]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - sound/core/pcm_lib.c
pinctrl: sh-pfc: r8a77965: Add DRIF pins, groups and functions
[mirror_ubuntu-focal-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
57 *
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59 */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 struct snd_pcm_runtime *runtime = substream->runtime;
63 snd_pcm_uframes_t frames, ofs, transfer;
64 int err;
65
66 if (runtime->silence_size < runtime->boundary) {
67 snd_pcm_sframes_t noise_dist, n;
68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 if (runtime->silence_start != appl_ptr) {
70 n = appl_ptr - runtime->silence_start;
71 if (n < 0)
72 n += runtime->boundary;
73 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 runtime->silence_filled -= n;
75 else
76 runtime->silence_filled = 0;
77 runtime->silence_start = appl_ptr;
78 }
79 if (runtime->silence_filled >= runtime->buffer_size)
80 return;
81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 return;
84 frames = runtime->silence_threshold - noise_dist;
85 if (frames > runtime->silence_size)
86 frames = runtime->silence_size;
87 } else {
88 if (new_hw_ptr == ULONG_MAX) { /* initialization */
89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 if (avail > runtime->buffer_size)
91 avail = runtime->buffer_size;
92 runtime->silence_filled = avail > 0 ? avail : 0;
93 runtime->silence_start = (runtime->status->hw_ptr +
94 runtime->silence_filled) %
95 runtime->boundary;
96 } else {
97 ofs = runtime->status->hw_ptr;
98 frames = new_hw_ptr - ofs;
99 if ((snd_pcm_sframes_t)frames < 0)
100 frames += runtime->boundary;
101 runtime->silence_filled -= frames;
102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 runtime->silence_filled = 0;
104 runtime->silence_start = new_hw_ptr;
105 } else {
106 runtime->silence_start = ofs;
107 }
108 }
109 frames = runtime->buffer_size - runtime->silence_filled;
110 }
111 if (snd_BUG_ON(frames > runtime->buffer_size))
112 return;
113 if (frames == 0)
114 return;
115 ofs = runtime->silence_start % runtime->buffer_size;
116 while (frames > 0) {
117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 err = fill_silence_frames(substream, ofs, transfer);
119 snd_BUG_ON(err < 0);
120 runtime->silence_filled += transfer;
121 frames -= transfer;
122 ofs = 0;
123 }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 char *name, size_t len)
129 {
130 snprintf(name, len, "pcmC%dD%d%c:%d",
131 substream->pcm->card->number,
132 substream->pcm->device,
133 substream->stream ? 'c' : 'p',
134 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask) 0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
153 dump_stack(); \
154 } while (0)
155
156 /* call with stream lock held */
157 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
158 {
159 struct snd_pcm_runtime *runtime = substream->runtime;
160
161 trace_xrun(substream);
162 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
163 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
164 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
165 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
166 char name[16];
167 snd_pcm_debug_name(substream, name, sizeof(name));
168 pcm_warn(substream->pcm, "XRUN: %s\n", name);
169 dump_stack_on_xrun(substream);
170 }
171 }
172
173 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
174 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
175 do { \
176 trace_hw_ptr_error(substream, reason); \
177 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
178 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
179 (in_interrupt) ? 'Q' : 'P', ##args); \
180 dump_stack_on_xrun(substream); \
181 } \
182 } while (0)
183
184 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
185
186 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
187
188 #endif
189
190 int snd_pcm_update_state(struct snd_pcm_substream *substream,
191 struct snd_pcm_runtime *runtime)
192 {
193 snd_pcm_uframes_t avail;
194
195 avail = snd_pcm_avail(substream);
196 if (avail > runtime->avail_max)
197 runtime->avail_max = avail;
198 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
199 if (avail >= runtime->buffer_size) {
200 snd_pcm_drain_done(substream);
201 return -EPIPE;
202 }
203 } else {
204 if (avail >= runtime->stop_threshold) {
205 __snd_pcm_xrun(substream);
206 return -EPIPE;
207 }
208 }
209 if (runtime->twake) {
210 if (avail >= runtime->twake)
211 wake_up(&runtime->tsleep);
212 } else if (avail >= runtime->control->avail_min)
213 wake_up(&runtime->sleep);
214 return 0;
215 }
216
217 static void update_audio_tstamp(struct snd_pcm_substream *substream,
218 struct timespec *curr_tstamp,
219 struct timespec *audio_tstamp)
220 {
221 struct snd_pcm_runtime *runtime = substream->runtime;
222 u64 audio_frames, audio_nsecs;
223 struct timespec driver_tstamp;
224
225 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
226 return;
227
228 if (!(substream->ops->get_time_info) ||
229 (runtime->audio_tstamp_report.actual_type ==
230 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
231
232 /*
233 * provide audio timestamp derived from pointer position
234 * add delay only if requested
235 */
236
237 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
238
239 if (runtime->audio_tstamp_config.report_delay) {
240 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
241 audio_frames -= runtime->delay;
242 else
243 audio_frames += runtime->delay;
244 }
245 audio_nsecs = div_u64(audio_frames * 1000000000LL,
246 runtime->rate);
247 *audio_tstamp = ns_to_timespec(audio_nsecs);
248 }
249 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
250 runtime->status->audio_tstamp = *audio_tstamp;
251 runtime->status->tstamp = *curr_tstamp;
252 }
253
254 /*
255 * re-take a driver timestamp to let apps detect if the reference tstamp
256 * read by low-level hardware was provided with a delay
257 */
258 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
259 runtime->driver_tstamp = driver_tstamp;
260 }
261
262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
263 unsigned int in_interrupt)
264 {
265 struct snd_pcm_runtime *runtime = substream->runtime;
266 snd_pcm_uframes_t pos;
267 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
268 snd_pcm_sframes_t hdelta, delta;
269 unsigned long jdelta;
270 unsigned long curr_jiffies;
271 struct timespec curr_tstamp;
272 struct timespec audio_tstamp;
273 int crossed_boundary = 0;
274
275 old_hw_ptr = runtime->status->hw_ptr;
276
277 /*
278 * group pointer, time and jiffies reads to allow for more
279 * accurate correlations/corrections.
