int128_sub(cache->mrs.size,
3255 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3256 l = int128_get64(int128_min(diff, int128_make64(l)));
3257
3258 mr = cache->mrs.mr;
3259 memory_region_ref(mr);
3260 if (memory_access_is_direct(mr, is_write)) {
3261 /* We don't care about the memory attributes here as we're only
3262 * doing this if we found actual RAM, which behaves the same
3263 * regardless of attributes; so UNSPECIFIED is fine.
3264 */
3265 l = flatview_extend_translation(cache->fv, addr, len, mr,
3266 cache->xlat, l, is_write,
3267 MEMTXATTRS_UNSPECIFIED);
3268 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3269 } else {
3270 cache->ptr = NULL;
3271 }
3272
3273 cache->len = l;
3274 cache->is_write = is_write;
3275 return l;
3276 }
3277
3278 void address_space_cache_invalidate(MemoryRegionCache *cache,
3279 hwaddr addr,
3280 hwaddr access_len)
3281 {
3282 assert(cache->is_write);
3283 if (likely(cache->ptr)) {
3284 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3285 }
3286 }
3287
3288 void address_space_cache_destroy(MemoryRegionCache *cache)
3289 {
3290 if (!cache->mrs.mr) {
3291 return;
3292 }
3293
3294 if (xen_enabled()) {
3295 xen_invalidate_map_cache_entry(cache->ptr);
3296 }
3297 memory_region_unref(cache->mrs.mr);
3298 flatview_unref(cache->fv);
3299 cache->mrs.mr = NULL;
3300 cache->fv = NULL;
3301 }
3302
3303 /* Called from RCU critical section. This function has the same
3304 * semantics as address_space_translate, but it only works on a
3305 * predefined range of a MemoryRegion that was mapped with
3306 * address_space_cache_init.
3307 */
3308 static inline MemoryRegion *address_space_translate_cached(
3309 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3310 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3311 {
3312 MemoryRegionSection section;
3313 MemoryRegion *mr;
3314 IOMMUMemoryRegion *iommu_mr;
3315 AddressSpace *target_as;
3316
3317 assert(!cache->ptr);
3318 *xlat = addr + cache->xlat;
3319
3320 mr = cache->mrs.mr;
3321 iommu_mr = memory_region_get_iommu(mr);
3322 if (!iommu_mr) {
3323 /* MMIO region. */
3324 return mr;
3325 }
3326
3327 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3328 NULL, is_write, true,
3329 &target_as, attrs);
3330 return section.mr;
3331 }
3332
3333 /* Called from RCU critical section. address_space_read_cached uses this
3334 * out of line function when the target is an MMIO or IOMMU region.
3335 */
3336 MemTxResult
3337 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3338 void *buf, hwaddr len)
3339 {
3340 hwaddr addr1, l;
3341 MemoryRegion *mr;
3342
3343 l = len;
3344 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3345 MEMTXATTRS_UNSPECIFIED);
3346 return flatview_read_continue(cache->fv,
3347 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3348 addr1, l, mr);
3349 }
3350
3351 /* Called from RCU critical section. address_space_write_cached uses this
3352 * out of line function when the target is an MMIO or IOMMU region.
3353 */
3354 MemTxResult
3355 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3356 const void *buf, hwaddr len)
3357 {
3358 hwaddr addr1, l;
3359 MemoryRegion *mr;
3360
3361 l = len;
3362 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3363 MEMTXATTRS_UNSPECIFIED);
3364 return flatview_write_continue(cache->fv,
3365 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3366 addr1, l, mr);
3367 }
3368
3369 #define ARG1_DECL MemoryRegionCache *cache
3370 #define ARG1 cache
3371 #define SUFFIX _cached_slow
3372 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3373 #define RCU_READ_LOCK() ((void)0)
3374 #define RCU_READ_UNLOCK() ((void)0)
3375 #include "memory_ldst.c.inc"
3376
3377 /* virtual memory access for debug (includes writing to ROM) */
3378 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3379 void *ptr, size_t len, bool is_write)
3380 {
3381 hwaddr phys_addr;
3382 vaddr l, page;
3383 uint8_t *buf = ptr;
3384
3385 cpu_synchronize_state(cpu);
3386 while (len > 0) {
3387 int asidx;
3388 MemTxAttrs attrs;
3389 MemTxResult res;
3390
3391 page = addr & TARGET_PAGE_MASK;
3392 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3393 asidx = cpu_asidx_from_attrs(cpu, attrs);
3394 /* if no physical page mapped, return an error */
3395 if (phys_addr == -1)
3396 return -1;
3397 l = (page + TARGET_PAGE_SIZE) - addr;
3398 if (l > len)
3399 l = len;
3400 phys_addr += (addr & ~TARGET_PAGE_MASK);
3401 if (is_write) {
3402 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3403 attrs, buf, l);
3404 } else {
3405 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3406 attrs, buf, l);
3407 }
3408 if (res != MEMTX_OK) {
3409 return -1;
3410 }
3411 len -= l;
3412 buf += l;
3413 addr += l;
3414 }
3415 return 0;
3416 }
3417
3418 /*
3419 * Allows code that needs to deal with migration bitmaps etc to still be built
3420 * target independent.
