]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/core/pcm_lib.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
57 *
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59 */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 struct snd_pcm_runtime *runtime = substream->runtime;
63 snd_pcm_uframes_t frames, ofs, transfer;
64 int err;
65
66 if (runtime->silence_size < runtime->boundary) {
67 snd_pcm_sframes_t noise_dist, n;
68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 if (runtime->silence_start != appl_ptr) {
70 n = appl_ptr - runtime->silence_start;
71 if (n < 0)
72 n += runtime->boundary;
73 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 runtime->silence_filled -= n;
75 else
76 runtime->silence_filled = 0;
77 runtime->silence_start = appl_ptr;
78 }
79 if (runtime->silence_filled >= runtime->buffer_size)
80 return;
81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 return;
84 frames = runtime->silence_threshold - noise_dist;
85 if (frames > runtime->silence_size)
86 frames = runtime->silence_size;
87 } else {
88 if (new_hw_ptr == ULONG_MAX) { /* initialization */
89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 if (avail > runtime->buffer_size)
91 avail = runtime->buffer_size;
92 runtime->silence_filled = avail > 0 ? avail : 0;
93 runtime->silence_start = (runtime->status->hw_ptr +
94 runtime->silence_filled) %
95 runtime->boundary;
96 } else {
97 ofs = runtime->status->hw_ptr;
98 frames = new_hw_ptr - ofs;
99 if ((snd_pcm_sframes_t)frames < 0)
100 frames += runtime->boundary;
101 runtime->silence_filled -= frames;
102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 runtime->silence_filled = 0;
104 runtime->silence_start = new_hw_ptr;
105 } else {
106 runtime->silence_start = ofs;
107 }
108 }
109 frames = runtime->buffer_size - runtime->silence_filled;
110 }
111 if (snd_BUG_ON(frames > runtime->buffer_size))
112 return;
113 if (frames == 0)
114 return;
115 ofs = runtime->silence_start % runtime->buffer_size;
116 while (frames > 0) {
117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 err = fill_silence_frames(substream, ofs, transfer);
119 snd_BUG_ON(err < 0);
120 runtime->silence_filled += transfer;
121 frames -= transfer;
122 ofs = 0;
123 }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 char *name, size_t len)
129 {
130 snprintf(name, len, "pcmC%dD%d%c:%d",
131 substream->pcm->card->number,
132 substream->pcm->device,
133 substream->stream ? 'c' : 'p',
134 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask) 0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
153 dump_stack(); \
154 } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158 struct snd_pcm_runtime *runtime = substream->runtime;
159
160 trace_xrun(substream);
161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 char name[16];
166 snd_pcm_debug_name(substream, name, sizeof(name));
167 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 dump_stack_on_xrun(substream);
169 }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
174 do { \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
180 } \
181 } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 struct snd_pcm_runtime *runtime)
191 {
192 snd_pcm_uframes_t avail;
193
194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195 avail = snd_pcm_playback_avail(runtime);
196 else
197 avail = snd_pcm_capture_avail(runtime);
198 if (avail > runtime->avail_max)
199 runtime->avail_max = avail;
200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201 if (avail >= runtime->buffer_size) {
202 snd_pcm_drain_done(substream);
203 return -EPIPE;
204 }
205 } else {
206 if (avail >= runtime->stop_threshold) {
207 xrun(substream);
208 return -EPIPE;
209 }
210 }
211 if (runtime->twake) {
212 if (avail >= runtime->twake)
213 wake_up(&runtime->tsleep);
214 } else if (avail >= runtime->control->avail_min)
215 wake_up(&runtime->sleep);
216 return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220 struct timespec *curr_tstamp,
221 struct timespec *audio_tstamp)
222 {
223 struct snd_pcm_runtime *runtime = substream->runtime;
224 u64 audio_frames, audio_nsecs;
225 struct timespec driver_tstamp;
226
227 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228 return;
229
230 if (!(substream->ops->get_time_info) ||
231 (runtime->audio_tstamp_report.actual_type ==
232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234 /*
235 * provide audio timestamp derived from pointer position
236 * add delay only if requested
237 */
238
239 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241 if (runtime->audio_tstamp_config.report_delay) {
242 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243 audio_frames -= runtime->delay;
244 else
245 audio_frames += runtime->delay;
246 }
247 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248 runtime->rate);
249 *audio_tstamp = ns_to_timespec(audio_nsecs);
250 }
251 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
252 runtime->status->audio_tstamp = *audio_tstamp;
253 runtime->status->tstamp = *curr_tstamp;
254 }
255
256 /*
257 * re-take a driver timestamp to let apps detect if the reference tstamp
258 * read by low-level hardware was provided with a delay
259 */
260 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
261 runtime->driver_tstamp = driver_tstamp;
262 }
263
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
265 unsigned int in_interrupt)
266 {
267 struct snd_pcm_runtime *runtime = substream->runtime;
268 snd_pcm_uframes_t pos;
269 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
270 snd_pcm_sframes_t hdelta, delta;
271 unsigned long jdelta;
272 unsigned long curr_jiffies;
273 struct timespec curr_tstamp;
274 struct timespec audio_tstamp;
275 int crossed_boundary = 0;
276
277 old_hw_ptr = runtime->status->hw_ptr;
278
279 /*
280 * group pointer, time and jiffies reads to allow for more
281 * accurate correlations/corrections.
282 * The values are stored at the end of this routine after
283 * corrections for hw_ptr position
284 */
285 pos = substream->ops->pointer(substream);
286 curr_jiffies = jiffies;
287 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
288 if ((substream->ops->get_time_info) &&
289 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
290 substream->ops->get_time_info(substream, &curr_tstamp,
291 &audio_tstamp,
292 &runtime->audio_tstamp_config,
293 &runtime->audio_tstamp_report);
294
295 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 } else
299 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
300 }
301
302 if (pos == SNDRV_PCM_POS_XRUN) {
303 xrun(substream);
304 return -EPIPE;
305 }
306 if (pos >= runtime->buffer_size) {
307 if (printk_ratelimit()) {
308 char name[16];
309 snd_pcm_debug_name(substream, name, sizeof(name));
310 pcm_err(substream->pcm,
311 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312 name, pos, runtime->buffer_size,
313 runtime->period_size);
314 }
315 pos = 0;
316 }
317 pos -= pos % runtime->min_align;
318 trace_hwptr(substream, pos, in_interrupt);
319 hw_base = runtime->hw_ptr_base;
320 new_hw_ptr = hw_base + pos;
321 if (in_interrupt) {
322 /* we know that one period was processed */
323 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
324 delta = runtime->hw_ptr_interrupt + runtime->period_size;
325 if (delta > new_hw_ptr) {
326 /* check for double acknowledged interrupts */
327 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
328 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
329 hw_base += runtime->buffer_size;
330 if (hw_base >= runtime->boundary) {
331 hw_base = 0;
332 crossed_boundary++;
333 }
334 new_hw_ptr = hw_base + pos;
335 goto __delta;
336 }
337 }
338 }
339 /* new_hw_ptr might be lower than old_hw_ptr in case when */
340 /* pointer crosses the end of the ring buffer */
341 if (new_hw_ptr < old_hw_ptr) {
342 hw_base += runtime->buffer_size;
343 if (hw_base >= runtime->boundary) {
344 hw_base = 0;
345 crossed_boundary++;
346 }
347 new_hw_ptr = hw_base + pos;
348 }
349 __delta:
350 delta = new_hw_ptr - old_hw_ptr;
351 if (delta < 0)
352 delta += runtime->boundary;
353
354 if (runtime->no_period_wakeup) {
355 snd_pcm_sframes_t xrun_threshold;
356 /*
357 * Without regular period interrupts, we have to check
358 * the elapsed time to detect xruns.
359 */
360 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
362 goto no_delta_check;
363 hdelta = jdelta - delta * HZ / runtime->rate;
364 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
365 while (hdelta > xrun_threshold) {
366 delta += runtime->buffer_size;
367 hw_base += runtime->buffer_size;
368 if (hw_base >= runtime->boundary) {
369 hw_base = 0;
370 crossed_boundary++;
371 }
372 new_hw_ptr = hw_base + pos;
373 hdelta -= runtime->hw_ptr_buffer_jiffies;
374 }
375 goto no_delta_check;
376 }
377
378 /* something must be really wrong */
379 if (delta >= runtime->buffer_size + runtime->period_size) {
380 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
381 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382 substream->stream, (long)pos,
383 (long)new_hw_ptr, (long)old_hw_ptr);
384 return 0;
385 }
386
387 /* Do jiffies check only in xrun_debug mode */
388 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
389 goto no_jiffies_check;
390
391 /* Skip the jiffies check for hardwares with BATCH flag.
392 * Such hardware usually just increases the position at each IRQ,
393 * thus it can't give any strange position.
