]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/core/pcm_lib.c
sound: Add export.h for THIS_MODULE/EXPORT_SYMBOL where needed
[mirror_ubuntu-bionic-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33
34 /*
35 * fill ring buffer with silence
36 * runtime->silence_start: starting pointer to silence area
37 * runtime->silence_filled: size filled with silence
38 * runtime->silence_threshold: threshold from application
39 * runtime->silence_size: maximal size from application
40 *
41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42 */
43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45 struct snd_pcm_runtime *runtime = substream->runtime;
46 snd_pcm_uframes_t frames, ofs, transfer;
47
48 if (runtime->silence_size < runtime->boundary) {
49 snd_pcm_sframes_t noise_dist, n;
50 if (runtime->silence_start != runtime->control->appl_ptr) {
51 n = runtime->control->appl_ptr - runtime->silence_start;
52 if (n < 0)
53 n += runtime->boundary;
54 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 runtime->silence_filled -= n;
56 else
57 runtime->silence_filled = 0;
58 runtime->silence_start = runtime->control->appl_ptr;
59 }
60 if (runtime->silence_filled >= runtime->buffer_size)
61 return;
62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 return;
65 frames = runtime->silence_threshold - noise_dist;
66 if (frames > runtime->silence_size)
67 frames = runtime->silence_size;
68 } else {
69 if (new_hw_ptr == ULONG_MAX) { /* initialization */
70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 if (avail > runtime->buffer_size)
72 avail = runtime->buffer_size;
73 runtime->silence_filled = avail > 0 ? avail : 0;
74 runtime->silence_start = (runtime->status->hw_ptr +
75 runtime->silence_filled) %
76 runtime->boundary;
77 } else {
78 ofs = runtime->status->hw_ptr;
79 frames = new_hw_ptr - ofs;
80 if ((snd_pcm_sframes_t)frames < 0)
81 frames += runtime->boundary;
82 runtime->silence_filled -= frames;
83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 runtime->silence_filled = 0;
85 runtime->silence_start = new_hw_ptr;
86 } else {
87 runtime->silence_start = ofs;
88 }
89 }
90 frames = runtime->buffer_size - runtime->silence_filled;
91 }
92 if (snd_BUG_ON(frames > runtime->buffer_size))
93 return;
94 if (frames == 0)
95 return;
96 ofs = runtime->silence_start % runtime->buffer_size;
97 while (frames > 0) {
98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 if (substream->ops->silence) {
102 int err;
103 err = substream->ops->silence(substream, -1, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 } else {
106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 }
109 } else {
110 unsigned int c;
111 unsigned int channels = runtime->channels;
112 if (substream->ops->silence) {
113 for (c = 0; c < channels; ++c) {
114 int err;
115 err = substream->ops->silence(substream, c, ofs, transfer);
116 snd_BUG_ON(err < 0);
117 }
118 } else {
119 size_t dma_csize = runtime->dma_bytes / channels;
120 for (c = 0; c < channels; ++c) {
121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 }
124 }
125 }
126 runtime->silence_filled += transfer;
127 frames -= transfer;
128 ofs = 0;
129 }
130 }
131
132 #ifdef CONFIG_SND_DEBUG
133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 char *name, size_t len)
135 {
136 snprintf(name, len, "pcmC%dD%d%c:%d",
137 substream->pcm->card->number,
138 substream->pcm->device,
139 substream->stream ? 'c' : 'p',
140 substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144
145 #define XRUN_DEBUG_BASIC (1<<0)
146 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
150 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
152
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155 #define xrun_debug(substream, mask) \
156 ((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask) 0
159 #endif
160
161 #define dump_stack_on_xrun(substream) do { \
162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
163 dump_stack(); \
164 } while (0)
165
166 static void xrun(struct snd_pcm_substream *substream)
167 {
168 struct snd_pcm_runtime *runtime = substream->runtime;
169
170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 char name[16];
175 snd_pcm_debug_name(substream, name, sizeof(name));
176 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 dump_stack_on_xrun(substream);
178 }
179 }
180
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...) \
183 do { \
184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
185 xrun_log_show(substream); \
186 if (printk_ratelimit()) { \
187 snd_printd("PCM: " fmt, ##args); \
188 } \
189 dump_stack_on_xrun(substream); \
190 } \
191 } while (0)
192
193 #define XRUN_LOG_CNT 10
194
195 struct hwptr_log_entry {
196 unsigned int in_interrupt;
197 unsigned long jiffies;
198 snd_pcm_uframes_t pos;
199 snd_pcm_uframes_t period_size;
200 snd_pcm_uframes_t buffer_size;
201 snd_pcm_uframes_t old_hw_ptr;
202 snd_pcm_uframes_t hw_ptr_base;
203 };
204
205 struct snd_pcm_hwptr_log {
206 unsigned int idx;
207 unsigned int hit: 1;
208 struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210
211 static void xrun_log(struct snd_pcm_substream *substream,
212 snd_pcm_uframes_t pos, int in_interrupt)
213 {
214 struct snd_pcm_runtime *runtime = substream->runtime;
215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 struct hwptr_log_entry *entry;
217
218 if (log == NULL) {
219 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 if (log == NULL)
221 return;
222 runtime->hwptr_log = log;
223 } else {
224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 return;
226 }
227 entry = &log->entries[log->idx];
228 entry->in_interrupt = in_interrupt;
229 entry->jiffies = jiffies;
230 entry->pos = pos;
231 entry->period_size = runtime->period_size;
232 entry->buffer_size = runtime->buffer_size;
233 entry->old_hw_ptr = runtime->status->hw_ptr;
234 entry->hw_ptr_base = runtime->hw_ptr_base;
235 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237
238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 struct hwptr_log_entry *entry;
242 char name[16];
243 unsigned int idx;
244 int cnt;
245
246 if (log == NULL)
247 return;
248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 return;
250 snd_pcm_debug_name(substream, name, sizeof(name));
251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 entry = &log->entries[idx];
253 if (entry->period_size == 0)
254 break;
255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 "hwptr=%ld/%ld\n",
257 name, entry->in_interrupt ? "[Q] " : "",
258 entry->jiffies,
259 (unsigned long)entry->pos,
260 (unsigned long)entry->period_size,
261 (unsigned long)entry->buffer_size,
262 (unsigned long)entry->old_hw_ptr,
263 (unsigned long)entry->hw_ptr_base);
264 idx++;
265 idx %= XRUN_LOG_CNT;
266 }
267 log->hit = 1;
268 }
269
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
274 #define xrun_log_show(substream) do { } while (0)
275
276 #endif
277
278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 struct snd_pcm_runtime *runtime)
280 {
281 snd_pcm_uframes_t avail;
282
283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 avail = snd_pcm_playback_avail(runtime);
285 else
286 avail = snd_pcm_capture_avail(runtime);
287 if (avail > runtime->avail_max)
288 runtime->avail_max = avail;
289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 if (avail >= runtime->buffer_size) {
291 snd_pcm_drain_done(substream);
292 return -EPIPE;
293 }
294 } else {
295 if (avail >= runtime->stop_threshold) {
296 xrun(substream);
297 return -EPIPE;
298 }
299 }
300 if (runtime->twake) {
301 if (avail >= runtime->twake)
302 wake_up(&runtime->tsleep);
303 } else if (avail >= runtime->control->avail_min)
304 wake_up(&runtime->sleep);
305 return 0;
306 }
307
308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 unsigned int in_interrupt)
310 {
311 struct snd_pcm_runtime *runtime = substream->runtime;
312 snd_pcm_uframes_t pos;
313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 snd_pcm_sframes_t hdelta, delta;
315 unsigned long jdelta;
316
317 old_hw_ptr = runtime->status->hw_ptr;
318 pos = substream->ops->pointer(substream);
319 if (pos == SNDRV_PCM_POS_XRUN) {
320 xrun(substream);
321 return -EPIPE;
322 }
323 if (pos >= runtime->buffer_size) {
324 if (printk_ratelimit()) {
325 char name[16];
326 snd_pcm_debug_name(substream, name, sizeof(name));
327 xrun_log_show(substream);
328 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
329 "buffer size = %ld, period size = %ld\n",
330 name, pos, runtime->buffer_size,
331 runtime->period_size);
332 }
333 pos = 0;
334 }
335 pos -= pos % runtime->min_align;
336 if (xrun_debug(substream, XRUN_DEBUG_LOG))
337 xrun_log(substream, pos, in_interrupt);
338 hw_base = runtime->hw_ptr_base;
339 new_hw_ptr = hw_base + pos;
340 if (in_interrupt) {
341 /* we know that one period was processed */
342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344 if (delta > new_hw_ptr) {
345 /* check for double acknowledged interrupts */
346 hdelta = jiffies - runtime->hw_ptr_jiffies;
347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
348 hw_base += runtime->buffer_size;
349 if (hw_base >= runtime->boundary)
350 hw_base = 0;
351 new_hw_ptr = hw_base + pos;
352 goto __delta;
353 }
354 }
355 }
356 /* new_hw_ptr might be lower than old_hw_ptr in case when */
357 /* pointer crosses the end of the ring buffer */
358 if (new_hw_ptr < old_hw_ptr) {
359 hw_base += runtime->buffer_size;
360 if (hw_base >= runtime->boundary)
361 hw_base = 0;
362 new_hw_ptr = hw_base + pos;
363 }
364 __delta:
365 delta = new_hw_ptr - old_hw_ptr;
366 if (delta < 0)
367 delta += runtime->boundary;
368 if (xrun_debug(substream, in_interrupt ?
