]> git.proxmox.com Git - mirror_qemu.git/blob - softmmu_template.h
memory: Replace io_mem_read/write with memory_region_dispatch_read/write
[mirror_qemu.git] / softmmu_template.h
1 /*
2 * Software MMU support
3 *
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
6 *
7 * Included from target op helpers and exec.c.
8 *
9 * Copyright (c) 2003 Fabrice Bellard
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24 #include "qemu/timer.h"
25 #include "exec/address-spaces.h"
26 #include "exec/memory.h"
27
28 #define DATA_SIZE (1 << SHIFT)
29
30 #if DATA_SIZE == 8
31 #define SUFFIX q
32 #define LSUFFIX q
33 #define SDATA_TYPE int64_t
34 #define DATA_TYPE uint64_t
35 #elif DATA_SIZE == 4
36 #define SUFFIX l
37 #define LSUFFIX l
38 #define SDATA_TYPE int32_t
39 #define DATA_TYPE uint32_t
40 #elif DATA_SIZE == 2
41 #define SUFFIX w
42 #define LSUFFIX uw
43 #define SDATA_TYPE int16_t
44 #define DATA_TYPE uint16_t
45 #elif DATA_SIZE == 1
46 #define SUFFIX b
47 #define LSUFFIX ub
48 #define SDATA_TYPE int8_t
49 #define DATA_TYPE uint8_t
50 #else
51 #error unsupported data size
52 #endif
53
54
55 /* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61 # define WORD_TYPE DATA_TYPE
62 # define USUFFIX SUFFIX
63 #else
64 # define WORD_TYPE tcg_target_ulong
65 # define USUFFIX glue(u, SUFFIX)
66 # define SSUFFIX glue(s, SUFFIX)
67 #endif
68
69 #ifdef SOFTMMU_CODE_ACCESS
70 #define READ_ACCESS_TYPE MMU_INST_FETCH
71 #define ADDR_READ addr_code
72 #else
73 #define READ_ACCESS_TYPE MMU_DATA_LOAD
74 #define ADDR_READ addr_read
75 #endif
76
77 #if DATA_SIZE == 8
78 # define BSWAP(X) bswap64(X)
79 #elif DATA_SIZE == 4
80 # define BSWAP(X) bswap32(X)
81 #elif DATA_SIZE == 2
82 # define BSWAP(X) bswap16(X)
83 #else
84 # define BSWAP(X) (X)
85 #endif
86
87 #ifdef TARGET_WORDS_BIGENDIAN
88 # define TGT_BE(X) (X)
89 # define TGT_LE(X) BSWAP(X)
90 #else
91 # define TGT_BE(X) BSWAP(X)
92 # define TGT_LE(X) (X)
93 #endif
94
95 #if DATA_SIZE == 1
96 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97 # define helper_be_ld_name helper_le_ld_name
98 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99 # define helper_be_lds_name helper_le_lds_name
100 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101 # define helper_be_st_name helper_le_st_name
102 #else
103 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109 #endif
110
111 #ifdef TARGET_WORDS_BIGENDIAN
112 # define helper_te_ld_name helper_be_ld_name
113 # define helper_te_st_name helper_be_st_name
114 #else
115 # define helper_te_ld_name helper_le_ld_name
116 # define helper_te_st_name helper_le_st_name
117 #endif
118
119 /* macro to check the victim tlb */
120 #define VICTIM_TLB_HIT(ty) \
121 ({ \
122 /* we are about to do a page table walk. our last hope is the \
123 * victim tlb. try to refill from the victim tlb before walking the \
124 * page table. */ \
125 int vidx; \
126 hwaddr tmpiotlb; \
127 CPUTLBEntry tmptlb; \
128 for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
129 if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
130 /* found entry in victim tlb, swap tlb and iotlb */ \
131 tmptlb = env->tlb_table[mmu_idx][index]; \
132 env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
133 env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
134 tmpiotlb = env->iotlb[mmu_idx][index]; \
135 env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
136 env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
137 break; \
138 } \
139 } \
140 /* return true when there is a vtlb hit, i.e. vidx >=0 */ \
141 vidx >= 0; \
142 })
143
144 #ifndef SOFTMMU_CODE_ACCESS
145 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
146 hwaddr physaddr,
147 target_ulong addr,
148 uintptr_t retaddr)
149 {
150 uint64_t val;
151 CPUState *cpu = ENV_GET_CPU(env);
152 MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
153
154 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
155 cpu->mem_io_pc = retaddr;
156 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
157 cpu_io_recompile(cpu, retaddr);
158 }
159
160 cpu->mem_io_vaddr = addr;
161 memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
162 MEMTXATTRS_UNSPECIFIED);
163 return val;
164 }
165 #endif
166
167 #ifdef SOFTMMU_CODE_ACCESS
168 static __attribute__((unused))
169 #endif
170 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
171 uintptr_t retaddr)
172 {
173 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
