]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - sound/aoa/codecs/tas.c
Merge tag 'ecryptfs-3.19-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / sound / aoa / codecs / tas.c
1 /*
2 * Apple Onboard Audio driver for tas codec
3 *
4 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * GPL v2, can be found in COPYING.
7 *
8 * Open questions:
9 * - How to distinguish between 3004 and versions?
10 *
11 * FIXMEs:
12 * - This codec driver doesn't honour the 'connected'
13 * property of the aoa_codec struct, hence if
14 * it is used in machines where not everything is
15 * connected it will display wrong mixer elements.
16 * - Driver assumes that the microphone is always
17 * monaureal and connected to the right channel of
18 * the input. This should also be a codec-dependent
19 * flag, maybe the codec should have 3 different
20 * bits for the three different possibilities how
21 * it can be hooked up...
22 * But as long as I don't see any hardware hooked
23 * up that way...
24 * - As Apple notes in their code, the tas3004 seems
25 * to delay the right channel by one sample. You can
26 * see this when for example recording stereo in
27 * audacity, or recording the tas output via cable
28 * on another machine (use a sinus generator or so).
29 * I tried programming the BiQuads but couldn't
30 * make the delay work, maybe someone can read the
31 * datasheet and fix it. The relevant Apple comment
32 * is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33 * that their comment describing how they program
34 * the filters sucks...
35 *
36 * Other things:
37 * - this should actually register *two* aoa_codec
38 * structs since it has two inputs. Then it must
39 * use the prepare callback to forbid running the
40 * secondary output on a different clock.
41 * Also, whatever bus knows how to do this must
42 * provide two soundbus_dev devices and the fabric
43 * must be able to link them correctly.
44 *
45 * I don't even know if Apple ever uses the second
46 * port on the tas3004 though, I don't think their
47 * i2s controllers can even do it. OTOH, they all
48 * derive the clocks from common clocks, so it
49 * might just be possible. The framework allows the
50 * codec to refine the transfer_info items in the
51 * usable callback, so we can simply remove the
52 * rates the second instance is not using when it
53 * actually is in use.
54 * Maybe we'll need to make the sound busses have
55 * a 'clock group id' value so the codec can
56 * determine if the two outputs can be driven at
57 * the same time. But that is likely overkill, up
58 * to the fabric to not link them up incorrectly,
59 * and up to the hardware designer to not wire
60 * them up in some weird unusable way.
61 */
62 #include <stddef.h>
63 #include <linux/i2c.h>
64 #include <asm/pmac_low_i2c.h>
65 #include <asm/prom.h>
66 #include <linux/delay.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
69 #include <linux/slab.h>
70
71 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
74
75 #include "tas.h"
76 #include "tas-gain-table.h"
77 #include "tas-basstreble.h"
78 #include "../aoa.h"
79 #include "../soundbus/soundbus.h"
80
81 #define PFX "snd-aoa-codec-tas: "
82
83
84 struct tas {
85 struct aoa_codec codec;
86 struct i2c_client *i2c;
87 u32 mute_l:1, mute_r:1 ,
88 controls_created:1 ,
89 drc_enabled:1,
90 hw_enabled:1;
91 u8 cached_volume_l, cached_volume_r;
92 u8 mixer_l[3], mixer_r[3];
93 u8 bass, treble;
94 u8 acr;
95 int drc_range;
96 /* protects hardware access against concurrency from
97 * userspace when hitting controls and during
98 * codec init/suspend/resume */
99 struct mutex mtx;
100 };
101
102 static int tas_reset_init(struct tas *tas);
103
104 static struct tas *codec_to_tas(struct aoa_codec *codec)