369 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
370 char name[16];
371 snd_pcm_debug_name(substream, name, sizeof(name));
372 snd_printd("%s_update: %s: pos=%u/%u/%u, "
373 "hwptr=%ld/%ld/%ld/%ld\n",
374 in_interrupt ? "period" : "hwptr",
375 name,
376 (unsigned int)pos,
377 (unsigned int)runtime->period_size,
378 (unsigned int)runtime->buffer_size,
379 (unsigned long)delta,
380 (unsigned long)old_hw_ptr,
381 (unsigned long)new_hw_ptr,
382 (unsigned long)runtime->hw_ptr_base);
383 }
384
385 if (runtime->no_period_wakeup) {
386 snd_pcm_sframes_t xrun_threshold;
387 /*
388 * Without regular period interrupts, we have to check
389 * the elapsed time to detect xruns.
390 */
391 jdelta = jiffies - runtime->hw_ptr_jiffies;
392 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
393 goto no_delta_check;
394 hdelta = jdelta - delta * HZ / runtime->rate;
395 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
396 while (hdelta > xrun_threshold) {
397 delta += runtime->buffer_size;
398 hw_base += runtime->buffer_size;
399 if (hw_base >= runtime->boundary)
400 hw_base = 0;
401 new_hw_ptr = hw_base + pos;
402 hdelta -= runtime->hw_ptr_buffer_jiffies;
403 }
404 goto no_delta_check;
405 }
406
407 /* something must be really wrong */
408 if (delta >= runtime->buffer_size + runtime->period_size) {
409 hw_ptr_error(substream,
410 "Unexpected hw_pointer value %s"
411 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
412 "old_hw_ptr=%ld)\n",
413 in_interrupt ? "[Q] " : "[P]",
414 substream->stream, (long)pos,
415 (long)new_hw_ptr, (long)old_hw_ptr);
416 return 0;
417 }
418
419 /* Do jiffies check only in xrun_debug mode */
420 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
421 goto no_jiffies_check;
422
423 /* Skip the jiffies check for hardwares with BATCH flag.
424 * Such hardware usually just increases the position at each IRQ,
425 * thus it can't give any strange position.
426 */
427 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
428 goto no_jiffies_check;
429 hdelta = delta;
430 if (hdelta < runtime->delay)
431 goto no_jiffies_check;
432 hdelta -= runtime->delay;
433 jdelta = jiffies - runtime->hw_ptr_jiffies;
434 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
435 delta = jdelta /
436 (((runtime->period_size * HZ) / runtime->rate)
437 + HZ/100);
438 /* move new_hw_ptr according jiffies not pos variable */
439 new_hw_ptr = old_hw_ptr;
440 hw_base = delta;
441 /* use loop to avoid checks for delta overflows */
442 /* the delta value is small or zero in most cases */
443 while (delta > 0) {
444 new_hw_ptr += runtime->period_size;
445 if (new_hw_ptr >= runtime->boundary)
446 new_hw_ptr -= runtime->boundary;
447 delta--;
448 }
449 /* align hw_base to buffer_size */
450 hw_ptr_error(substream,
451 "hw_ptr skipping! %s"
452 "(pos=%ld, delta=%ld, period=%ld, "
453 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
454 in_interrupt ? "[Q] " : "",
455 (long)pos, (long)hdelta,
456 (long)runtime->period_size, jdelta,
457 ((hdelta * HZ) / runtime->rate), hw_base,
458 (unsigned long)old_hw_ptr,
459 (unsigned long)new_hw_ptr);
460 /* reset values to proper state */
461 delta = 0;
462 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
463 }
464 no_jiffies_check:
465 if (delta > runtime->period_size + runtime->period_size / 2) {
466 hw_ptr_error(substream,
467 "Lost interrupts? %s"
468 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
469 "old_hw_ptr=%ld)\n",
470 in_interrupt ? "[Q] " : "",
471 substream->stream, (long)delta,
472 (long)new_hw_ptr,
473 (long)old_hw_ptr);
474 }
475
476 no_delta_check:
477 if (runtime->status->hw_ptr == new_hw_ptr)
478 return 0;
479
480 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
481 runtime->silence_size > 0)
482 snd_pcm_playback_silence(substream, new_hw_ptr);
483
484 if (in_interrupt) {
485 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
486 if (delta < 0)
487 delta += runtime->boundary;
488 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
489 runtime->hw_ptr_interrupt += delta;
490 if (runtime->hw_ptr_interrupt >= runtime->boundary)
491 runtime->hw_ptr_interrupt -= runtime->boundary;
492 }
493 runtime->hw_ptr_base = hw_base;
494 runtime->status->hw_ptr = new_hw_ptr;
495 runtime->hw_ptr_jiffies = jiffies;
496 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
497 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
498
499 return snd_pcm_update_state(substream, runtime);
500 }
501
502 /* CAUTION: call it with irq disabled */
503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
504 {
505 return snd_pcm_update_hw_ptr0(substream, 0);
506 }
507
508 /**
509 * snd_pcm_set_ops - set the PCM operators
510 * @pcm: the pcm instance
511 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
512 * @ops: the operator table
513 *
514 * Sets the given PCM operators to the pcm instance.
515 */
516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
517 {
518 struct snd_pcm_str *stream = &pcm->streams[direction];
519 struct snd_pcm_substream *substream;
520
521 for (substream = stream->substream; substream != NULL; substream = substream->next)
522 substream->ops = ops;
523 }
524
525 EXPORT_SYMBOL(snd_pcm_set_ops);
526
527 /**
528 * snd_pcm_sync - set the PCM sync id
529 * @substream: the pcm substream
530 *
531 * Sets the PCM sync identifier for the card.
532 */
533 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
534 {
535 struct snd_pcm_runtime *runtime = substream->runtime;
536
537 runtime->sync.id32[0] = substream->pcm->card->number;
538 runtime->sync.id32[1] = -1;
539 runtime->sync.id32[2] = -1;
540 runtime->sync.id32[3] = -1;
541 }
542
543 EXPORT_SYMBOL(snd_pcm_set_sync);
544
545 /*
546 * Standard ioctl routine
547 */
548
549 static inline unsigned int div32(unsigned int a, unsigned int b,
550 unsigned int *r)
551 {
552 if (b == 0) {
553 *r = 0;
554 return UINT_MAX;
555 }
556 *r = a % b;
557 return a / b;
558 }
559
560 static inline unsigned int div_down(unsigned int a, unsigned int b)
561 {
562 if (b == 0)
563 return UINT_MAX;
564 return a / b;
565 }
566
567 static inline unsigned int div_up(unsigned int a, unsigned int b)
568 {
569 unsigned int r;
570 unsigned int q;
571 if (b == 0)
572 return UINT_MAX;
573 q = div32(a, b, &r);
574 if (r)
575 ++q;
576 return q;
577 }
578
579 static inline unsigned int mul(unsigned int a, unsigned int b)
580 {
581 if (a == 0)
582 return 0;
583 if (div_down(UINT_MAX, a) < b)
584 return UINT_MAX;
585 return a * b;
586 }
587
588 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
589 unsigned int c, unsigned int *r)
590 {
591 u_int64_t n = (u_int64_t) a * b;
592 if (c == 0) {
593 snd_BUG_ON(!n);
594 *r = 0;
595 return UINT_MAX;
596 }
597 n = div_u64_rem(n, c, r);
598 if (n >= UINT_MAX) {
599 *r = 0;
600 return UINT_MAX;
601 }
602 return n;
603 }
604
605 /**
606 * snd_interval_refine - refine the interval value of configurator
607 * @i: the interval value to refine
608 * @v: the interval value to refer to
609 *
610 * Refines the interval value with the reference value.