280 * The values are stored at the end of this routine after
281 * corrections for hw_ptr position
282 */
283 pos = substream->ops->pointer(substream);
284 curr_jiffies = jiffies;
285 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
286 if ((substream->ops->get_time_info) &&
287 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
288 substream->ops->get_time_info(substream, &curr_tstamp,
289 &audio_tstamp,
290 &runtime->audio_tstamp_config,
291 &runtime->audio_tstamp_report);
292
293 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
294 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
295 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
296 } else
297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 }
299
300 if (pos == SNDRV_PCM_POS_XRUN) {
301 __snd_pcm_xrun(substream);
302 return -EPIPE;
303 }
304 if (pos >= runtime->buffer_size) {
305 if (printk_ratelimit()) {
306 char name[16];
307 snd_pcm_debug_name(substream, name, sizeof(name));
308 pcm_err(substream->pcm,
309 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
310 name, pos, runtime->buffer_size,
311 runtime->period_size);
312 }
313 pos = 0;
314 }
315 pos -= pos % runtime->min_align;
316 trace_hwptr(substream, pos, in_interrupt);
317 hw_base = runtime->hw_ptr_base;
318 new_hw_ptr = hw_base + pos;
319 if (in_interrupt) {
320 /* we know that one period was processed */
321 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
322 delta = runtime->hw_ptr_interrupt + runtime->period_size;
323 if (delta > new_hw_ptr) {
324 /* check for double acknowledged interrupts */
325 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
326 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
327 hw_base += runtime->buffer_size;
328 if (hw_base >= runtime->boundary) {
329 hw_base = 0;
330 crossed_boundary++;
331 }
332 new_hw_ptr = hw_base + pos;
333 goto __delta;
334 }
335 }
336 }
337 /* new_hw_ptr might be lower than old_hw_ptr in case when */
338 /* pointer crosses the end of the ring buffer */
339 if (new_hw_ptr < old_hw_ptr) {
340 hw_base += runtime->buffer_size;
341 if (hw_base >= runtime->boundary) {
342 hw_base = 0;
343 crossed_boundary++;
344 }
345 new_hw_ptr = hw_base + pos;
346 }
347 __delta:
348 delta = new_hw_ptr - old_hw_ptr;
349 if (delta < 0)
350 delta += runtime->boundary;
351
352 if (runtime->no_period_wakeup) {
353 snd_pcm_sframes_t xrun_threshold;
354 /*
355 * Without regular period interrupts, we have to check
356 * the elapsed time to detect xruns.
357 */
358 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
359 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
360 goto no_delta_check;
361 hdelta = jdelta - delta * HZ / runtime->rate;
362 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
363 while (hdelta > xrun_threshold) {
364 delta += runtime->buffer_size;
365 hw_base += runtime->buffer_size;
366 if (hw_base >= runtime->boundary) {
367 hw_base = 0;
368 crossed_boundary++;
369 }
370 new_hw_ptr = hw_base + pos;
371 hdelta -= runtime->hw_ptr_buffer_jiffies;
372 }
373 goto no_delta_check;
374 }
375
376 /* something must be really wrong */
377 if (delta >= runtime->buffer_size + runtime->period_size) {
378 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
379 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
380 substream->stream, (long)pos,
381 (long)new_hw_ptr, (long)old_hw_ptr);
382 return 0;
383 }
384
385 /* Do jiffies check only in xrun_debug mode */
386 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
387 goto no_jiffies_check;
388
389 /* Skip the jiffies check for hardwares with BATCH flag.
390 * Such hardware usually just increases the position at each IRQ,
391 * thus it can't give any strange position.