105 {
106 return container_of(codec, struct tas, codec);
107 }
108
109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
110 {
111 if (len == 1)
112 return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
113 else
114 return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
115 }
116
117 static void tas3004_set_drc(struct tas *tas)
118 {
119 unsigned char val[6];
120
121 if (tas->drc_enabled)
122 val[0] = 0x50; /* 3:1 above threshold */
123 else
124 val[0] = 0x51; /* disabled */
125 val[1] = 0x02; /* 1:1 below threshold */
126 if (tas->drc_range > 0xef)
127 val[2] = 0xef;
128 else if (tas->drc_range < 0)
129 val[2] = 0x00;
130 else
131 val[2] = tas->drc_range;
132 val[3] = 0xb0;
133 val[4] = 0x60;
134 val[5] = 0xa0;
135
136 tas_write_reg(tas, TAS_REG_DRC, 6, val);
137 }
138
139 static void tas_set_treble(struct tas *tas)
140 {
141 u8 tmp;
142
143 tmp = tas3004_treble(tas->treble);
144 tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
145 }
146
147 static void tas_set_bass(struct tas *tas)
148 {
149 u8 tmp;
150
151 tmp = tas3004_bass(tas->bass);
152 tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
153 }
154
155 static void tas_set_volume(struct tas *tas)
156 {
157 u8 block[6];
158 int tmp;
159 u8 left, right;
160
161 left = tas->cached_volume_l;
162 right = tas->cached_volume_r;
163
164 if (left > 177) left = 177;
165 if (right > 177) right = 177;
166
167 if (tas->mute_l) left = 0;
168 if (tas->mute_r) right = 0;
169
170 /* analysing the volume and mixer tables shows
171 * that they are similar enough when we shift
172 * the mixer table down by 4 bits. The error
173 * is miniscule, in just one item the error
174 * is 1, at a value of 0x07f17b (mixer table
175 * value is 0x07f17a) */
176 tmp = tas_gaintable[left];
177 block[0] = tmp>>20;
178 block[1] = tmp>>12;
179 block[2] = tmp>>4;
180 tmp = tas_gaintable[right];
181 block[3] = tmp>>20;
182 block[4] = tmp>>12;
183 block[5] = tmp>>4;
184 tas_write_reg(tas, TAS_REG_VOL, 6, block);
185 }
186
187 static void tas_set_mixer(struct tas *tas)
188 {
189 u8 block[9];
190 int tmp, i;
191 u8 val;
192
193 for (i=0;i<3;i++) {
194 val = tas->mixer_l[i];
195 if (val > 177) val = 177;
196 tmp = tas_gaintable[val];
197 block[3*i+0] = tmp>>16;
198 block[3*i+1] = tmp>>8;
199 block[3*i+2] = tmp;
200 }
201 tas_write_reg(tas, TAS_REG_LMIX, 9, block);
202
203 for (i=0;i<3;i++) {
204 val = tas->mixer_r[i];
205 if (val > 177) val = 177;
206 tmp = tas_gaintable[val];
207 block[3*i+0] = tmp>>16;
208 block[3*i+1] = tmp>>8;
209 block[3*i+2] = tmp;
210 }
211 tas_write_reg(tas, TAS_REG_RMIX, 9, block);
212 }
213
214 /* alsa stuff */
215
216 static int tas_dev_register(struct snd_device *dev)
217 {
218 return 0;
219 }
220
221 static struct snd_device_ops ops = {
222 .dev_register = tas_dev_register,
223 };
224
225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
226 struct snd_ctl_elem_info *uinfo)
227 {
228 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
229 uinfo->count = 2;
230 uinfo->value.integer.min = 0;
231 uinfo->value.integer.max = 177;
232 return 0;
233 }
234
235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
236 struct snd_ctl_elem_value *ucontrol)
237 {
238 struct tas *tas = snd_kcontrol_chip(kcontrol);
239
240 mutex_lock(&tas->mtx);
241 ucontrol->value.integer.value[0] = tas->cached_volume_l;
242 ucontrol->value.integer.value[1] = tas->cached_volume_r;
243 mutex_unlock(&tas->mtx);
244 return 0;
245 }
246
247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
248 struct snd_ctl_elem_value *ucontrol)
249 {
250 struct tas *tas = snd_kcontrol_chip(kcontrol);
251
252 if (ucontrol->value.integer.value[0] < 0 ||
253 ucontrol->value.integer.value[0] > 177)
254 return -EINVAL;
255 if (ucontrol->value.integer.value[1] < 0 ||
