]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu/physmem.c
Merge remote-tracking branch 'remotes/legoater/tags/pull-ppc-20220210' into staging
[mirror_qemu.git] / softmmu / physmem.c
1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26
27 #ifdef CONFIG_TCG
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
30
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
51
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
55
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
60
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
64
65 #include "qemu/pmem.h"
66
67 #include "migration/vmstate.h"
68
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
73
74 #include "monitor/monitor.h"
75
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
78 #endif
79
80 //#define DEBUG_SUBPAGE
81
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
84 */
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
86
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
89
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
92
93 static MemoryRegion io_mem_unassigned;
94
95 typedef struct PhysPageEntry PhysPageEntry;
96
97 struct PhysPageEntry {
98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
99 uint32_t skip : 6;
100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
101 uint32_t ptr : 26;
102 };
103
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
105
106 /* Size of the L2 (and L3, etc) page tables. */
107 #define ADDR_SPACE_BITS 64
108
109 #define P_L2_BITS 9
110 #define P_L2_SIZE (1 << P_L2_BITS)
111
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
113
114 typedef PhysPageEntry Node[P_L2_SIZE];
115
116 typedef struct PhysPageMap {
117 struct rcu_head rcu;
118
119 unsigned sections_nb;
120 unsigned sections_nb_alloc;
121 unsigned nodes_nb;
122 unsigned nodes_nb_alloc;
123 Node *nodes;
124 MemoryRegionSection *sections;
125 } PhysPageMap;
126
127 struct AddressSpaceDispatch {
128 MemoryRegionSection *mru_section;
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
131 */
132 PhysPageEntry phys_map;
133 PhysPageMap map;
134 };
135
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t {
138 MemoryRegion iomem;
139 FlatView *fv;
140 hwaddr base;
141 uint16_t sub_section[];
142 } subpage_t;
143
144 #define PHYS_SECTION_UNASSIGNED 0
145
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener *listener);
149 static void tcg_commit(MemoryListener *listener);
150
151 /**
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
157 */
158 struct CPUAddressSpace {
159 CPUState *cpu;
160 AddressSpace *as;
161 struct AddressSpaceDispatch *memory_dispatch;
162 MemoryListener tcg_as_listener;
163 };
164
165 struct DirtyBitmapSnapshot {
166 ram_addr_t start;
167 ram_addr_t end;
168 unsigned long dirty[];
169 };
170
171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
172 {
173 static unsigned alloc_hint = 16;
174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
177 alloc_hint = map->nodes_nb_alloc;
178 }
179 }
180
181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
182 {
183 unsigned i;
184 uint32_t ret;
185 PhysPageEntry e;
186 PhysPageEntry *p;
187
188 ret = map->nodes_nb++;
189 p = map->nodes[ret];
190 assert(ret != PHYS_MAP_NODE_NIL);
191 assert(ret != map->nodes_nb_alloc);
192
193 e.skip = leaf ? 0 : 1;
194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
195 for (i = 0; i < P_L2_SIZE; ++i) {
196 memcpy(&p[i], &e, sizeof(e));
197 }
198 return ret;
199 }
200
201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
202 hwaddr *index, uint64_t *nb, uint16_t leaf,
203 int level)
204 {
205 PhysPageEntry *p;
206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
207
208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
209 lp->ptr = phys_map_node_alloc(map, level == 0);
210 }
211 p = map->nodes[lp->ptr];
212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
213
214 while (*nb && lp < &p[P_L2_SIZE]) {
215 if ((*index & (step - 1)) == 0 && *nb >= step) {
216 lp->skip = 0;
217 lp->ptr = leaf;
218 *index += step;
219 *nb -= step;
220 } else {
221 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
222 }
223 ++lp;
224 }
225 }
226
227 static void phys_page_set(AddressSpaceDispatch *d,
228 hwaddr index, uint64_t nb,
229 uint16_t leaf)
230 {
231 /* Wildly overreserve - it doesn't matter much. */
232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
233
234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
235 }
236
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
239 */
240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
241 {
242 unsigned valid_ptr = P_L2_SIZE;
243 int valid = 0;
244 PhysPageEntry *p;
245 int i;
246
247 if (lp->ptr == PHYS_MAP_NODE_NIL) {
248 return;
249 }
250
251 p = nodes[lp->ptr];
252 for (i = 0; i < P_L2_SIZE; i++) {
253 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254 continue;
255 }
256
257 valid_ptr = i;
258 valid++;
259 if (p[i].skip) {
260 phys_page_compact(&p[i], nodes);
261 }
262 }
263
264 /* We can only compress if there's only one child. */
265 if (valid != 1) {
266 return;
267 }
268
269 assert(valid_ptr < P_L2_SIZE);
270
271 /* Don't compress if it won't fit in the # of bits we have. */
272 if (P_L2_LEVELS >= (1 << 6) &&
273 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
274 return;
275 }
276
277 lp->ptr = p[valid_ptr].ptr;
278 if (!p[valid_ptr].skip) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
283 * change this rule.
284 */
285 lp->skip = 0;
286 } else {
287 lp->skip += p[valid_ptr].skip;
288 }
289 }
290
291 void address_space_dispatch_compact(AddressSpaceDispatch *d)
292 {
293 if (d->phys_map.skip) {
294 phys_page_compact(&d->phys_map, d->map.nodes);
295 }
296 }
297
298 static inline bool section_covers_addr(const MemoryRegionSection *section,
299 hwaddr addr)
300 {
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
303 */
304 return int128_gethi(section->size) ||
305 range_covers_byte(section->offset_within_address_space,
306 int128_getlo(section->size), addr);
307 }
308
309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
310 {
311 PhysPageEntry lp = d->phys_map, *p;
312 Node *nodes = d->map.nodes;
313 MemoryRegionSection *sections = d->map.sections;
314 hwaddr index = addr >> TARGET_PAGE_BITS;
315 int i;
316
317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
319 return &sections[PHYS_SECTION_UNASSIGNED];
320 }
321 p = nodes[lp.ptr];
322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
323 }
324
325 if (section_covers_addr(&sections[lp.ptr], addr)) {
326 return &sections[lp.ptr];
327 } else {
328 return &sections[PHYS_SECTION_UNASSIGNED];
329 }
330 }
331
332 /* Called from RCU critical section */
333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
334 hwaddr addr,
335 bool resolve_subpage)
336 {
337 MemoryRegionSection *section = qatomic_read(&d->mru_section);
338 subpage_t *subpage;
339
340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341 !section_covers_addr(section, addr)) {
342 section = phys_page_find(d, addr);
343 qatomic_set(&d->mru_section, section);
344 }
345 if (resolve_subpage && section->mr->subpage) {
346 subpage = container_of(section->mr, subpage_t, iomem);
347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
348 }
349 return section;
350 }
351
352 /* Called from RCU critical section */
353 static MemoryRegionSection *
354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
355 hwaddr *plen, bool resolve_subpage)
356 {
357 MemoryRegionSection *section;
358 MemoryRegion *mr;
359 Int128 diff;
360
361 section = address_space_lookup_region(d, addr, resolve_subpage);
362 /* Compute offset within MemoryRegionSection */
363 addr -= section->offset_within_address_space;
364
365 /* Compute offset within MemoryRegion */
366 *xlat = addr + section->offset_within_region;
367
368 mr = section->mr;
369
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
375 * here.
376 *
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
380 */
381 if (memory_region_is_ram(mr)) {
382 diff = int128_sub(section->size, int128_make64(addr));
383 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
384 }
385 return section;
386 }
387
388 /**
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
391 *
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
397 * cannot be %NULL.
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
405 * @attrs: transaction attributes
406 *
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
409 */
410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411 hwaddr *xlat,
412 hwaddr *plen_out,
413 hwaddr *page_mask_out,
414 bool is_write,
415 bool is_mmio,
416 AddressSpace **target_as,
417 MemTxAttrs attrs)
418 {
419 MemoryRegionSection *section;
420 hwaddr page_mask = (hwaddr)-1;
421
422 do {
423 hwaddr addr = *xlat;
424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
425 int iommu_idx = 0;
426 IOMMUTLBEntry iotlb;
427
428 if (imrc->attrs_to_index) {
429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
430 }
431
432 iotlb = imrc->translate(iommu_mr, addr, is_write ?
433 IOMMU_WO : IOMMU_RO, iommu_idx);
434
435 if (!(iotlb.perm & (1 << is_write))) {
436 goto unassigned;
437 }
438
439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440 | (addr & iotlb.addr_mask));
441 page_mask &= iotlb.addr_mask;
442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443 *target_as = iotlb.target_as;
444
445 section = address_space_translate_internal(
446 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447 plen_out, is_mmio);
448
449 iommu_mr = memory_region_get_iommu(section->mr);
450 } while (unlikely(iommu_mr));
451
452 if (page_mask_out) {
453 *page_mask_out = page_mask;
454 }
455 return *section;
456
457 unassigned:
458 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
459 }
460
461 /**
462 * flatview_do_translate - translate an address in FlatView
463 *
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
467 * cannot be @NULL.
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
476 * @target_as: the address space targeted by the IOMMU
477 * @attrs: memory transaction attributes
478 *
479 * This function is called from RCU critical section
480 */
481 static MemoryRegionSection flatview_do_translate(FlatView *fv,
482 hwaddr addr,
483 hwaddr *xlat,
484 hwaddr *plen_out,
485 hwaddr *page_mask_out,
486 bool is_write,
487 bool is_mmio,
488 AddressSpace **target_as,
489 MemTxAttrs attrs)
490 {
491 MemoryRegionSection *section;
492 IOMMUMemoryRegion *iommu_mr;
493 hwaddr plen = (hwaddr)(-1);
494
495 if (!plen_out) {
496 plen_out = &plen;
497 }
498
499 section = address_space_translate_internal(
500 flatview_to_dispatch(fv), addr, xlat,
501 plen_out, is_mmio);
502
503 iommu_mr = memory_region_get_iommu(section->mr);
504 if (unlikely(iommu_mr)) {
505 return address_space_translate_iommu(iommu_mr, xlat,
506 plen_out, page_mask_out,
507 is_write, is_mmio,
508 target_as, attrs);
509 }
510 if (page_mask_out) {
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out = ~TARGET_PAGE_MASK;
513 }
514
515 return *section;
516 }
517
518 /* Called from RCU critical section */
519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520 bool is_write, MemTxAttrs attrs)
521 {
522 MemoryRegionSection section;
523 hwaddr xlat, page_mask;
524
525 /*
526 * This can never be MMIO, and we don't really care about plen,
527 * but page mask.
528 */
529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
530 NULL, &page_mask, is_write, false, &as,
531 attrs);
532
533 /* Illegal translation */
534 if (section.mr == &io_mem_unassigned) {
535 goto iotlb_fail;
536 }
537
538 /* Convert memory region offset into address space offset */
539 xlat += section.offset_within_address_space -
540 section.offset_within_region;
541
542 return (IOMMUTLBEntry) {
543 .target_as = as,
544 .iova = addr & ~page_mask,
545 .translated_addr = xlat & ~page_mask,
546 .addr_mask = page_mask,
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548 .perm = IOMMU_RW,
549 };
550
551 iotlb_fail:
552 return (IOMMUTLBEntry) {0};
553 }
554
555 /* Called from RCU critical section */
556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
557 hwaddr *plen, bool is_write,
558 MemTxAttrs attrs)
559 {
560 MemoryRegion *mr;
561 MemoryRegionSection section;
562 AddressSpace *as = NULL;
563
564 /* This can be MMIO, so setup MMIO bit. */
565 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
566 is_write, true, &as, attrs);
567 mr = section.mr;
568
569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
571 *plen = MIN(page, *plen);
572 }
573
574 return mr;
575 }
576
577 typedef struct TCGIOMMUNotifier {
578 IOMMUNotifier n;
579 MemoryRegion *mr;
580 CPUState *cpu;
581 int iommu_idx;
582 bool active;
583 } TCGIOMMUNotifier;
584
585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
586 {
587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
588
589 if (!notifier->active) {
590 return;
591 }
592 tlb_flush(notifier->cpu);
593 notifier->active = false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
597 * callback.