392 */
393 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
394 goto no_jiffies_check;
395 hdelta = delta;
396 if (hdelta < runtime->delay)
397 goto no_jiffies_check;
398 hdelta -= runtime->delay;
399 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
400 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
401 delta = jdelta /
402 (((runtime->period_size * HZ) / runtime->rate)
403 + HZ/100);
404 /* move new_hw_ptr according jiffies not pos variable */
405 new_hw_ptr = old_hw_ptr;
406 hw_base = delta;
407 /* use loop to avoid checks for delta overflows */
408 /* the delta value is small or zero in most cases */
409 while (delta > 0) {
410 new_hw_ptr += runtime->period_size;
411 if (new_hw_ptr >= runtime->boundary) {
412 new_hw_ptr -= runtime->boundary;
413 crossed_boundary--;
414 }
415 delta--;
416 }
417 /* align hw_base to buffer_size */
418 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
419 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
420 (long)pos, (long)hdelta,
421 (long)runtime->period_size, jdelta,
422 ((hdelta * HZ) / runtime->rate), hw_base,
423 (unsigned long)old_hw_ptr,
424 (unsigned long)new_hw_ptr);
425 /* reset values to proper state */
426 delta = 0;
427 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
428 }
429 no_jiffies_check:
430 if (delta > runtime->period_size + runtime->period_size / 2) {
431 hw_ptr_error(substream, in_interrupt,
432 "Lost interrupts?",
433 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
434 substream->stream, (long)delta,
435 (long)new_hw_ptr,
436 (long)old_hw_ptr);
437 }
438
439 no_delta_check:
440 if (runtime->status->hw_ptr == new_hw_ptr) {
441 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
442 return 0;
443 }
444
445 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
446 runtime->silence_size > 0)
447 snd_pcm_playback_silence(substream, new_hw_ptr);
448
449 if (in_interrupt) {
450 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
451 if (delta < 0)
452 delta += runtime->boundary;
453 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
454 runtime->hw_ptr_interrupt += delta;
455 if (runtime->hw_ptr_interrupt >= runtime->boundary)
456 runtime->hw_ptr_interrupt -= runtime->boundary;
457 }
458 runtime->hw_ptr_base = hw_base;
459 runtime->status->hw_ptr = new_hw_ptr;
460 runtime->hw_ptr_jiffies = curr_jiffies;
461 if (crossed_boundary) {
462 snd_BUG_ON(crossed_boundary != 1);
463 runtime->hw_ptr_wrap += runtime->boundary;
464 }
465
466 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
467
468 return snd_pcm_update_state(substream, runtime);
469 }
470
471 /* CAUTION: call it with irq disabled */
472 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
473 {
474 return snd_pcm_update_hw_ptr0(substream, 0);
475 }
476
477 /**
478 * snd_pcm_set_ops - set the PCM operators
479 * @pcm: the pcm instance
480 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
481 * @ops: the operator table
482 *
483 * Sets the given PCM operators to the pcm instance.
484 */
485 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
486 const struct snd_pcm_ops *ops)
487 {
488 struct snd_pcm_str *stream = &pcm->streams[direction];
489 struct snd_pcm_substream *substream;
490
491 for (substream = stream->substream; substream != NULL; substream = substream->next)
492 substream->ops = ops;
493 }
494 EXPORT_SYMBOL(snd_pcm_set_ops);
495
496 /**
497 * snd_pcm_sync - set the PCM sync id
498 * @substream: the pcm substream
499 *
500 * Sets the PCM sync identifier for the card.
501 */
502 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
503 {
504 struct snd_pcm_runtime *runtime = substream->runtime;
505
506 runtime->sync.id32[0] = substream->pcm->card->number;
507 runtime->sync.id32[1] = -1;
508 runtime->sync.id32[2] = -1;
509 runtime->sync.id32[3] = -1;
510 }
511 EXPORT_SYMBOL(snd_pcm_set_sync);
512
513 /*
514 * Standard ioctl routine
515 */
516
517 static inline unsigned int div32(unsigned int a, unsigned int b,
518 unsigned int *r)
519 {
520 if (b == 0) {
521 *r = 0;
522 return UINT_MAX;
523 }
524 *r = a % b;
525 return a / b;
526 }
527
528 static inline unsigned int div_down(unsigned int a, unsigned int b)
529 {
530 if (b == 0)
531 return UINT_MAX;
532 return a / b;
533 }
534
535 static inline unsigned int div_up(unsigned int a, unsigned int b)
536 {
537 unsigned int r;
538 unsigned int q;
539 if (b == 0)
540 return UINT_MAX;
541 q = div32(a, b, &r);
542 if (r)
543 ++q;
544 return q;
545 }
546
547 static inline unsigned int mul(unsigned int a, unsigned int b)
548 {
549 if (a == 0)
550 return 0;
551 if (div_down(UINT_MAX, a) < b)
552 return UINT_MAX;
553 return a * b;
554 }
555
556 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
557 unsigned int c, unsigned int *r)
558 {
559 u_int64_t n = (u_int64_t) a * b;
560 if (c == 0) {
561 *r = 0;
562 return UINT_MAX;
563 }
564 n = div_u64_rem(n, c, r);
565 if (n >= UINT_MAX) {
566 *r = 0;
567 return UINT_MAX;
568 }
569 return n;
570 }
571
572 /**
573 * snd_interval_refine - refine the interval value of configurator
574 * @i: the interval value to refine
575 * @v: the interval value to refer to
576 *
577 * Refines the interval value with the reference value.
578 * The interval is changed to the range satisfying both intervals.
579 * The interval status (min, max, integer, etc.) are evaluated.
580 *
581 * Return: Positive if the value is changed, zero if it's not changed, or a
582 * negative error code.