394 */
395 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
396 goto no_jiffies_check;
397 hdelta = delta;
398 if (hdelta < runtime->delay)
399 goto no_jiffies_check;
400 hdelta -= runtime->delay;
401 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
402 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
403 delta = jdelta /
404 (((runtime->period_size * HZ) / runtime->rate)
405 + HZ/100);
406 /* move new_hw_ptr according jiffies not pos variable */
407 new_hw_ptr = old_hw_ptr;
408 hw_base = delta;
409 /* use loop to avoid checks for delta overflows */
410 /* the delta value is small or zero in most cases */
411 while (delta > 0) {
412 new_hw_ptr += runtime->period_size;
413 if (new_hw_ptr >= runtime->boundary) {
414 new_hw_ptr -= runtime->boundary;
415 crossed_boundary--;
416 }
417 delta--;
418 }
419 /* align hw_base to buffer_size */
420 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
421 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422 (long)pos, (long)hdelta,
423 (long)runtime->period_size, jdelta,
424 ((hdelta * HZ) / runtime->rate), hw_base,
425 (unsigned long)old_hw_ptr,
426 (unsigned long)new_hw_ptr);
427 /* reset values to proper state */
428 delta = 0;
429 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
430 }
431 no_jiffies_check:
432 if (delta > runtime->period_size + runtime->period_size / 2) {
433 hw_ptr_error(substream, in_interrupt,
434 "Lost interrupts?",
435 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436 substream->stream, (long)delta,
437 (long)new_hw_ptr,
438 (long)old_hw_ptr);
439 }
440
441 no_delta_check:
442 if (runtime->status->hw_ptr == new_hw_ptr) {
443 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
444 return 0;
445 }
446
447 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
448 runtime->silence_size > 0)
449 snd_pcm_playback_silence(substream, new_hw_ptr);
450
451 if (in_interrupt) {
452 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
453 if (delta < 0)
454 delta += runtime->boundary;
455 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
456 runtime->hw_ptr_interrupt += delta;
457 if (runtime->hw_ptr_interrupt >= runtime->boundary)
458 runtime->hw_ptr_interrupt -= runtime->boundary;
459 }
460 runtime->hw_ptr_base = hw_base;
461 runtime->status->hw_ptr = new_hw_ptr;
462 runtime->hw_ptr_jiffies = curr_jiffies;
463 if (crossed_boundary) {
464 snd_BUG_ON(crossed_boundary != 1);
465 runtime->hw_ptr_wrap += runtime->boundary;
466 }
467
468 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
469
470 return snd_pcm_update_state(substream, runtime);
471 }
472
473 /* CAUTION: call it with irq disabled */
474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
475 {
476 return snd_pcm_update_hw_ptr0(substream, 0);
477 }
478
479 /**
480 * snd_pcm_set_ops - set the PCM operators
481 * @pcm: the pcm instance
482 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
483 * @ops: the operator table
484 *
485 * Sets the given PCM operators to the pcm instance.
486 */
487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
488 const struct snd_pcm_ops *ops)
489 {
490 struct snd_pcm_str *stream = &pcm->streams[direction];
491 struct snd_pcm_substream *substream;
492
493 for (substream = stream->substream; substream != NULL; substream = substream->next)
494 substream->ops = ops;
495 }
496 EXPORT_SYMBOL(snd_pcm_set_ops);
497
498 /**
499 * snd_pcm_sync - set the PCM sync id
500 * @substream: the pcm substream
501 *
502 * Sets the PCM sync identifier for the card.
503 */
504 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
505 {
506 struct snd_pcm_runtime *runtime = substream->runtime;
507
508 runtime->sync.id32[0] = substream->pcm->card->number;
509 runtime->sync.id32[1] = -1;
510 runtime->sync.id32[2] = -1;
511 runtime->sync.id32[3] = -1;
512 }
513 EXPORT_SYMBOL(snd_pcm_set_sync);
514
515 /*
516 * Standard ioctl routine
517 */
518
519 static inline unsigned int div32(unsigned int a, unsigned int b,
520 unsigned int *r)
521 {
522 if (b == 0) {
523 *r = 0;
524 return UINT_MAX;
525 }
526 *r = a % b;
527 return a / b;
528 }
529
530 static inline unsigned int div_down(unsigned int a, unsigned int b)
531 {
532 if (b == 0)
533 return UINT_MAX;
534 return a / b;
535 }
536
537 static inline unsigned int div_up(unsigned int a, unsigned int b)
538 {
539 unsigned int r;
540 unsigned int q;
541 if (b == 0)
542 return UINT_MAX;
543 q = div32(a, b, &r);
544 if (r)
545 ++q;
546 return q;
547 }
548
549 static inline unsigned int mul(unsigned int a, unsigned int b)
550 {
551 if (a == 0)
552 return 0;
553 if (div_down(UINT_MAX, a) < b)
554 return UINT_MAX;
555 return a * b;
556 }
557
558 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
559 unsigned int c, unsigned int *r)
560 {
561 u_int64_t n = (u_int64_t) a * b;
562 if (c == 0) {
563 snd_BUG_ON(!n);
564 *r = 0;
565 return UINT_MAX;
566 }
567 n = div_u64_rem(n, c, r);
568 if (n >= UINT_MAX) {
569 *r = 0;
570 return UINT_MAX;
571 }
572 return n;
573 }
574
575 /**
576 * snd_interval_refine - refine the interval value of configurator
577 * @i: the interval value to refine
578 * @v: the interval value to refer to
579 *
580 * Refines the interval value with the reference value.
581 * The interval is changed to the range satisfying both intervals.
582 * The interval status (min, max, integer, etc.) are evaluated.
583 *
584 * Return: Positive if the value is changed, zero if it's not changed, or a
585 * negative error code.
586 */
587 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
588 {
589 int changed = 0;
590 if (snd_BUG_ON(snd_interval_empty(i)))
591 return -EINVAL;
592 if (i->min < v->min) {
593 i->min = v->min;
594 i->openmin = v->openmin;
595 changed = 1;
596 } else if (i->min == v->min && !i->openmin && v->openmin) {
597 i->openmin = 1;
598 changed = 1;
599 }
600 if (i->max > v->max) {
601 i->max = v->max;
602 i->openmax = v->openmax;
603 changed = 1;
604 } else if (i->max == v->max && !i->openmax && v->openmax) {
605 i->openmax = 1;
606 changed = 1;
607 }
608 if (!i->integer && v->integer) {
609 i->integer = 1;
610 changed = 1;
611 }
612 if (i->integer) {
613 if (i->openmin) {
614 i->min++;
615 i->openmin = 0;
616 }
617 if (i->openmax) {
618 i->max--;
619 i->openmax = 0;
620 }
621 } else if (!i->openmin && !i->openmax && i->min == i->max)
622 i->integer = 1;
623 if (snd_interval_checkempty(i)) {
624 snd_interval_none(i);
625 return -EINVAL;
626 }
627 return changed;
628 }
629 EXPORT_SYMBOL(snd_interval_refine);
630
631 static int snd_interval_refine_first(struct snd_interval *i)
632 {
633 if (snd_BUG_ON(snd_interval_empty(i)))
634 return -EINVAL;
635 if (snd_interval_single(i))
636 return 0;
637 i->max = i->min;
638 i->openmax = i->openmin;
639 if (i->openmax)
640 i->max++;
641 return 1;
642 }
643
644 static int snd_interval_refine_last(struct snd_interval *i)
645 {
646 if (snd_BUG_ON(snd_interval_empty(i)))
647 return -EINVAL;
648 if (snd_interval_single(i))
649 return 0;
650 i->min = i->max;
651 i->openmin = i->openmax;
652 if (i->openmin)
653 i->min--;
654 return 1;
655 }
656
657 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658 {
659 if (a->empty || b->empty) {
660 snd_interval_none(c);
661 return;
662 }
663 c->empty = 0;
664 c->min = mul(a->min, b->min);
665 c->openmin = (a->openmin || b->openmin);
666 c->max = mul(a->max, b->max);
667 c->openmax = (a->openmax || b->openmax);
668 c->integer = (a->integer && b->integer);
669 }
670
671 /**
672 * snd_interval_div - refine the interval value with division
673 * @a: dividend
674 * @b: divisor
675 * @c: quotient
676 *
677 * c = a / b
678 *
679 * Returns non-zero if the value is changed, zero if not changed.
680 */
681 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682 {
683 unsigned int r;
684 if (a->empty || b->empty) {
685 snd_interval_none(c);
686 return;
687 }
688 c->empty = 0;
689 c->min = div32(a->min, b->max, &r);
690 c->openmin = (r || a->openmin || b->openmax);
691 if (b->min > 0) {
692 c->max = div32(a->max, b->min, &r);
693 if (r) {
694 c->max++;
695 c->openmax = 1;
696 } else
697 c->openmax = (a->openmax || b->openmin);
698 } else {
699 c->max = UINT_MAX;
700 c->openmax = 0;
701 }
702 c->integer = 0;
703 }
704
705 /**
706 * snd_interval_muldivk - refine the interval value
707 * @a: dividend 1
708 * @b: dividend 2
709 * @k: divisor (as integer)
710 * @c: result
711 *
712 * c = a * b / k
713 *
714 * Returns non-zero if the value is changed, zero if not changed.