598 */
599 }
600
601 static void tcg_register_iommu_notifier(CPUState *cpu,
602 IOMMUMemoryRegion *iommu_mr,
603 int iommu_idx)
604 {
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
608 */
609 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
610 TCGIOMMUNotifier *notifier = NULL;
611 int i;
612
613 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616 break;
617 }
618 }
619 if (i == cpu->iommu_notifiers->len) {
620 /* Not found, add a new entry at the end of the array */
621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
622 notifier = g_new0(TCGIOMMUNotifier, 1);
623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
624
625 notifier->mr = mr;
626 notifier->iommu_idx = iommu_idx;
627 notifier->cpu = cpu;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
633 */
634 iommu_notifier_init(&notifier->n,
635 tcg_iommu_unmap_notify,
636 IOMMU_NOTIFIER_UNMAP,
637 0,
638 HWADDR_MAX,
639 iommu_idx);
640 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641 &error_fatal);
642 }
643
644 if (!notifier->active) {
645 notifier->active = true;
646 }
647 }
648
649 void tcg_iommu_free_notifier_list(CPUState *cpu)
650 {
651 /* Destroy the CPU's notifier list */
652 int i;
653 TCGIOMMUNotifier *notifier;
654
655 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
657 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
658 g_free(notifier);
659 }
660 g_array_free(cpu->iommu_notifiers, true);
661 }
662
663 void tcg_iommu_init_notifier_list(CPUState *cpu)
664 {
665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
666 }
667
668 /* Called from RCU critical section */
669 MemoryRegionSection *
670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
671 hwaddr *xlat, hwaddr *plen,
672 MemTxAttrs attrs, int *prot)
673 {
674 MemoryRegionSection *section;
675 IOMMUMemoryRegion *iommu_mr;
676 IOMMUMemoryRegionClass *imrc;
677 IOMMUTLBEntry iotlb;
678 int iommu_idx;
679 AddressSpaceDispatch *d =
680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
681
682 for (;;) {
683 section = address_space_translate_internal(d, addr, &addr, plen, false);
684
685 iommu_mr = memory_region_get_iommu(section->mr);
686 if (!iommu_mr) {
687 break;
688 }
689
690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
691
692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
696 */
697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699 | (addr & iotlb.addr_mask));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
703 */
704 if (!(iotlb.perm & IOMMU_RO)) {
705 *prot &= ~(PAGE_READ | PAGE_EXEC);
706 }
707 if (!(iotlb.perm & IOMMU_WO)) {
708 *prot &= ~PAGE_WRITE;
709 }
710
711 if (!*prot) {
712 goto translate_fail;
713 }
714
715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
716 }
717
718 assert(!memory_region_is_iommu(section->mr));
719 *xlat = addr;
720 return section;
721
722 translate_fail:
723 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
724 }
725
726 void cpu_address_space_init(CPUState *cpu, int asidx,
727 const char *prefix, MemoryRegion *mr)
728 {
729 CPUAddressSpace *newas;
730 AddressSpace *as = g_new0(AddressSpace, 1);
731 char *as_name;
732
733 assert(mr);
734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735 address_space_init(as, mr, as_name);
736 g_free(as_name);
737
738 /* Target code should have set num_ases before calling us */
739 assert(asidx < cpu->num_ases);
740
741 if (asidx == 0) {
742 /* address space 0 gets the convenience alias */
743 cpu->as = as;
744 }
745
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx == 0 || !kvm_enabled());
748
749 if (!cpu->cpu_ases) {
750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
751 }
752
753 newas = &cpu->cpu_ases[asidx];
754 newas->cpu = cpu;
755 newas->as = as;
756 if (tcg_enabled()) {
757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
758 newas->tcg_as_listener.commit = tcg_commit;
759 newas->tcg_as_listener.name = "tcg";
760 memory_listener_register(&newas->tcg_as_listener, as);
761 }
762 }
763
764 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765 {
766 /* Return the AddressSpace corresponding to the specified index */
767 return cpu->cpu_ases[asidx].as;
768 }
769
770 /* Add a watchpoint. */
771 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
772 int flags, CPUWatchpoint **watchpoint)
773 {
774 CPUWatchpoint *wp;
775 vaddr in_page;
776
777 /* forbid ranges which are empty or run off the end of the address space */
778 if (len == 0 || (addr + len - 1) < addr) {
779 error_report("tried to set invalid watchpoint at %"
780 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
781 return -EINVAL;
782 }
783 wp = g_malloc(sizeof(*wp));
784
785 wp->vaddr = addr;
786 wp->len = len;
787 wp->flags = flags;
788
789 /* keep all GDB-injected watchpoints in front */
790 if (flags & BP_GDB) {
791 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
792 } else {
793 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
794 }
795
796 in_page = -(addr | TARGET_PAGE_MASK);
797 if (len <= in_page) {
798 tlb_flush_page(cpu, addr);
799 } else {
800 tlb_flush(cpu);
801 }
802
803 if (watchpoint)
804 *watchpoint = wp;
805 return 0;
806 }
807
808 /* Remove a specific watchpoint. */
809 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
810 int flags)
811 {
812 CPUWatchpoint *wp;
813
814 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
815 if (addr == wp->vaddr && len == wp->len
816 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
817 cpu_watchpoint_remove_by_ref(cpu, wp);
818 return 0;
819 }
820 }
821 return -ENOENT;
822 }
823
824 /* Remove a specific watchpoint by reference. */
825 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
826 {
827 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
828
829 tlb_flush_page(cpu, watchpoint->vaddr);
830
831 g_free(watchpoint);
832 }
833
834 /* Remove all matching watchpoints. */
835 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
836 {
837 CPUWatchpoint *wp, *next;
838
839 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
840 if (wp->flags & mask) {
841 cpu_watchpoint_remove_by_ref(cpu, wp);
842 }
843 }
844 }
845
846 #ifdef CONFIG_TCG
847 /* Return true if this watchpoint address matches the specified
848 * access (ie the address range covered by the watchpoint overlaps
849 * partially or completely with the address range covered by the
850 * access).
851 */
852 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
853 vaddr addr, vaddr len)
854 {
855 /* We know the lengths are non-zero, but a little caution is
856 * required to avoid errors in the case where the range ends
857 * exactly at the top of the address space and so addr + len
858 * wraps round to zero.
859 */
860 vaddr wpend = wp->vaddr + wp->len - 1;
861 vaddr addrend = addr + len - 1;
862
863 return !(addr > wpend || wp->vaddr > addrend);
864 }
865
866 /* Return flags for watchpoints that match addr + prot. */
867 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868 {
869 CPUWatchpoint *wp;
870 int ret = 0;
871
872 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
873 if (watchpoint_address_matches(wp, addr, len)) {
874 ret |= wp->flags;
875 }
876 }
877 return ret;
878 }
879
880 /* Generate a debug exception if a watchpoint has been hit. */
881 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
882 MemTxAttrs attrs, int flags, uintptr_t ra)
883 {
884 CPUClass *cc = CPU_GET_CLASS(cpu);
885 CPUWatchpoint *wp;
886
887 assert(tcg_enabled());
888 if (cpu->watchpoint_hit) {
889 /*
890 * We re-entered the check after replacing the TB.
891 * Now raise the debug interrupt so that it will
892 * trigger after the current instruction.
893 */
894 qemu_mutex_lock_iothread();
895 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
896 qemu_mutex_unlock_iothread();
897 return;
898 }
899
900 if (cc->tcg_ops->adjust_watchpoint_address) {
901 /* this is currently used only by ARM BE32 */
902 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
903 }
904 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
905 if (watchpoint_address_matches(wp, addr, len)
906 && (wp->flags & flags)) {
907 if (replay_running_debug()) {
908 /*
909 * replay_breakpoint reads icount.
910 * Force recompile to succeed, because icount may
911 * be read only at the end of the block.
912 */
913 if (!cpu->can_do_io) {
914 /* Force execution of one insn next time. */
915 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
916 cpu_loop_exit_restore(cpu, ra);
917 }
918 /*
919 * Don't process the watchpoints when we are
920 * in a reverse debugging operation.
921 */
922 replay_breakpoint();
923 return;
924 }
925 if (flags == BP_MEM_READ) {
926 wp->flags |= BP_WATCHPOINT_HIT_READ;
927 } else {
928 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
929 }
930 wp->hitaddr = MAX(addr, wp->vaddr);
931 wp->hitattrs = attrs;
932
933 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
934 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
935 wp->flags &= ~BP_WATCHPOINT_HIT;
936 continue;
937 }
938 cpu->watchpoint_hit = wp;
939
940 mmap_lock();
941 /* This call also restores vCPU state */
942 tb_check_watchpoint(cpu, ra);
943 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
944 cpu->exception_index = EXCP_DEBUG;
945 mmap_unlock();
946 cpu_loop_exit(cpu);
947 } else {
948 /* Force execution of one insn next time. */
949 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
950 mmap_unlock();
951 cpu_loop_exit_noexc(cpu);
952 }
953 } else {
954 wp->flags &= ~BP_WATCHPOINT_HIT;
955 }
956 }
957 }
958
959 #endif /* CONFIG_TCG */
960
961 /* Called from RCU critical section */
962 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
963 {
964 RAMBlock *block;
965
966 block = qatomic_rcu_read(&ram_list.mru_block);
967 if (block && addr - block->offset < block->max_length) {
968 return block;
969 }
970 RAMBLOCK_FOREACH(block) {
971 if (addr - block->offset < block->max_length) {
972 goto found;
973 }
974 }
975
976 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
977 abort();
978
979 found:
980 /* It is safe to write mru_block outside the iothread lock. This
981 * is what happens:
982 *
983 * mru_block = xxx
984 * rcu_read_unlock()
985 * xxx removed from list
986 * rcu_read_lock()
987 * read mru_block
988 * mru_block = NULL;
989 * call_rcu(reclaim_ramblock, xxx);
990 * rcu_read_unlock()
991 *
992 * qatomic_rcu_set is not needed here. The block was already published
993 * when it was placed into the list. Here we're just making an extra
994 * copy of the pointer.
995 */
996 ram_list.mru_block = block;
997 return block;
998 }
999
1000 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1001 {
1002 CPUState *cpu;
1003 ram_addr_t start1;
1004 RAMBlock *block;
1005 ram_addr_t end;
1006
1007 assert(tcg_enabled());
1008 end = TARGET_PAGE_ALIGN(start + length);
1009 start &= TARGET_PAGE_MASK;
1010
1011 RCU_READ_LOCK_GUARD();
1012 block = qemu_get_ram_block(start);
1013 assert(block == qemu_get_ram_block(end - 1));
1014 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1015 CPU_FOREACH(cpu) {
1016 tlb_reset_dirty(cpu, start1, length);
1017 }
1018 }
1019
1020 /* Note: start and end must be within the same ram block. */
1021 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1022 ram_addr_t length,
1023 unsigned client)
1024 {
1025 DirtyMemoryBlocks *blocks;
1026 unsigned long end, page, start_page;
1027 bool dirty = false;
1028 RAMBlock *ramblock;
1029 uint64_t mr_offset, mr_size;
1030
1031 if (length == 0) {
1032 return false;
1033 }
1034
1035 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1036 start_page = start >> TARGET_PAGE_BITS;
1037 page = start_page;
1038
1039 WITH_RCU_READ_LOCK_GUARD() {
1040 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1041 ramblock = qemu_get_ram_block(start);
1042 /* Range sanity check on the ramblock */
1043 assert(start >= ramblock->offset &&
1044 start + length <= ramblock->offset + ramblock->used_length);
1045
1046 while (page < end) {
1047 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1048 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1049 unsigned long num = MIN(end - page,
1050 DIRTY_MEMORY_BLOCK_SIZE - offset);
1051
1052 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1053 offset, num);
1054 page += num;
1055 }
1056
1057 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1058 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1059 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1060 }
1061
1062 if (dirty && tcg_enabled()) {
1063 tlb_reset_dirty_range_all(start, length);
1064 }
1065
1066 return dirty;
1067 }
1068
1069 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1070 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1071 {
1072 DirtyMemoryBlocks *blocks;
1073 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1074 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1075 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1076 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1077 DirtyBitmapSnapshot *snap;
1078 unsigned long page, end, dest;
1079
1080 snap = g_malloc0(sizeof(*snap) +
1081 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1082 snap->start = first;
1083 snap->end = last;
1084
1085 page = first >> TARGET_PAGE_BITS;
1086 end = last >> TARGET_PAGE_BITS;
1087 dest = 0;
1088
1089 WITH_RCU_READ_LOCK_GUARD() {
1090 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1091
1092 while (page < end) {
1093 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1094 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1095 unsigned long num = MIN(end - page,
1096 DIRTY_MEMORY_BLOCK_SIZE - offset);
1097
1098 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1099 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1100 offset >>= BITS_PER_LEVEL;
1101
1102 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1103 blocks->blocks[idx] + offset,
1104 num);
1105 page += num;
1106 dest += num >> BITS_PER_LEVEL;
1107 }
1108 }
1109
1110 if (tcg_enabled()) {
1111 tlb_reset_dirty_range_all(start, length);
1112 }
1113
1114 memory_region_clear_dirty_bitmap(mr, offset, length);
1115
1116 return snap;
1117 }
1118
1119 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1120 ram_addr_t start,
1121 ram_addr_t length)
1122 {
1123 unsigned long page, end;
1124
1125 assert(start >= snap->start);
1126 assert(start + length <= snap->end);
1127
1128 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1129 page = (start - snap->start) >> TARGET_PAGE_BITS;
1130
1131 while (page < end) {
1132 if (test_bit(page, snap->dirty)) {
1133 return true;
1134 }
1135 page++;
1136 }
1137 return false;
1138 }
1139
1140 /* Called from RCU critical section */
1141 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1142 MemoryRegionSection *section)
1143 {
1144 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1145 return section - d->map.sections;
1146 }
1147
1148 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1149 uint16_t section);
1150 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1151
1152 static uint16_t phys_section_add(PhysPageMap *map,
1153 MemoryRegionSection *section)
1154 {
1155 /* The physical section number is ORed with a page-aligned
1156 * pointer to produce the iotlb entries. Thus it should
1157 * never overflow into the page-aligned value.