174 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
175 uintptr_t haddr;
176 DATA_TYPE res;
177
178 /* Adjust the given return address. */
179 retaddr -= GETPC_ADJ;
180
181 /* If the TLB entry is for a different page, reload and try again. */
182 if ((addr & TARGET_PAGE_MASK)
183 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
184 #ifdef ALIGNED_ONLY
185 if ((addr & (DATA_SIZE - 1)) != 0) {
186 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
187 mmu_idx, retaddr);
188 }
189 #endif
190 if (!VICTIM_TLB_HIT(ADDR_READ)) {
191 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
192 mmu_idx, retaddr);
193 }
194 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
195 }
196
197 /* Handle an IO access. */
198 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
199 hwaddr ioaddr;
200 if ((addr & (DATA_SIZE - 1)) != 0) {
201 goto do_unaligned_access;
202 }
203 ioaddr = env->iotlb[mmu_idx][index];
204
205 /* ??? Note that the io helpers always read data in the target
206 byte ordering. We should push the LE/BE request down into io. */
207 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
208 res = TGT_LE(res);
209 return res;
210 }
211
212 /* Handle slow unaligned access (it spans two pages or IO). */
213 if (DATA_SIZE > 1
214 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
215 >= TARGET_PAGE_SIZE)) {
216 target_ulong addr1, addr2;
217 DATA_TYPE res1, res2;
218 unsigned shift;
219 do_unaligned_access:
220 #ifdef ALIGNED_ONLY
221 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
222 mmu_idx, retaddr);
223 #endif
224 addr1 = addr & ~(DATA_SIZE - 1);
225 addr2 = addr1 + DATA_SIZE;
226 /* Note the adjustment at the beginning of the function.
227 Undo that for the recursion. */
228 res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
229 res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
230 shift = (addr & (DATA_SIZE - 1)) * 8;
231
232 /* Little-endian combine. */
233 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
234 return res;
235 }
236
237 /* Handle aligned access or unaligned access in the same page. */
238 #ifdef ALIGNED_ONLY
239 if ((addr & (DATA_SIZE - 1)) != 0) {
240 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
241 mmu_idx, retaddr);
242 }
243 #endif
244
245 haddr = addr + env->tlb_table[mmu_idx][index].addend;
246 #if DATA_SIZE == 1
247 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
248 #else
249 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
250 #endif
251 return res;
252 }
253
254 #if DATA_SIZE > 1
255 #ifdef SOFTMMU_CODE_ACCESS
256 static __attribute__((unused))
257 #endif
258 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
259 uintptr_t retaddr)
260 {
261 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
262 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
263 uintptr_t haddr;
264 DATA_TYPE res;
265
266 /* Adjust the given return address. */
267 retaddr -= GETPC_ADJ;
268
269 /* If the TLB entry is for a different page, reload and try again. */
270 if ((addr & TARGET_PAGE_MASK)
271 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
272 #ifdef ALIGNED_ONLY
273 if ((addr & (DATA_SIZE - 1)) != 0) {
274 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
275 mmu_idx, retaddr);
276 }
277 #endif
278 if (!VICTIM_TLB_HIT(ADDR_READ)) {
279 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
280 mmu_idx, retaddr);
281 }
282 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
283 }
284
285 /* Handle an IO access. */
286 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
287 hwaddr ioaddr;
288 if ((addr & (DATA_SIZE - 1)) != 0) {
289 goto do_unaligned_access;
290 }
291 ioaddr = env->iotlb[mmu_idx][index];
292
293 /* ??? Note that the io helpers always read data in the target
294 byte ordering. We should push the LE/BE request down into io. */
295 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
296 res = TGT_BE(res);
297 return res;
298 }
299
300 /* Handle slow unaligned access (it spans two pages or IO). */
301 if (DATA_SIZE > 1
302 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
303 >= TARGET_PAGE_SIZE)) {
304 target_ulong addr1, addr2;
305 DATA_TYPE res1, res2;
306 unsigned shift;
307 do_unaligned_access:
308 #ifdef ALIGNED_ONLY
309 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
310 mmu_idx, retaddr);
311 #endif
312 addr1 = addr & ~(DATA_SIZE - 1);
313 addr2 = addr1 + DATA_SIZE;
314 /* Note the adjustment at the beginning of the function.