256 ucontrol->value.integer.value[1] > 177)
257 return -EINVAL;
258
259 mutex_lock(&tas->mtx);
260 if (tas->cached_volume_l == ucontrol->value.integer.value[0]
261 && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
262 mutex_unlock(&tas->mtx);
263 return 0;
264 }
265
266 tas->cached_volume_l = ucontrol->value.integer.value[0];
267 tas->cached_volume_r = ucontrol->value.integer.value[1];
268 if (tas->hw_enabled)
269 tas_set_volume(tas);
270 mutex_unlock(&tas->mtx);
271 return 1;
272 }
273
274 static struct snd_kcontrol_new volume_control = {
275 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
276 .name = "Master Playback Volume",
277 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
278 .info = tas_snd_vol_info,
279 .get = tas_snd_vol_get,
280 .put = tas_snd_vol_put,
281 };
282
283 #define tas_snd_mute_info snd_ctl_boolean_stereo_info
284
285 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
286 struct snd_ctl_elem_value *ucontrol)
287 {
288 struct tas *tas = snd_kcontrol_chip(kcontrol);
289
290 mutex_lock(&tas->mtx);
291 ucontrol->value.integer.value[0] = !tas->mute_l;
292 ucontrol->value.integer.value[1] = !tas->mute_r;
293 mutex_unlock(&tas->mtx);
294 return 0;
295 }
296
297 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
298 struct snd_ctl_elem_value *ucontrol)
299 {
300 struct tas *tas = snd_kcontrol_chip(kcontrol);
301
302 mutex_lock(&tas->mtx);
303 if (tas->mute_l == !ucontrol->value.integer.value[0]
304 && tas->mute_r == !ucontrol->value.integer.value[1]) {
305 mutex_unlock(&tas->mtx);
306 return 0;
307 }
308
309 tas->mute_l = !ucontrol->value.integer.value[0];
310 tas->mute_r = !ucontrol->value.integer.value[1];
311 if (tas->hw_enabled)
312 tas_set_volume(tas);
313 mutex_unlock(&tas->mtx);
314 return 1;
315 }
316
317 static struct snd_kcontrol_new mute_control = {
318 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
319 .name = "Master Playback Switch",
320 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
321 .info = tas_snd_mute_info,
322 .get = tas_snd_mute_get,
323 .put = tas_snd_mute_put,
324 };
325
326 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
327 struct snd_ctl_elem_info *uinfo)
328 {
329 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
330 uinfo->count = 2;
331 uinfo->value.integer.min = 0;
332 uinfo->value.integer.max = 177;
333 return 0;
334 }
335
336 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
337 struct snd_ctl_elem_value *ucontrol)
338 {
339 struct tas *tas = snd_kcontrol_chip(kcontrol);
340 int idx = kcontrol->private_value;
341
342 mutex_lock(&tas->mtx);
343 ucontrol->value.integer.value[0] = tas->mixer_l[idx];
344 ucontrol->value.integer.value[1] = tas->mixer_r[idx];
345 mutex_unlock(&tas->mtx);
346
347 return 0;
348 }
349
350 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
351 struct snd_ctl_elem_value *ucontrol)
352 {
353 struct tas *tas = snd_kcontrol_chip(kcontrol);
354 int idx = kcontrol->private_value;
355
356 mutex_lock(&tas->mtx);
357 if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
358 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
359 mutex_unlock(&tas->mtx);
360 return 0;
361 }
362
363 tas->mixer_l[idx] = ucontrol->value.integer.value[0];
364 tas->mixer_r[idx] = ucontrol->value.integer.value[1];
365
366 if (tas->hw_enabled)
367 tas_set_mixer(tas);
368 mutex_unlock(&tas->mtx);
369 return 1;
370 }
371
372 #define MIXER_CONTROL(n,descr,idx) \
373 static struct snd_kcontrol_new n##_control = { \
374 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
375 .name = descr " Playback Volume", \
376 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
377 .info = tas_snd_mixer_info, \
378 .get = tas_snd_mixer_get, \
379 .put = tas_snd_mixer_put, \