715 */
716 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
717 unsigned int k, struct snd_interval *c)
718 {
719 unsigned int r;
720 if (a->empty || b->empty) {
721 snd_interval_none(c);
722 return;
723 }
724 c->empty = 0;
725 c->min = muldiv32(a->min, b->min, k, &r);
726 c->openmin = (r || a->openmin || b->openmin);
727 c->max = muldiv32(a->max, b->max, k, &r);
728 if (r) {
729 c->max++;
730 c->openmax = 1;
731 } else
732 c->openmax = (a->openmax || b->openmax);
733 c->integer = 0;
734 }
735
736 /**
737 * snd_interval_mulkdiv - refine the interval value
738 * @a: dividend 1
739 * @k: dividend 2 (as integer)
740 * @b: divisor
741 * @c: result
742 *
743 * c = a * k / b
744 *
745 * Returns non-zero if the value is changed, zero if not changed.
746 */
747 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
748 const struct snd_interval *b, struct snd_interval *c)
749 {
750 unsigned int r;
751 if (a->empty || b->empty) {
752 snd_interval_none(c);
753 return;
754 }
755 c->empty = 0;
756 c->min = muldiv32(a->min, k, b->max, &r);
757 c->openmin = (r || a->openmin || b->openmax);
758 if (b->min > 0) {
759 c->max = muldiv32(a->max, k, b->min, &r);
760 if (r) {
761 c->max++;
762 c->openmax = 1;
763 } else
764 c->openmax = (a->openmax || b->openmin);
765 } else {
766 c->max = UINT_MAX;
767 c->openmax = 0;
768 }
769 c->integer = 0;
770 }
771
772 /* ---- */
773
774
775 /**
776 * snd_interval_ratnum - refine the interval value
777 * @i: interval to refine
778 * @rats_count: number of ratnum_t
779 * @rats: ratnum_t array
780 * @nump: pointer to store the resultant numerator
781 * @denp: pointer to store the resultant denominator
782 *
783 * Return: Positive if the value is changed, zero if it's not changed, or a
784 * negative error code.
785 */
786 int snd_interval_ratnum(struct snd_interval *i,
787 unsigned int rats_count, const struct snd_ratnum *rats,
788 unsigned int *nump, unsigned int *denp)
789 {
790 unsigned int best_num, best_den;
791 int best_diff;
792 unsigned int k;
793 struct snd_interval t;
794 int err;
795 unsigned int result_num, result_den;
796 int result_diff;
797
798 best_num = best_den = best_diff = 0;
799 for (k = 0; k < rats_count; ++k) {
800 unsigned int num = rats[k].num;
801 unsigned int den;
802 unsigned int q = i->min;
803 int diff;
804 if (q == 0)
805 q = 1;
806 den = div_up(num, q);
807 if (den < rats[k].den_min)
808 continue;
809 if (den > rats[k].den_max)
810 den = rats[k].den_max;
811 else {
812 unsigned int r;
813 r = (den - rats[k].den_min) % rats[k].den_step;
814 if (r != 0)
815 den -= r;
816 }
817 diff = num - q * den;
818 if (diff < 0)
819 diff = -diff;
820 if (best_num == 0 ||
821 diff * best_den < best_diff * den) {
822 best_diff = diff;
823 best_den = den;
824 best_num = num;
825 }
826 }
827 if (best_den == 0) {
828 i->empty = 1;
829 return -EINVAL;
830 }
831 t.min = div_down(best_num, best_den);
832 t.openmin = !!(best_num % best_den);
833
834 result_num = best_num;
835 result_diff = best_diff;
836 result_den = best_den;
837 best_num = best_den = best_diff = 0;
838 for (k = 0; k < rats_count; ++k) {
839 unsigned int num = rats[k].num;
840 unsigned int den;
841 unsigned int q = i->max;
842 int diff;
843 if (q == 0) {
844 i->empty = 1;
845 return -EINVAL;
846 }
847 den = div_down(num, q);
848 if (den > rats[k].den_max)
849 continue;
850 if (den < rats[k].den_min)
851 den = rats[k].den_min;
852 else {
853 unsigned int r;
854 r = (den - rats[k].den_min) % rats[k].den_step;
855 if (r != 0)
856 den += rats[k].den_step - r;
857 }
858 diff = q * den - num;
859 if (diff < 0)
860 diff = -diff;
861 if (best_num == 0 ||
862 diff * best_den < best_diff * den) {
863 best_diff = diff;
864 best_den = den;
865 best_num = num;
866 }
867 }
868 if (best_den == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 t.max = div_up(best_num, best_den);
873 t.openmax = !!(best_num % best_den);
874 t.integer = 0;
875 err = snd_interval_refine(i, &t);
876 if (err < 0)
877 return err;
878
879 if (snd_interval_single(i)) {
880 if (best_diff * result_den < result_diff * best_den) {
881 result_num = best_num;
882 result_den = best_den;
883 }
884 if (nump)
885 *nump = result_num;
886 if (denp)
887 *denp = result_den;
888 }
889 return err;
890 }
891 EXPORT_SYMBOL(snd_interval_ratnum);
892
893 /**
894 * snd_interval_ratden - refine the interval value
895 * @i: interval to refine
896 * @rats_count: number of struct ratden
897 * @rats: struct ratden array
898 * @nump: pointer to store the resultant numerator
899 * @denp: pointer to store the resultant denominator
900 *
901 * Return: Positive if the value is changed, zero if it's not changed, or a
902 * negative error code.
903 */
904 static int snd_interval_ratden(struct snd_interval *i,
905 unsigned int rats_count,
906 const struct snd_ratden *rats,
907 unsigned int *nump, unsigned int *denp)
908 {
909 unsigned int best_num, best_diff, best_den;
910 unsigned int k;
911 struct snd_interval t;
912 int err;
913
914 best_num = best_den = best_diff = 0;
915 for (k = 0; k < rats_count; ++k) {
916 unsigned int num;
917 unsigned int den = rats[k].den;
918 unsigned int q = i->min;
919 int diff;
920 num = mul(q, den);
921 if (num > rats[k].num_max)
922 continue;
923 if (num < rats[k].num_min)
924 num = rats[k].num_max;
925 else {
926 unsigned int r;
927 r = (num - rats[k].num_min) % rats[k].num_step;
928 if (r != 0)
929 num += rats[k].num_step - r;
930 }
931 diff = num - q * den;
932 if (best_num == 0 ||
933 diff * best_den < best_diff * den) {
934 best_diff = diff;
935 best_den = den;
936 best_num = num;
937 }
938 }
939 if (best_den == 0) {
940 i->empty = 1;
941 return -EINVAL;
942 }
943 t.min = div_down(best_num, best_den);
944 t.openmin = !!(best_num % best_den);
945
946 best_num = best_den = best_diff = 0;
947 for (k = 0; k < rats_count; ++k) {
948 unsigned int num;
949 unsigned int den = rats[k].den;
950 unsigned int q = i->max;
951 int diff;
952 num = mul(q, den);
953 if (num < rats[k].num_min)
954 continue;
955 if (num > rats[k].num_max)
956 num = rats[k].num_max;
957 else {
958 unsigned int r;
959 r = (num - rats[k].num_min) % rats[k].num_step;
960 if (r != 0)
961 num -= r;
962 }
963 diff = q * den - num;
964 if (best_num == 0 ||
965 diff * best_den < best_diff * den) {
966 best_diff = diff;
967 best_den = den;
968 best_num = num;
969 }
970 }
971 if (best_den == 0) {
972 i->empty = 1;
973 return -EINVAL;
974 }
975 t.max = div_up(best_num, best_den);
976 t.openmax = !!(best_num % best_den);
977 t.integer = 0;
978 err = snd_interval_refine(i, &t);
979 if (err < 0)
980 return err;
981
982 if (snd_interval_single(i)) {
983 if (nump)
984 *nump = best_num;
985 if (denp)
986 *denp = best_den;
987 }
988 return err;
989 }
990
991 /**
992 * snd_interval_list - refine the interval value from the list
993 * @i: the interval value to refine
994 * @count: the number of elements in the list
995 * @list: the value list
996 * @mask: the bit-mask to evaluate
997 *
998 * Refines the interval value from the list.
999 * When mask is non-zero, only the elements corresponding to bit 1 are
1000 * evaluated.
1001 *
1002 * Return: Positive if the value is changed, zero if it's not changed, or a
1003 * negative error code.