583 */
584 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
585 {
586 int changed = 0;
587 if (snd_BUG_ON(snd_interval_empty(i)))
588 return -EINVAL;
589 if (i->min < v->min) {
590 i->min = v->min;
591 i->openmin = v->openmin;
592 changed = 1;
593 } else if (i->min == v->min && !i->openmin && v->openmin) {
594 i->openmin = 1;
595 changed = 1;
596 }
597 if (i->max > v->max) {
598 i->max = v->max;
599 i->openmax = v->openmax;
600 changed = 1;
601 } else if (i->max == v->max && !i->openmax && v->openmax) {
602 i->openmax = 1;
603 changed = 1;
604 }
605 if (!i->integer && v->integer) {
606 i->integer = 1;
607 changed = 1;
608 }
609 if (i->integer) {
610 if (i->openmin) {
611 i->min++;
612 i->openmin = 0;
613 }
614 if (i->openmax) {
615 i->max--;
616 i->openmax = 0;
617 }
618 } else if (!i->openmin && !i->openmax && i->min == i->max)
619 i->integer = 1;
620 if (snd_interval_checkempty(i)) {
621 snd_interval_none(i);
622 return -EINVAL;
623 }
624 return changed;
625 }
626 EXPORT_SYMBOL(snd_interval_refine);
627
628 static int snd_interval_refine_first(struct snd_interval *i)
629 {
630 const unsigned int last_max = i->max;
631
632 if (snd_BUG_ON(snd_interval_empty(i)))
633 return -EINVAL;
634 if (snd_interval_single(i))
635 return 0;
636 i->max = i->min;
637 if (i->openmin)
638 i->max++;
639 /* only exclude max value if also excluded before refine */
640 i->openmax = (i->openmax && i->max >= last_max);
641 return 1;
642 }
643
644 static int snd_interval_refine_last(struct snd_interval *i)
645 {
646 const unsigned int last_min = i->min;
647
648 if (snd_BUG_ON(snd_interval_empty(i)))
649 return -EINVAL;
650 if (snd_interval_single(i))
651 return 0;
652 i->min = i->max;
653 if (i->openmax)
654 i->min--;
655 /* only exclude min value if also excluded before refine */
656 i->openmin = (i->openmin && i->min <= last_min);
657 return 1;
658 }
659
660 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
661 {
662 if (a->empty || b->empty) {
663 snd_interval_none(c);
664 return;
665 }
666 c->empty = 0;
667 c->min = mul(a->min, b->min);
668 c->openmin = (a->openmin || b->openmin);
669 c->max = mul(a->max, b->max);
670 c->openmax = (a->openmax || b->openmax);
671 c->integer = (a->integer && b->integer);
672 }
673
674 /**
675 * snd_interval_div - refine the interval value with division
676 * @a: dividend
677 * @b: divisor
678 * @c: quotient
679 *
680 * c = a / b
681 *
682 * Returns non-zero if the value is changed, zero if not changed.
683 */
684 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
685 {
686 unsigned int r;
687 if (a->empty || b->empty) {
688 snd_interval_none(c);
689 return;
690 }
691 c->empty = 0;
692 c->min = div32(a->min, b->max, &r);
693 c->openmin = (r || a->openmin || b->openmax);
694 if (b->min > 0) {
695 c->max = div32(a->max, b->min, &r);
696 if (r) {
697 c->max++;
698 c->openmax = 1;
699 } else
700 c->openmax = (a->openmax || b->openmin);
701 } else {
702 c->max = UINT_MAX;
703 c->openmax = 0;
704 }
705 c->integer = 0;
706 }
707
708 /**
709 * snd_interval_muldivk - refine the interval value
710 * @a: dividend 1
711 * @b: dividend 2
712 * @k: divisor (as integer)
713 * @c: result
714 *
715 * c = a * b / k
716 *
717 * Returns non-zero if the value is changed, zero if not changed.
718 */
719 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
720 unsigned int k, struct snd_interval *c)
721 {
722 unsigned int r;
723 if (a->empty || b->empty) {
724 snd_interval_none(c);
725 return;
726 }
727 c->empty = 0;
728 c->min = muldiv32(a->min, b->min, k, &r);
729 c->openmin = (r || a->openmin || b->openmin);
730 c->max = muldiv32(a->max, b->max, k, &r);
731 if (r) {
732 c->max++;
733 c->openmax = 1;
734 } else
735 c->openmax = (a->openmax || b->openmax);
736 c->integer = 0;
737 }
738
739 /**
740 * snd_interval_mulkdiv - refine the interval value
741 * @a: dividend 1
742 * @k: dividend 2 (as integer)
743 * @b: divisor
744 * @c: result
745 *
746 * c = a * k / b
747 *
748 * Returns non-zero if the value is changed, zero if not changed.
749 */
750 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
751 const struct snd_interval *b, struct snd_interval *c)
752 {
753 unsigned int r;
754 if (a->empty || b->empty) {
755 snd_interval_none(c);
756 return;
757 }
758 c->empty = 0;
759 c->min = muldiv32(a->min, k, b->max, &r);
760 c->openmin = (r || a->openmin || b->openmax);
761 if (b->min > 0) {
762 c->max = muldiv32(a->max, k, b->min, &r);
763 if (r) {
764 c->max++;
765 c->openmax = 1;
766 } else
767 c->openmax = (a->openmax || b->openmin);
768 } else {
769 c->max = UINT_MAX;
770 c->openmax = 0;
771 }
772 c->integer = 0;
773 }
774
775 /* ---- */
776
777
778 /**
779 * snd_interval_ratnum - refine the interval value
780 * @i: interval to refine
781 * @rats_count: number of ratnum_t
782 * @rats: ratnum_t array
783 * @nump: pointer to store the resultant numerator
784 * @denp: pointer to store the resultant denominator
785 *
786 * Return: Positive if the value is changed, zero if it's not changed, or a
787 * negative error code.