380 .private_value = idx, \
381 }
382
383 MIXER_CONTROL(pcm1, "PCM", 0);
384 MIXER_CONTROL(monitor, "Monitor", 2);
385
386 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
387 struct snd_ctl_elem_info *uinfo)
388 {
389 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
390 uinfo->count = 1;
391 uinfo->value.integer.min = 0;
392 uinfo->value.integer.max = TAS3004_DRC_MAX;
393 return 0;
394 }
395
396 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
397 struct snd_ctl_elem_value *ucontrol)
398 {
399 struct tas *tas = snd_kcontrol_chip(kcontrol);
400
401 mutex_lock(&tas->mtx);
402 ucontrol->value.integer.value[0] = tas->drc_range;
403 mutex_unlock(&tas->mtx);
404 return 0;
405 }
406
407 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
408 struct snd_ctl_elem_value *ucontrol)
409 {
410 struct tas *tas = snd_kcontrol_chip(kcontrol);
411
412 if (ucontrol->value.integer.value[0] < 0 ||
413 ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
414 return -EINVAL;
415
416 mutex_lock(&tas->mtx);
417 if (tas->drc_range == ucontrol->value.integer.value[0]) {
418 mutex_unlock(&tas->mtx);
419 return 0;
420 }
421
422 tas->drc_range = ucontrol->value.integer.value[0];
423 if (tas->hw_enabled)
424 tas3004_set_drc(tas);
425 mutex_unlock(&tas->mtx);
426 return 1;
427 }
428
429 static struct snd_kcontrol_new drc_range_control = {
430 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
431 .name = "DRC Range",
432 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
433 .info = tas_snd_drc_range_info,
434 .get = tas_snd_drc_range_get,
435 .put = tas_snd_drc_range_put,
436 };
437
438 #define tas_snd_drc_switch_info snd_ctl_boolean_mono_info
439
440 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
441 struct snd_ctl_elem_value *ucontrol)
442 {
443 struct tas *tas = snd_kcontrol_chip(kcontrol);
444
445 mutex_lock(&tas->mtx);
446 ucontrol->value.integer.value[0] = tas->drc_enabled;
447 mutex_unlock(&tas->mtx);
448 return 0;
449 }
450
451 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
452 struct snd_ctl_elem_value *ucontrol)
453 {
454 struct tas *tas = snd_kcontrol_chip(kcontrol);
455
456 mutex_lock(&tas->mtx);
457 if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
458 mutex_unlock(&tas->mtx);
459 return 0;
460 }
461
462 tas->drc_enabled = !!ucontrol->value.integer.value[0];
463 if (tas->hw_enabled)
464 tas3004_set_drc(tas);
465 mutex_unlock(&tas->mtx);
466 return 1;
467 }
468
469 static struct snd_kcontrol_new drc_switch_control = {
470 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
471 .name = "DRC Range Switch",
472 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
473 .info = tas_snd_drc_switch_info,
474 .get = tas_snd_drc_switch_get,
475 .put = tas_snd_drc_switch_put,
476 };
477
478 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
479 struct snd_ctl_elem_info *uinfo)
480 {
481 static const char * const texts[] = { "Line-In", "Microphone" };
482
483 return snd_ctl_enum_info(uinfo, 1, 2, texts);
484 }
485
486 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
487 struct snd_ctl_elem_value *ucontrol)
488 {
489 struct tas *tas = snd_kcontrol_chip(kcontrol);
490
491 mutex_lock(&tas->mtx);
492 ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
493 mutex_unlock(&tas->mtx);
494 return 0;
495 }
496
497 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
498 struct snd_ctl_elem_value *ucontrol)
499 {
500 struct tas *tas = snd_kcontrol_chip(kcontrol);
501 int oldacr;
502
503 if (ucontrol->value.enumerated.item[0] > 1)
504 return -EINVAL;
505 mutex_lock(&tas->mtx);
506 oldacr = tas->acr;
507
508 /*
509 * Despite what the data sheet says in one place, the
510 * TAS_ACR_B_MONAUREAL bit forces mono output even when
511 * input A (line in) is selected.