1004 */
1005 int snd_interval_list(struct snd_interval *i, unsigned int count,
1006 const unsigned int *list, unsigned int mask)
1007 {
1008 unsigned int k;
1009 struct snd_interval list_range;
1010
1011 if (!count) {
1012 i->empty = 1;
1013 return -EINVAL;
1014 }
1015 snd_interval_any(&list_range);
1016 list_range.min = UINT_MAX;
1017 list_range.max = 0;
1018 for (k = 0; k < count; k++) {
1019 if (mask && !(mask & (1 << k)))
1020 continue;
1021 if (!snd_interval_test(i, list[k]))
1022 continue;
1023 list_range.min = min(list_range.min, list[k]);
1024 list_range.max = max(list_range.max, list[k]);
1025 }
1026 return snd_interval_refine(i, &list_range);
1027 }
1028 EXPORT_SYMBOL(snd_interval_list);
1029
1030 /**
1031 * snd_interval_ranges - refine the interval value from the list of ranges
1032 * @i: the interval value to refine
1033 * @count: the number of elements in the list of ranges
1034 * @ranges: the ranges list
1035 * @mask: the bit-mask to evaluate
1036 *
1037 * Refines the interval value from the list of ranges.
1038 * When mask is non-zero, only the elements corresponding to bit 1 are
1039 * evaluated.
1040 *
1041 * Return: Positive if the value is changed, zero if it's not changed, or a
1042 * negative error code.
1043 */
1044 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045 const struct snd_interval *ranges, unsigned int mask)
1046 {
1047 unsigned int k;
1048 struct snd_interval range_union;
1049 struct snd_interval range;
1050
1051 if (!count) {
1052 snd_interval_none(i);
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&range_union);
1056 range_union.min = UINT_MAX;
1057 range_union.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 snd_interval_copy(&range, &ranges[k]);
1062 if (snd_interval_refine(&range, i) < 0)
1063 continue;
1064 if (snd_interval_empty(&range))
1065 continue;
1066
1067 if (range.min < range_union.min) {
1068 range_union.min = range.min;
1069 range_union.openmin = 1;
1070 }
1071 if (range.min == range_union.min && !range.openmin)
1072 range_union.openmin = 0;
1073 if (range.max > range_union.max) {
1074 range_union.max = range.max;
1075 range_union.openmax = 1;
1076 }
1077 if (range.max == range_union.max && !range.openmax)
1078 range_union.openmax = 0;
1079 }
1080 return snd_interval_refine(i, &range_union);
1081 }
1082 EXPORT_SYMBOL(snd_interval_ranges);
1083
1084 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085 {
1086 unsigned int n;
1087 int changed = 0;
1088 n = i->min % step;
1089 if (n != 0 || i->openmin) {
1090 i->min += step - n;
1091 i->openmin = 0;
1092 changed = 1;
1093 }
1094 n = i->max % step;
1095 if (n != 0 || i->openmax) {
1096 i->max -= n;
1097 i->openmax = 0;
1098 changed = 1;
1099 }
1100 if (snd_interval_checkempty(i)) {
1101 i->empty = 1;
1102 return -EINVAL;
1103 }
1104 return changed;
1105 }
1106
1107 /* Info constraints helpers */
1108
1109 /**
1110 * snd_pcm_hw_rule_add - add the hw-constraint rule
1111 * @runtime: the pcm runtime instance
1112 * @cond: condition bits
1113 * @var: the variable to evaluate
1114 * @func: the evaluation function
1115 * @private: the private data pointer passed to function
1116 * @dep: the dependent variables
1117 *
1118 * Return: Zero if successful, or a negative error code on failure.
1119 */
1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121 int var,
1122 snd_pcm_hw_rule_func_t func, void *private,
1123 int dep, ...)
1124 {
1125 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126 struct snd_pcm_hw_rule *c;
1127 unsigned int k;
1128 va_list args;
1129 va_start(args, dep);
1130 if (constrs->rules_num >= constrs->rules_all) {
1131 struct snd_pcm_hw_rule *new;
1132 unsigned int new_rules = constrs->rules_all + 16;
1133 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1134 if (!new) {
1135 va_end(args);
1136 return -ENOMEM;
1137 }
1138 if (constrs->rules) {
1139 memcpy(new, constrs->rules,
1140 constrs->rules_num * sizeof(*c));
1141 kfree(constrs->rules);
1142 }
1143 constrs->rules = new;
1144 constrs->rules_all = new_rules;
1145 }
1146 c = &constrs->rules[constrs->rules_num];
1147 c->cond = cond;
1148 c->func = func;
1149 c->var = var;
1150 c->private = private;
1151 k = 0;
1152 while (1) {
1153 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1154 va_end(args);
1155 return -EINVAL;
1156 }
1157 c->deps[k++] = dep;
1158 if (dep < 0)
1159 break;
1160 dep = va_arg(args, int);
1161 }
1162 constrs->rules_num++;
1163 va_end(args);
1164 return 0;
1165 }
1166 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1167
1168 /**
1169 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1170 * @runtime: PCM runtime instance
1171 * @var: hw_params variable to apply the mask
1172 * @mask: the bitmap mask
1173 *
1174 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1175 *
1176 * Return: Zero if successful, or a negative error code on failure.
1177 */
1178 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1179 u_int32_t mask)
1180 {
1181 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1182 struct snd_mask *maskp = constrs_mask(constrs, var);
1183 *maskp->bits &= mask;
1184 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1185 if (*maskp->bits == 0)
1186 return -EINVAL;
1187 return 0;
1188 }
1189
1190 /**
1191 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1192 * @runtime: PCM runtime instance
1193 * @var: hw_params variable to apply the mask
1194 * @mask: the 64bit bitmap mask
1195 *
1196 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1197 *
1198 * Return: Zero if successful, or a negative error code on failure.
1199 */
1200 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1201 u_int64_t mask)
1202 {
1203 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1204 struct snd_mask *maskp = constrs_mask(constrs, var);
1205 maskp->bits[0] &= (u_int32_t)mask;
1206 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1207 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1208 if (! maskp->bits[0] && ! maskp->bits[1])
1209 return -EINVAL;
1210 return 0;
1211 }
1212 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1213
1214 /**
1215 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1216 * @runtime: PCM runtime instance
1217 * @var: hw_params variable to apply the integer constraint
1218 *
1219 * Apply the constraint of integer to an interval parameter.
1220 *
1221 * Return: Positive if the value is changed, zero if it's not changed, or a
1222 * negative error code.
1223 */
1224 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1225 {
1226 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1227 return snd_interval_setinteger(constrs_interval(constrs, var));
1228 }
1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1230
1231 /**
1232 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1233 * @runtime: PCM runtime instance
1234 * @var: hw_params variable to apply the range
1235 * @min: the minimal value
1236 * @max: the maximal value
1237 *
1238 * Apply the min/max range constraint to an interval parameter.
1239 *
1240 * Return: Positive if the value is changed, zero if it's not changed, or a
1241 * negative error code.
1242 */
1243 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1244 unsigned int min, unsigned int max)
1245 {
1246 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247 struct snd_interval t;
1248 t.min = min;
1249 t.max = max;
1250 t.openmin = t.openmax = 0;
1251 t.integer = 0;
1252 return snd_interval_refine(constrs_interval(constrs, var), &t);
1253 }
1254 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1255
1256 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1257 struct snd_pcm_hw_rule *rule)
1258 {
1259 struct snd_pcm_hw_constraint_list *list = rule->private;
1260 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1261 }
1262
1263
1264 /**
1265 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1266 * @runtime: PCM runtime instance
1267 * @cond: condition bits
1268 * @var: hw_params variable to apply the list constraint
1269 * @l: list
1270 *
1271 * Apply the list of constraints to an interval parameter.
1272 *
1273 * Return: Zero if successful, or a negative error code on failure.
1274 */
1275 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1276 unsigned int cond,
1277 snd_pcm_hw_param_t var,
1278 const struct snd_pcm_hw_constraint_list *l)
1279 {
1280 return snd_pcm_hw_rule_add(runtime, cond, var,
1281 snd_pcm_hw_rule_list, (void *)l,
1282 var, -1);
1283 }
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1285
1286 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1287 struct snd_pcm_hw_rule *rule)
1288 {
1289 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1290 return snd_interval_ranges(hw_param_interval(params, rule->var),
1291 r->count, r->ranges, r->mask);
1292 }
1293
1294
1295 /**
1296 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1297 * @runtime: PCM runtime instance
1298 * @cond: condition bits
1299 * @var: hw_params variable to apply the list of range constraints
1300 * @r: ranges
1301 *
1302 * Apply the list of range constraints to an interval parameter.
1303 *
1304 * Return: Zero if successful, or a negative error code on failure.