3421 */
3422 size_t qemu_target_page_size(void)
3423 {
3424 return TARGET_PAGE_SIZE;
3425 }
3426
3427 int qemu_target_page_mask(void)
3428 {
3429 return TARGET_PAGE_MASK;
3430 }
3431
3432 int qemu_target_page_bits(void)
3433 {
3434 return TARGET_PAGE_BITS;
3435 }
3436
3437 int qemu_target_page_bits_min(void)
3438 {
3439 return TARGET_PAGE_BITS_MIN;
3440 }
3441
3442 /* Convert target pages to MiB (2**20). */
3443 size_t qemu_target_pages_to_MiB(size_t pages)
3444 {
3445 int page_bits = TARGET_PAGE_BITS;
3446
3447 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3448 g_assert(page_bits < 20);
3449
3450 return pages >> (20 - page_bits);
3451 }
3452
3453 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3454 {
3455 MemoryRegion*mr;
3456 hwaddr l = 1;
3457
3458 RCU_READ_LOCK_GUARD();
3459 mr = address_space_translate(&address_space_memory,
3460 phys_addr, &phys_addr, &l, false,
3461 MEMTXATTRS_UNSPECIFIED);
3462
3463 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3464 }
3465
3466 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3467 {
3468 RAMBlock *block;
3469 int ret = 0;
3470
3471 RCU_READ_LOCK_GUARD();
3472 RAMBLOCK_FOREACH(block) {
3473 ret = func(block, opaque);
3474 if (ret) {
3475 break;
3476 }
3477 }
3478 return ret;
3479 }
3480
3481 /*
3482 * Unmap pages of memory from start to start+length such that
3483 * they a) read as 0, b) Trigger whatever fault mechanism
3484 * the OS provides for postcopy.
3485 * The pages must be unmapped by the end of the function.
3486 * Returns: 0 on success, none-0 on failure
3487 *
3488 */
3489 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3490 {
3491 int ret = -1;
3492
3493 uint8_t *host_startaddr = rb->host + start;
3494
3495 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3496 error_report("ram_block_discard_range: Unaligned start address: %p",
3497 host_startaddr);
3498 goto err;
3499 }
3500
3501 if ((start + length) <= rb->max_length) {
3502 bool need_madvise, need_fallocate;
3503 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3504 error_report("ram_block_discard_range: Unaligned length: %zx",
3505 length);
3506 goto err;
3507 }
3508
3509 errno = ENOTSUP; /* If we are missing MADVISE etc */
3510
3511 /* The logic here is messy;
3512 * madvise DONTNEED fails for hugepages
3513 * fallocate works on hugepages and shmem
3514 * shared anonymous memory requires madvise REMOVE
3515 */
3516 need_madvise = (rb->page_size == qemu_host_page_size);
3517 need_fallocate = rb->fd != -1;
3518 if (need_fallocate) {
3519 /* For a file, this causes the area of the file to be zero'd
3520 * if read, and for hugetlbfs also causes it to be unmapped
3521 * so a userfault will trigger.
3522 */
3523 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3524 /*
3525 * fallocate() will fail with readonly files. Let's print a
3526 * proper error message.