788 */
789 int snd_interval_ratnum(struct snd_interval *i,
790 unsigned int rats_count, const struct snd_ratnum *rats,
791 unsigned int *nump, unsigned int *denp)
792 {
793 unsigned int best_num, best_den;
794 int best_diff;
795 unsigned int k;
796 struct snd_interval t;
797 int err;
798 unsigned int result_num, result_den;
799 int result_diff;
800
801 best_num = best_den = best_diff = 0;
802 for (k = 0; k < rats_count; ++k) {
803 unsigned int num = rats[k].num;
804 unsigned int den;
805 unsigned int q = i->min;
806 int diff;
807 if (q == 0)
808 q = 1;
809 den = div_up(num, q);
810 if (den < rats[k].den_min)
811 continue;
812 if (den > rats[k].den_max)
813 den = rats[k].den_max;
814 else {
815 unsigned int r;
816 r = (den - rats[k].den_min) % rats[k].den_step;
817 if (r != 0)
818 den -= r;
819 }
820 diff = num - q * den;
821 if (diff < 0)
822 diff = -diff;
823 if (best_num == 0 ||
824 diff * best_den < best_diff * den) {
825 best_diff = diff;
826 best_den = den;
827 best_num = num;
828 }
829 }
830 if (best_den == 0) {
831 i->empty = 1;
832 return -EINVAL;
833 }
834 t.min = div_down(best_num, best_den);
835 t.openmin = !!(best_num % best_den);
836
837 result_num = best_num;
838 result_diff = best_diff;
839 result_den = best_den;
840 best_num = best_den = best_diff = 0;
841 for (k = 0; k < rats_count; ++k) {
842 unsigned int num = rats[k].num;
843 unsigned int den;
844 unsigned int q = i->max;
845 int diff;
846 if (q == 0) {
847 i->empty = 1;
848 return -EINVAL;
849 }
850 den = div_down(num, q);
851 if (den > rats[k].den_max)
852 continue;
853 if (den < rats[k].den_min)
854 den = rats[k].den_min;
855 else {
856 unsigned int r;
857 r = (den - rats[k].den_min) % rats[k].den_step;
858 if (r != 0)
859 den += rats[k].den_step - r;
860 }
861 diff = q * den - num;
862 if (diff < 0)
863 diff = -diff;
864 if (best_num == 0 ||
865 diff * best_den < best_diff * den) {
866 best_diff = diff;
867 best_den = den;
868 best_num = num;
869 }
870 }
871 if (best_den == 0) {
872 i->empty = 1;
873 return -EINVAL;
874 }
875 t.max = div_up(best_num, best_den);
876 t.openmax = !!(best_num % best_den);
877 t.integer = 0;
878 err = snd_interval_refine(i, &t);
879 if (err < 0)
880 return err;
881
882 if (snd_interval_single(i)) {
883 if (best_diff * result_den < result_diff * best_den) {
884 result_num = best_num;
885 result_den = best_den;
886 }
887 if (nump)
888 *nump = result_num;
889 if (denp)
890 *denp = result_den;
891 }
892 return err;
893 }
894 EXPORT_SYMBOL(snd_interval_ratnum);
895
896 /**
897 * snd_interval_ratden - refine the interval value
898 * @i: interval to refine
899 * @rats_count: number of struct ratden
900 * @rats: struct ratden array
901 * @nump: pointer to store the resultant numerator
902 * @denp: pointer to store the resultant denominator
903 *
904 * Return: Positive if the value is changed, zero if it's not changed, or a
905 * negative error code.
906 */
907 static int snd_interval_ratden(struct snd_interval *i,
908 unsigned int rats_count,
909 const struct snd_ratden *rats,
910 unsigned int *nump, unsigned int *denp)
911 {
912 unsigned int best_num, best_diff, best_den;
913 unsigned int k;
914 struct snd_interval t;
915 int err;
916
917 best_num = best_den = best_diff = 0;
918 for (k = 0; k < rats_count; ++k) {
919 unsigned int num;
920 unsigned int den = rats[k].den;
921 unsigned int q = i->min;
922 int diff;
923 num = mul(q, den);
924 if (num > rats[k].num_max)
925 continue;
926 if (num < rats[k].num_min)
927 num = rats[k].num_max;
928 else {
929 unsigned int r;
930 r = (num - rats[k].num_min) % rats[k].num_step;
931 if (r != 0)
932 num += rats[k].num_step - r;
933 }
934 diff = num - q * den;
935 if (best_num == 0 ||
936 diff * best_den < best_diff * den) {
937 best_diff = diff;
938 best_den = den;
939 best_num = num;
940 }
941 }
942 if (best_den == 0) {
943 i->empty = 1;
944 return -EINVAL;
945 }
946 t.min = div_down(best_num, best_den);
947 t.openmin = !!(best_num % best_den);
948
949 best_num = best_den = best_diff = 0;
950 for (k = 0; k < rats_count; ++k) {
951 unsigned int num;
952 unsigned int den = rats[k].den;
953 unsigned int q = i->max;
954 int diff;
955 num = mul(q, den);
956 if (num < rats[k].num_min)
957 continue;
958 if (num > rats[k].num_max)
959 num = rats[k].num_max;
960 else {
961 unsigned int r;
962 r = (num - rats[k].num_min) % rats[k].num_step;
963 if (r != 0)
964 num -= r;
965 }
966 diff = q * den - num;
967 if (best_num == 0 ||
968 diff * best_den < best_diff * den) {
969 best_diff = diff;
970 best_den = den;
971 best_num = num;
972 }
973 }
974 if (best_den == 0) {
975 i->empty = 1;
976 return -EINVAL;
977 }
978 t.max = div_up(best_num, best_den);
979 t.openmax = !!(best_num % best_den);
980 t.integer = 0;
981 err = snd_interval_refine(i, &t);
982 if (err < 0)
983 return err;
984
985 if (snd_interval_single(i)) {
986 if (nump)
987 *nump = best_num;
988 if (denp)
989 *denp = best_den;
990 }
991 return err;
992 }
993
994 /**
995 * snd_interval_list - refine the interval value from the list
996 * @i: the interval value to refine
997 * @count: the number of elements in the list
998 * @list: the value list
999 * @mask: the bit-mask to evaluate
1000 *
1001 * Refines the interval value from the list.