611 * The interval is changed to the range satisfying both intervals.
612 * The interval status (min, max, integer, etc.) are evaluated.
613 *
614 * Returns non-zero if the value is changed, zero if not changed.
615 */
616 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
617 {
618 int changed = 0;
619 if (snd_BUG_ON(snd_interval_empty(i)))
620 return -EINVAL;
621 if (i->min < v->min) {
622 i->min = v->min;
623 i->openmin = v->openmin;
624 changed = 1;
625 } else if (i->min == v->min && !i->openmin && v->openmin) {
626 i->openmin = 1;
627 changed = 1;
628 }
629 if (i->max > v->max) {
630 i->max = v->max;
631 i->openmax = v->openmax;
632 changed = 1;
633 } else if (i->max == v->max && !i->openmax && v->openmax) {
634 i->openmax = 1;
635 changed = 1;
636 }
637 if (!i->integer && v->integer) {
638 i->integer = 1;
639 changed = 1;
640 }
641 if (i->integer) {
642 if (i->openmin) {
643 i->min++;
644 i->openmin = 0;
645 }
646 if (i->openmax) {
647 i->max--;
648 i->openmax = 0;
649 }
650 } else if (!i->openmin && !i->openmax && i->min == i->max)
651 i->integer = 1;
652 if (snd_interval_checkempty(i)) {
653 snd_interval_none(i);
654 return -EINVAL;
655 }
656 return changed;
657 }
658
659 EXPORT_SYMBOL(snd_interval_refine);
660
661 static int snd_interval_refine_first(struct snd_interval *i)
662 {
663 if (snd_BUG_ON(snd_interval_empty(i)))
664 return -EINVAL;
665 if (snd_interval_single(i))
666 return 0;
667 i->max = i->min;
668 i->openmax = i->openmin;
669 if (i->openmax)
670 i->max++;
671 return 1;
672 }
673
674 static int snd_interval_refine_last(struct snd_interval *i)
675 {
676 if (snd_BUG_ON(snd_interval_empty(i)))
677 return -EINVAL;
678 if (snd_interval_single(i))
679 return 0;
680 i->min = i->max;
681 i->openmin = i->openmax;
682 if (i->openmin)
683 i->min--;
684 return 1;
685 }
686
687 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
688 {
689 if (a->empty || b->empty) {
690 snd_interval_none(c);
691 return;
692 }
693 c->empty = 0;
694 c->min = mul(a->min, b->min);
695 c->openmin = (a->openmin || b->openmin);
696 c->max = mul(a->max, b->max);
697 c->openmax = (a->openmax || b->openmax);
698 c->integer = (a->integer && b->integer);
699 }
700
701 /**
702 * snd_interval_div - refine the interval value with division
703 * @a: dividend
704 * @b: divisor
705 * @c: quotient
706 *
707 * c = a / b
708 *
709 * Returns non-zero if the value is changed, zero if not changed.
710 */
711 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
712 {
713 unsigned int r;
714 if (a->empty || b->empty) {
715 snd_interval_none(c);
716 return;
717 }
718 c->empty = 0;
719 c->min = div32(a->min, b->max, &r);
720 c->openmin = (r || a->openmin || b->openmax);
721 if (b->min > 0) {
722 c->max = div32(a->max, b->min, &r);
723 if (r) {
724 c->max++;
725 c->openmax = 1;
726 } else
727 c->openmax = (a->openmax || b->openmin);
728 } else {
729 c->max = UINT_MAX;
730 c->openmax = 0;
731 }
732 c->integer = 0;
733 }
734
735 /**
736 * snd_interval_muldivk - refine the interval value
737 * @a: dividend 1
738 * @b: dividend 2
739 * @k: divisor (as integer)
740 * @c: result
741 *
742 * c = a * b / k
743 *
744 * Returns non-zero if the value is changed, zero if not changed.
745 */
746 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
747 unsigned int k, struct snd_interval *c)
748 {
749 unsigned int r;
750 if (a->empty || b->empty) {
751 snd_interval_none(c);
752 return;
753 }
754 c->empty = 0;
755 c->min = muldiv32(a->min, b->min, k, &r);
756 c->openmin = (r || a->openmin || b->openmin);
757 c->max = muldiv32(a->max, b->max, k, &r);
758 if (r) {
759 c->max++;
760 c->openmax = 1;
761 } else
762 c->openmax = (a->openmax || b->openmax);
763 c->integer = 0;
764 }
765
766 /**
767 * snd_interval_mulkdiv - refine the interval value
768 * @a: dividend 1
769 * @k: dividend 2 (as integer)
770 * @b: divisor
771 * @c: result
772 *
773 * c = a * k / b
774 *
775 * Returns non-zero if the value is changed, zero if not changed.
776 */
777 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
778 const struct snd_interval *b, struct snd_interval *c)
779 {
780 unsigned int r;
781 if (a->empty || b->empty) {
782 snd_interval_none(c);
783 return;
784 }
785 c->empty = 0;
786 c->min = muldiv32(a->min, k, b->max, &r);
787 c->openmin = (r || a->openmin || b->openmax);
788 if (b->min > 0) {
789 c->max = muldiv32(a->max, k, b->min, &r);
790 if (r) {
791 c->max++;
792 c->openmax = 1;
793 } else
794 c->openmax = (a->openmax || b->openmin);
795 } else {
796 c->max = UINT_MAX;
797 c->openmax = 0;
798 }
799 c->integer = 0;
800 }
801
802 /* ---- */
803
804
805 /**
806 * snd_interval_ratnum - refine the interval value
807 * @i: interval to refine
808 * @rats_count: number of ratnum_t
809 * @rats: ratnum_t array
810 * @nump: pointer to store the resultant numerator
811 * @denp: pointer to store the resultant denominator
812 *
813 * Returns non-zero if the value is changed, zero if not changed.
814 */
815 int snd_interval_ratnum(struct snd_interval *i,
816 unsigned int rats_count, struct snd_ratnum *rats,
817 unsigned int *nump, unsigned int *denp)
818 {
819 unsigned int best_num, best_den;
820 int best_diff;
821 unsigned int k;
822 struct snd_interval t;
823 int err;
824 unsigned int result_num, result_den;
825 int result_diff;
826
827 best_num = best_den = best_diff = 0;
828 for (k = 0; k < rats_count; ++k) {
829 unsigned int num = rats[k].num;
830 unsigned int den;
831 unsigned int q = i->min;
832 int diff;
833 if (q == 0)
834 q = 1;
835 den = div_up(num, q);
836 if (den < rats[k].den_min)
837 continue;
838 if (den > rats[k].den_max)
839 den = rats[k].den_max;
840 else {
841 unsigned int r;
842 r = (den - rats[k].den_min) % rats[k].den_step;
843 if (r != 0)
844 den -= r;
845 }
846 diff = num - q * den;
847 if (diff < 0)
848 diff = -diff;
849 if (best_num == 0 ||
850 diff * best_den < best_diff * den) {
851 best_diff = diff;
852 best_den = den;
853 best_num = num;
854 }
855 }
856 if (best_den == 0) {
857 i->empty = 1;
858 return -EINVAL;
859 }
860 t.min = div_down(best_num, best_den);
861 t.openmin = !!(best_num % best_den);
862
863 result_num = best_num;
864 result_diff = best_diff;
865 result_den = best_den;
866 best_num = best_den = best_diff = 0;
867 for (k = 0; k < rats_count; ++k) {
868 unsigned int num = rats[k].num;
869 unsigned int den;
870 unsigned int q = i->max;
871 int diff;
872 if (q == 0) {
873 i->empty = 1;
874 return -EINVAL;
875 }
876 den = div_down(num, q);
877 if (den > rats[k].den_max)
878 continue;
879 if (den < rats[k].den_min)
880 den = rats[k].den_min;
881 else {
882 unsigned int r;
883 r = (den - rats[k].den_min) % rats[k].den_step;
884 if (r != 0)
885 den += rats[k].den_step - r;
886 }
887 diff = q * den - num;
888 if (diff < 0)
889 diff = -diff;
890 if (best_num == 0 ||
891 diff * best_den < best_diff * den) {
892 best_diff = diff;
893 best_den = den;
894 best_num = num;
895 }
896 }
897 if (best_den == 0) {
898 i->empty = 1;
899 return -EINVAL;
900 }
901 t.max = div_up(best_num, best_den);
902 t.openmax = !!(best_num % best_den);
903 t.integer = 0;
904 err = snd_interval_refine(i, &t);
905 if (err < 0)
906 return err;
907
908 if (snd_interval_single(i)) {
909 if (best_diff * result_den < result_diff * best_den) {
910 result_num = best_num;
911 result_den = best_den;
912 }
913 if (nump)
914 *nump = result_num;
915 if (denp)
916 *denp = result_den;
917 }
918 return err;
919 }
920
921 EXPORT_SYMBOL(snd_interval_ratnum);
922
923 /**
924 * snd_interval_ratden - refine the interval value
925 * @i: interval to refine
926 * @rats_count: number of struct ratden
927 * @rats: struct ratden array
928 * @nump: pointer to store the resultant numerator
929 * @denp: pointer to store the resultant denominator
930 *
931 * Returns non-zero if the value is changed, zero if not changed.