3527 */
3528 if (rb->flags & RAM_READONLY_FD) {
3529 error_report("ram_block_discard_range: Discarding RAM"
3530 " with readonly files is not supported");
3531 goto err;
3532
3533 }
3534 /*
3535 * We'll discard data from the actual file, even though we only
3536 * have a MAP_PRIVATE mapping, possibly messing with other
3537 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3538 * change that behavior whithout violating the promised
3539 * semantics of ram_block_discard_range().
3540 *
3541 * Only warn, because it works as long as nobody else uses that
3542 * file.
3543 */
3544 if (!qemu_ram_is_shared(rb)) {
3545 warn_report_once("ram_block_discard_range: Discarding RAM"
3546 " in private file mappings is possibly"
3547 " dangerous, because it will modify the"
3548 " underlying file and will affect other"
3549 " users of the file");
3550 }
3551
3552 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3553 start, length);
3554 if (ret) {
3555 ret = -errno;
3556 error_report("ram_block_discard_range: Failed to fallocate "
3557 "%s:%" PRIx64 " +%zx (%d)",
3558 rb->idstr, start, length, ret);
3559 goto err;
3560 }
3561 #else
3562 ret = -ENOSYS;
3563 error_report("ram_block_discard_range: fallocate not available/file"
3564 "%s:%" PRIx64 " +%zx (%d)",
3565 rb->idstr, start, length, ret);
3566 goto err;
3567 #endif
3568 }
3569 if (need_madvise) {
3570 /* For normal RAM this causes it to be unmapped,
3571 * for shared memory it causes the local mapping to disappear
3572 * and to fall back on the file contents (which we just
3573 * fallocate'd away).
3574 */
3575 #if defined(CONFIG_MADVISE)
3576 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3577 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3578 } else {
3579 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3580 }
3581 if (ret) {
3582 ret = -errno;
3583 error_report("ram_block_discard_range: Failed to discard range "
3584 "%s:%" PRIx64 " +%zx (%d)",
3585 rb->idstr, start, length, ret);
3586 goto err;
3587 }
3588 #else
3589 ret = -ENOSYS;
3590 error_report("ram_block_discard_range: MADVISE not available"
3591 "%s:%" PRIx64 " +%zx (%d)",
3592 rb->idstr, start, length, ret);
3593 goto err;
3594 #endif
3595 }
3596 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3597 need_madvise, need_fallocate, ret);
3598 } else {
3599 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3600 "/%zx/" RAM_ADDR_FMT")",
3601 rb->idstr, start, length, rb->max_length);
3602 }
3603
3604 err:
3605 return ret;
3606 }
3607
3608 bool ramblock_is_pmem(RAMBlock *rb)
3609 {
3610 return rb->flags & RAM_PMEM;
3611 }
3612
3613 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3614 {
3615 if (start == end - 1) {
3616 qemu_printf("\t%3d ", start);
3617 } else {
3618 qemu_printf("\t%3d..%-3d ", start, end - 1);
3619 }
3620 qemu_printf(" skip=%d ", skip);
3621 if (ptr == PHYS_MAP_NODE_NIL) {
3622 qemu_printf(" ptr=NIL");
3623 } else if (!skip) {
3624 qemu_printf(" ptr=#%d", ptr);
3625 } else {
3626 qemu_printf(" ptr=[%d]", ptr);
3627 }
3628 qemu_printf("\n");
3629 }
3630
3631 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3632 int128_sub((size), int128_one())) : 0)
3633
3634 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3635 {
3636 int i;
3637
3638 qemu_printf(" Dispatch\n");
3639 qemu_printf(" Physical sections\n");
3640
3641 for (i = 0; i < d->map.sections_nb; ++i) {
3642 MemoryRegionSection *s = d->map.sections + i;
3643 const char *names[] = { " [unassigned]", " [not dirty]",
3644 " [ROM]", " [watch]" };
3645
3646 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3647 " %s%s%s%s%s",
3648 i,
3649 s->offset_within_address_space,
3650 s->offset_within_address_space + MR_SIZE(s->size),
3651 s->mr->name ? s->mr->name : "(noname)",
3652 i < ARRAY_SIZE(names) ? names[i] : "",
3653 s->mr == root ? " [ROOT]" : "",
3654 s == d->mru_section ? " [MRU]" : "",
3655 s->mr->is_iommu ? " [iommu]" : "");
3656
3657 if (s->mr->alias) {
3658 qemu_printf(" alias=%s", s->mr->alias->name ?