512 */
513 tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
514 if (ucontrol->value.enumerated.item[0])
515 tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
516 TAS_ACR_B_MON_SEL_RIGHT;
517 if (oldacr == tas->acr) {
518 mutex_unlock(&tas->mtx);
519 return 0;
520 }
521 if (tas->hw_enabled)
522 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
523 mutex_unlock(&tas->mtx);
524 return 1;
525 }
526
527 static struct snd_kcontrol_new capture_source_control = {
528 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
529 /* If we name this 'Input Source', it properly shows up in
530 * alsamixer as a selection, * but it's shown under the
531 * 'Playback' category.
532 * If I name it 'Capture Source', it shows up in strange
533 * ways (two bools of which one can be selected at a
534 * time) but at least it's shown in the 'Capture'
535 * category.
536 * I was told that this was due to backward compatibility,
537 * but I don't understand then why the mangling is *not*
538 * done when I name it "Input Source".....
539 */
540 .name = "Capture Source",
541 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
542 .info = tas_snd_capture_source_info,
543 .get = tas_snd_capture_source_get,
544 .put = tas_snd_capture_source_put,
545 };
546
547 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
548 struct snd_ctl_elem_info *uinfo)
549 {
550 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
551 uinfo->count = 1;
552 uinfo->value.integer.min = TAS3004_TREBLE_MIN;
553 uinfo->value.integer.max = TAS3004_TREBLE_MAX;
554 return 0;
555 }
556
557 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
558 struct snd_ctl_elem_value *ucontrol)
559 {
560 struct tas *tas = snd_kcontrol_chip(kcontrol);
561
562 mutex_lock(&tas->mtx);
563 ucontrol->value.integer.value[0] = tas->treble;
564 mutex_unlock(&tas->mtx);
565 return 0;
566 }
567
568 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
569 struct snd_ctl_elem_value *ucontrol)
570 {
571 struct tas *tas = snd_kcontrol_chip(kcontrol);
572
573 if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
574 ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
575 return -EINVAL;
576 mutex_lock(&tas->mtx);
577 if (tas->treble == ucontrol->value.integer.value[0]) {
578 mutex_unlock(&tas->mtx);
579 return 0;
580 }
581
582 tas->treble = ucontrol->value.integer.value[0];
583 if (tas->hw_enabled)
584 tas_set_treble(tas);
585 mutex_unlock(&tas->mtx);
586 return 1;
587 }
588
589 static struct snd_kcontrol_new treble_control = {
590 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
591 .name = "Treble",
592 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
593 .info = tas_snd_treble_info,
594 .get = tas_snd_treble_get,
595 .put = tas_snd_treble_put,
596 };
597
598 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
599 struct snd_ctl_elem_info *uinfo)
600 {
601 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
602 uinfo->count = 1;
603 uinfo->value.integer.min = TAS3004_BASS_MIN;
604 uinfo->value.integer.max = TAS3004_BASS_MAX;
605 return 0;
606 }
607
608 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
609 struct snd_ctl_elem_value *ucontrol)
610 {
611 struct tas *tas = snd_kcontrol_chip(kcontrol);
612
613 mutex_lock(&tas->mtx);
614 ucontrol->value.integer.value[0] = tas->bass;
615 mutex_unlock(&tas->mtx);
616 return 0;
617 }
618
619 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
620 struct snd_ctl_elem_value *ucontrol)
621 {
622 struct tas *tas = snd_kcontrol_chip(kcontrol);
623
624 if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
625 ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
626 return -EINVAL;
627 mutex_lock(&tas->mtx);
628 if (tas->bass == ucontrol->value.integer.value[0]) {
629 mutex_unlock(&tas->mtx);
630 return 0;
631 }
632
633 tas->bass = ucontrol->value.integer.value[0];
634 if (tas->hw_enabled)
635 tas_set_bass(tas);
636 mutex_unlock(&tas->mtx);