932 */
933 static int snd_interval_ratden(struct snd_interval *i,
934 unsigned int rats_count, struct snd_ratden *rats,
935 unsigned int *nump, unsigned int *denp)
936 {
937 unsigned int best_num, best_diff, best_den;
938 unsigned int k;
939 struct snd_interval t;
940 int err;
941
942 best_num = best_den = best_diff = 0;
943 for (k = 0; k < rats_count; ++k) {
944 unsigned int num;
945 unsigned int den = rats[k].den;
946 unsigned int q = i->min;
947 int diff;
948 num = mul(q, den);
949 if (num > rats[k].num_max)
950 continue;
951 if (num < rats[k].num_min)
952 num = rats[k].num_max;
953 else {
954 unsigned int r;
955 r = (num - rats[k].num_min) % rats[k].num_step;
956 if (r != 0)
957 num += rats[k].num_step - r;
958 }
959 diff = num - q * den;
960 if (best_num == 0 ||
961 diff * best_den < best_diff * den) {
962 best_diff = diff;
963 best_den = den;
964 best_num = num;
965 }
966 }
967 if (best_den == 0) {
968 i->empty = 1;
969 return -EINVAL;
970 }
971 t.min = div_down(best_num, best_den);
972 t.openmin = !!(best_num % best_den);
973
974 best_num = best_den = best_diff = 0;
975 for (k = 0; k < rats_count; ++k) {
976 unsigned int num;
977 unsigned int den = rats[k].den;
978 unsigned int q = i->max;
979 int diff;
980 num = mul(q, den);
981 if (num < rats[k].num_min)
982 continue;
983 if (num > rats[k].num_max)
984 num = rats[k].num_max;
985 else {
986 unsigned int r;
987 r = (num - rats[k].num_min) % rats[k].num_step;
988 if (r != 0)
989 num -= r;
990 }
991 diff = q * den - num;
992 if (best_num == 0 ||
993 diff * best_den < best_diff * den) {
994 best_diff = diff;
995 best_den = den;
996 best_num = num;
997 }
998 }
999 if (best_den == 0) {
1000 i->empty = 1;
1001 return -EINVAL;
1002 }
1003 t.max = div_up(best_num, best_den);
1004 t.openmax = !!(best_num % best_den);
1005 t.integer = 0;
1006 err = snd_interval_refine(i, &t);
1007 if (err < 0)
1008 return err;
1009
1010 if (snd_interval_single(i)) {
1011 if (nump)
1012 *nump = best_num;
1013 if (denp)
1014 *denp = best_den;
1015 }
1016 return err;
1017 }
1018
1019 /**
1020 * snd_interval_list - refine the interval value from the list
1021 * @i: the interval value to refine
1022 * @count: the number of elements in the list
1023 * @list: the value list
1024 * @mask: the bit-mask to evaluate
1025 *
1026 * Refines the interval value from the list.
1027 * When mask is non-zero, only the elements corresponding to bit 1 are
1028 * evaluated.
1029 *
1030 * Returns non-zero if the value is changed, zero if not changed.
1031 */
1032 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1033 {
1034 unsigned int k;
1035 struct snd_interval list_range;
1036
1037 if (!count) {
1038 i->empty = 1;
1039 return -EINVAL;
1040 }
1041 snd_interval_any(&list_range);
1042 list_range.min = UINT_MAX;
1043 list_range.max = 0;
1044 for (k = 0; k < count; k++) {
1045 if (mask && !(mask & (1 << k)))
1046 continue;
1047 if (!snd_interval_test(i, list[k]))
1048 continue;
1049 list_range.min = min(list_range.min, list[k]);
1050 list_range.max = max(list_range.max, list[k]);
1051 }
1052 return snd_interval_refine(i, &list_range);
1053 }
1054
1055 EXPORT_SYMBOL(snd_interval_list);
1056
1057 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1058 {
1059 unsigned int n;
1060 int changed = 0;
1061 n = (i->min - min) % step;
1062 if (n != 0 || i->openmin) {
1063 i->min += step - n;
1064 changed = 1;
1065 }
1066 n = (i->max - min) % step;
1067 if (n != 0 || i->openmax) {
1068 i->max -= n;
1069 changed = 1;
1070 }
1071 if (snd_interval_checkempty(i)) {
1072 i->empty = 1;
1073 return -EINVAL;
1074 }
1075 return changed;
1076 }
1077
1078 /* Info constraints helpers */
1079
1080 /**
1081 * snd_pcm_hw_rule_add - add the hw-constraint rule
1082 * @runtime: the pcm runtime instance
1083 * @cond: condition bits
1084 * @var: the variable to evaluate
1085 * @func: the evaluation function
1086 * @private: the private data pointer passed to function
1087 * @dep: the dependent variables
1088 *
1089 * Returns zero if successful, or a negative error code on failure.
1090 */
1091 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1092 int var,
1093 snd_pcm_hw_rule_func_t func, void *private,
1094 int dep, ...)
1095 {
1096 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1097 struct snd_pcm_hw_rule *c;
1098 unsigned int k;
1099 va_list args;
1100 va_start(args, dep);
1101 if (constrs->rules_num >= constrs->rules_all) {
1102 struct snd_pcm_hw_rule *new;
1103 unsigned int new_rules = constrs->rules_all + 16;
1104 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1105 if (!new) {
1106 va_end(args);
1107 return -ENOMEM;
1108 }
1109 if (constrs->rules) {
1110 memcpy(new, constrs->rules,
1111 constrs->rules_num * sizeof(*c));
1112 kfree(constrs->rules);
1113 }
1114 constrs->rules = new;
1115 constrs->rules_all = new_rules;
1116 }
1117 c = &constrs->rules[constrs->rules_num];
1118 c->cond = cond;
1119 c->func = func;
1120 c->var = var;
1121 c->private = private;
1122 k = 0;
1123 while (1) {
1124 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1125 va_end(args);
1126 return -EINVAL;
1127 }
1128 c->deps[k++] = dep;
1129 if (dep < 0)
1130 break;
1131 dep = va_arg(args, int);
1132 }
1133 constrs->rules_num++;
1134 va_end(args);
1135 return 0;
1136 }
1137
1138 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1139
1140 /**
1141 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1142 * @runtime: PCM runtime instance
1143 * @var: hw_params variable to apply the mask
1144 * @mask: the bitmap mask
1145 *
1146 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1147 */
1148 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1149 u_int32_t mask)
1150 {
1151 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1152 struct snd_mask *maskp = constrs_mask(constrs, var);
1153 *maskp->bits &= mask;
1154 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1155 if (*maskp->bits == 0)
1156 return -EINVAL;
1157 return 0;
1158 }
1159
1160 /**
1161 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1162 * @runtime: PCM runtime instance
1163 * @var: hw_params variable to apply the mask
1164 * @mask: the 64bit bitmap mask
1165 *
1166 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1167 */
1168 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1169 u_int64_t mask)
1170 {
1171 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1172 struct snd_mask *maskp = constrs_mask(constrs, var);
1173 maskp->bits[0] &= (u_int32_t)mask;
1174 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1175 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1176 if (! maskp->bits[0] && ! maskp->bits[1])
1177 return -EINVAL;
1178 return 0;
1179 }
1180
1181 /**
1182 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1183 * @runtime: PCM runtime instance
1184 * @var: hw_params variable to apply the integer constraint
1185 *
1186 * Apply the constraint of integer to an interval parameter.