1002 * When mask is non-zero, only the elements corresponding to bit 1 are
1003 * evaluated.
1004 *
1005 * Return: Positive if the value is changed, zero if it's not changed, or a
1006 * negative error code.
1007 */
1008 int snd_interval_list(struct snd_interval *i, unsigned int count,
1009 const unsigned int *list, unsigned int mask)
1010 {
1011 unsigned int k;
1012 struct snd_interval list_range;
1013
1014 if (!count) {
1015 i->empty = 1;
1016 return -EINVAL;
1017 }
1018 snd_interval_any(&list_range);
1019 list_range.min = UINT_MAX;
1020 list_range.max = 0;
1021 for (k = 0; k < count; k++) {
1022 if (mask && !(mask & (1 << k)))
1023 continue;
1024 if (!snd_interval_test(i, list[k]))
1025 continue;
1026 list_range.min = min(list_range.min, list[k]);
1027 list_range.max = max(list_range.max, list[k]);
1028 }
1029 return snd_interval_refine(i, &list_range);
1030 }
1031 EXPORT_SYMBOL(snd_interval_list);
1032
1033 /**
1034 * snd_interval_ranges - refine the interval value from the list of ranges
1035 * @i: the interval value to refine
1036 * @count: the number of elements in the list of ranges
1037 * @ranges: the ranges list
1038 * @mask: the bit-mask to evaluate
1039 *
1040 * Refines the interval value from the list of ranges.
1041 * When mask is non-zero, only the elements corresponding to bit 1 are
1042 * evaluated.
1043 *
1044 * Return: Positive if the value is changed, zero if it's not changed, or a
1045 * negative error code.
1046 */
1047 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1048 const struct snd_interval *ranges, unsigned int mask)
1049 {
1050 unsigned int k;
1051 struct snd_interval range_union;
1052 struct snd_interval range;
1053
1054 if (!count) {
1055 snd_interval_none(i);
1056 return -EINVAL;
1057 }
1058 snd_interval_any(&range_union);
1059 range_union.min = UINT_MAX;
1060 range_union.max = 0;
1061 for (k = 0; k < count; k++) {
1062 if (mask && !(mask & (1 << k)))
1063 continue;
1064 snd_interval_copy(&range, &ranges[k]);
1065 if (snd_interval_refine(&range, i) < 0)
1066 continue;
1067 if (snd_interval_empty(&range))
1068 continue;
1069
1070 if (range.min < range_union.min) {
1071 range_union.min = range.min;
1072 range_union.openmin = 1;
1073 }
1074 if (range.min == range_union.min && !range.openmin)
1075 range_union.openmin = 0;
1076 if (range.max > range_union.max) {
1077 range_union.max = range.max;
1078 range_union.openmax = 1;
1079 }
1080 if (range.max == range_union.max && !range.openmax)
1081 range_union.openmax = 0;
1082 }
1083 return snd_interval_refine(i, &range_union);
1084 }
1085 EXPORT_SYMBOL(snd_interval_ranges);
1086
1087 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1088 {
1089 unsigned int n;
1090 int changed = 0;
1091 n = i->min % step;
1092 if (n != 0 || i->openmin) {
1093 i->min += step - n;
1094 i->openmin = 0;
1095 changed = 1;
1096 }
1097 n = i->max % step;
1098 if (n != 0 || i->openmax) {
1099 i->max -= n;
1100 i->openmax = 0;
1101 changed = 1;
1102 }
1103 if (snd_interval_checkempty(i)) {
1104 i->empty = 1;
1105 return -EINVAL;
1106 }
1107 return changed;
1108 }
1109
1110 /* Info constraints helpers */
1111
1112 /**
1113 * snd_pcm_hw_rule_add - add the hw-constraint rule
1114 * @runtime: the pcm runtime instance
1115 * @cond: condition bits
1116 * @var: the variable to evaluate
1117 * @func: the evaluation function
1118 * @private: the private data pointer passed to function
1119 * @dep: the dependent variables
1120 *
1121 * Return: Zero if successful, or a negative error code on failure.