1158 */
1159 assert(map->sections_nb < TARGET_PAGE_SIZE);
1160
1161 if (map->sections_nb == map->sections_nb_alloc) {
1162 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1163 map->sections = g_renew(MemoryRegionSection, map->sections,
1164 map->sections_nb_alloc);
1165 }
1166 map->sections[map->sections_nb] = *section;
1167 memory_region_ref(section->mr);
1168 return map->sections_nb++;
1169 }
1170
1171 static void phys_section_destroy(MemoryRegion *mr)
1172 {
1173 bool have_sub_page = mr->subpage;
1174
1175 memory_region_unref(mr);
1176
1177 if (have_sub_page) {
1178 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1179 object_unref(OBJECT(&subpage->iomem));
1180 g_free(subpage);
1181 }
1182 }
1183
1184 static void phys_sections_free(PhysPageMap *map)
1185 {
1186 while (map->sections_nb > 0) {
1187 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1188 phys_section_destroy(section->mr);
1189 }
1190 g_free(map->sections);
1191 g_free(map->nodes);
1192 }
1193
1194 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1195 {
1196 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1197 subpage_t *subpage;
1198 hwaddr base = section->offset_within_address_space
1199 & TARGET_PAGE_MASK;
1200 MemoryRegionSection *existing = phys_page_find(d, base);
1201 MemoryRegionSection subsection = {
1202 .offset_within_address_space = base,
1203 .size = int128_make64(TARGET_PAGE_SIZE),
1204 };
1205 hwaddr start, end;
1206
1207 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1208
1209 if (!(existing->mr->subpage)) {
1210 subpage = subpage_init(fv, base);
1211 subsection.fv = fv;
1212 subsection.mr = &subpage->iomem;
1213 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1214 phys_section_add(&d->map, &subsection));
1215 } else {
1216 subpage = container_of(existing->mr, subpage_t, iomem);
1217 }
1218 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1219 end = start + int128_get64(section->size) - 1;
1220 subpage_register(subpage, start, end,
1221 phys_section_add(&d->map, section));
1222 }
1223
1224
1225 static void register_multipage(FlatView *fv,
1226 MemoryRegionSection *section)
1227 {
1228 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1229 hwaddr start_addr = section->offset_within_address_space;
1230 uint16_t section_index = phys_section_add(&d->map, section);
1231 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1232 TARGET_PAGE_BITS));
1233
1234 assert(num_pages);
1235 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1236 }
1237
1238 /*
1239 * The range in *section* may look like this:
1240 *
1241 * |s|PPPPPPP|s|
1242 *
1243 * where s stands for subpage and P for page.
1244 */
1245 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1246 {
1247 MemoryRegionSection remain = *section;
1248 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1249
1250 /* register first subpage */
1251 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1252 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1253 - remain.offset_within_address_space;
1254
1255 MemoryRegionSection now = remain;
1256 now.size = int128_min(int128_make64(left), now.size);
1257 register_subpage(fv, &now);
1258 if (int128_eq(remain.size, now.size)) {
1259 return;
1260 }
1261 remain.size = int128_sub(remain.size, now.size);
1262 remain.offset_within_address_space += int128_get64(now.size);
1263 remain.offset_within_region += int128_get64(now.size);
1264 }
1265
1266 /* register whole pages */
1267 if (int128_ge(remain.size, page_size)) {
1268 MemoryRegionSection now = remain;
1269 now.size = int128_and(now.size, int128_neg(page_size));
1270 register_multipage(fv, &now);
1271 if (int128_eq(remain.size, now.size)) {
1272 return;
1273 }
1274 remain.size = int128_sub(remain.size, now.size);
1275 remain.offset_within_address_space += int128_get64(now.size);
1276 remain.offset_within_region += int128_get64(now.size);
1277 }
1278
1279 /* register last subpage */
1280 register_subpage(fv, &remain);
1281 }
1282
1283 void qemu_flush_coalesced_mmio_buffer(void)
1284 {
1285 if (kvm_enabled())
1286 kvm_flush_coalesced_mmio_buffer();
1287 }
1288
1289 void qemu_mutex_lock_ramlist(void)
1290 {
1291 qemu_mutex_lock(&ram_list.mutex);
1292 }
1293
1294 void qemu_mutex_unlock_ramlist(void)
1295 {
1296 qemu_mutex_unlock(&ram_list.mutex);
1297 }
1298
1299 GString *ram_block_format(void)
1300 {
1301 RAMBlock *block;
1302 char *psize;
1303 GString *buf = g_string_new("");
1304
1305 RCU_READ_LOCK_GUARD();
1306 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n",
1307 "Block Name", "PSize", "Offset", "Used", "Total");
1308 RAMBLOCK_FOREACH(block) {
1309 psize = size_to_str(block->page_size);
1310 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1311 " 0x%016" PRIx64 "\n", block->idstr, psize,
1312 (uint64_t)block->offset,
1313 (uint64_t)block->used_length,
1314 (uint64_t)block->max_length);
1315 g_free(psize);
1316 }
1317
1318 return buf;
1319 }
1320
1321 #ifdef __linux__
1322 /*
1323 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1324 * may or may not name the same files / on the same filesystem now as
1325 * when we actually open and map them. Iterate over the file
1326 * descriptors instead, and use qemu_fd_getpagesize().
1327 */
1328 static int find_min_backend_pagesize(Object *obj, void *opaque)
1329 {
1330 long *hpsize_min = opaque;
1331
1332 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1333 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1334 long hpsize = host_memory_backend_pagesize(backend);
1335
1336 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1337 *hpsize_min = hpsize;
1338 }
1339 }
1340
1341 return 0;
1342 }
1343
1344 static int find_max_backend_pagesize(Object *obj, void *opaque)
1345 {
1346 long *hpsize_max = opaque;
1347
1348 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1349 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1350 long hpsize = host_memory_backend_pagesize(backend);
1351
1352 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1353 *hpsize_max = hpsize;
1354 }
1355 }
1356
1357 return 0;
1358 }
1359
1360 /*
1361 * TODO: We assume right now that all mapped host memory backends are
1362 * used as RAM, however some might be used for different purposes.
1363 */
1364 long qemu_minrampagesize(void)
1365 {
1366 long hpsize = LONG_MAX;
1367 Object *memdev_root = object_resolve_path("/objects", NULL);
1368
1369 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1370 return hpsize;
1371 }
1372
1373 long qemu_maxrampagesize(void)
1374 {
1375 long pagesize = 0;
1376 Object *memdev_root = object_resolve_path("/objects", NULL);
1377
1378 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1379 return pagesize;
1380 }
1381 #else
1382 long qemu_minrampagesize(void)
1383 {
1384 return qemu_real_host_page_size;
1385 }
1386 long qemu_maxrampagesize(void)
1387 {
1388 return qemu_real_host_page_size;
1389 }
1390 #endif
1391
1392 #ifdef CONFIG_POSIX
1393 static int64_t get_file_size(int fd)
1394 {
1395 int64_t size;
1396 #if defined(__linux__)
1397 struct stat st;
1398
1399 if (fstat(fd, &st) < 0) {
1400 return -errno;
1401 }
1402
1403 /* Special handling for devdax character devices */
1404 if (S_ISCHR(st.st_mode)) {
1405 g_autofree char *subsystem_path = NULL;
1406 g_autofree char *subsystem = NULL;
1407
1408 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1409 major(st.st_rdev), minor(st.st_rdev));
1410 subsystem = g_file_read_link(subsystem_path, NULL);
1411
1412 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1413 g_autofree char *size_path = NULL;
1414 g_autofree char *size_str = NULL;
1415
1416 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1417 major(st.st_rdev), minor(st.st_rdev));
1418
1419 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1420 return g_ascii_strtoll(size_str, NULL, 0);
1421 }
1422 }
1423 }
1424 #endif /* defined(__linux__) */
1425
1426 /* st.st_size may be zero for special files yet lseek(2) works */
1427 size = lseek(fd, 0, SEEK_END);
1428 if (size < 0) {
1429 return -errno;
1430 }
1431 return size;
1432 }
1433
1434 static int64_t get_file_align(int fd)
1435 {
1436 int64_t align = -1;
1437 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1438 struct stat st;
1439
1440 if (fstat(fd, &st) < 0) {
1441 return -errno;
1442 }
1443
1444 /* Special handling for devdax character devices */
1445 if (S_ISCHR(st.st_mode)) {
1446 g_autofree char *path = NULL;
1447 g_autofree char *rpath = NULL;
1448 struct daxctl_ctx *ctx;
1449 struct daxctl_region *region;
1450 int rc = 0;
1451
1452 path = g_strdup_printf("/sys/dev/char/%d:%d",
1453 major(st.st_rdev), minor(st.st_rdev));
1454 rpath = realpath(path, NULL);
1455 if (!rpath) {
1456 return -errno;
1457 }
1458
1459 rc = daxctl_new(&ctx);
1460 if (rc) {
1461 return -1;
1462 }
1463
1464 daxctl_region_foreach(ctx, region) {
1465 if (strstr(rpath, daxctl_region_get_path(region))) {
1466 align = daxctl_region_get_align(region);
1467 break;
1468 }
1469 }
1470 daxctl_unref(ctx);
1471 }
1472 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1473
1474 return align;
1475 }
1476
1477 static int file_ram_open(const char *path,
1478 const char *region_name,
1479 bool readonly,
1480 bool *created,
1481 Error **errp)
1482 {
1483 char *filename;
1484 char *sanitized_name;
1485 char *c;
1486 int fd = -1;
1487
1488 *created = false;
1489 for (;;) {
1490 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1491 if (fd >= 0) {
1492 /* @path names an existing file, use it */
1493 break;
1494 }
1495 if (errno == ENOENT) {
1496 /* @path names a file that doesn't exist, create it */
1497 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1498 if (fd >= 0) {
1499 *created = true;
1500 break;
1501 }
1502 } else if (errno == EISDIR) {
1503 /* @path names a directory, create a file there */
1504 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1505 sanitized_name = g_strdup(region_name);
1506 for (c = sanitized_name; *c != '\0'; c++) {
1507 if (*c == '/') {
1508 *c = '_';
1509 }
1510 }
1511
1512 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1513 sanitized_name);
1514 g_free(sanitized_name);
1515
1516 fd = mkstemp(filename);
1517 if (fd >= 0) {
1518 unlink(filename);
1519 g_free(filename);
1520 break;
1521 }
1522 g_free(filename);
1523 }
1524 if (errno != EEXIST && errno != EINTR) {
1525 error_setg_errno(errp, errno,
1526 "can't open backing store %s for guest RAM",
1527 path);
1528 return -1;
1529 }
1530 /*
1531 * Try again on EINTR and EEXIST. The latter happens when
1532 * something else creates the file between our two open().
1533 */
1534 }
1535
1536 return fd;
1537 }
1538
1539 static void *file_ram_alloc(RAMBlock *block,
1540 ram_addr_t memory,
1541 int fd,
1542 bool readonly,
1543 bool truncate,
1544 off_t offset,
1545 Error **errp)
1546 {
1547 uint32_t qemu_map_flags;
1548 void *area;
1549
1550 block->page_size = qemu_fd_getpagesize(fd);
1551 if (block->mr->align % block->page_size) {
1552 error_setg(errp, "alignment 0x%" PRIx64
1553 " must be multiples of page size 0x%zx",
1554 block->mr->align, block->page_size);
1555 return NULL;
1556 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1557 error_setg(errp, "alignment 0x%" PRIx64
1558 " must be a power of two", block->mr->align);
1559 return NULL;
1560 }
1561 block->mr->align = MAX(block->page_size, block->mr->align);
1562 #if defined(__s390x__)
1563 if (kvm_enabled()) {
1564 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1565 }
1566 #endif
1567
1568 if (memory < block->page_size) {
1569 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1570 "or larger than page size 0x%zx",
1571 memory, block->page_size);
1572 return NULL;
1573 }
1574
1575 memory = ROUND_UP(memory, block->page_size);
1576
1577 /*
1578 * ftruncate is not supported by hugetlbfs in older
1579 * hosts, so don't bother bailing out on errors.
1580 * If anything goes wrong with it under other filesystems,
1581 * mmap will fail.
1582 *
1583 * Do not truncate the non-empty backend file to avoid corrupting
1584 * the existing data in the file. Disabling shrinking is not
1585 * enough. For example, the current vNVDIMM implementation stores
1586 * the guest NVDIMM labels at the end of the backend file. If the
1587 * backend file is later extended, QEMU will not be able to find
1588 * those labels. Therefore, extending the non-empty backend file
1589 * is disabled as well.