1187 */
1188 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1189 {
1190 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1191 return snd_interval_setinteger(constrs_interval(constrs, var));
1192 }
1193
1194 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1195
1196 /**
1197 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1198 * @runtime: PCM runtime instance
1199 * @var: hw_params variable to apply the range
1200 * @min: the minimal value
1201 * @max: the maximal value
1202 *
1203 * Apply the min/max range constraint to an interval parameter.
1204 */
1205 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1206 unsigned int min, unsigned int max)
1207 {
1208 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1209 struct snd_interval t;
1210 t.min = min;
1211 t.max = max;
1212 t.openmin = t.openmax = 0;
1213 t.integer = 0;
1214 return snd_interval_refine(constrs_interval(constrs, var), &t);
1215 }
1216
1217 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1218
1219 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1220 struct snd_pcm_hw_rule *rule)
1221 {
1222 struct snd_pcm_hw_constraint_list *list = rule->private;
1223 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1224 }
1225
1226
1227 /**
1228 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1229 * @runtime: PCM runtime instance
1230 * @cond: condition bits
1231 * @var: hw_params variable to apply the list constraint
1232 * @l: list
1233 *
1234 * Apply the list of constraints to an interval parameter.
1235 */
1236 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1237 unsigned int cond,
1238 snd_pcm_hw_param_t var,
1239 struct snd_pcm_hw_constraint_list *l)
1240 {
1241 return snd_pcm_hw_rule_add(runtime, cond, var,
1242 snd_pcm_hw_rule_list, l,
1243 var, -1);
1244 }
1245
1246 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1247
1248 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1249 struct snd_pcm_hw_rule *rule)
1250 {
1251 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1252 unsigned int num = 0, den = 0;
1253 int err;
1254 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1255 r->nrats, r->rats, &num, &den);
1256 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1257 params->rate_num = num;
1258 params->rate_den = den;
1259 }
1260 return err;
1261 }
1262
1263 /**
1264 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1265 * @runtime: PCM runtime instance
1266 * @cond: condition bits
1267 * @var: hw_params variable to apply the ratnums constraint
1268 * @r: struct snd_ratnums constriants
1269 */
1270 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1271 unsigned int cond,
1272 snd_pcm_hw_param_t var,
1273 struct snd_pcm_hw_constraint_ratnums *r)
1274 {
1275 return snd_pcm_hw_rule_add(runtime, cond, var,
1276 snd_pcm_hw_rule_ratnums, r,
1277 var, -1);
1278 }
1279
1280 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1281
1282 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1283 struct snd_pcm_hw_rule *rule)
1284 {
1285 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1286 unsigned int num = 0, den = 0;
1287 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1288 r->nrats, r->rats, &num, &den);
1289 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1290 params->rate_num = num;
1291 params->rate_den = den;
1292 }
1293 return err;
1294 }
1295
1296 /**
1297 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1298 * @runtime: PCM runtime instance
1299 * @cond: condition bits
1300 * @var: hw_params variable to apply the ratdens constraint
1301 * @r: struct snd_ratdens constriants
1302 */
1303 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1304 unsigned int cond,
1305 snd_pcm_hw_param_t var,
1306 struct snd_pcm_hw_constraint_ratdens *r)
1307 {
1308 return snd_pcm_hw_rule_add(runtime, cond, var,
1309 snd_pcm_hw_rule_ratdens, r,
1310 var, -1);
1311 }
1312
1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1314
1315 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1316 struct snd_pcm_hw_rule *rule)
1317 {
1318 unsigned int l = (unsigned long) rule->private;
1319 int width = l & 0xffff;
1320 unsigned int msbits = l >> 16;
1321 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1322 if (snd_interval_single(i) && snd_interval_value(i) == width)
1323 params->msbits = msbits;
1324 return 0;
1325 }
1326
1327 /**
1328 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1329 * @runtime: PCM runtime instance
1330 * @cond: condition bits
1331 * @width: sample bits width
1332 * @msbits: msbits width
1333 */
1334 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1335 unsigned int cond,
1336 unsigned int width,
1337 unsigned int msbits)
1338 {
1339 unsigned long l = (msbits << 16) | width;
1340 return snd_pcm_hw_rule_add(runtime, cond, -1,
1341 snd_pcm_hw_rule_msbits,
1342 (void*) l,
1343 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1344 }
1345
1346 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1347
1348 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1349 struct snd_pcm_hw_rule *rule)
1350 {
1351 unsigned long step = (unsigned long) rule->private;
1352 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1353 }
1354
1355 /**
1356 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the step constraint
1360 * @step: step size
1361 */
1362 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1363 unsigned int cond,
1364 snd_pcm_hw_param_t var,
1365 unsigned long step)
1366 {
1367 return snd_pcm_hw_rule_add(runtime, cond, var,
1368 snd_pcm_hw_rule_step, (void *) step,
1369 var, -1);
1370 }
1371
1372 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1373
1374 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1375 {
1376 static unsigned int pow2_sizes[] = {
1377 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1378 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1379 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1380 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1381 };
1382 return snd_interval_list(hw_param_interval(params, rule->var),
1383 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1384 }
1385
1386 /**
1387 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1388 * @runtime: PCM runtime instance
1389 * @cond: condition bits
1390 * @var: hw_params variable to apply the power-of-2 constraint
1391 */
1392 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1393 unsigned int cond,
1394 snd_pcm_hw_param_t var)
1395 {
1396 return snd_pcm_hw_rule_add(runtime, cond, var,
1397 snd_pcm_hw_rule_pow2, NULL,
1398 var, -1);
1399 }
1400
1401 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1402
1403 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1404 struct snd_pcm_hw_rule *rule)
1405 {
1406 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1407 struct snd_interval *rate;
1408
1409 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1410 return snd_interval_list(rate, 1, &base_rate, 0);
1411 }
1412
1413 /**
1414 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1415 * @runtime: PCM runtime instance
1416 * @base_rate: the rate at which the hardware does not resample
1417 */
1418 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1419 unsigned int base_rate)
1420 {
1421 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1422 SNDRV_PCM_HW_PARAM_RATE,
1423 snd_pcm_hw_rule_noresample_func,
1424 (void *)(uintptr_t)base_rate,
1425 SNDRV_PCM_HW_PARAM_RATE, -1);
1426 }
1427 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1428
1429 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1430 snd_pcm_hw_param_t var)
1431 {
1432 if (hw_is_mask(var)) {
1433 snd_mask_any(hw_param_mask(params, var));
1434 params->cmask |= 1 << var;
1435 params->rmask |= 1 << var;
1436 return;
1437 }
1438 if (hw_is_interval(var)) {
1439 snd_interval_any(hw_param_interval(params, var));
1440 params->cmask |= 1 << var;
1441 params->rmask |= 1 << var;
1442 return;
1443 }
1444 snd_BUG();
1445 }
1446
1447 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1448 {
1449 unsigned int k;
1450 memset(params, 0, sizeof(*params));
1451 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1452 _snd_pcm_hw_param_any(params, k);
1453 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1454 _snd_pcm_hw_param_any(params, k);
1455 params->info = ~0U;
1456 }
1457
1458 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1459
1460 /**
1461 * snd_pcm_hw_param_value - return @params field @var value
1462 * @params: the hw_params instance
1463 * @var: parameter to retrieve
1464 * @dir: pointer to the direction (-1,0,1) or %NULL
1465 *
1466 * Return the value for field @var if it's fixed in configuration space
1467 * defined by @params. Return -%EINVAL otherwise.