1122 */
1123 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1124 int var,
1125 snd_pcm_hw_rule_func_t func, void *private,
1126 int dep, ...)
1127 {
1128 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1129 struct snd_pcm_hw_rule *c;
1130 unsigned int k;
1131 va_list args;
1132 va_start(args, dep);
1133 if (constrs->rules_num >= constrs->rules_all) {
1134 struct snd_pcm_hw_rule *new;
1135 unsigned int new_rules = constrs->rules_all + 16;
1136 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1137 GFP_KERNEL);
1138 if (!new) {
1139 va_end(args);
1140 return -ENOMEM;
1141 }
1142 constrs->rules = new;
1143 constrs->rules_all = new_rules;
1144 }
1145 c = &constrs->rules[constrs->rules_num];
1146 c->cond = cond;
1147 c->func = func;
1148 c->var = var;
1149 c->private = private;
1150 k = 0;
1151 while (1) {
1152 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1153 va_end(args);
1154 return -EINVAL;
1155 }
1156 c->deps[k++] = dep;
1157 if (dep < 0)
1158 break;
1159 dep = va_arg(args, int);
1160 }
1161 constrs->rules_num++;
1162 va_end(args);
1163 return 0;
1164 }
1165 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1166
1167 /**
1168 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1169 * @runtime: PCM runtime instance
1170 * @var: hw_params variable to apply the mask
1171 * @mask: the bitmap mask
1172 *
1173 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1174 *
1175 * Return: Zero if successful, or a negative error code on failure.
1176 */
1177 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1178 u_int32_t mask)
1179 {
1180 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1181 struct snd_mask *maskp = constrs_mask(constrs, var);
1182 *maskp->bits &= mask;
1183 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1184 if (*maskp->bits == 0)
1185 return -EINVAL;
1186 return 0;
1187 }
1188
1189 /**
1190 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the 64bit bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200 u_int64_t mask)
1201 {
1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203 struct snd_mask *maskp = constrs_mask(constrs, var);
1204 maskp->bits[0] &= (u_int32_t)mask;
1205 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1206 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1207 if (! maskp->bits[0] && ! maskp->bits[1])
1208 return -EINVAL;
1209 return 0;
1210 }
1211 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1212
1213 /**
1214 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1215 * @runtime: PCM runtime instance
1216 * @var: hw_params variable to apply the integer constraint
1217 *
1218 * Apply the constraint of integer to an interval parameter.
1219 *
1220 * Return: Positive if the value is changed, zero if it's not changed, or a
1221 * negative error code.
1222 */
1223 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1224 {
1225 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1226 return snd_interval_setinteger(constrs_interval(constrs, var));
1227 }
1228 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1229
1230 /**
1231 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1232 * @runtime: PCM runtime instance
1233 * @var: hw_params variable to apply the range
1234 * @min: the minimal value
1235 * @max: the maximal value
1236 *
1237 * Apply the min/max range constraint to an interval parameter.
1238 *
1239 * Return: Positive if the value is changed, zero if it's not changed, or a
1240 * negative error code.
1241 */
1242 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1243 unsigned int min, unsigned int max)
1244 {
1245 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1246 struct snd_interval t;
1247 t.min = min;
1248 t.max = max;
1249 t.openmin = t.openmax = 0;
1250 t.integer = 0;
1251 return snd_interval_refine(constrs_interval(constrs, var), &t);
1252 }
1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1254
1255 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1256 struct snd_pcm_hw_rule *rule)
1257 {
1258 struct snd_pcm_hw_constraint_list *list = rule->private;
1259 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1260 }
1261
1262
1263 /**
1264 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1265 * @runtime: PCM runtime instance
1266 * @cond: condition bits
1267 * @var: hw_params variable to apply the list constraint
1268 * @l: list
1269 *
1270 * Apply the list of constraints to an interval parameter.
1271 *
1272 * Return: Zero if successful, or a negative error code on failure.
1273 */
1274 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1275 unsigned int cond,
1276 snd_pcm_hw_param_t var,
1277 const struct snd_pcm_hw_constraint_list *l)
1278 {
1279 return snd_pcm_hw_rule_add(runtime, cond, var,
1280 snd_pcm_hw_rule_list, (void *)l,
1281 var, -1);
1282 }
1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1284
1285 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1286 struct snd_pcm_hw_rule *rule)
1287 {
1288 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1289 return snd_interval_ranges(hw_param_interval(params, rule->var),
1290 r->count, r->ranges, r->mask);
1291 }
1292
1293
1294 /**
1295 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1296 * @runtime: PCM runtime instance
1297 * @cond: condition bits
1298 * @var: hw_params variable to apply the list of range constraints
1299 * @r: ranges
1300 *
1301 * Apply the list of range constraints to an interval parameter.
1302 *
1303 * Return: Zero if successful, or a negative error code on failure.
1304 */
1305 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1306 unsigned int cond,
1307 snd_pcm_hw_param_t var,
1308 const struct snd_pcm_hw_constraint_ranges *r)
1309 {
1310 return snd_pcm_hw_rule_add(runtime, cond, var,
1311 snd_pcm_hw_rule_ranges, (void *)r,
1312 var, -1);
1313 }
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1315
1316 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1317 struct snd_pcm_hw_rule *rule)
1318 {
1319 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1320 unsigned int num = 0, den = 0;
1321 int err;
1322 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1323 r->nrats, r->rats, &num, &den);
1324 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1325 params->rate_num = num;
1326 params->rate_den = den;
1327 }
1328 return err;
1329 }
1330
1331 /**
1332 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1333 * @runtime: PCM runtime instance
1334 * @cond: condition bits
1335 * @var: hw_params variable to apply the ratnums constraint
1336 * @r: struct snd_ratnums constriants
1337 *
1338 * Return: Zero if successful, or a negative error code on failure.