1305 */
1306 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1307 unsigned int cond,
1308 snd_pcm_hw_param_t var,
1309 const struct snd_pcm_hw_constraint_ranges *r)
1310 {
1311 return snd_pcm_hw_rule_add(runtime, cond, var,
1312 snd_pcm_hw_rule_ranges, (void *)r,
1313 var, -1);
1314 }
1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1316
1317 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1318 struct snd_pcm_hw_rule *rule)
1319 {
1320 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1321 unsigned int num = 0, den = 0;
1322 int err;
1323 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1324 r->nrats, r->rats, &num, &den);
1325 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1326 params->rate_num = num;
1327 params->rate_den = den;
1328 }
1329 return err;
1330 }
1331
1332 /**
1333 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1334 * @runtime: PCM runtime instance
1335 * @cond: condition bits
1336 * @var: hw_params variable to apply the ratnums constraint
1337 * @r: struct snd_ratnums constriants
1338 *
1339 * Return: Zero if successful, or a negative error code on failure.
1340 */
1341 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1342 unsigned int cond,
1343 snd_pcm_hw_param_t var,
1344 const struct snd_pcm_hw_constraint_ratnums *r)
1345 {
1346 return snd_pcm_hw_rule_add(runtime, cond, var,
1347 snd_pcm_hw_rule_ratnums, (void *)r,
1348 var, -1);
1349 }
1350 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1351
1352 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1353 struct snd_pcm_hw_rule *rule)
1354 {
1355 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1356 unsigned int num = 0, den = 0;
1357 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1358 r->nrats, r->rats, &num, &den);
1359 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1360 params->rate_num = num;
1361 params->rate_den = den;
1362 }
1363 return err;
1364 }
1365
1366 /**
1367 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1368 * @runtime: PCM runtime instance
1369 * @cond: condition bits
1370 * @var: hw_params variable to apply the ratdens constraint
1371 * @r: struct snd_ratdens constriants
1372 *
1373 * Return: Zero if successful, or a negative error code on failure.
1374 */
1375 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1376 unsigned int cond,
1377 snd_pcm_hw_param_t var,
1378 const struct snd_pcm_hw_constraint_ratdens *r)
1379 {
1380 return snd_pcm_hw_rule_add(runtime, cond, var,
1381 snd_pcm_hw_rule_ratdens, (void *)r,
1382 var, -1);
1383 }
1384 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1385
1386 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1387 struct snd_pcm_hw_rule *rule)
1388 {
1389 unsigned int l = (unsigned long) rule->private;
1390 int width = l & 0xffff;
1391 unsigned int msbits = l >> 16;
1392 const struct snd_interval *i =
1393 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1394
1395 if (!snd_interval_single(i))
1396 return 0;
1397
1398 if ((snd_interval_value(i) == width) ||
1399 (width == 0 && snd_interval_value(i) > msbits))
1400 params->msbits = min_not_zero(params->msbits, msbits);
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407 * @runtime: PCM runtime instance
1408 * @cond: condition bits
1409 * @width: sample bits width
1410 * @msbits: msbits width
1411 *
1412 * This constraint will set the number of most significant bits (msbits) if a
1413 * sample format with the specified width has been select. If width is set to 0
1414 * the msbits will be set for any sample format with a width larger than the
1415 * specified msbits.
1416 *
1417 * Return: Zero if successful, or a negative error code on failure.
1418 */
1419 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1420 unsigned int cond,
1421 unsigned int width,
1422 unsigned int msbits)
1423 {
1424 unsigned long l = (msbits << 16) | width;
1425 return snd_pcm_hw_rule_add(runtime, cond, -1,
1426 snd_pcm_hw_rule_msbits,
1427 (void*) l,
1428 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1429 }
1430 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1431
1432 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1433 struct snd_pcm_hw_rule *rule)
1434 {
1435 unsigned long step = (unsigned long) rule->private;
1436 return snd_interval_step(hw_param_interval(params, rule->var), step);
1437 }
1438
1439 /**
1440 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1441 * @runtime: PCM runtime instance
1442 * @cond: condition bits
1443 * @var: hw_params variable to apply the step constraint
1444 * @step: step size
1445 *
1446 * Return: Zero if successful, or a negative error code on failure.
1447 */
1448 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1449 unsigned int cond,
1450 snd_pcm_hw_param_t var,
1451 unsigned long step)
1452 {
1453 return snd_pcm_hw_rule_add(runtime, cond, var,
1454 snd_pcm_hw_rule_step, (void *) step,
1455 var, -1);
1456 }
1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1458
1459 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1460 {
1461 static unsigned int pow2_sizes[] = {
1462 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1463 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1464 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1465 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1466 };
1467 return snd_interval_list(hw_param_interval(params, rule->var),
1468 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1469 }
1470
1471 /**
1472 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1473 * @runtime: PCM runtime instance
1474 * @cond: condition bits
1475 * @var: hw_params variable to apply the power-of-2 constraint
1476 *
1477 * Return: Zero if successful, or a negative error code on failure.
1478 */
1479 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1480 unsigned int cond,
1481 snd_pcm_hw_param_t var)
1482 {
1483 return snd_pcm_hw_rule_add(runtime, cond, var,
1484 snd_pcm_hw_rule_pow2, NULL,
1485 var, -1);
1486 }
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1488
1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1490 struct snd_pcm_hw_rule *rule)
1491 {
1492 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1493 struct snd_interval *rate;
1494
1495 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1496 return snd_interval_list(rate, 1, &base_rate, 0);
1497 }
1498
1499 /**
1500 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1501 * @runtime: PCM runtime instance
1502 * @base_rate: the rate at which the hardware does not resample
1503 *
1504 * Return: Zero if successful, or a negative error code on failure.
1505 */
1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1507 unsigned int base_rate)
1508 {
1509 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1510 SNDRV_PCM_HW_PARAM_RATE,
1511 snd_pcm_hw_rule_noresample_func,
1512 (void *)(uintptr_t)base_rate,
1513 SNDRV_PCM_HW_PARAM_RATE, -1);
1514 }
1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1516
1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1518 snd_pcm_hw_param_t var)
1519 {
1520 if (hw_is_mask(var)) {
1521 snd_mask_any(hw_param_mask(params, var));
1522 params->cmask |= 1 << var;
1523 params->rmask |= 1 << var;
1524 return;
1525 }
1526 if (hw_is_interval(var)) {
1527 snd_interval_any(hw_param_interval(params, var));
1528 params->cmask |= 1 << var;
1529 params->rmask |= 1 << var;
1530 return;
1531 }
1532 snd_BUG();
1533 }
1534
1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1536 {
1537 unsigned int k;
1538 memset(params, 0, sizeof(*params));
1539 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1540 _snd_pcm_hw_param_any(params, k);
1541 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1542 _snd_pcm_hw_param_any(params, k);
1543 params->info = ~0U;
1544 }
1545 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1546
1547 /**
1548 * snd_pcm_hw_param_value - return @params field @var value
1549 * @params: the hw_params instance
1550 * @var: parameter to retrieve
1551 * @dir: pointer to the direction (-1,0,1) or %NULL
1552 *
1553 * Return: The value for field @var if it's fixed in configuration space
1554 * defined by @params. -%EINVAL otherwise.
1555 */
1556 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1557 snd_pcm_hw_param_t var, int *dir)
1558 {
1559 if (hw_is_mask(var)) {
1560 const struct snd_mask *mask = hw_param_mask_c(params, var);
1561 if (!snd_mask_single(mask))
1562 return -EINVAL;
1563 if (dir)
1564 *dir = 0;
1565 return snd_mask_value(mask);
1566 }
1567 if (hw_is_interval(var)) {
1568 const struct snd_interval *i = hw_param_interval_c(params, var);
1569 if (!snd_interval_single(i))
1570 return -EINVAL;
1571 if (dir)
1572 *dir = i->openmin;
1573 return snd_interval_value(i);
1574 }
1575 return -EINVAL;
1576 }
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1578
1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1580 snd_pcm_hw_param_t var)
1581 {
1582 if (hw_is_mask(var)) {
1583 snd_mask_none(hw_param_mask(params, var));
1584 params->cmask |= 1 << var;
1585 params->rmask |= 1 << var;
1586 } else if (hw_is_interval(var)) {
1587 snd_interval_none(hw_param_interval(params, var));
1588 params->cmask |= 1 << var;
1589 params->rmask |= 1 << var;
1590 } else {
1591 snd_BUG();
1592 }
1593 }
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595
1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597 snd_pcm_hw_param_t var)
1598 {
1599 int changed;
1600 if (hw_is_mask(var))
1601 changed = snd_mask_refine_first(hw_param_mask(params, var));
1602 else if (hw_is_interval(var))
1603 changed = snd_interval_refine_first(hw_param_interval(params, var));
1604 else
1605 return -EINVAL;
1606 if (changed) {
1607 params->cmask |= 1 << var;
1608 params->rmask |= 1 << var;
1609 }
1610 return changed;
1611 }
1612
1613
1614 /**
1615 * snd_pcm_hw_param_first - refine config space and return minimum value
1616 * @pcm: PCM instance
1617 * @params: the hw_params instance
1618 * @var: parameter to retrieve
1619 * @dir: pointer to the direction (-1,0,1) or %NULL
1620 *
1621 * Inside configuration space defined by @params remove from @var all
1622 * values > minimum. Reduce configuration space accordingly.