315 Undo that for the recursion. */
316 res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
317 res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
318 shift = (addr & (DATA_SIZE - 1)) * 8;
319
320 /* Big-endian combine. */
321 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
322 return res;
323 }
324
325 /* Handle aligned access or unaligned access in the same page. */
326 #ifdef ALIGNED_ONLY
327 if ((addr & (DATA_SIZE - 1)) != 0) {
328 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
329 mmu_idx, retaddr);
330 }
331 #endif
332
333 haddr = addr + env->tlb_table[mmu_idx][index].addend;
334 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
335 return res;
336 }
337 #endif /* DATA_SIZE > 1 */
338
339 DATA_TYPE
340 glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
341 int mmu_idx)
342 {
343 return helper_te_ld_name (env, addr, mmu_idx, GETRA());
344 }
345
346 #ifndef SOFTMMU_CODE_ACCESS
347
348 /* Provide signed versions of the load routines as well. We can of course
349 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
350 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
351 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
352 int mmu_idx, uintptr_t retaddr)
353 {
354 return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
355 }
356
357 # if DATA_SIZE > 1
358 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
359 int mmu_idx, uintptr_t retaddr)
360 {
361 return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
362 }
363 # endif
364 #endif
365
366 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
367 hwaddr physaddr,
368 DATA_TYPE val,
369 target_ulong addr,
370 uintptr_t retaddr)
371 {
372 CPUState *cpu = ENV_GET_CPU(env);
373 MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
374
375 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
376 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
377 cpu_io_recompile(cpu, retaddr);
378 }
379
380 cpu->mem_io_vaddr = addr;
381 cpu->mem_io_pc = retaddr;
382 memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
383 MEMTXATTRS_UNSPECIFIED);
384 }
385
386 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
387 int mmu_idx, uintptr_t retaddr)
388 {
389 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
390 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
391 uintptr_t haddr;
392
393 /* Adjust the given return address. */
394 retaddr -= GETPC_ADJ;
395
396 /* If the TLB entry is for a different page, reload and try again. */
397 if ((addr & TARGET_PAGE_MASK)
398 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
399 #ifdef ALIGNED_ONLY
400 if ((addr & (DATA_SIZE - 1)) != 0) {
401 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
402 mmu_idx, retaddr);
403 }
404 #endif
405 if (!VICTIM_TLB_HIT(addr_write)) {
406 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
407 }
408 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
409 }
410
411 /* Handle an IO access. */
412 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
413 hwaddr ioaddr;
414 if ((addr & (DATA_SIZE - 1)) != 0) {
415 goto do_unaligned_access;
416 }
417 ioaddr = env->iotlb[mmu_idx][index];
418
419 /* ??? Note that the io helpers always read data in the target
420 byte ordering. We should push the LE/BE request down into io. */
421 val = TGT_LE(val);
422 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
423 return;
424 }
425
426 /* Handle slow unaligned access (it spans two pages or IO). */
427 if (DATA_SIZE > 1
428 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
429 >= TARGET_PAGE_SIZE)) {
430 int i;
431 do_unaligned_access:
432 #ifdef ALIGNED_ONLY
433 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
434 mmu_idx, retaddr);
435 #endif
436 /* XXX: not efficient, but simple */
437 /* Note: relies on the fact that tlb_fill() does not remove the
438 * previous page from the TLB cache. */
439 for (i = DATA_SIZE - 1; i >= 0; i--) {
440 /* Little-endian extract. */
441 uint8_t val8 = val >> (i * 8);
442 /* Note the adjustment at the beginning of the function.