1468 */
1469 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1470 snd_pcm_hw_param_t var, int *dir)
1471 {
1472 if (hw_is_mask(var)) {
1473 const struct snd_mask *mask = hw_param_mask_c(params, var);
1474 if (!snd_mask_single(mask))
1475 return -EINVAL;
1476 if (dir)
1477 *dir = 0;
1478 return snd_mask_value(mask);
1479 }
1480 if (hw_is_interval(var)) {
1481 const struct snd_interval *i = hw_param_interval_c(params, var);
1482 if (!snd_interval_single(i))
1483 return -EINVAL;
1484 if (dir)
1485 *dir = i->openmin;
1486 return snd_interval_value(i);
1487 }
1488 return -EINVAL;
1489 }
1490
1491 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1492
1493 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1494 snd_pcm_hw_param_t var)
1495 {
1496 if (hw_is_mask(var)) {
1497 snd_mask_none(hw_param_mask(params, var));
1498 params->cmask |= 1 << var;
1499 params->rmask |= 1 << var;
1500 } else if (hw_is_interval(var)) {
1501 snd_interval_none(hw_param_interval(params, var));
1502 params->cmask |= 1 << var;
1503 params->rmask |= 1 << var;
1504 } else {
1505 snd_BUG();
1506 }
1507 }
1508
1509 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1510
1511 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1512 snd_pcm_hw_param_t var)
1513 {
1514 int changed;
1515 if (hw_is_mask(var))
1516 changed = snd_mask_refine_first(hw_param_mask(params, var));
1517 else if (hw_is_interval(var))
1518 changed = snd_interval_refine_first(hw_param_interval(params, var));
1519 else
1520 return -EINVAL;
1521 if (changed) {
1522 params->cmask |= 1 << var;
1523 params->rmask |= 1 << var;
1524 }
1525 return changed;
1526 }
1527
1528
1529 /**
1530 * snd_pcm_hw_param_first - refine config space and return minimum value
1531 * @pcm: PCM instance
1532 * @params: the hw_params instance
1533 * @var: parameter to retrieve
1534 * @dir: pointer to the direction (-1,0,1) or %NULL
1535 *
1536 * Inside configuration space defined by @params remove from @var all
1537 * values > minimum. Reduce configuration space accordingly.
1538 * Return the minimum.
1539 */
1540 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1541 struct snd_pcm_hw_params *params,
1542 snd_pcm_hw_param_t var, int *dir)
1543 {
1544 int changed = _snd_pcm_hw_param_first(params, var);
1545 if (changed < 0)
1546 return changed;
1547 if (params->rmask) {
1548 int err = snd_pcm_hw_refine(pcm, params);
1549 if (snd_BUG_ON(err < 0))
1550 return err;
1551 }
1552 return snd_pcm_hw_param_value(params, var, dir);
1553 }
1554
1555 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1556
1557 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1558 snd_pcm_hw_param_t var)
1559 {
1560 int changed;
1561 if (hw_is_mask(var))
1562 changed = snd_mask_refine_last(hw_param_mask(params, var));
1563 else if (hw_is_interval(var))
1564 changed = snd_interval_refine_last(hw_param_interval(params, var));
1565 else
1566 return -EINVAL;
1567 if (changed) {
1568 params->cmask |= 1 << var;
1569 params->rmask |= 1 << var;
1570 }
1571 return changed;
1572 }
1573
1574
1575 /**
1576 * snd_pcm_hw_param_last - refine config space and return maximum value
1577 * @pcm: PCM instance
1578 * @params: the hw_params instance
1579 * @var: parameter to retrieve
1580 * @dir: pointer to the direction (-1,0,1) or %NULL
1581 *
1582 * Inside configuration space defined by @params remove from @var all
1583 * values < maximum. Reduce configuration space accordingly.
1584 * Return the maximum.
1585 */
1586 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1587 struct snd_pcm_hw_params *params,
1588 snd_pcm_hw_param_t var, int *dir)
1589 {
1590 int changed = _snd_pcm_hw_param_last(params, var);
1591 if (changed < 0)
1592 return changed;
1593 if (params->rmask) {
1594 int err = snd_pcm_hw_refine(pcm, params);
1595 if (snd_BUG_ON(err < 0))
1596 return err;
1597 }
1598 return snd_pcm_hw_param_value(params, var, dir);
1599 }
1600
1601 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1602
1603 /**
1604 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1605 * @pcm: PCM instance
1606 * @params: the hw_params instance
1607 *
1608 * Choose one configuration from configuration space defined by @params.
1609 * The configuration chosen is that obtained fixing in this order:
1610 * first access, first format, first subformat, min channels,
1611 * min rate, min period time, max buffer size, min tick time
1612 */
1613 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1614 struct snd_pcm_hw_params *params)
1615 {
1616 static int vars[] = {
1617 SNDRV_PCM_HW_PARAM_ACCESS,
1618 SNDRV_PCM_HW_PARAM_FORMAT,
1619 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1620 SNDRV_PCM_HW_PARAM_CHANNELS,
1621 SNDRV_PCM_HW_PARAM_RATE,
1622 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1623 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1624 SNDRV_PCM_HW_PARAM_TICK_TIME,
1625 -1
1626 };
1627 int err, *v;
1628
1629 for (v = vars; *v != -1; v++) {
1630 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1631 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1632 else
1633 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1634 if (snd_BUG_ON(err < 0))
1635 return err;
1636 }
1637 return 0;
1638 }
1639
1640 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1641 void *arg)
1642 {
1643 struct snd_pcm_runtime *runtime = substream->runtime;
1644 unsigned long flags;
1645 snd_pcm_stream_lock_irqsave(substream, flags);
1646 if (snd_pcm_running(substream) &&
1647 snd_pcm_update_hw_ptr(substream) >= 0)
1648 runtime->status->hw_ptr %= runtime->buffer_size;
1649 else
1650 runtime->status->hw_ptr = 0;
1651 snd_pcm_stream_unlock_irqrestore(substream, flags);
1652 return 0;
1653 }
1654
1655 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1656 void *arg)
1657 {
1658 struct snd_pcm_channel_info *info = arg;
1659 struct snd_pcm_runtime *runtime = substream->runtime;
1660 int width;
1661 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1662 info->offset = -1;
1663 return 0;
1664 }
1665 width = snd_pcm_format_physical_width(runtime->format);
1666 if (width < 0)
1667 return width;
1668 info->offset = 0;
1669 switch (runtime->access) {
1670 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1671 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1672 info->first = info->channel * width;
1673 info->step = runtime->channels * width;
1674 break;
1675 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1676 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1677 {
1678 size_t size = runtime->dma_bytes / runtime->channels;
1679 info->first = info->channel * size * 8;
1680 info->step = width;
1681 break;
1682 }
1683 default:
1684 snd_BUG();
1685 break;
1686 }
1687 return 0;
1688 }
1689
1690 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1691 void *arg)
1692 {
1693 struct snd_pcm_hw_params *params = arg;
1694 snd_pcm_format_t format;
1695 int channels, width;
1696
1697 params->fifo_size = substream->runtime->hw.fifo_size;
1698 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1699 format = params_format(params);
1700 channels = params_channels(params);
1701 width = snd_pcm_format_physical_width(format);
1702 params->fifo_size /= width * channels;
1703 }
1704 return 0;
1705 }
1706
1707 /**
1708 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1709 * @substream: the pcm substream instance
1710 * @cmd: ioctl command
1711 * @arg: ioctl argument
1712 *
1713 * Processes the generic ioctl commands for PCM.
1714 * Can be passed as the ioctl callback for PCM ops.
1715 *
1716 * Returns zero if successful, or a negative error code on failure.
1717 */
1718 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1719 unsigned int cmd, void *arg)
1720 {
1721 switch (cmd) {
1722 case SNDRV_PCM_IOCTL1_INFO:
1723 return 0;
1724 case SNDRV_PCM_IOCTL1_RESET:
1725 return snd_pcm_lib_ioctl_reset(substream, arg);
1726 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1727 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1728 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1729 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1730 }
1731 return -ENXIO;
1732 }
1733
1734 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1735
1736 /**
1737 * snd_pcm_period_elapsed - update the pcm status for the next period
1738 * @substream: the pcm substream instance
1739 *
1740 * This function is called from the interrupt handler when the
1741 * PCM has processed the period size. It will update the current
1742 * pointer, wake up sleepers, etc.
1743 *
1744 * Even if more than one periods have elapsed since the last call, you
1745 * have to call this only once.