1623 *
1624 * Return: The minimum, or a negative error code on failure.
1625 */
1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1627 struct snd_pcm_hw_params *params,
1628 snd_pcm_hw_param_t var, int *dir)
1629 {
1630 int changed = _snd_pcm_hw_param_first(params, var);
1631 if (changed < 0)
1632 return changed;
1633 if (params->rmask) {
1634 int err = snd_pcm_hw_refine(pcm, params);
1635 if (snd_BUG_ON(err < 0))
1636 return err;
1637 }
1638 return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643 snd_pcm_hw_param_t var)
1644 {
1645 int changed;
1646 if (hw_is_mask(var))
1647 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648 else if (hw_is_interval(var))
1649 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650 else
1651 return -EINVAL;
1652 if (changed) {
1653 params->cmask |= 1 << var;
1654 params->rmask |= 1 << var;
1655 }
1656 return changed;
1657 }
1658
1659
1660 /**
1661 * snd_pcm_hw_param_last - refine config space and return maximum value
1662 * @pcm: PCM instance
1663 * @params: the hw_params instance
1664 * @var: parameter to retrieve
1665 * @dir: pointer to the direction (-1,0,1) or %NULL
1666 *
1667 * Inside configuration space defined by @params remove from @var all
1668 * values < maximum. Reduce configuration space accordingly.
1669 *
1670 * Return: The maximum, or a negative error code on failure.
1671 */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1673 struct snd_pcm_hw_params *params,
1674 snd_pcm_hw_param_t var, int *dir)
1675 {
1676 int changed = _snd_pcm_hw_param_last(params, var);
1677 if (changed < 0)
1678 return changed;
1679 if (params->rmask) {
1680 int err = snd_pcm_hw_refine(pcm, params);
1681 if (snd_BUG_ON(err < 0))
1682 return err;
1683 }
1684 return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1687
1688 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1689 void *arg)
1690 {
1691 struct snd_pcm_runtime *runtime = substream->runtime;
1692 unsigned long flags;
1693 snd_pcm_stream_lock_irqsave(substream, flags);
1694 if (snd_pcm_running(substream) &&
1695 snd_pcm_update_hw_ptr(substream) >= 0)
1696 runtime->status->hw_ptr %= runtime->buffer_size;
1697 else {
1698 runtime->status->hw_ptr = 0;
1699 runtime->hw_ptr_wrap = 0;
1700 }
1701 snd_pcm_stream_unlock_irqrestore(substream, flags);
1702 return 0;
1703 }
1704
1705 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1706 void *arg)
1707 {
1708 struct snd_pcm_channel_info *info = arg;
1709 struct snd_pcm_runtime *runtime = substream->runtime;
1710 int width;
1711 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1712 info->offset = -1;
1713 return 0;
1714 }
1715 width = snd_pcm_format_physical_width(runtime->format);
1716 if (width < 0)
1717 return width;
1718 info->offset = 0;
1719 switch (runtime->access) {
1720 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1721 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1722 info->first = info->channel * width;
1723 info->step = runtime->channels * width;
1724 break;
1725 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1726 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1727 {
1728 size_t size = runtime->dma_bytes / runtime->channels;
1729 info->first = info->channel * size * 8;
1730 info->step = width;
1731 break;
1732 }
1733 default:
1734 snd_BUG();
1735 break;
1736 }
1737 return 0;
1738 }
1739
1740 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1741 void *arg)
1742 {
1743 struct snd_pcm_hw_params *params = arg;
1744 snd_pcm_format_t format;
1745 int channels;
1746 ssize_t frame_size;
1747
1748 params->fifo_size = substream->runtime->hw.fifo_size;
1749 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1750 format = params_format(params);
1751 channels = params_channels(params);
1752 frame_size = snd_pcm_format_size(format, channels);
1753 if (frame_size > 0)
1754 params->fifo_size /= (unsigned)frame_size;
1755 }
1756 return 0;
1757 }
1758
1759 /**
1760 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1761 * @substream: the pcm substream instance
1762 * @cmd: ioctl command
1763 * @arg: ioctl argument
1764 *
1765 * Processes the generic ioctl commands for PCM.
1766 * Can be passed as the ioctl callback for PCM ops.
1767 *
1768 * Return: Zero if successful, or a negative error code on failure.
1769 */
1770 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1771 unsigned int cmd, void *arg)
1772 {
1773 switch (cmd) {
1774 case SNDRV_PCM_IOCTL1_RESET:
1775 return snd_pcm_lib_ioctl_reset(substream, arg);
1776 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1777 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1778 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1779 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1780 }
1781 return -ENXIO;
1782 }
1783 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1784
1785 /**
1786 * snd_pcm_period_elapsed - update the pcm status for the next period
1787 * @substream: the pcm substream instance
1788 *
1789 * This function is called from the interrupt handler when the
1790 * PCM has processed the period size. It will update the current
1791 * pointer, wake up sleepers, etc.
1792 *
1793 * Even if more than one periods have elapsed since the last call, you
1794 * have to call this only once.
1795 */
1796 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1797 {
1798 struct snd_pcm_runtime *runtime;
1799 unsigned long flags;
1800
1801 if (PCM_RUNTIME_CHECK(substream))
1802 return;
1803 runtime = substream->runtime;
1804
1805 snd_pcm_stream_lock_irqsave(substream, flags);
1806 if (!snd_pcm_running(substream) ||
1807 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1808 goto _end;
1809
1810 #ifdef CONFIG_SND_PCM_TIMER
1811 if (substream->timer_running)
1812 snd_timer_interrupt(substream->timer, 1);
1813 #endif
1814 _end:
1815 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1816 snd_pcm_stream_unlock_irqrestore(substream, flags);
1817 }
1818 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1819
1820 /*
1821 * Wait until avail_min data becomes available
1822 * Returns a negative error code if any error occurs during operation.
1823 * The available space is stored on availp. When err = 0 and avail = 0
1824 * on the capture stream, it indicates the stream is in DRAINING state.
1825 */
1826 static int wait_for_avail(struct snd_pcm_substream *substream,
1827 snd_pcm_uframes_t *availp)
1828 {
1829 struct snd_pcm_runtime *runtime = substream->runtime;
1830 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1831 wait_queue_entry_t wait;
1832 int err = 0;
1833 snd_pcm_uframes_t avail = 0;
1834 long wait_time, tout;
1835
1836 init_waitqueue_entry(&wait, current);
1837 set_current_state(TASK_INTERRUPTIBLE);
1838 add_wait_queue(&runtime->tsleep, &wait);
1839
1840 if (runtime->no_period_wakeup)
1841 wait_time = MAX_SCHEDULE_TIMEOUT;
1842 else {
1843 wait_time = 10;
1844 if (runtime->rate) {
1845 long t = runtime->period_size * 2 / runtime->rate;
1846 wait_time = max(t, wait_time);
1847 }
1848 wait_time = msecs_to_jiffies(wait_time * 1000);
1849 }
1850
1851 for (;;) {
1852 if (signal_pending(current)) {
1853 err = -ERESTARTSYS;
1854 break;
1855 }
1856
1857 /*
1858 * We need to check if space became available already
1859 * (and thus the wakeup happened already) first to close
1860 * the race of space already having become available.
1861 * This check must happen after been added to the waitqueue
1862 * and having current state be INTERRUPTIBLE.