1590 */
1591 if (truncate && ftruncate(fd, memory)) {
1592 perror("ftruncate");
1593 }
1594
1595 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1596 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1597 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1598 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1599 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1600 if (area == MAP_FAILED) {
1601 error_setg_errno(errp, errno,
1602 "unable to map backing store for guest RAM");
1603 return NULL;
1604 }
1605
1606 block->fd = fd;
1607 return area;
1608 }
1609 #endif
1610
1611 /* Allocate space within the ram_addr_t space that governs the
1612 * dirty bitmaps.
1613 * Called with the ramlist lock held.
1614 */
1615 static ram_addr_t find_ram_offset(ram_addr_t size)
1616 {
1617 RAMBlock *block, *next_block;
1618 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1619
1620 assert(size != 0); /* it would hand out same offset multiple times */
1621
1622 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1623 return 0;
1624 }
1625
1626 RAMBLOCK_FOREACH(block) {
1627 ram_addr_t candidate, next = RAM_ADDR_MAX;
1628
1629 /* Align blocks to start on a 'long' in the bitmap
1630 * which makes the bitmap sync'ing take the fast path.
1631 */
1632 candidate = block->offset + block->max_length;
1633 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1634
1635 /* Search for the closest following block
1636 * and find the gap.
1637 */
1638 RAMBLOCK_FOREACH(next_block) {
1639 if (next_block->offset >= candidate) {
1640 next = MIN(next, next_block->offset);
1641 }
1642 }
1643
1644 /* If it fits remember our place and remember the size
1645 * of gap, but keep going so that we might find a smaller
1646 * gap to fill so avoiding fragmentation.
1647 */
1648 if (next - candidate >= size && next - candidate < mingap) {
1649 offset = candidate;
1650 mingap = next - candidate;
1651 }
1652
1653 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1654 }
1655
1656 if (offset == RAM_ADDR_MAX) {
1657 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1658 (uint64_t)size);
1659 abort();
1660 }
1661
1662 trace_find_ram_offset(size, offset);
1663
1664 return offset;
1665 }
1666
1667 static unsigned long last_ram_page(void)
1668 {
1669 RAMBlock *block;
1670 ram_addr_t last = 0;
1671
1672 RCU_READ_LOCK_GUARD();
1673 RAMBLOCK_FOREACH(block) {
1674 last = MAX(last, block->offset + block->max_length);
1675 }
1676 return last >> TARGET_PAGE_BITS;
1677 }
1678
1679 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1680 {
1681 int ret;
1682
1683 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1684 if (!machine_dump_guest_core(current_machine)) {
1685 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1686 if (ret) {
1687 perror("qemu_madvise");
1688 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1689 "but dump_guest_core=off specified\n");
1690 }
1691 }
1692 }
1693
1694 const char *qemu_ram_get_idstr(RAMBlock *rb)
1695 {
1696 return rb->idstr;
1697 }
1698
1699 void *qemu_ram_get_host_addr(RAMBlock *rb)
1700 {
1701 return rb->host;
1702 }
1703
1704 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1705 {
1706 return rb->offset;
1707 }
1708
1709 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1710 {
1711 return rb->used_length;
1712 }
1713
1714 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1715 {
1716 return rb->max_length;
1717 }
1718
1719 bool qemu_ram_is_shared(RAMBlock *rb)
1720 {
1721 return rb->flags & RAM_SHARED;
1722 }
1723
1724 bool qemu_ram_is_noreserve(RAMBlock *rb)
1725 {
1726 return rb->flags & RAM_NORESERVE;
1727 }
1728
1729 /* Note: Only set at the start of postcopy */
1730 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1731 {
1732 return rb->flags & RAM_UF_ZEROPAGE;
1733 }
1734
1735 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1736 {
1737 rb->flags |= RAM_UF_ZEROPAGE;
1738 }
1739
1740 bool qemu_ram_is_migratable(RAMBlock *rb)
1741 {
1742 return rb->flags & RAM_MIGRATABLE;
1743 }
1744
1745 void qemu_ram_set_migratable(RAMBlock *rb)
1746 {
1747 rb->flags |= RAM_MIGRATABLE;
1748 }
1749
1750 void qemu_ram_unset_migratable(RAMBlock *rb)
1751 {
1752 rb->flags &= ~RAM_MIGRATABLE;
1753 }
1754
1755 /* Called with iothread lock held. */
1756 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1757 {
1758 RAMBlock *block;
1759
1760 assert(new_block);
1761 assert(!new_block->idstr[0]);
1762
1763 if (dev) {
1764 char *id = qdev_get_dev_path(dev);
1765 if (id) {
1766 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1767 g_free(id);
1768 }
1769 }
1770 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1771
1772 RCU_READ_LOCK_GUARD();
1773 RAMBLOCK_FOREACH(block) {
1774 if (block != new_block &&
1775 !strcmp(block->idstr, new_block->idstr)) {
1776 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1777 new_block->idstr);
1778 abort();
1779 }
1780 }
1781 }
1782
1783 /* Called with iothread lock held. */
1784 void qemu_ram_unset_idstr(RAMBlock *block)
1785 {
1786 /* FIXME: arch_init.c assumes that this is not called throughout
1787 * migration. Ignore the problem since hot-unplug during migration
1788 * does not work anyway.
1789 */
1790 if (block) {
1791 memset(block->idstr, 0, sizeof(block->idstr));
1792 }
1793 }
1794
1795 size_t qemu_ram_pagesize(RAMBlock *rb)
1796 {
1797 return rb->page_size;
1798 }
1799
1800 /* Returns the largest size of page in use */
1801 size_t qemu_ram_pagesize_largest(void)
1802 {
1803 RAMBlock *block;
1804 size_t largest = 0;
1805
1806 RAMBLOCK_FOREACH(block) {
1807 largest = MAX(largest, qemu_ram_pagesize(block));
1808 }
1809
1810 return largest;
1811 }
1812
1813 static int memory_try_enable_merging(void *addr, size_t len)
1814 {
1815 if (!machine_mem_merge(current_machine)) {
1816 /* disabled by the user */
1817 return 0;
1818 }
1819
1820 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1821 }
1822
1823 /*
1824 * Resizing RAM while migrating can result in the migration being canceled.
1825 * Care has to be taken if the guest might have already detected the memory.
1826 *
1827 * As memory core doesn't know how is memory accessed, it is up to
1828 * resize callback to update device state and/or add assertions to detect
1829 * misuse, if necessary.
1830 */
1831 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1832 {
1833 const ram_addr_t oldsize = block->used_length;
1834 const ram_addr_t unaligned_size = newsize;
1835
1836 assert(block);
1837
1838 newsize = HOST_PAGE_ALIGN(newsize);
1839
1840 if (block->used_length == newsize) {
1841 /*
1842 * We don't have to resize the ram block (which only knows aligned
1843 * sizes), however, we have to notify if the unaligned size changed.
1844 */
1845 if (unaligned_size != memory_region_size(block->mr)) {
1846 memory_region_set_size(block->mr, unaligned_size);
1847 if (block->resized) {
1848 block->resized(block->idstr, unaligned_size, block->host);
1849 }
1850 }
1851 return 0;
1852 }
1853
1854 if (!(block->flags & RAM_RESIZEABLE)) {
1855 error_setg_errno(errp, EINVAL,
1856 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1857 " != 0x" RAM_ADDR_FMT, block->idstr,
1858 newsize, block->used_length);
1859 return -EINVAL;
1860 }
1861
1862 if (block->max_length < newsize) {
1863 error_setg_errno(errp, EINVAL,
1864 "Size too large: %s: 0x" RAM_ADDR_FMT
1865 " > 0x" RAM_ADDR_FMT, block->idstr,
1866 newsize, block->max_length);
1867 return -EINVAL;
1868 }
1869
1870 /* Notify before modifying the ram block and touching the bitmaps. */
1871 if (block->host) {
1872 ram_block_notify_resize(block->host, oldsize, newsize);
1873 }
1874
1875 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1876 block->used_length = newsize;
1877 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1878 DIRTY_CLIENTS_ALL);
1879 memory_region_set_size(block->mr, unaligned_size);
1880 if (block->resized) {
1881 block->resized(block->idstr, unaligned_size, block->host);
1882 }
1883 return 0;
1884 }
1885
1886 /*
1887 * Trigger sync on the given ram block for range [start, start + length]
1888 * with the backing store if one is available.
1889 * Otherwise no-op.
1890 * @Note: this is supposed to be a synchronous op.
1891 */
1892 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1893 {
1894 /* The requested range should fit in within the block range */
1895 g_assert((start + length) <= block->used_length);
1896
1897 #ifdef CONFIG_LIBPMEM
1898 /* The lack of support for pmem should not block the sync */
1899 if (ramblock_is_pmem(block)) {
1900 void *addr = ramblock_ptr(block, start);
1901 pmem_persist(addr, length);
1902 return;
1903 }
1904 #endif
1905 if (block->fd >= 0) {
1906 /**
1907 * Case there is no support for PMEM or the memory has not been
1908 * specified as persistent (or is not one) - use the msync.
1909 * Less optimal but still achieves the same goal
1910 */
1911 void *addr = ramblock_ptr(block, start);
1912 if (qemu_msync(addr, length, block->fd)) {
1913 warn_report("%s: failed to sync memory range: start: "
1914 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1915 __func__, start, length);
1916 }
1917 }
1918 }
1919
1920 /* Called with ram_list.mutex held */
1921 static void dirty_memory_extend(ram_addr_t old_ram_size,
1922 ram_addr_t new_ram_size)
1923 {
1924 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1925 DIRTY_MEMORY_BLOCK_SIZE);
1926 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1927 DIRTY_MEMORY_BLOCK_SIZE);
1928 int i;
1929
1930 /* Only need to extend if block count increased */
1931 if (new_num_blocks <= old_num_blocks) {
1932 return;
1933 }
1934
1935 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1936 DirtyMemoryBlocks *old_blocks;
1937 DirtyMemoryBlocks *new_blocks;
1938 int j;
1939
1940 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1941 new_blocks = g_malloc(sizeof(*new_blocks) +
1942 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1943
1944 if (old_num_blocks) {
1945 memcpy(new_blocks->blocks, old_blocks->blocks,
1946 old_num_blocks * sizeof(old_blocks->blocks[0]));
1947 }
1948
1949 for (j = old_num_blocks; j < new_num_blocks; j++) {
1950 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1951 }
1952
1953 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1954
1955 if (old_blocks) {
1956 g_free_rcu(old_blocks, rcu);
1957 }
1958 }
1959 }
1960
1961 static void ram_block_add(RAMBlock *new_block, Error **errp)
1962 {
1963 const bool noreserve = qemu_ram_is_noreserve(new_block);
1964 const bool shared = qemu_ram_is_shared(new_block);
1965 RAMBlock *block;
1966 RAMBlock *last_block = NULL;
1967 ram_addr_t old_ram_size, new_ram_size;
1968 Error *err = NULL;
1969
1970 old_ram_size = last_ram_page();
1971
1972 qemu_mutex_lock_ramlist();
1973 new_block->offset = find_ram_offset(new_block->max_length);
1974
1975 if (!new_block->host) {
1976 if (xen_enabled()) {
1977 xen_ram_alloc(new_block->offset, new_block->max_length,
1978 new_block->mr, &err);
1979 if (err) {
1980 error_propagate(errp, err);
1981 qemu_mutex_unlock_ramlist();
1982 return;
1983 }
1984 } else {
1985 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1986 &new_block->mr->align,
1987 shared, noreserve);
1988 if (!new_block->host) {
1989 error_setg_errno(errp, errno,
1990 "cannot set up guest memory '%s'",
1991 memory_region_name(new_block->mr));
1992 qemu_mutex_unlock_ramlist();
1993 return;
1994 }
1995 memory_try_enable_merging(new_block->host, new_block->max_length);
1996 }
1997 }
1998
1999 new_ram_size = MAX(old_ram_size,
2000 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2001 if (new_ram_size > old_ram_size) {
2002 dirty_memory_extend(old_ram_size, new_ram_size);
2003 }
2004 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2005 * QLIST (which has an RCU-friendly variant) does not have insertion at
2006 * tail, so save the last element in last_block.
2007 */
2008 RAMBLOCK_FOREACH(block) {
2009 last_block = block;
2010 if (block->max_length < new_block->max_length) {
2011 break;
2012 }
2013 }
2014 if (block) {
2015 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2016 } else if (last_block) {
2017 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2018 } else { /* list is empty */
2019 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2020 }
2021 ram_list.mru_block = NULL;
2022
2023 /* Write list before version */
2024 smp_wmb();
2025 ram_list.version++;
2026 qemu_mutex_unlock_ramlist();
2027
2028 cpu_physical_memory_set_dirty_range(new_block->offset,
2029 new_block->used_length,
2030 DIRTY_CLIENTS_ALL);
2031
2032 if (new_block->host) {
2033 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2034 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2035 /*
2036 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2037 * Configure it unless the machine is a qtest server, in which case
2038 * KVM is not used and it may be forked (eg for fuzzing purposes).