637 return 1;
638 }
639
640 static struct snd_kcontrol_new bass_control = {
641 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
642 .name = "Bass",
643 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
644 .info = tas_snd_bass_info,
645 .get = tas_snd_bass_get,
646 .put = tas_snd_bass_put,
647 };
648
649 static struct transfer_info tas_transfers[] = {
650 {
651 /* input */
652 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
653 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
654 .transfer_in = 1,
655 },
656 {
657 /* output */
658 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
659 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
660 .transfer_in = 0,
661 },
662 {}
663 };
664
665 static int tas_usable(struct codec_info_item *cii,
666 struct transfer_info *ti,
667 struct transfer_info *out)
668 {
669 return 1;
670 }
671
672 static int tas_reset_init(struct tas *tas)
673 {
674 u8 tmp;
675
676 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
677 msleep(5);
678 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
679 msleep(5);
680 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
681 msleep(20);
682 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
683 msleep(10);
684 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
685
686 tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
687 if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
688 goto outerr;
689
690 tas->acr |= TAS_ACR_ANALOG_PDOWN;
691 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
692 goto outerr;
693
694 tmp = 0;
695 if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
696 goto outerr;
697
698 tas3004_set_drc(tas);
699
700 /* Set treble & bass to 0dB */
701 tas->treble = TAS3004_TREBLE_ZERO;
702 tas->bass = TAS3004_BASS_ZERO;
703 tas_set_treble(tas);
704 tas_set_bass(tas);
705
706 tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
707 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
708 goto outerr;
709
710 return 0;
711 outerr:
712 return -ENODEV;
713 }
714
715 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
716 {
717 struct tas *tas = cii->codec_data;
718
719 switch(clock) {
720 case CLOCK_SWITCH_PREPARE_SLAVE:
721 /* Clocks are going away, mute mute mute */
722 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
723 tas->hw_enabled = 0;
724 break;
725 case CLOCK_SWITCH_SLAVE:
726 /* Clocks are back, re-init the codec */
727 mutex_lock(&tas->mtx);
728 tas_reset_init(tas);
729 tas_set_volume(tas);
730 tas_set_mixer(tas);
731 tas->hw_enabled = 1;
732 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
733 mutex_unlock(&tas->mtx);
734 break;
735 default:
736 /* doesn't happen as of now */
737 return -EINVAL;
738 }
739 return 0;
740 }
741
742 #ifdef CONFIG_PM
743 /* we are controlled via i2c and assume that is always up
744 * If that wasn't the case, we'd have to suspend once
745 * our i2c device is suspended, and then take note of that! */
746 static int tas_suspend(struct tas *tas)
747 {
748 mutex_lock(&tas->mtx);
749 tas->hw_enabled = 0;
750 tas->acr |= TAS_ACR_ANALOG_PDOWN;
751 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
752 mutex_unlock(&tas->mtx);
753 return 0;
754 }
755
756 static int tas_resume(struct tas *tas)
757 {
758 /* reset codec */
759 mutex_lock(&tas->mtx);
760 tas_reset_init(tas);
761 tas_set_volume(tas);
762 tas_set_mixer(tas);
763 tas->hw_enabled = 1;
764 mutex_unlock(&tas->mtx);
765 return 0;
766 }
767
768 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
769 {
770 return tas_suspend(cii->codec_data);
771 }
772
773 static int _tas_resume(struct codec_info_item *cii)
774 {
775 return tas_resume(cii->codec_data);
776 }
777 #else /* CONFIG_PM */
778 #define _tas_suspend NULL
779 #define _tas_resume NULL
780 #endif /* CONFIG_PM */
781
782 static struct codec_info tas_codec_info = {
783 .transfers = tas_transfers,
784 /* in theory, we can drive it at 512 too...