1746 */
1747 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1748 {
1749 struct snd_pcm_runtime *runtime;
1750 unsigned long flags;
1751
1752 if (PCM_RUNTIME_CHECK(substream))
1753 return;
1754 runtime = substream->runtime;
1755
1756 if (runtime->transfer_ack_begin)
1757 runtime->transfer_ack_begin(substream);
1758
1759 snd_pcm_stream_lock_irqsave(substream, flags);
1760 if (!snd_pcm_running(substream) ||
1761 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1762 goto _end;
1763
1764 if (substream->timer_running)
1765 snd_timer_interrupt(substream->timer, 1);
1766 _end:
1767 snd_pcm_stream_unlock_irqrestore(substream, flags);
1768 if (runtime->transfer_ack_end)
1769 runtime->transfer_ack_end(substream);
1770 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1771 }
1772
1773 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1774
1775 /*
1776 * Wait until avail_min data becomes available
1777 * Returns a negative error code if any error occurs during operation.
1778 * The available space is stored on availp. When err = 0 and avail = 0
1779 * on the capture stream, it indicates the stream is in DRAINING state.
1780 */
1781 static int wait_for_avail(struct snd_pcm_substream *substream,
1782 snd_pcm_uframes_t *availp)
1783 {
1784 struct snd_pcm_runtime *runtime = substream->runtime;
1785 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1786 wait_queue_t wait;
1787 int err = 0;
1788 snd_pcm_uframes_t avail = 0;
1789 long wait_time, tout;
1790
1791 init_waitqueue_entry(&wait, current);
1792 set_current_state(TASK_INTERRUPTIBLE);
1793 add_wait_queue(&runtime->tsleep, &wait);
1794
1795 if (runtime->no_period_wakeup)
1796 wait_time = MAX_SCHEDULE_TIMEOUT;
1797 else {
1798 wait_time = 10;
1799 if (runtime->rate) {
1800 long t = runtime->period_size * 2 / runtime->rate;
1801 wait_time = max(t, wait_time);
1802 }
1803 wait_time = msecs_to_jiffies(wait_time * 1000);
1804 }
1805
1806 for (;;) {
1807 if (signal_pending(current)) {
1808 err = -ERESTARTSYS;
1809 break;
1810 }
1811
1812 /*
1813 * We need to check if space became available already
1814 * (and thus the wakeup happened already) first to close
1815 * the race of space already having become available.
1816 * This check must happen after been added to the waitqueue
1817 * and having current state be INTERRUPTIBLE.
1818 */
1819 if (is_playback)
1820 avail = snd_pcm_playback_avail(runtime);
1821 else
1822 avail = snd_pcm_capture_avail(runtime);
1823 if (avail >= runtime->twake)
1824 break;
1825 snd_pcm_stream_unlock_irq(substream);
1826
1827 tout = schedule_timeout(wait_time);
1828
1829 snd_pcm_stream_lock_irq(substream);
1830 set_current_state(TASK_INTERRUPTIBLE);
1831 switch (runtime->status->state) {
1832 case SNDRV_PCM_STATE_SUSPENDED:
1833 err = -ESTRPIPE;
1834 goto _endloop;
1835 case SNDRV_PCM_STATE_XRUN:
1836 err = -EPIPE;
1837 goto _endloop;
1838 case SNDRV_PCM_STATE_DRAINING:
1839 if (is_playback)
1840 err = -EPIPE;
1841 else
1842 avail = 0; /* indicate draining */
1843 goto _endloop;
1844 case SNDRV_PCM_STATE_OPEN:
1845 case SNDRV_PCM_STATE_SETUP:
1846 case SNDRV_PCM_STATE_DISCONNECTED:
1847 err = -EBADFD;
1848 goto _endloop;
1849 }
1850 if (!tout) {
1851 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1852 is_playback ? "playback" : "capture");
1853 err = -EIO;
1854 break;
1855 }
1856 }
1857 _endloop:
1858 set_current_state(TASK_RUNNING);
1859 remove_wait_queue(&runtime->tsleep, &wait);
1860 *availp = avail;
1861 return err;
1862 }
1863
1864 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1865 unsigned int hwoff,
1866 unsigned long data, unsigned int off,
1867 snd_pcm_uframes_t frames)
1868 {
1869 struct snd_pcm_runtime *runtime = substream->runtime;
1870 int err;
1871 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1872 if (substream->ops->copy) {
1873 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1874 return err;
1875 } else {
1876 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1877 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1878 return -EFAULT;
1879 }
1880 return 0;
1881 }
1882
1883 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1884 unsigned long data, unsigned int off,
1885 snd_pcm_uframes_t size);
1886
1887 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1888 unsigned long data,
1889 snd_pcm_uframes_t size,
1890 int nonblock,
1891 transfer_f transfer)
1892 {
1893 struct snd_pcm_runtime *runtime = substream->runtime;
1894 snd_pcm_uframes_t xfer = 0;
1895 snd_pcm_uframes_t offset = 0;
1896 int err = 0;
1897
1898 if (size == 0)
1899 return 0;
1900
1901 snd_pcm_stream_lock_irq(substream);
1902 switch (runtime->status->state) {
1903 case SNDRV_PCM_STATE_PREPARED:
1904 case SNDRV_PCM_STATE_RUNNING:
1905 case SNDRV_PCM_STATE_PAUSED:
1906 break;
1907 case SNDRV_PCM_STATE_XRUN:
1908 err = -EPIPE;
1909 goto _end_unlock;
1910 case SNDRV_PCM_STATE_SUSPENDED:
1911 err = -ESTRPIPE;
1912 goto _end_unlock;
1913 default:
1914 err = -EBADFD;
1915 goto _end_unlock;
1916 }
1917
1918 runtime->twake = runtime->control->avail_min ? : 1;
1919 while (size > 0) {
1920 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1921 snd_pcm_uframes_t avail;
1922 snd_pcm_uframes_t cont;
1923 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1924 snd_pcm_update_hw_ptr(substream);
1925 avail = snd_pcm_playback_avail(runtime);
1926 if (!avail) {
1927 if (nonblock) {
1928 err = -EAGAIN;
1929 goto _end_unlock;
1930 }
1931 runtime->twake = min_t(snd_pcm_uframes_t, size,
1932 runtime->control->avail_min ? : 1);
1933 err = wait_for_avail(substream, &avail);
1934 if (err < 0)
1935 goto _end_unlock;
1936 }
1937 frames = size > avail ? avail : size;
1938 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1939 if (frames > cont)
1940 frames = cont;
1941 if (snd_BUG_ON(!frames)) {
1942 runtime->twake = 0;
1943 snd_pcm_stream_unlock_irq(substream);
1944 return -EINVAL;
1945 }
1946 appl_ptr = runtime->control->appl_ptr;
1947 appl_ofs = appl_ptr % runtime->buffer_size;
1948 snd_pcm_stream_unlock_irq(substream);
1949 err = transfer(substream, appl_ofs, data, offset, frames);
1950 snd_pcm_stream_lock_irq(substream);
1951 if (err < 0)
1952 goto _end_unlock;
1953 switch (runtime->status->state) {
1954 case SNDRV_PCM_STATE_XRUN:
1955 err = -EPIPE;
1956 goto _end_unlock;
1957 case SNDRV_PCM_STATE_SUSPENDED:
1958 err = -ESTRPIPE;
1959 goto _end_unlock;
1960 default:
1961 break;
1962 }
1963 appl_ptr += frames;
1964 if (appl_ptr >= runtime->boundary)
1965 appl_ptr -= runtime->boundary;
1966 runtime->control->appl_ptr = appl_ptr;
1967 if (substream->ops->ack)
1968 substream->ops->ack(substream);
1969
1970 offset += frames;
1971 size -= frames;
1972 xfer += frames;
1973 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1974 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1975 err = snd_pcm_start(substream);
1976 if (err < 0)
1977 goto _end_unlock;
1978 }
1979 }
1980 _end_unlock:
1981 runtime->twake = 0;
1982 if (xfer > 0 && err >= 0)
1983 snd_pcm_update_state(substream, runtime);
1984 snd_pcm_stream_unlock_irq(substream);
1985 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1986 }
1987
1988 /* sanity-check for read/write methods */
1989 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1990 {
1991 struct snd_pcm_runtime *runtime;
1992 if (PCM_RUNTIME_CHECK(substream))
1993 return -ENXIO;
1994 runtime = substream->runtime;
1995 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1996 return -EINVAL;
1997 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1998 return -EBADFD;
1999 return 0;
2000 }
2001
2002 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2003 {
2004 struct snd_pcm_runtime *runtime;
2005 int nonblock;
2006 int err;
2007
2008 err = pcm_sanity_check(substream);
2009 if (err < 0)
2010 return err;
2011 runtime = substream->runtime;
2012 nonblock = !!(substream->f_flags & O_NONBLOCK);
2013
2014 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2015 runtime->channels > 1)