2039 */
2040 if (!qtest_enabled()) {
2041 qemu_madvise(new_block->host, new_block->max_length,
2042 QEMU_MADV_DONTFORK);
2043 }
2044 ram_block_notify_add(new_block->host, new_block->used_length,
2045 new_block->max_length);
2046 }
2047 }
2048
2049 #ifdef CONFIG_POSIX
2050 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2051 uint32_t ram_flags, int fd, off_t offset,
2052 bool readonly, Error **errp)
2053 {
2054 RAMBlock *new_block;
2055 Error *local_err = NULL;
2056 int64_t file_size, file_align;
2057
2058 /* Just support these ram flags by now. */
2059 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2060 RAM_PROTECTED)) == 0);
2061
2062 if (xen_enabled()) {
2063 error_setg(errp, "-mem-path not supported with Xen");
2064 return NULL;
2065 }
2066
2067 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2068 error_setg(errp,
2069 "host lacks kvm mmu notifiers, -mem-path unsupported");
2070 return NULL;
2071 }
2072
2073 size = HOST_PAGE_ALIGN(size);
2074 file_size = get_file_size(fd);
2075 if (file_size > 0 && file_size < size) {
2076 error_setg(errp, "backing store size 0x%" PRIx64
2077 " does not match 'size' option 0x" RAM_ADDR_FMT,
2078 file_size, size);
2079 return NULL;
2080 }
2081
2082 file_align = get_file_align(fd);
2083 if (file_align > 0 && file_align > mr->align) {
2084 error_setg(errp, "backing store align 0x%" PRIx64
2085 " is larger than 'align' option 0x%" PRIx64,
2086 file_align, mr->align);
2087 return NULL;
2088 }
2089
2090 new_block = g_malloc0(sizeof(*new_block));
2091 new_block->mr = mr;
2092 new_block->used_length = size;
2093 new_block->max_length = size;
2094 new_block->flags = ram_flags;
2095 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2096 !file_size, offset, errp);
2097 if (!new_block->host) {
2098 g_free(new_block);
2099 return NULL;
2100 }
2101
2102 ram_block_add(new_block, &local_err);
2103 if (local_err) {
2104 g_free(new_block);
2105 error_propagate(errp, local_err);
2106 return NULL;
2107 }
2108 return new_block;
2109
2110 }
2111
2112
2113 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2114 uint32_t ram_flags, const char *mem_path,
2115 bool readonly, Error **errp)
2116 {
2117 int fd;
2118 bool created;
2119 RAMBlock *block;
2120
2121 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2122 errp);
2123 if (fd < 0) {
2124 return NULL;
2125 }
2126
2127 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2128 if (!block) {
2129 if (created) {
2130 unlink(mem_path);
2131 }
2132 close(fd);
2133 return NULL;
2134 }
2135
2136 return block;
2137 }
2138 #endif
2139
2140 static
2141 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2142 void (*resized)(const char*,
2143 uint64_t length,
2144 void *host),
2145 void *host, uint32_t ram_flags,
2146 MemoryRegion *mr, Error **errp)
2147 {
2148 RAMBlock *new_block;
2149 Error *local_err = NULL;
2150
2151 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2152 RAM_NORESERVE)) == 0);
2153 assert(!host ^ (ram_flags & RAM_PREALLOC));
2154
2155 size = HOST_PAGE_ALIGN(size);
2156 max_size = HOST_PAGE_ALIGN(max_size);
2157 new_block = g_malloc0(sizeof(*new_block));
2158 new_block->mr = mr;
2159 new_block->resized = resized;
2160 new_block->used_length = size;
2161 new_block->max_length = max_size;
2162 assert(max_size >= size);
2163 new_block->fd = -1;
2164 new_block->page_size = qemu_real_host_page_size;
2165 new_block->host = host;
2166 new_block->flags = ram_flags;
2167 ram_block_add(new_block, &local_err);
2168 if (local_err) {
2169 g_free(new_block);
2170 error_propagate(errp, local_err);
2171 return NULL;
2172 }
2173 return new_block;
2174 }
2175
2176 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2177 MemoryRegion *mr, Error **errp)
2178 {
2179 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2180 errp);
2181 }
2182
2183 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2184 MemoryRegion *mr, Error **errp)
2185 {
2186 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2187 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2188 }
2189
2190 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2191 void (*resized)(const char*,
2192 uint64_t length,
2193 void *host),
2194 MemoryRegion *mr, Error **errp)
2195 {
2196 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2197 RAM_RESIZEABLE, mr, errp);
2198 }
2199
2200 static void reclaim_ramblock(RAMBlock *block)
2201 {
2202 if (block->flags & RAM_PREALLOC) {
2203 ;
2204 } else if (xen_enabled()) {
2205 xen_invalidate_map_cache_entry(block->host);
2206 #ifndef _WIN32
2207 } else if (block->fd >= 0) {
2208 qemu_ram_munmap(block->fd, block->host, block->max_length);
2209 close(block->fd);
2210 #endif
2211 } else {
2212 qemu_anon_ram_free(block->host, block->max_length);
2213 }
2214 g_free(block);
2215 }
2216
2217 void qemu_ram_free(RAMBlock *block)
2218 {
2219 if (!block) {
2220 return;
2221 }
2222
2223 if (block->host) {
2224 ram_block_notify_remove(block->host, block->used_length,
2225 block->max_length);
2226 }
2227
2228 qemu_mutex_lock_ramlist();
2229 QLIST_REMOVE_RCU(block, next);
2230 ram_list.mru_block = NULL;
2231 /* Write list before version */
2232 smp_wmb();
2233 ram_list.version++;
2234 call_rcu(block, reclaim_ramblock, rcu);
2235 qemu_mutex_unlock_ramlist();
2236 }
2237
2238 #ifndef _WIN32
2239 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2240 {
2241 RAMBlock *block;
2242 ram_addr_t offset;
2243 int flags;
2244 void *area, *vaddr;
2245
2246 RAMBLOCK_FOREACH(block) {
2247 offset = addr - block->offset;
2248 if (offset < block->max_length) {
2249 vaddr = ramblock_ptr(block, offset);
2250 if (block->flags & RAM_PREALLOC) {
2251 ;
2252 } else if (xen_enabled()) {
2253 abort();
2254 } else {
2255 flags = MAP_FIXED;
2256 flags |= block->flags & RAM_SHARED ?
2257 MAP_SHARED : MAP_PRIVATE;
2258 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2259 if (block->fd >= 0) {
2260 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2261 flags, block->fd, offset);
2262 } else {
2263 flags |= MAP_ANONYMOUS;
2264 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2265 flags, -1, 0);
2266 }
2267 if (area != vaddr) {
2268 error_report("Could not remap addr: "
2269 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2270 length, addr);
2271 exit(1);
2272 }
2273 memory_try_enable_merging(vaddr, length);
2274 qemu_ram_setup_dump(vaddr, length);
2275 }
2276 }
2277 }
2278 }
2279 #endif /* !_WIN32 */
2280
2281 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2282 * This should not be used for general purpose DMA. Use address_space_map
2283 * or address_space_rw instead. For local memory (e.g. video ram) that the
2284 * device owns, use memory_region_get_ram_ptr.
2285 *
2286 * Called within RCU critical section.
2287 */
2288 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2289 {
2290 RAMBlock *block = ram_block;
2291
2292 if (block == NULL) {
2293 block = qemu_get_ram_block(addr);
2294 addr -= block->offset;
2295 }
2296
2297 if (xen_enabled() && block->host == NULL) {
2298 /* We need to check if the requested address is in the RAM
2299 * because we don't want to map the entire memory in QEMU.
2300 * In that case just map until the end of the page.
2301 */
2302 if (block->offset == 0) {
2303 return xen_map_cache(addr, 0, 0, false);
2304 }
2305
2306 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2307 }
2308 return ramblock_ptr(block, addr);
2309 }
2310
2311 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2312 * but takes a size argument.
2313 *
2314 * Called within RCU critical section.
2315 */
2316 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2317 hwaddr *size, bool lock)
2318 {
2319 RAMBlock *block = ram_block;
2320 if (*size == 0) {
2321 return NULL;
2322 }
2323
2324 if (block == NULL) {
2325 block = qemu_get_ram_block(addr);
2326 addr -= block->offset;
2327 }
2328 *size = MIN(*size, block->max_length - addr);
2329
2330 if (xen_enabled() && block->host == NULL) {
2331 /* We need to check if the requested address is in the RAM
2332 * because we don't want to map the entire memory in QEMU.
2333 * In that case just map the requested area.
2334 */
2335 if (block->offset == 0) {
2336 return xen_map_cache(addr, *size, lock, lock);
2337 }
2338
2339 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2340 }
2341
2342 return ramblock_ptr(block, addr);
2343 }
2344
2345 /* Return the offset of a hostpointer within a ramblock */
2346 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2347 {
2348 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2349 assert((uintptr_t)host >= (uintptr_t)rb->host);
2350 assert(res < rb->max_length);
2351
2352 return res;
2353 }
2354
2355 /*
2356 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2357 * in that RAMBlock.
2358 *
2359 * ptr: Host pointer to look up
2360 * round_offset: If true round the result offset down to a page boundary
2361 * *ram_addr: set to result ram_addr
2362 * *offset: set to result offset within the RAMBlock
2363 *
2364 * Returns: RAMBlock (or NULL if not found)
2365 *
2366 * By the time this function returns, the returned pointer is not protected
2367 * by RCU anymore. If the caller is not within an RCU critical section and
2368 * does not hold the iothread lock, it must have other means of protecting the
2369 * pointer, such as a reference to the region that includes the incoming
2370 * ram_addr_t.