785 * but so far the framework doesn't allow
786 * for that and I don't see much point in it. */
787 .sysclock_factor = 256,
788 /* same here, could be 32 for just one 16 bit format */
789 .bus_factor = 64,
790 .owner = THIS_MODULE,
791 .usable = tas_usable,
792 .switch_clock = tas_switch_clock,
793 .suspend = _tas_suspend,
794 .resume = _tas_resume,
795 };
796
797 static int tas_init_codec(struct aoa_codec *codec)
798 {
799 struct tas *tas = codec_to_tas(codec);
800 int err;
801
802 if (!tas->codec.gpio || !tas->codec.gpio->methods) {
803 printk(KERN_ERR PFX "gpios not assigned!!\n");
804 return -EINVAL;
805 }
806
807 mutex_lock(&tas->mtx);
808 if (tas_reset_init(tas)) {
809 printk(KERN_ERR PFX "tas failed to initialise\n");
810 mutex_unlock(&tas->mtx);
811 return -ENXIO;
812 }
813 tas->hw_enabled = 1;
814 mutex_unlock(&tas->mtx);
815
816 if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
817 aoa_get_card(),
818 &tas_codec_info, tas)) {
819 printk(KERN_ERR PFX "error attaching tas to soundbus\n");
820 return -ENODEV;
821 }
822
823 if (aoa_snd_device_new(SNDRV_DEV_CODEC, tas, &ops)) {
824 printk(KERN_ERR PFX "failed to create tas snd device!\n");
825 return -ENODEV;
826 }
827 err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
828 if (err)
829 goto error;
830
831 err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
832 if (err)
833 goto error;
834
835 err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
836 if (err)
837 goto error;
838
839 err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
840 if (err)
841 goto error;
842
843 err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
844 if (err)
845 goto error;
846
847 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
848 if (err)
849 goto error;
850
851 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
852 if (err)
853 goto error;
854
855 err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
856 if (err)
857 goto error;
858
859 err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
860 if (err)
861 goto error;
862
863 return 0;
864 error:
865 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
866 snd_device_free(aoa_get_card(), tas);
867 return err;
868 }
869
870 static void tas_exit_codec(struct aoa_codec *codec)
871 {
872 struct tas *tas = codec_to_tas(codec);
873
874 if (!tas->codec.soundbus_dev)
875 return;
876 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
877 }
878
879
880 static int tas_i2c_probe(struct i2c_client *client,
881 const struct i2c_device_id *id)
882 {
883 struct device_node *node = client->dev.of_node;
884 struct tas *tas;
885
886 tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
887
888 if (!tas)
889 return -ENOMEM;
890
891 mutex_init(&tas->mtx);
892 tas->i2c = client;
893 i2c_set_clientdata(client, tas);
894
895 /* seems that half is a saner default */
896 tas->drc_range = TAS3004_DRC_MAX / 2;
897
898 strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
899 tas->codec.owner = THIS_MODULE;
900 tas->codec.init = tas_init_codec;
901 tas->codec.exit = tas_exit_codec;
902 tas->codec.node = of_node_get(node);
903
904 if (aoa_codec_register(&tas->codec)) {
905 goto fail;
906 }
907 printk(KERN_DEBUG
908 "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
909 (unsigned int)client->addr, node->full_name);
910 return 0;
911 fail:
912 mutex_destroy(&tas->mtx);
913 kfree(tas);
914 return -EINVAL;
915 }
916
917 static int tas_i2c_remove(struct i2c_client *client)
918 {
919 struct tas *tas = i2c_get_clientdata(client);
920 u8 tmp = TAS_ACR_ANALOG_PDOWN;
921
922 aoa_codec_unregister(&tas->codec);
923 of_node_put(tas->codec.node);
924
925 /* power down codec chip */
926 tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
927
928 mutex_destroy(&tas->mtx);
929 kfree(tas);
930 return 0;
931 }
932
933 static const struct i2c_device_id tas_i2c_id[] = {
934 { "MAC,tas3004", 0 },
935 { }
936 };
937 MODULE_DEVICE_TABLE(i2c,tas_i2c_id);
938
939 static struct i2c_driver tas_driver = {
940 .driver = {
941 .name = "aoa_codec_tas",
942 .owner = THIS_MODULE,
943 },
944 .probe = tas_i2c_probe,
945 .remove = tas_i2c_remove,
946 .id_table = tas_i2c_id,
947 };
948
949 module_i2c_driver(tas_driver);