1863 */
1864 if (is_playback)
1865 avail = snd_pcm_playback_avail(runtime);
1866 else
1867 avail = snd_pcm_capture_avail(runtime);
1868 if (avail >= runtime->twake)
1869 break;
1870 snd_pcm_stream_unlock_irq(substream);
1871
1872 tout = schedule_timeout(wait_time);
1873
1874 snd_pcm_stream_lock_irq(substream);
1875 set_current_state(TASK_INTERRUPTIBLE);
1876 switch (runtime->status->state) {
1877 case SNDRV_PCM_STATE_SUSPENDED:
1878 err = -ESTRPIPE;
1879 goto _endloop;
1880 case SNDRV_PCM_STATE_XRUN:
1881 err = -EPIPE;
1882 goto _endloop;
1883 case SNDRV_PCM_STATE_DRAINING:
1884 if (is_playback)
1885 err = -EPIPE;
1886 else
1887 avail = 0; /* indicate draining */
1888 goto _endloop;
1889 case SNDRV_PCM_STATE_OPEN:
1890 case SNDRV_PCM_STATE_SETUP:
1891 case SNDRV_PCM_STATE_DISCONNECTED:
1892 err = -EBADFD;
1893 goto _endloop;
1894 case SNDRV_PCM_STATE_PAUSED:
1895 continue;
1896 }
1897 if (!tout) {
1898 pcm_dbg(substream->pcm,
1899 "%s write error (DMA or IRQ trouble?)\n",
1900 is_playback ? "playback" : "capture");
1901 err = -EIO;
1902 break;
1903 }
1904 }
1905 _endloop:
1906 set_current_state(TASK_RUNNING);
1907 remove_wait_queue(&runtime->tsleep, &wait);
1908 *availp = avail;
1909 return err;
1910 }
1911
1912 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1913 int channel, unsigned long hwoff,
1914 void *buf, unsigned long bytes);
1915
1916 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1917 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1918
1919 /* calculate the target DMA-buffer position to be written/read */
1920 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1921 int channel, unsigned long hwoff)
1922 {
1923 return runtime->dma_area + hwoff +
1924 channel * (runtime->dma_bytes / runtime->channels);
1925 }
1926
1927 /* default copy_user ops for write; used for both interleaved and non- modes */
1928 static int default_write_copy(struct snd_pcm_substream *substream,
1929 int channel, unsigned long hwoff,
1930 void *buf, unsigned long bytes)
1931 {
1932 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1933 (void __user *)buf, bytes))
1934 return -EFAULT;
1935 return 0;
1936 }
1937
1938 /* default copy_kernel ops for write */
1939 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1940 int channel, unsigned long hwoff,
1941 void *buf, unsigned long bytes)
1942 {
1943 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1944 return 0;
1945 }
1946
1947 /* fill silence instead of copy data; called as a transfer helper
1948 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1949 * a NULL buffer is passed
1950 */
1951 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1952 unsigned long hwoff, void *buf, unsigned long bytes)
1953 {
1954 struct snd_pcm_runtime *runtime = substream->runtime;
1955
1956 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1957 return 0;
1958 if (substream->ops->fill_silence)
1959 return substream->ops->fill_silence(substream, channel,
1960 hwoff, bytes);
1961
1962 snd_pcm_format_set_silence(runtime->format,
1963 get_dma_ptr(runtime, channel, hwoff),
1964 bytes_to_samples(runtime, bytes));
1965 return 0;
1966 }
1967
1968 /* default copy_user ops for read; used for both interleaved and non- modes */
1969 static int default_read_copy(struct snd_pcm_substream *substream,
1970 int channel, unsigned long hwoff,
1971 void *buf, unsigned long bytes)
1972 {
1973 if (copy_to_user((void __user *)buf,
1974 get_dma_ptr(substream->runtime, channel, hwoff),
1975 bytes))
1976 return -EFAULT;
1977 return 0;
1978 }
1979
1980 /* default copy_kernel ops for read */
1981 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1982 int channel, unsigned long hwoff,
1983 void *buf, unsigned long bytes)
1984 {
1985 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1986 return 0;
1987 }
1988
1989 /* call transfer function with the converted pointers and sizes;
1990 * for interleaved mode, it's one shot for all samples
1991 */
1992 static int interleaved_copy(struct snd_pcm_substream *substream,
1993 snd_pcm_uframes_t hwoff, void *data,
1994 snd_pcm_uframes_t off,
1995 snd_pcm_uframes_t frames,
1996 pcm_transfer_f transfer)
1997 {
1998 struct snd_pcm_runtime *runtime = substream->runtime;
1999
2000 /* convert to bytes */
2001 hwoff = frames_to_bytes(runtime, hwoff);
2002 off = frames_to_bytes(runtime, off);
2003 frames = frames_to_bytes(runtime, frames);
2004 return transfer(substream, 0, hwoff, data + off, frames);
2005 }
2006
2007 /* call transfer function with the converted pointers and sizes for each
2008 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2009 */
2010 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2011 snd_pcm_uframes_t hwoff, void *data,
2012 snd_pcm_uframes_t off,
2013 snd_pcm_uframes_t frames,
2014 pcm_transfer_f transfer)
2015 {
2016 struct snd_pcm_runtime *runtime = substream->runtime;
2017 int channels = runtime->channels;
2018 void **bufs = data;
2019 int c, err;
2020
2021 /* convert to bytes; note that it's not frames_to_bytes() here.
2022 * in non-interleaved mode, we copy for each channel, thus
2023 * each copy is n_samples bytes x channels = whole frames.
2024 */
2025 off = samples_to_bytes(runtime, off);
2026 frames = samples_to_bytes(runtime, frames);
2027 hwoff = samples_to_bytes(runtime, hwoff);
2028 for (c = 0; c < channels; ++c, ++bufs) {
2029 if (!data || !*bufs)
2030 err = fill_silence(substream, c, hwoff, NULL, frames);
2031 else
2032 err = transfer(substream, c, hwoff, *bufs + off,
2033 frames);
2034 if (err < 0)
2035 return err;
2036 }
2037 return 0;
2038 }
2039
2040 /* fill silence on the given buffer position;
2041 * called from snd_pcm_playback_silence()
2042 */
2043 static int fill_silence_frames(struct snd_pcm_substream *substream,
2044 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2045 {
2046 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2047 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2048 return interleaved_copy(substream, off, NULL, 0, frames,
2049 fill_silence);
2050 else
2051 return noninterleaved_copy(substream, off, NULL, 0, frames,
2052 fill_silence);
2053 }
2054
2055 /* sanity-check for read/write methods */
2056 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2057 {
2058 struct snd_pcm_runtime *runtime;
2059 if (PCM_RUNTIME_CHECK(substream))
2060 return -ENXIO;
2061 runtime = substream->runtime;
2062 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2063 return -EINVAL;
2064 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2065 return -EBADFD;
2066 return 0;
2067 }
2068
2069 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2070 {
2071 switch (runtime->status->state) {
2072 case SNDRV_PCM_STATE_PREPARED:
2073 case SNDRV_PCM_STATE_RUNNING:
2074 case SNDRV_PCM_STATE_PAUSED:
2075 return 0;
2076 case SNDRV_PCM_STATE_XRUN:
2077 return -EPIPE;
2078 case SNDRV_PCM_STATE_SUSPENDED:
2079 return -ESTRPIPE;
2080 default:
2081 return -EBADFD;
2082 }
2083 }
2084
2085 /* update to the given appl_ptr and call ack callback if needed;
2086 * when an error is returned, take back to the original value
2087 */
2088 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2089 snd_pcm_uframes_t appl_ptr)
2090 {
2091 struct snd_pcm_runtime *runtime = substream->runtime;
2092 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2093 int ret;
2094
2095 if (old_appl_ptr == appl_ptr)
2096 return 0;
2097
2098 runtime->control->appl_ptr = appl_ptr;
2099 if (substream->ops->ack) {
2100 ret = substream->ops->ack(substream);
2101 if (ret < 0) {
2102 runtime->control->appl_ptr = old_appl_ptr;
2103 return ret;
2104 }
2105 }
2106
2107 trace_applptr(substream, old_appl_ptr, appl_ptr);
2108
2109 return 0;
2110 }
2111
2112 /* the common loop for read/write data */
2113 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2114 void *data, bool interleaved,
2115 snd_pcm_uframes_t size, bool in_kernel)
2116 {
2117 struct snd_pcm_runtime *runtime = substream->runtime;
2118 snd_pcm_uframes_t xfer = 0;
2119 snd_pcm_uframes_t offset = 0;
2120 snd_pcm_uframes_t avail;
2121 pcm_copy_f writer;
2122 pcm_transfer_f transfer;
2123 bool nonblock;
2124 bool is_playback;
2125 int err;
2126
2127 err = pcm_sanity_check(substream);
2128 if (err < 0)
2129 return err;
2130
2131 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2132 if (interleaved) {
2133 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2134 runtime->channels > 1)
2135 return -EINVAL;
2136 writer = interleaved_copy;
2137 } else {
2138 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2139 return -EINVAL;
2140 writer = noninterleaved_copy;
2141 }
2142
2143 if (!data) {
2144 if (is_playback)
2145 transfer = fill_silence;
2146 else
2147 return -EINVAL;
2148 } else if (in_kernel) {
2149 if (substream->ops->copy_kernel)
2150 transfer = substream->ops->copy_kernel;
2151 else
2152 transfer = is_playback ?
2153 default_write_copy_kernel : default_read_copy_kernel;
2154 } else {
2155 if (substream->ops->copy_user)
2156 transfer = (pcm_transfer_f)substream->ops->copy_user;
2157 else
2158 transfer = is_playback ?