2016 return -EINVAL;
2017 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2018 snd_pcm_lib_write_transfer);
2019 }
2020
2021 EXPORT_SYMBOL(snd_pcm_lib_write);
2022
2023 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2024 unsigned int hwoff,
2025 unsigned long data, unsigned int off,
2026 snd_pcm_uframes_t frames)
2027 {
2028 struct snd_pcm_runtime *runtime = substream->runtime;
2029 int err;
2030 void __user **bufs = (void __user **)data;
2031 int channels = runtime->channels;
2032 int c;
2033 if (substream->ops->copy) {
2034 if (snd_BUG_ON(!substream->ops->silence))
2035 return -EINVAL;
2036 for (c = 0; c < channels; ++c, ++bufs) {
2037 if (*bufs == NULL) {
2038 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2039 return err;
2040 } else {
2041 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2042 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2043 return err;
2044 }
2045 }
2046 } else {
2047 /* default transfer behaviour */
2048 size_t dma_csize = runtime->dma_bytes / channels;
2049 for (c = 0; c < channels; ++c, ++bufs) {
2050 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2051 if (*bufs == NULL) {
2052 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2053 } else {
2054 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2055 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2056 return -EFAULT;
2057 }
2058 }
2059 }
2060 return 0;
2061 }
2062
2063 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2064 void __user **bufs,
2065 snd_pcm_uframes_t frames)
2066 {
2067 struct snd_pcm_runtime *runtime;
2068 int nonblock;
2069 int err;
2070
2071 err = pcm_sanity_check(substream);
2072 if (err < 0)
2073 return err;
2074 runtime = substream->runtime;
2075 nonblock = !!(substream->f_flags & O_NONBLOCK);
2076
2077 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2078 return -EINVAL;
2079 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2080 nonblock, snd_pcm_lib_writev_transfer);
2081 }
2082
2083 EXPORT_SYMBOL(snd_pcm_lib_writev);
2084
2085 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2086 unsigned int hwoff,
2087 unsigned long data, unsigned int off,
2088 snd_pcm_uframes_t frames)
2089 {
2090 struct snd_pcm_runtime *runtime = substream->runtime;
2091 int err;
2092 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2093 if (substream->ops->copy) {
2094 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2095 return err;
2096 } else {
2097 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2098 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2099 return -EFAULT;
2100 }
2101 return 0;
2102 }
2103
2104 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2105 unsigned long data,
2106 snd_pcm_uframes_t size,
2107 int nonblock,
2108 transfer_f transfer)
2109 {
2110 struct snd_pcm_runtime *runtime = substream->runtime;
2111 snd_pcm_uframes_t xfer = 0;
2112 snd_pcm_uframes_t offset = 0;
2113 int err = 0;
2114
2115 if (size == 0)
2116 return 0;
2117
2118 snd_pcm_stream_lock_irq(substream);
2119 switch (runtime->status->state) {
2120 case SNDRV_PCM_STATE_PREPARED:
2121 if (size >= runtime->start_threshold) {
2122 err = snd_pcm_start(substream);
2123 if (err < 0)
2124 goto _end_unlock;
2125 }
2126 break;
2127 case SNDRV_PCM_STATE_DRAINING:
2128 case SNDRV_PCM_STATE_RUNNING:
2129 case SNDRV_PCM_STATE_PAUSED:
2130 break;
2131 case SNDRV_PCM_STATE_XRUN:
2132 err = -EPIPE;
2133 goto _end_unlock;
2134 case SNDRV_PCM_STATE_SUSPENDED:
2135 err = -ESTRPIPE;
2136 goto _end_unlock;
2137 default:
2138 err = -EBADFD;
2139 goto _end_unlock;
2140 }
2141
2142 runtime->twake = runtime->control->avail_min ? : 1;
2143 while (size > 0) {
2144 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2145 snd_pcm_uframes_t avail;
2146 snd_pcm_uframes_t cont;
2147 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2148 snd_pcm_update_hw_ptr(substream);
2149 avail = snd_pcm_capture_avail(runtime);
2150 if (!avail) {
2151 if (runtime->status->state ==
2152 SNDRV_PCM_STATE_DRAINING) {
2153 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2154 goto _end_unlock;
2155 }
2156 if (nonblock) {
2157 err = -EAGAIN;
2158 goto _end_unlock;
2159 }
2160 runtime->twake = min_t(snd_pcm_uframes_t, size,
2161 runtime->control->avail_min ? : 1);
2162 err = wait_for_avail(substream, &avail);
2163 if (err < 0)
2164 goto _end_unlock;
2165 if (!avail)
2166 continue; /* draining */
2167 }
2168 frames = size > avail ? avail : size;
2169 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2170 if (frames > cont)
2171 frames = cont;
2172 if (snd_BUG_ON(!frames)) {
2173 runtime->twake = 0;
2174 snd_pcm_stream_unlock_irq(substream);
2175 return -EINVAL;
2176 }
2177 appl_ptr = runtime->control->appl_ptr;
2178 appl_ofs = appl_ptr % runtime->buffer_size;
2179 snd_pcm_stream_unlock_irq(substream);
2180 err = transfer(substream, appl_ofs, data, offset, frames);
2181 snd_pcm_stream_lock_irq(substream);
2182 if (err < 0)
2183 goto _end_unlock;
2184 switch (runtime->status->state) {
2185 case SNDRV_PCM_STATE_XRUN:
2186 err = -EPIPE;
2187 goto _end_unlock;
2188 case SNDRV_PCM_STATE_SUSPENDED:
2189 err = -ESTRPIPE;
2190 goto _end_unlock;
2191 default:
2192 break;
2193 }
2194 appl_ptr += frames;
2195 if (appl_ptr >= runtime->boundary)
2196 appl_ptr -= runtime->boundary;
2197 runtime->control->appl_ptr = appl_ptr;
2198 if (substream->ops->ack)
2199 substream->ops->ack(substream);
2200
2201 offset += frames;
2202 size -= frames;
2203 xfer += frames;
2204 }
2205 _end_unlock:
2206 runtime->twake = 0;
2207 if (xfer > 0 && err >= 0)
2208 snd_pcm_update_state(substream, runtime);
2209 snd_pcm_stream_unlock_irq(substream);
2210 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2211 }
2212
2213 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2214 {
2215 struct snd_pcm_runtime *runtime;
2216 int nonblock;
2217 int err;
2218
2219 err = pcm_sanity_check(substream);
2220 if (err < 0)
2221 return err;
2222 runtime = substream->runtime;
2223 nonblock = !!(substream->f_flags & O_NONBLOCK);
2224 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2225 return -EINVAL;
2226 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2227 }
2228
2229 EXPORT_SYMBOL(snd_pcm_lib_read);
2230
2231 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2232 unsigned int hwoff,
2233 unsigned long data, unsigned int off,
2234 snd_pcm_uframes_t frames)
2235 {
2236 struct snd_pcm_runtime *runtime = substream->runtime;
2237 int err;
2238 void __user **bufs = (void __user **)data;
2239 int channels = runtime->channels;
2240 int c;
2241 if (substream->ops->copy) {
2242 for (c = 0; c < channels; ++c, ++bufs) {
2243 char __user *buf;
2244 if (*bufs == NULL)
2245 continue;
2246 buf = *bufs + samples_to_bytes(runtime, off);
2247 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2248 return err;
2249 }
2250 } else {
2251 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2252 for (c = 0; c < channels; ++c, ++bufs) {
2253 char *hwbuf;
2254 char __user *buf;
2255 if (*bufs == NULL)
2256 continue;
2257
2258 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2259 buf = *bufs + samples_to_bytes(runtime, off);
2260 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2261 return -EFAULT;
2262 }
2263 }
2264 return 0;
2265 }
2266
2267 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2268 void __user **bufs,
2269 snd_pcm_uframes_t frames)
2270 {
2271 struct snd_pcm_runtime *runtime;
2272 int nonblock;
2273 int err;
2274
2275 err = pcm_sanity_check(substream);
2276 if (err < 0)
2277 return err;
2278 runtime = substream->runtime;
2279 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2280 return -EBADFD;
2281
2282 nonblock = !!(substream->f_flags & O_NONBLOCK);
2283 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2284 return -EINVAL;
2285 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2286 }
2287
2288 EXPORT_SYMBOL(snd_pcm_lib_readv);