2371 */
2372 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2373 ram_addr_t *offset)
2374 {
2375 RAMBlock *block;
2376 uint8_t *host = ptr;
2377
2378 if (xen_enabled()) {
2379 ram_addr_t ram_addr;
2380 RCU_READ_LOCK_GUARD();
2381 ram_addr = xen_ram_addr_from_mapcache(ptr);
2382 block = qemu_get_ram_block(ram_addr);
2383 if (block) {
2384 *offset = ram_addr - block->offset;
2385 }
2386 return block;
2387 }
2388
2389 RCU_READ_LOCK_GUARD();
2390 block = qatomic_rcu_read(&ram_list.mru_block);
2391 if (block && block->host && host - block->host < block->max_length) {
2392 goto found;
2393 }
2394
2395 RAMBLOCK_FOREACH(block) {
2396 /* This case append when the block is not mapped. */
2397 if (block->host == NULL) {
2398 continue;
2399 }
2400 if (host - block->host < block->max_length) {
2401 goto found;
2402 }
2403 }
2404
2405 return NULL;
2406
2407 found:
2408 *offset = (host - block->host);
2409 if (round_offset) {
2410 *offset &= TARGET_PAGE_MASK;
2411 }
2412 return block;
2413 }
2414
2415 /*
2416 * Finds the named RAMBlock
2417 *
2418 * name: The name of RAMBlock to find
2419 *
2420 * Returns: RAMBlock (or NULL if not found)
2421 */
2422 RAMBlock *qemu_ram_block_by_name(const char *name)
2423 {
2424 RAMBlock *block;
2425
2426 RAMBLOCK_FOREACH(block) {
2427 if (!strcmp(name, block->idstr)) {
2428 return block;
2429 }
2430 }
2431
2432 return NULL;
2433 }
2434
2435 /* Some of the softmmu routines need to translate from a host pointer
2436 (typically a TLB entry) back to a ram offset. */
2437 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2438 {
2439 RAMBlock *block;
2440 ram_addr_t offset;
2441
2442 block = qemu_ram_block_from_host(ptr, false, &offset);
2443 if (!block) {
2444 return RAM_ADDR_INVALID;
2445 }
2446
2447 return block->offset + offset;
2448 }
2449
2450 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2451 MemTxAttrs attrs, void *buf, hwaddr len);
2452 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2453 const void *buf, hwaddr len);
2454 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2455 bool is_write, MemTxAttrs attrs);
2456
2457 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2458 unsigned len, MemTxAttrs attrs)
2459 {
2460 subpage_t *subpage = opaque;
2461 uint8_t buf[8];
2462 MemTxResult res;
2463
2464 #if defined(DEBUG_SUBPAGE)
2465 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2466 subpage, len, addr);
2467 #endif
2468 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2469 if (res) {
2470 return res;
2471 }
2472 *data = ldn_p(buf, len);
2473 return MEMTX_OK;
2474 }
2475
2476 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2477 uint64_t value, unsigned len, MemTxAttrs attrs)
2478 {
2479 subpage_t *subpage = opaque;
2480 uint8_t buf[8];
2481
2482 #if defined(DEBUG_SUBPAGE)
2483 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2484 " value %"PRIx64"\n",
2485 __func__, subpage, len, addr, value);
2486 #endif
2487 stn_p(buf, len, value);
2488 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2489 }
2490
2491 static bool subpage_accepts(void *opaque, hwaddr addr,
2492 unsigned len, bool is_write,
2493 MemTxAttrs attrs)
2494 {
2495 subpage_t *subpage = opaque;
2496 #if defined(DEBUG_SUBPAGE)
2497 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2498 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2499 #endif
2500
2501 return flatview_access_valid(subpage->fv, addr + subpage->base,
2502 len, is_write, attrs);
2503 }
2504
2505 static const MemoryRegionOps subpage_ops = {
2506 .read_with_attrs = subpage_read,
2507 .write_with_attrs = subpage_write,
2508 .impl.min_access_size = 1,
2509 .impl.max_access_size = 8,
2510 .valid.min_access_size = 1,
2511 .valid.max_access_size = 8,
2512 .valid.accepts = subpage_accepts,
2513 .endianness = DEVICE_NATIVE_ENDIAN,
2514 };
2515
2516 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2517 uint16_t section)
2518 {
2519 int idx, eidx;
2520
2521 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2522 return -1;
2523 idx = SUBPAGE_IDX(start);
2524 eidx = SUBPAGE_IDX(end);
2525 #if defined(DEBUG_SUBPAGE)
2526 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2527 __func__, mmio, start, end, idx, eidx, section);
2528 #endif
2529 for (; idx <= eidx; idx++) {
2530 mmio->sub_section[idx] = section;
2531 }
2532
2533 return 0;
2534 }
2535
2536 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2537 {
2538 subpage_t *mmio;
2539
2540 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2541 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2542 mmio->fv = fv;
2543 mmio->base = base;
2544 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2545 NULL, TARGET_PAGE_SIZE);
2546 mmio->iomem.subpage = true;
2547 #if defined(DEBUG_SUBPAGE)
2548 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2549 mmio, base, TARGET_PAGE_SIZE);
2550 #endif
2551
2552 return mmio;
2553 }
2554
2555 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2556 {
2557 assert(fv);
2558 MemoryRegionSection section = {
2559 .fv = fv,
2560 .mr = mr,
2561 .offset_within_address_space = 0,
2562 .offset_within_region = 0,
2563 .size = int128_2_64(),
2564 };
2565
2566 return phys_section_add(map, &section);
2567 }
2568
2569 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2570 hwaddr index, MemTxAttrs attrs)
2571 {
2572 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2573 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2574 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2575 MemoryRegionSection *sections = d->map.sections;
2576
2577 return &sections[index & ~TARGET_PAGE_MASK];
2578 }
2579
2580 static void io_mem_init(void)
2581 {
2582 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2583 NULL, UINT64_MAX);
2584 }
2585
2586 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2587 {
2588 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2589 uint16_t n;
2590
2591 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2592 assert(n == PHYS_SECTION_UNASSIGNED);
2593
2594 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2595
2596 return d;
2597 }
2598
2599 void address_space_dispatch_free(AddressSpaceDispatch *d)
2600 {
2601 phys_sections_free(&d->map);
2602 g_free(d);
2603 }
2604
2605 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2606 {
2607 }
2608
2609 static void tcg_log_global_after_sync(MemoryListener *listener)
2610 {
2611 CPUAddressSpace *cpuas;
2612
2613 /* Wait for the CPU to end the current TB. This avoids the following
2614 * incorrect race:
2615 *
2616 * vCPU migration
2617 * ---------------------- -------------------------
2618 * TLB check -> slow path
2619 * notdirty_mem_write
2620 * write to RAM
2621 * mark dirty
2622 * clear dirty flag
2623 * TLB check -> fast path
2624 * read memory
2625 * write to RAM
2626 *
2627 * by pushing the migration thread's memory read after the vCPU thread has
2628 * written the memory.
2629 */
2630 if (replay_mode == REPLAY_MODE_NONE) {
2631 /*
2632 * VGA can make calls to this function while updating the screen.
2633 * In record/replay mode this causes a deadlock, because
2634 * run_on_cpu waits for rr mutex. Therefore no races are possible
2635 * in this case and no need for making run_on_cpu when
2636 * record/replay is enabled.
2637 */
2638 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2639 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2640 }
2641 }
2642
2643 static void tcg_commit(MemoryListener *listener)
2644 {
2645 CPUAddressSpace *cpuas;
2646 AddressSpaceDispatch *d;
2647
2648 assert(tcg_enabled());
2649 /* since each CPU stores ram addresses in its TLB cache, we must
2650 reset the modified entries */
2651 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2652 cpu_reloading_memory_map();
2653 /* The CPU and TLB are protected by the iothread lock.
2654 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2655 * may have split the RCU critical section.
2656 */
2657 d = address_space_to_dispatch(cpuas->as);
2658 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2659 tlb_flush(cpuas->cpu);
2660 }
2661
2662 static void memory_map_init(void)
2663 {
2664 system_memory = g_malloc(sizeof(*system_memory));
2665
2666 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2667 address_space_init(&address_space_memory, system_memory, "memory");
2668
2669 system_io = g_malloc(sizeof(*system_io));
2670 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2671 65536);
2672 address_space_init(&address_space_io, system_io, "I/O");
2673 }
2674
2675 MemoryRegion *get_system_memory(void)
2676 {
2677 return system_memory;
2678 }
2679
2680 MemoryRegion *get_system_io(void)
2681 {
2682 return system_io;
2683 }
2684
2685 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2686 hwaddr length)
2687 {
2688 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2689 addr += memory_region_get_ram_addr(mr);
2690
2691 /* No early return if dirty_log_mask is or becomes 0, because
2692 * cpu_physical_memory_set_dirty_range will still call
2693 * xen_modified_memory.
2694 */
2695 if (dirty_log_mask) {
2696 dirty_log_mask =
2697 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2698 }
2699 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2700 assert(tcg_enabled());
2701 tb_invalidate_phys_range(addr, addr + length);
2702 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2703 }
2704 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2705 }
2706
2707 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2708 {
2709 /*
2710 * In principle this function would work on other memory region types too,
2711 * but the ROM device use case is the only one where this operation is
2712 * necessary. Other memory regions should use the
2713 * address_space_read/write() APIs.
2714 */
2715 assert(memory_region_is_romd(mr));
2716
2717 invalidate_and_set_dirty(mr, addr, size);
2718 }
2719
2720 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2721 {
2722 unsigned access_size_max = mr->ops->valid.max_access_size;
2723
2724 /* Regions are assumed to support 1-4 byte accesses unless
2725 otherwise specified. */
2726 if (access_size_max == 0) {
2727 access_size_max = 4;
2728 }
2729
2730 /* Bound the maximum access by the alignment of the address. */
2731 if (!mr->ops->impl.unaligned) {
2732 unsigned align_size_max = addr & -addr;
2733 if (align_size_max != 0 && align_size_max < access_size_max) {
2734 access_size_max = align_size_max;
2735 }
2736 }
2737
2738 /* Don't attempt accesses larger than the maximum. */
2739 if (l > access_size_max) {
2740 l = access_size_max;
2741 }
2742 l = pow2floor(l);
2743
2744 return l;
2745 }
2746
2747 static bool prepare_mmio_access(MemoryRegion *mr)
2748 {
2749 bool release_lock = false;
2750
2751 if (!qemu_mutex_iothread_locked()) {
2752 qemu_mutex_lock_iothread();
2753 release_lock = true;
2754 }
2755 if (mr->flush_coalesced_mmio) {
2756 qemu_flush_coalesced_mmio_buffer();
2757 }
2758
2759 return release_lock;
2760 }
2761
2762 /* Called within RCU critical section. */
2763 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2764 MemTxAttrs attrs,
2765 const void *ptr,
2766 hwaddr len, hwaddr addr1,
2767 hwaddr l, MemoryRegion *mr)
2768 {
2769 uint8_t *ram_ptr;
2770 uint64_t val;
2771 MemTxResult result = MEMTX_OK;
2772 bool release_lock = false;
2773 const uint8_t *buf = ptr;
2774
2775 for (;;) {
2776 if (!memory_access_is_direct(mr, true)) {
2777 release_lock |= prepare_mmio_access(mr);
2778 l = memory_access_size(mr, l, addr1);
2779 /* XXX: could force current_cpu to NULL to avoid
2780 potential bugs */
2781 val = ldn_he_p(buf, l);
2782 result |= memory_region_dispatch_write(mr, addr1, val,
2783 size_memop(l), attrs);
2784 } else {
2785 /* RAM case */
2786 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2787 memcpy(ram_ptr, buf, l);
2788 invalidate_and_set_dirty(mr, addr1, l);
2789 }
2790
2791 if (release_lock) {
2792 qemu_mutex_unlock_iothread();
2793 release_lock = false;
2794 }
2795
2796 len -= l;
2797 buf += l;
2798 addr += l;
2799
2800 if (!len) {
2801 break;
2802 }
2803
2804 l = len;
2805 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2806 }
2807
2808 return result;
2809 }
2810
2811 /* Called from RCU critical section. */
2812 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2813 const void *buf, hwaddr len)
2814 {
2815 hwaddr l;
2816 hwaddr addr1;
2817 MemoryRegion *mr;
2818 MemTxResult result = MEMTX_OK;
2819
2820 l = len;
2821 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2822 result = flatview_write_continue(fv, addr, attrs, buf, len,
2823 addr1, l, mr);
2824
2825 return result;
2826 }
2827
2828 /* Called within RCU critical section. */
2829 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2830 MemTxAttrs attrs, void *ptr,
2831 hwaddr len, hwaddr addr1, hwaddr l,
2832 MemoryRegion *mr)
2833 {
2834 uint8_t *ram_ptr;
2835 uint64_t val;
2836 MemTxResult result = MEMTX_OK;
2837 bool release_lock = false;
2838 uint8_t *buf = ptr;
2839
2840 fuzz_dma_read_cb(addr, len, mr);
2841 for (;;) {
2842 if (!memory_access_is_direct(mr, false)) {
2843 /* I/O case */
2844 release_lock |= prepare_mmio_access(mr);
2845 l = memory_access_size(mr, l, addr1);
2846 result |= memory_region_dispatch_read(mr, addr1, &val,
2847 size_memop(l), attrs);
2848 stn_he_p(buf, l, val);
2849 } else {
2850 /* RAM case */
2851 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2852 memcpy(buf, ram_ptr, l);
2853 }
2854
2855 if (release_lock) {
2856 qemu_mutex_unlock_iothread();
2857 release_lock = false;
2858 }
2859
2860 len -= l;
2861 buf += l;
2862 addr += l;
2863
2864 if (!len) {
2865 break;
2866 }
2867
2868 l = len;
2869 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2870 }
2871
2872 return result;
2873 }
2874
2875 /* Called from RCU critical section. */
2876 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2877 MemTxAttrs attrs, void *buf, hwaddr len)
2878 {
2879 hwaddr l;
2880 hwaddr addr1;
2881 MemoryRegion *mr;
2882
2883 l = len;
2884 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2885 return flatview_read_continue(fv, addr, attrs, buf, len,
2886 addr1, l, mr);
2887 }
2888
2889 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2890 MemTxAttrs attrs, void *buf, hwaddr len)
2891 {
2892 MemTxResult result = MEMTX_OK;
2893 FlatView *fv;
2894
2895 if (len > 0) {
2896 RCU_READ_LOCK_GUARD();
2897 fv = address_space_to_flatview(as);
2898 result = flatview_read(fv, addr, attrs, buf, len);
2899 }
2900
2901 return result;
2902 }
2903
2904 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2905 MemTxAttrs attrs,
2906 const void *buf, hwaddr len)
2907 {
2908 MemTxResult result = MEMTX_OK;
2909 FlatView *fv;
2910
2911 if (len > 0) {
2912 RCU_READ_LOCK_GUARD();
2913 fv = address_space_to_flatview(as);
2914 result = flatview_write(fv, addr, attrs, buf, len);
2915 }
2916
2917 return result;
2918 }
2919
2920 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2921 void *buf, hwaddr len, bool is_write)
2922 {
2923 if (is_write) {
2924 return address_space_write(as, addr, attrs, buf, len);
2925 } else {
2926 return address_space_read_full(as, addr, attrs, buf, len);
2927 }
2928 }
2929
2930 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2931 uint8_t c, hwaddr len, MemTxAttrs attrs)
2932 {
2933 #define FILLBUF_SIZE 512
2934 uint8_t fillbuf[FILLBUF_SIZE];
2935 int l;
2936 MemTxResult error = MEMTX_OK;
2937
2938 memset(fillbuf, c, FILLBUF_SIZE);
2939 while (len > 0) {
2940 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2941 error |= address_space_write(as, addr, attrs, fillbuf, l);
2942 len -= l;
2943 addr += l;
2944 }
2945
2946 return error;
2947 }
2948
2949 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2950 hwaddr len, bool is_write)
2951 {
2952 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2953 buf, len, is_write);
2954 }
2955
2956 enum write_rom_type {
2957 WRITE_DATA,
2958 FLUSH_CACHE,
2959 };
2960
2961 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2962 hwaddr addr,
2963 MemTxAttrs attrs,
2964 const void *ptr,
2965 hwaddr len,
2966 enum write_rom_type type)
2967 {
2968 hwaddr l;
2969 uint8_t *ram_ptr;
2970 hwaddr addr1;
2971 MemoryRegion *mr;
2972 const uint8_t *buf = ptr;
2973
2974 RCU_READ_LOCK_GUARD();
2975 while (len > 0) {
2976 l = len;
2977 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2978
2979 if (!(memory_region_is_ram(mr) ||
2980 memory_region_is_romd(mr))) {
2981 l = memory_access_size(mr, l, addr1);
2982 } else {
2983 /* ROM/RAM case */
2984 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2985 switch (type) {
2986 case WRITE_DATA:
2987 memcpy(ram_ptr, buf, l);
2988 invalidate_and_set_dirty(mr, addr1, l);
2989 break;
2990 case FLUSH_CACHE:
2991 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2992 break;
2993 }
2994 }
2995 len -= l;
2996 buf += l;
2997 addr += l;
2998 }
2999 return MEMTX_OK;
3000 }
3001
3002 /* used for ROM loading : can write in RAM and ROM */
3003 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3004 MemTxAttrs attrs,
3005 const void *buf, hwaddr len)
3006 {
3007 return address_space_write_rom_internal(as, addr, attrs,
3008 buf, len, WRITE_DATA);
3009 }
3010
3011 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3012 {
3013 /*
3014 * This function should do the same thing as an icache flush that was
3015 * triggered from within the guest. For TCG we are always cache coherent,
3016 * so there is no need to flush anything. For KVM / Xen we need to flush
3017 * the host's instruction cache at least.