443 Undo that for the recursion. */
444 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
445 mmu_idx, retaddr + GETPC_ADJ);
446 }
447 return;
448 }
449
450 /* Handle aligned access or unaligned access in the same page. */
451 #ifdef ALIGNED_ONLY
452 if ((addr & (DATA_SIZE - 1)) != 0) {
453 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
454 mmu_idx, retaddr);
455 }
456 #endif
457
458 haddr = addr + env->tlb_table[mmu_idx][index].addend;
459 #if DATA_SIZE == 1
460 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
461 #else
462 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
463 #endif
464 }
465
466 #if DATA_SIZE > 1
467 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
468 int mmu_idx, uintptr_t retaddr)
469 {
470 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
471 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
472 uintptr_t haddr;
473
474 /* Adjust the given return address. */
475 retaddr -= GETPC_ADJ;
476
477 /* If the TLB entry is for a different page, reload and try again. */
478 if ((addr & TARGET_PAGE_MASK)
479 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
480 #ifdef ALIGNED_ONLY
481 if ((addr & (DATA_SIZE - 1)) != 0) {
482 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
483 mmu_idx, retaddr);
484 }
485 #endif
486 if (!VICTIM_TLB_HIT(addr_write)) {
487 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
488 }
489 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
490 }
491
492 /* Handle an IO access. */
493 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
494 hwaddr ioaddr;
495 if ((addr & (DATA_SIZE - 1)) != 0) {
496 goto do_unaligned_access;
497 }
498 ioaddr = env->iotlb[mmu_idx][index];
499
500 /* ??? Note that the io helpers always read data in the target
501 byte ordering. We should push the LE/BE request down into io. */
502 val = TGT_BE(val);
503 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
504 return;
505 }
506
507 /* Handle slow unaligned access (it spans two pages or IO). */
508 if (DATA_SIZE > 1
509 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
510 >= TARGET_PAGE_SIZE)) {
511 int i;
512 do_unaligned_access:
513 #ifdef ALIGNED_ONLY
514 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
515 mmu_idx, retaddr);
516 #endif
517 /* XXX: not efficient, but simple */
518 /* Note: relies on the fact that tlb_fill() does not remove the
519 * previous page from the TLB cache. */
520 for (i = DATA_SIZE - 1; i >= 0; i--) {
521 /* Big-endian extract. */
522 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
523 /* Note the adjustment at the beginning of the function.
524 Undo that for the recursion. */
525 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
526 mmu_idx, retaddr + GETPC_ADJ);
527 }
528 return;
529 }
530
531 /* Handle aligned access or unaligned access in the same page. */
532 #ifdef ALIGNED_ONLY
533 if ((addr & (DATA_SIZE - 1)) != 0) {
534 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
535 mmu_idx, retaddr);
536 }
537 #endif
538
539 haddr = addr + env->tlb_table[mmu_idx][index].addend;
540 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
541 }
542 #endif /* DATA_SIZE > 1 */
543
544 void
545 glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
546 DATA_TYPE val, int mmu_idx)
547 {
548 helper_te_st_name(env, addr, val, mmu_idx, GETRA());
549 }
550
551 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
552
553 #undef READ_ACCESS_TYPE
554 #undef SHIFT
555 #undef DATA_TYPE
556 #undef SUFFIX
557 #undef LSUFFIX
558 #undef DATA_SIZE
559 #undef ADDR_READ
560 #undef WORD_TYPE
561 #undef SDATA_TYPE
562 #undef USUFFIX
563 #undef SSUFFIX
564 #undef BSWAP
565 #undef TGT_BE
566 #undef TGT_LE
567 #undef CPU_BE
568 #undef CPU_LE
569 #undef helper_le_ld_name
570 #undef helper_be_ld_name
571 #undef helper_le_lds_name
572 #undef helper_be_lds_name
573 #undef helper_le_st_name
574 #undef helper_be_st_name
575 #undef helper_te_ld_name
576 #undef helper_te_st_name