2159 default_write_copy : default_read_copy;
2160 }
2161
2162 if (size == 0)
2163 return 0;
2164
2165 nonblock = !!(substream->f_flags & O_NONBLOCK);
2166
2167 snd_pcm_stream_lock_irq(substream);
2168 err = pcm_accessible_state(runtime);
2169 if (err < 0)
2170 goto _end_unlock;
2171
2172 if (!is_playback &&
2173 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174 size >= runtime->start_threshold) {
2175 err = snd_pcm_start(substream);
2176 if (err < 0)
2177 goto _end_unlock;
2178 }
2179
2180 runtime->twake = runtime->control->avail_min ? : 1;
2181 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2182 snd_pcm_update_hw_ptr(substream);
2183 if (is_playback)
2184 avail = snd_pcm_playback_avail(runtime);
2185 else
2186 avail = snd_pcm_capture_avail(runtime);
2187 while (size > 0) {
2188 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2189 snd_pcm_uframes_t cont;
2190 if (!avail) {
2191 if (!is_playback &&
2192 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2193 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2194 goto _end_unlock;
2195 }
2196 if (nonblock) {
2197 err = -EAGAIN;
2198 goto _end_unlock;
2199 }
2200 runtime->twake = min_t(snd_pcm_uframes_t, size,
2201 runtime->control->avail_min ? : 1);
2202 err = wait_for_avail(substream, &avail);
2203 if (err < 0)
2204 goto _end_unlock;
2205 if (!avail)
2206 continue; /* draining */
2207 }
2208 frames = size > avail ? avail : size;
2209 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2210 appl_ofs = appl_ptr % runtime->buffer_size;
2211 cont = runtime->buffer_size - appl_ofs;
2212 if (frames > cont)
2213 frames = cont;
2214 if (snd_BUG_ON(!frames)) {
2215 runtime->twake = 0;
2216 snd_pcm_stream_unlock_irq(substream);
2217 return -EINVAL;
2218 }
2219 snd_pcm_stream_unlock_irq(substream);
2220 err = writer(substream, appl_ofs, data, offset, frames,
2221 transfer);
2222 snd_pcm_stream_lock_irq(substream);
2223 if (err < 0)
2224 goto _end_unlock;
2225 err = pcm_accessible_state(runtime);
2226 if (err < 0)
2227 goto _end_unlock;
2228 appl_ptr += frames;
2229 if (appl_ptr >= runtime->boundary)
2230 appl_ptr -= runtime->boundary;
2231 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2232 if (err < 0)
2233 goto _end_unlock;
2234
2235 offset += frames;
2236 size -= frames;
2237 xfer += frames;
2238 avail -= frames;
2239 if (is_playback &&
2240 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2241 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2242 err = snd_pcm_start(substream);
2243 if (err < 0)
2244 goto _end_unlock;
2245 }
2246 }
2247 _end_unlock:
2248 runtime->twake = 0;
2249 if (xfer > 0 && err >= 0)
2250 snd_pcm_update_state(substream, runtime);
2251 snd_pcm_stream_unlock_irq(substream);
2252 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2253 }
2254 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2255
2256 /*
2257 * standard channel mapping helpers
2258 */
2259
2260 /* default channel maps for multi-channel playbacks, up to 8 channels */
2261 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2262 { .channels = 1,
2263 .map = { SNDRV_CHMAP_MONO } },
2264 { .channels = 2,
2265 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2266 { .channels = 4,
2267 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2268 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2269 { .channels = 6,
2270 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2271 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2272 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2273 { .channels = 8,
2274 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2275 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2276 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2277 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2278 { }
2279 };
2280 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2281
2282 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2283 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2284 { .channels = 1,
2285 .map = { SNDRV_CHMAP_MONO } },
2286 { .channels = 2,
2287 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2288 { .channels = 4,
2289 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2290 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2291 { .channels = 6,
2292 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2293 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2294 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2295 { .channels = 8,
2296 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2297 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2298 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2299 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2300 { }
2301 };
2302 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2303
2304 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2305 {
2306 if (ch > info->max_channels)
2307 return false;
2308 return !info->channel_mask || (info->channel_mask & (1U << ch));
2309 }
2310
2311 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2312 struct snd_ctl_elem_info *uinfo)
2313 {
2314 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2315
2316 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2317 uinfo->count = 0;
2318 uinfo->count = info->max_channels;
2319 uinfo->value.integer.min = 0;
2320 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2321 return 0;
2322 }
2323
2324 /* get callback for channel map ctl element
2325 * stores the channel position firstly matching with the current channels
2326 */
2327 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2328 struct snd_ctl_elem_value *ucontrol)
2329 {
2330 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2331 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2332 struct snd_pcm_substream *substream;
2333 const struct snd_pcm_chmap_elem *map;
2334
2335 if (!info->chmap)
2336 return -EINVAL;
2337 substream = snd_pcm_chmap_substream(info, idx);
2338 if (!substream)
2339 return -ENODEV;
2340 memset(ucontrol->value.integer.value, 0,
2341 sizeof(ucontrol->value.integer.value));
2342 if (!substream->runtime)
2343 return 0; /* no channels set */
2344 for (map = info->chmap; map->channels; map++) {
2345 int i;
2346 if (map->channels == substream->runtime->channels &&
2347 valid_chmap_channels(info, map->channels)) {
2348 for (i = 0; i < map->channels; i++)
2349 ucontrol->value.integer.value[i] = map->map[i];
2350 return 0;
2351 }
2352 }
2353 return -EINVAL;
2354 }
2355
2356 /* tlv callback for channel map ctl element
2357 * expands the pre-defined channel maps in a form of TLV
2358 */
2359 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2360 unsigned int size, unsigned int __user *tlv)
2361 {
2362 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2363 const struct snd_pcm_chmap_elem *map;
2364 unsigned int __user *dst;
2365 int c, count = 0;
2366
2367 if (!info->chmap)
2368 return -EINVAL;
2369 if (size < 8)
2370 return -ENOMEM;
2371 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2372 return -EFAULT;
2373 size -= 8;
2374 dst = tlv + 2;
2375 for (map = info->chmap; map->channels; map++) {
2376 int chs_bytes = map->channels * 4;
2377 if (!valid_chmap_channels(info, map->channels))
2378 continue;
2379 if (size < 8)
2380 return -ENOMEM;
2381 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2382 put_user(chs_bytes, dst + 1))
2383 return -EFAULT;
2384 dst += 2;
2385 size -= 8;
2386 count += 8;
2387 if (size < chs_bytes)
2388 return -ENOMEM;
2389 size -= chs_bytes;
2390 count += chs_bytes;
2391 for (c = 0; c < map->channels; c++) {
2392 if (put_user(map->map[c], dst))
2393 return -EFAULT;
2394 dst++;
2395 }
2396 }
2397 if (put_user(count, tlv + 1))
2398 return -EFAULT;
2399 return 0;
2400 }
2401
2402 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2403 {
2404 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2405 info->pcm->streams[info->stream].chmap_kctl = NULL;
2406 kfree(info);
2407 }
2408
2409 /**
2410 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2411 * @pcm: the assigned PCM instance
2412 * @stream: stream direction
2413 * @chmap: channel map elements (for query)
2414 * @max_channels: the max number of channels for the stream
2415 * @private_value: the value passed to each kcontrol's private_value field
2416 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2417 *
2418 * Create channel-mapping control elements assigned to the given PCM stream(s).
2419 * Return: Zero if successful, or a negative error value.
2420 */
2421 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2422 const struct snd_pcm_chmap_elem *chmap,
2423 int max_channels,
2424 unsigned long private_value,
2425 struct snd_pcm_chmap **info_ret)
2426 {
2427 struct snd_pcm_chmap *info;
2428 struct snd_kcontrol_new knew = {
2429 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2430 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2431 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2432 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2433 .info = pcm_chmap_ctl_info,
2434 .get = pcm_chmap_ctl_get,
2435 .tlv.c = pcm_chmap_ctl_tlv,
2436 };
2437 int err;
2438
2439 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2440 return -EBUSY;
2441 info = kzalloc(sizeof(*info), GFP_KERNEL);
2442 if (!info)
2443 return -ENOMEM;
2444 info->pcm = pcm;
2445 info->stream = stream;
2446 info->chmap = chmap;
2447 info->max_channels = max_channels;
2448 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2449 knew.name = "Playback Channel Map";
2450 else
2451 knew.name = "Capture Channel Map";
2452 knew.device = pcm->device;
2453 knew.count = pcm->streams[stream].substream_count;
2454 knew.private_value = private_value;
2455 info->kctl = snd_ctl_new1(&knew, info);
2456 if (!info->kctl) {
2457 kfree(info);
2458 return -ENOMEM;
2459 }
2460 info->kctl->private_free = pcm_chmap_ctl_private_free;
2461 err = snd_ctl_add(pcm->card, info->kctl);
2462 if (err < 0)
2463 return err;
2464 pcm->streams[stream].chmap_kctl = info->kctl;
2465 if (info_ret)
2466 *info_ret = info;
2467 return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);