3018 */
3019 if (tcg_enabled()) {
3020 return;
3021 }
3022
3023 address_space_write_rom_internal(&address_space_memory,
3024 start, MEMTXATTRS_UNSPECIFIED,
3025 NULL, len, FLUSH_CACHE);
3026 }
3027
3028 typedef struct {
3029 MemoryRegion *mr;
3030 void *buffer;
3031 hwaddr addr;
3032 hwaddr len;
3033 bool in_use;
3034 } BounceBuffer;
3035
3036 static BounceBuffer bounce;
3037
3038 typedef struct MapClient {
3039 QEMUBH *bh;
3040 QLIST_ENTRY(MapClient) link;
3041 } MapClient;
3042
3043 QemuMutex map_client_list_lock;
3044 static QLIST_HEAD(, MapClient) map_client_list
3045 = QLIST_HEAD_INITIALIZER(map_client_list);
3046
3047 static void cpu_unregister_map_client_do(MapClient *client)
3048 {
3049 QLIST_REMOVE(client, link);
3050 g_free(client);
3051 }
3052
3053 static void cpu_notify_map_clients_locked(void)
3054 {
3055 MapClient *client;
3056
3057 while (!QLIST_EMPTY(&map_client_list)) {
3058 client = QLIST_FIRST(&map_client_list);
3059 qemu_bh_schedule(client->bh);
3060 cpu_unregister_map_client_do(client);
3061 }
3062 }
3063
3064 void cpu_register_map_client(QEMUBH *bh)
3065 {
3066 MapClient *client = g_malloc(sizeof(*client));
3067
3068 qemu_mutex_lock(&map_client_list_lock);
3069 client->bh = bh;
3070 QLIST_INSERT_HEAD(&map_client_list, client, link);
3071 if (!qatomic_read(&bounce.in_use)) {
3072 cpu_notify_map_clients_locked();
3073 }
3074 qemu_mutex_unlock(&map_client_list_lock);
3075 }
3076
3077 void cpu_exec_init_all(void)
3078 {
3079 qemu_mutex_init(&ram_list.mutex);
3080 /* The data structures we set up here depend on knowing the page size,
3081 * so no more changes can be made after this point.
3082 * In an ideal world, nothing we did before we had finished the
3083 * machine setup would care about the target page size, and we could
3084 * do this much later, rather than requiring board models to state
3085 * up front what their requirements are.
3086 */
3087 finalize_target_page_bits();
3088 io_mem_init();
3089 memory_map_init();
3090 qemu_mutex_init(&map_client_list_lock);
3091 }
3092
3093 void cpu_unregister_map_client(QEMUBH *bh)
3094 {
3095 MapClient *client;
3096
3097 qemu_mutex_lock(&map_client_list_lock);
3098 QLIST_FOREACH(client, &map_client_list, link) {
3099 if (client->bh == bh) {
3100 cpu_unregister_map_client_do(client);
3101 break;
3102 }
3103 }
3104 qemu_mutex_unlock(&map_client_list_lock);
3105 }
3106
3107 static void cpu_notify_map_clients(void)
3108 {
3109 qemu_mutex_lock(&map_client_list_lock);
3110 cpu_notify_map_clients_locked();
3111 qemu_mutex_unlock(&map_client_list_lock);
3112 }
3113
3114 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3115 bool is_write, MemTxAttrs attrs)
3116 {
3117 MemoryRegion *mr;
3118 hwaddr l, xlat;
3119
3120 while (len > 0) {
3121 l = len;
3122 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3123 if (!memory_access_is_direct(mr, is_write)) {
3124 l = memory_access_size(mr, l, addr);
3125 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3126 return false;
3127 }
3128 }
3129
3130 len -= l;
3131 addr += l;
3132 }
3133 return true;
3134 }
3135
3136 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3137 hwaddr len, bool is_write,
3138 MemTxAttrs attrs)
3139 {
3140 FlatView *fv;
3141 bool result;
3142
3143 RCU_READ_LOCK_GUARD();
3144 fv = address_space_to_flatview(as);
3145 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3146 return result;
3147 }
3148
3149 static hwaddr
3150 flatview_extend_translation(FlatView *fv, hwaddr addr,
3151 hwaddr target_len,
3152 MemoryRegion *mr, hwaddr base, hwaddr len,
3153 bool is_write, MemTxAttrs attrs)
3154 {
3155 hwaddr done = 0;
3156 hwaddr xlat;
3157 MemoryRegion *this_mr;
3158
3159 for (;;) {
3160 target_len -= len;
3161 addr += len;
3162 done += len;
3163 if (target_len == 0) {
3164 return done;
3165 }
3166
3167 len = target_len;
3168 this_mr = flatview_translate(fv, addr, &xlat,
3169 &len, is_write, attrs);
3170 if (this_mr != mr || xlat != base + done) {
3171 return done;
3172 }
3173 }
3174 }
3175
3176 /* Map a physical memory region into a host virtual address.
3177 * May map a subset of the requested range, given by and returned in *plen.
3178 * May return NULL if resources needed to perform the mapping are exhausted.
3179 * Use only for reads OR writes - not for read-modify-write operations.
3180 * Use cpu_register_map_client() to know when retrying the map operation is
3181 * likely to succeed.
3182 */
3183 void *address_space_map(AddressSpace *as,
3184 hwaddr addr,
3185 hwaddr *plen,
3186 bool is_write,
3187 MemTxAttrs attrs)
3188 {
3189 hwaddr len = *plen;
3190 hwaddr l, xlat;
3191 MemoryRegion *mr;
3192 void *ptr;
3193 FlatView *fv;
3194
3195 if (len == 0) {
3196 return NULL;
3197 }
3198
3199 l = len;
3200 RCU_READ_LOCK_GUARD();
3201 fv = address_space_to_flatview(as);
3202 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3203
3204 if (!memory_access_is_direct(mr, is_write)) {
3205 if (qatomic_xchg(&bounce.in_use, true)) {
3206 *plen = 0;
3207 return NULL;
3208 }
3209 /* Avoid unbounded allocations */
3210 l = MIN(l, TARGET_PAGE_SIZE);
3211 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3212 bounce.addr = addr;
3213 bounce.len = l;
3214
3215 memory_region_ref(mr);
3216 bounce.mr = mr;
3217 if (!is_write) {
3218 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3219 bounce.buffer, l);
3220 }
3221
3222 *plen = l;
3223 return bounce.buffer;
3224 }
3225
3226
3227 memory_region_ref(mr);
3228 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3229 l, is_write, attrs);
3230 fuzz_dma_read_cb(addr, *plen, mr);
3231 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3232
3233 return ptr;
3234 }
3235
3236 /* Unmaps a memory region previously mapped by address_space_map().
3237 * Will also mark the memory as dirty if is_write is true. access_len gives
3238 * the amount of memory that was actually read or written by the caller.
3239 */
3240 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3241 bool is_write, hwaddr access_len)
3242 {
3243 if (buffer != bounce.buffer) {
3244 MemoryRegion *mr;
3245 ram_addr_t addr1;
3246
3247 mr = memory_region_from_host(buffer, &addr1);
3248 assert(mr != NULL);
3249 if (is_write) {
3250 invalidate_and_set_dirty(mr, addr1, access_len);
3251 }
3252 if (xen_enabled()) {
3253 xen_invalidate_map_cache_entry(buffer);
3254 }
3255 memory_region_unref(mr);
3256 return;
3257 }
3258 if (is_write) {
3259 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3260 bounce.buffer, access_len);
3261 }
3262 qemu_vfree(bounce.buffer);
3263 bounce.buffer = NULL;
3264 memory_region_unref(bounce.mr);
3265 qatomic_mb_set(&bounce.in_use, false);
3266 cpu_notify_map_clients();
3267 }
3268
3269 void *cpu_physical_memory_map(hwaddr addr,
3270 hwaddr *plen,
3271 bool is_write)
3272 {
3273 return address_space_map(&address_space_memory, addr, plen, is_write,
3274 MEMTXATTRS_UNSPECIFIED);
3275 }
3276
3277 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3278 bool is_write, hwaddr access_len)
3279 {
3280 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3281 }
3282
3283 #define ARG1_DECL AddressSpace *as
3284 #define ARG1 as
3285 #define SUFFIX
3286 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3287 #define RCU_READ_LOCK(...) rcu_read_lock()
3288 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3289 #include "memory_ldst.c.inc"
3290
3291 int64_t address_space_cache_init(MemoryRegionCache *cache,
3292 AddressSpace *as,
3293 hwaddr addr,
3294 hwaddr len,
3295 bool is_write)
3296 {
3297 AddressSpaceDispatch *d;
3298 hwaddr l;
3299 MemoryRegion *mr;
3300 Int128 diff;
3301
3302 assert(len > 0);
3303
3304 l = len;
3305 cache->fv = address_space_get_flatview(as);
3306 d = flatview_to_dispatch(cache->fv);
3307 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3308
3309 /*
3310 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3311 * Take that into account to compute how many bytes are there between
3312 * cache->xlat and the end of the section.
3313 */
3314 diff = int128_sub(cache->mrs.size,
3315 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3316 l = int128_get64(int128_min(diff, int128_make64(l)));
3317
3318 mr = cache->mrs.mr;
3319 memory_region_ref(mr);
3320 if (memory_access_is_direct(mr, is_write)) {
3321 /* We don't care about the memory attributes here as we're only
3322 * doing this if we found actual RAM, which behaves the same
3323 * regardless of attributes; so UNSPECIFIED is fine.
3324 */
3325 l = flatview_extend_translation(cache->fv, addr, len, mr,
3326 cache->xlat, l, is_write,
3327 MEMTXATTRS_UNSPECIFIED);
3328 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3329 } else {
3330 cache->ptr = NULL;
3331 }
3332
3333 cache->len = l;
3334 cache->is_write = is_write;
3335 return l;
3336 }
3337
3338 void address_space_cache_invalidate(MemoryRegionCache *cache,
3339 hwaddr addr,
3340 hwaddr access_len)
3341 {
3342 assert(cache->is_write);
3343 if (likely(cache->ptr)) {
3344 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3345 }
3346 }
3347
3348 void address_space_cache_destroy(MemoryRegionCache *cache)
3349 {
3350 if (!cache->mrs.mr) {
3351 return;
3352 }
3353
3354 if (xen_enabled()) {
3355 xen_invalidate_map_cache_entry(cache->ptr);
3356 }
3357 memory_region_unref(cache->mrs.mr);
3358 flatview_unref(cache->fv);
3359 cache->mrs.mr = NULL;
3360 cache->fv = NULL;
3361 }
3362
3363 /* Called from RCU critical section. This function has the same
3364 * semantics as address_space_translate, but it only works on a
3365 * predefined range of a MemoryRegion that was mapped with
3366 * address_space_cache_init.
3367 */
3368 static inline MemoryRegion *address_space_translate_cached(
3369 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3370 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3371 {
3372 MemoryRegionSection section;
3373 MemoryRegion *mr;
3374 IOMMUMemoryRegion *iommu_mr;
3375 AddressSpace *target_as;
3376
3377 assert(!cache->ptr);
3378 *xlat = addr + cache->xlat;
3379
3380 mr = cache->mrs.mr;
3381 iommu_mr = memory_region_get_iommu(mr);
3382 if (!iommu_mr) {
3383 /* MMIO region. */
3384 return mr;
3385 }
3386
3387 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3388 NULL, is_write, true,
3389 &target_as, attrs);
3390 return section.mr;
3391 }
3392
3393 /* Called from RCU critical section. address_space_read_cached uses this
3394 * out of line function when the target is an MMIO or IOMMU region.