3659 s->mr->alias->name : "noname");
3660 }
3661 qemu_printf("\n");
3662 }
3663
3664 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3665 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3666 for (i = 0; i < d->map.nodes_nb; ++i) {
3667 int j, jprev;
3668 PhysPageEntry prev;
3669 Node *n = d->map.nodes + i;
3670
3671 qemu_printf(" [%d]\n", i);
3672
3673 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3674 PhysPageEntry *pe = *n + j;
3675
3676 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3677 continue;
3678 }
3679
3680 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3681
3682 jprev = j;
3683 prev = *pe;
3684 }
3685
3686 if (jprev != ARRAY_SIZE(*n)) {
3687 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3688 }
3689 }
3690 }
3691
3692 /* Require any discards to work. */
3693 static unsigned int ram_block_discard_required_cnt;
3694 /* Require only coordinated discards to work. */
3695 static unsigned int ram_block_coordinated_discard_required_cnt;
3696 /* Disable any discards. */
3697 static unsigned int ram_block_discard_disabled_cnt;
3698 /* Disable only uncoordinated discards. */
3699 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3700 static QemuMutex ram_block_discard_disable_mutex;
3701
3702 static void ram_block_discard_disable_mutex_lock(void)
3703 {
3704 static gsize initialized;
3705
3706 if (g_once_init_enter(&initialized)) {
3707 qemu_mutex_init(&ram_block_discard_disable_mutex);
3708 g_once_init_leave(&initialized, 1);
3709 }
3710 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3711 }
3712
3713 static void ram_block_discard_disable_mutex_unlock(void)
3714 {
3715 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3716 }
3717
3718 int ram_block_discard_disable(bool state)
3719 {
3720 int ret = 0;
3721
3722 ram_block_discard_disable_mutex_lock();
3723 if (!state) {
3724 ram_block_discard_disabled_cnt--;
3725 } else if (ram_block_discard_required_cnt ||
3726 ram_block_coordinated_discard_required_cnt) {
3727 ret = -EBUSY;
3728 } else {
3729 ram_block_discard_disabled_cnt++;
3730 }
3731 ram_block_discard_disable_mutex_unlock();
3732 return ret;
3733 }
3734
3735 int ram_block_uncoordinated_discard_disable(bool state)
3736 {
3737 int ret = 0;
3738
3739 ram_block_discard_disable_mutex_lock();
3740 if (!state) {
3741 ram_block_uncoordinated_discard_disabled_cnt--;
3742 } else if (ram_block_discard_required_cnt) {
3743 ret = -EBUSY;
3744 } else {
3745 ram_block_uncoordinated_discard_disabled_cnt++;
3746 }
3747 ram_block_discard_disable_mutex_unlock();
3748 return ret;
3749 }
3750
3751 int ram_block_discard_require(bool state)
3752 {
3753 int ret = 0;
3754
3755 ram_block_discard_disable_mutex_lock();
3756 if (!state) {
3757 ram_block_discard_required_cnt--;
3758 } else if (ram_block_discard_disabled_cnt ||
3759 ram_block_uncoordinated_discard_disabled_cnt) {
3760 ret = -EBUSY;
3761 } else {
3762 ram_block_discard_required_cnt++;
3763 }
3764 ram_block_discard_disable_mutex_unlock();
3765 return ret;
3766 }
3767
3768 int ram_block_coordinated_discard_require(bool state)
3769 {
3770 int ret = 0;
3771
3772 ram_block_discard_disable_mutex_lock();
3773 if (!state) {
3774 ram_block_coordinated_discard_required_cnt--;
3775 } else if (ram_block_discard_disabled_cnt) {
3776 ret = -EBUSY;
3777 } else {
3778 ram_block_coordinated_discard_required_cnt++;
3779 }
3780 ram_block_discard_disable_mutex_unlock();
3781 return ret;
3782 }
3783
3784 bool ram_block_discard_is_disabled(void)
3785 {
3786 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3787 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3788 }
3789
3790 bool ram_block_discard_is_required(void)
3791 {
3792 return qatomic_read(&ram_block_discard_required_cnt) ||
3793 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3794 }