3395 */
3396 MemTxResult
3397 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3398 void *buf, hwaddr len)
3399 {
3400 hwaddr addr1, l;
3401 MemoryRegion *mr;
3402
3403 l = len;
3404 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3405 MEMTXATTRS_UNSPECIFIED);
3406 return flatview_read_continue(cache->fv,
3407 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3408 addr1, l, mr);
3409 }
3410
3411 /* Called from RCU critical section. address_space_write_cached uses this
3412 * out of line function when the target is an MMIO or IOMMU region.
3413 */
3414 MemTxResult
3415 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3416 const void *buf, hwaddr len)
3417 {
3418 hwaddr addr1, l;
3419 MemoryRegion *mr;
3420
3421 l = len;
3422 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3423 MEMTXATTRS_UNSPECIFIED);
3424 return flatview_write_continue(cache->fv,
3425 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3426 addr1, l, mr);
3427 }
3428
3429 #define ARG1_DECL MemoryRegionCache *cache
3430 #define ARG1 cache
3431 #define SUFFIX _cached_slow
3432 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3433 #define RCU_READ_LOCK() ((void)0)
3434 #define RCU_READ_UNLOCK() ((void)0)
3435 #include "memory_ldst.c.inc"
3436
3437 /* virtual memory access for debug (includes writing to ROM) */
3438 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3439 void *ptr, target_ulong len, bool is_write)
3440 {
3441 hwaddr phys_addr;
3442 target_ulong l, page;
3443 uint8_t *buf = ptr;
3444
3445 cpu_synchronize_state(cpu);
3446 while (len > 0) {
3447 int asidx;
3448 MemTxAttrs attrs;
3449 MemTxResult res;
3450
3451 page = addr & TARGET_PAGE_MASK;
3452 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3453 asidx = cpu_asidx_from_attrs(cpu, attrs);
3454 /* if no physical page mapped, return an error */
3455 if (phys_addr == -1)
3456 return -1;
3457 l = (page + TARGET_PAGE_SIZE) - addr;
3458 if (l > len)
3459 l = len;
3460 phys_addr += (addr & ~TARGET_PAGE_MASK);
3461 if (is_write) {
3462 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3463 attrs, buf, l);
3464 } else {
3465 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3466 attrs, buf, l);
3467 }
3468 if (res != MEMTX_OK) {
3469 return -1;
3470 }
3471 len -= l;
3472 buf += l;
3473 addr += l;
3474 }
3475 return 0;
3476 }
3477
3478 /*
3479 * Allows code that needs to deal with migration bitmaps etc to still be built
3480 * target independent.
3481 */
3482 size_t qemu_target_page_size(void)
3483 {
3484 return TARGET_PAGE_SIZE;
3485 }
3486
3487 int qemu_target_page_bits(void)
3488 {
3489 return TARGET_PAGE_BITS;
3490 }
3491
3492 int qemu_target_page_bits_min(void)
3493 {
3494 return TARGET_PAGE_BITS_MIN;
3495 }
3496
3497 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3498 {
3499 MemoryRegion*mr;
3500 hwaddr l = 1;
3501 bool res;
3502
3503 RCU_READ_LOCK_GUARD();
3504 mr = address_space_translate(&address_space_memory,
3505 phys_addr, &phys_addr, &l, false,
3506 MEMTXATTRS_UNSPECIFIED);
3507
3508 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3509 return res;
3510 }
3511
3512 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3513 {
3514 RAMBlock *block;
3515 int ret = 0;
3516
3517 RCU_READ_LOCK_GUARD();
3518 RAMBLOCK_FOREACH(block) {
3519 ret = func(block, opaque);
3520 if (ret) {
3521 break;
3522 }
3523 }
3524 return ret;
3525 }
3526
3527 /*
3528 * Unmap pages of memory from start to start+length such that
3529 * they a) read as 0, b) Trigger whatever fault mechanism
3530 * the OS provides for postcopy.
3531 * The pages must be unmapped by the end of the function.
3532 * Returns: 0 on success, none-0 on failure
3533 *
3534 */
3535 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3536 {
3537 int ret = -1;
3538
3539 uint8_t *host_startaddr = rb->host + start;
3540
3541 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3542 error_report("ram_block_discard_range: Unaligned start address: %p",
3543 host_startaddr);
3544 goto err;
3545 }
3546
3547 if ((start + length) <= rb->max_length) {
3548 bool need_madvise, need_fallocate;
3549 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3550 error_report("ram_block_discard_range: Unaligned length: %zx",
3551 length);
3552 goto err;
3553 }
3554
3555 errno = ENOTSUP; /* If we are missing MADVISE etc */
3556
3557 /* The logic here is messy;
3558 * madvise DONTNEED fails for hugepages
3559 * fallocate works on hugepages and shmem
3560 * shared anonymous memory requires madvise REMOVE
3561 */
3562 need_madvise = (rb->page_size == qemu_host_page_size);
3563 need_fallocate = rb->fd != -1;
3564 if (need_fallocate) {
3565 /* For a file, this causes the area of the file to be zero'd
3566 * if read, and for hugetlbfs also causes it to be unmapped
3567 * so a userfault will trigger.
3568 */
3569 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3570 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3571 start, length);
3572 if (ret) {
3573 ret = -errno;
3574 error_report("ram_block_discard_range: Failed to fallocate "
3575 "%s:%" PRIx64 " +%zx (%d)",
3576 rb->idstr, start, length, ret);
3577 goto err;
3578 }
3579 #else
3580 ret = -ENOSYS;
3581 error_report("ram_block_discard_range: fallocate not available/file"
3582 "%s:%" PRIx64 " +%zx (%d)",
3583 rb->idstr, start, length, ret);
3584 goto err;
3585 #endif
3586 }
3587 if (need_madvise) {
3588 /* For normal RAM this causes it to be unmapped,
3589 * for shared memory it causes the local mapping to disappear
3590 * and to fall back on the file contents (which we just
3591 * fallocate'd away).
3592 */
3593 #if defined(CONFIG_MADVISE)
3594 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3595 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3596 } else {
3597 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3598 }
3599 if (ret) {
3600 ret = -errno;
3601 error_report("ram_block_discard_range: Failed to discard range "
3602 "%s:%" PRIx64 " +%zx (%d)",
3603 rb->idstr, start, length, ret);
3604 goto err;
3605 }
3606 #else
3607 ret = -ENOSYS;
3608 error_report("ram_block_discard_range: MADVISE not available"
3609 "%s:%" PRIx64 " +%zx (%d)",
3610 rb->idstr, start, length, ret);
3611 goto err;
3612 #endif
3613 }
3614 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3615 need_madvise, need_fallocate, ret);
3616 } else {
3617 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3618 "/%zx/" RAM_ADDR_FMT")",
3619 rb->idstr, start, length, rb->max_length);
3620 }
3621
3622 err:
3623 return ret;
3624 }
3625
3626 bool ramblock_is_pmem(RAMBlock *rb)
3627 {
3628 return rb->flags & RAM_PMEM;
3629 }
3630
3631 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3632 {
3633 if (start == end - 1) {
3634 qemu_printf("\t%3d ", start);
3635 } else {
3636 qemu_printf("\t%3d..%-3d ", start, end - 1);
3637 }
3638 qemu_printf(" skip=%d ", skip);
3639 if (ptr == PHYS_MAP_NODE_NIL) {
3640 qemu_printf(" ptr=NIL");
3641 } else if (!skip) {
3642 qemu_printf(" ptr=#%d", ptr);
3643 } else {
3644 qemu_printf(" ptr=[%d]", ptr);
3645 }
3646 qemu_printf("\n");
3647 }
3648
3649 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3650 int128_sub((size), int128_one())) : 0)
3651
3652 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3653 {
3654 int i;
3655
3656 qemu_printf(" Dispatch\n");
3657 qemu_printf(" Physical sections\n");
3658
3659 for (i = 0; i < d->map.sections_nb; ++i) {
3660 MemoryRegionSection *s = d->map.sections + i;
3661 const char *names[] = { " [unassigned]", " [not dirty]",
3662 " [ROM]", " [watch]" };
3663
3664 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3665 " %s%s%s%s%s",
3666 i,
3667 s->offset_within_address_space,
3668 s->offset_within_address_space + MR_SIZE(s->mr->size),
3669 s->mr->name ? s->mr->name : "(noname)",
3670 i < ARRAY_SIZE(names) ? names[i] : "",
3671 s->mr == root ? " [ROOT]" : "",
3672 s == d->mru_section ? " [MRU]" : "",
3673 s->mr->is_iommu ? " [iommu]" : "");
3674
3675 if (s->mr->alias) {
3676 qemu_printf(" alias=%s", s->mr->alias->name ?
3677 s->mr->alias->name : "noname");
3678 }
3679 qemu_printf("\n");
3680 }
3681
3682 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3683 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3684 for (i = 0; i < d->map.nodes_nb; ++i) {
3685 int j, jprev;
3686 PhysPageEntry prev;
3687 Node *n = d->map.nodes + i;
3688
3689 qemu_printf(" [%d]\n", i);
3690
3691 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3692 PhysPageEntry *pe = *n + j;
3693
3694 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3695 continue;
3696 }
3697
3698 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3699
3700 jprev = j;
3701 prev = *pe;
3702 }
3703
3704 if (jprev != ARRAY_SIZE(*n)) {
3705 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3706 }
3707 }
3708 }
3709
3710 /* Require any discards to work. */
3711 static unsigned int ram_block_discard_required_cnt;
3712 /* Require only coordinated discards to work. */
3713 static unsigned int ram_block_coordinated_discard_required_cnt;
3714 /* Disable any discards. */
3715 static unsigned int ram_block_discard_disabled_cnt;
3716 /* Disable only uncoordinated discards. */
3717 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3718 static QemuMutex ram_block_discard_disable_mutex;
3719
3720 static void ram_block_discard_disable_mutex_lock(void)
3721 {
3722 static gsize initialized;
3723
3724 if (g_once_init_enter(&initialized)) {
3725 qemu_mutex_init(&ram_block_discard_disable_mutex);
3726 g_once_init_leave(&initialized, 1);
3727 }
3728 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3729 }
3730
3731 static void ram_block_discard_disable_mutex_unlock(void)
3732 {
3733 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3734 }
3735
3736 int ram_block_discard_disable(bool state)
3737 {
3738 int ret = 0;
3739
3740 ram_block_discard_disable_mutex_lock();
3741 if (!state) {
3742 ram_block_discard_disabled_cnt--;
3743 } else if (ram_block_discard_required_cnt ||
3744 ram_block_coordinated_discard_required_cnt) {
3745 ret = -EBUSY;
3746 } else {
3747 ram_block_discard_disabled_cnt++;
3748 }
3749 ram_block_discard_disable_mutex_unlock();
3750 return ret;
3751 }
3752
3753 int ram_block_uncoordinated_discard_disable(bool state)
3754 {
3755 int ret = 0;
3756
3757 ram_block_discard_disable_mutex_lock();
3758 if (!state) {
3759 ram_block_uncoordinated_discard_disabled_cnt--;
3760 } else if (ram_block_discard_required_cnt) {
3761 ret = -EBUSY;
3762 } else {
3763 ram_block_uncoordinated_discard_disabled_cnt++;
3764 }
3765 ram_block_discard_disable_mutex_unlock();
3766 return ret;
3767 }
3768
3769 int ram_block_discard_require(bool state)
3770 {
3771 int ret = 0;
3772
3773 ram_block_discard_disable_mutex_lock();
3774 if (!state) {
3775 ram_block_discard_required_cnt--;
3776 } else if (ram_block_discard_disabled_cnt ||
3777 ram_block_uncoordinated_discard_disabled_cnt) {
3778 ret = -EBUSY;
3779 } else {
3780 ram_block_discard_required_cnt++;
3781 }
3782 ram_block_discard_disable_mutex_unlock();
3783 return ret;
3784 }
3785
3786 int ram_block_coordinated_discard_require(bool state)
3787 {
3788 int ret = 0;
3789
3790 ram_block_discard_disable_mutex_lock();
3791 if (!state) {
3792 ram_block_coordinated_discard_required_cnt--;
3793 } else if (ram_block_discard_disabled_cnt) {
3794 ret = -EBUSY;
3795 } else {
3796 ram_block_coordinated_discard_required_cnt++;
3797 }
3798 ram_block_discard_disable_mutex_unlock();
3799 return ret;
3800 }
3801
3802 bool ram_block_discard_is_disabled(void)
3803 {
3804 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3805 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3806 }
3807
3808 bool ram_block_discard_is_required(void)
3809 {
3810 return qatomic_read(&ram_block_discard_required_cnt) ||
3811 qatomic_read(&ram_block_coordinated_discard_required_cnt);
3812 }