1339 */
1340 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1341 unsigned int cond,
1342 snd_pcm_hw_param_t var,
1343 const struct snd_pcm_hw_constraint_ratnums *r)
1344 {
1345 return snd_pcm_hw_rule_add(runtime, cond, var,
1346 snd_pcm_hw_rule_ratnums, (void *)r,
1347 var, -1);
1348 }
1349 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1350
1351 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1352 struct snd_pcm_hw_rule *rule)
1353 {
1354 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1355 unsigned int num = 0, den = 0;
1356 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1357 r->nrats, r->rats, &num, &den);
1358 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1359 params->rate_num = num;
1360 params->rate_den = den;
1361 }
1362 return err;
1363 }
1364
1365 /**
1366 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1367 * @runtime: PCM runtime instance
1368 * @cond: condition bits
1369 * @var: hw_params variable to apply the ratdens constraint
1370 * @r: struct snd_ratdens constriants
1371 *
1372 * Return: Zero if successful, or a negative error code on failure.
1373 */
1374 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1375 unsigned int cond,
1376 snd_pcm_hw_param_t var,
1377 const struct snd_pcm_hw_constraint_ratdens *r)
1378 {
1379 return snd_pcm_hw_rule_add(runtime, cond, var,
1380 snd_pcm_hw_rule_ratdens, (void *)r,
1381 var, -1);
1382 }
1383 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1384
1385 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1386 struct snd_pcm_hw_rule *rule)
1387 {
1388 unsigned int l = (unsigned long) rule->private;
1389 int width = l & 0xffff;
1390 unsigned int msbits = l >> 16;
1391 const struct snd_interval *i =
1392 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1393
1394 if (!snd_interval_single(i))
1395 return 0;
1396
1397 if ((snd_interval_value(i) == width) ||
1398 (width == 0 && snd_interval_value(i) > msbits))
1399 params->msbits = min_not_zero(params->msbits, msbits);
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406 * @runtime: PCM runtime instance
1407 * @cond: condition bits
1408 * @width: sample bits width
1409 * @msbits: msbits width
1410 *
1411 * This constraint will set the number of most significant bits (msbits) if a
1412 * sample format with the specified width has been select. If width is set to 0
1413 * the msbits will be set for any sample format with a width larger than the
1414 * specified msbits.
1415 *
1416 * Return: Zero if successful, or a negative error code on failure.
1417 */
1418 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1419 unsigned int cond,
1420 unsigned int width,
1421 unsigned int msbits)
1422 {
1423 unsigned long l = (msbits << 16) | width;
1424 return snd_pcm_hw_rule_add(runtime, cond, -1,
1425 snd_pcm_hw_rule_msbits,
1426 (void*) l,
1427 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1428 }
1429 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1430
1431 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1432 struct snd_pcm_hw_rule *rule)
1433 {
1434 unsigned long step = (unsigned long) rule->private;
1435 return snd_interval_step(hw_param_interval(params, rule->var), step);
1436 }
1437
1438 /**
1439 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1440 * @runtime: PCM runtime instance
1441 * @cond: condition bits
1442 * @var: hw_params variable to apply the step constraint
1443 * @step: step size
1444 *
1445 * Return: Zero if successful, or a negative error code on failure.
1446 */
1447 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1448 unsigned int cond,
1449 snd_pcm_hw_param_t var,
1450 unsigned long step)
1451 {
1452 return snd_pcm_hw_rule_add(runtime, cond, var,
1453 snd_pcm_hw_rule_step, (void *) step,
1454 var, -1);
1455 }
1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1457
1458 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1459 {
1460 static unsigned int pow2_sizes[] = {
1461 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1462 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1463 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1464 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1465 };
1466 return snd_interval_list(hw_param_interval(params, rule->var),
1467 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1468 }
1469
1470 /**
1471 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1472 * @runtime: PCM runtime instance
1473 * @cond: condition bits
1474 * @var: hw_params variable to apply the power-of-2 constraint
1475 *
1476 * Return: Zero if successful, or a negative error code on failure.
1477 */
1478 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1479 unsigned int cond,
1480 snd_pcm_hw_param_t var)
1481 {
1482 return snd_pcm_hw_rule_add(runtime, cond, var,
1483 snd_pcm_hw_rule_pow2, NULL,
1484 var, -1);
1485 }
1486 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1487
1488 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1489 struct snd_pcm_hw_rule *rule)
1490 {
1491 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1492 struct snd_interval *rate;
1493
1494 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1495 return snd_interval_list(rate, 1, &base_rate, 0);
1496 }
1497
1498 /**
1499 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1500 * @runtime: PCM runtime instance
1501 * @base_rate: the rate at which the hardware does not resample
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1506 unsigned int base_rate)
1507 {
1508 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1509 SNDRV_PCM_HW_PARAM_RATE,
1510 snd_pcm_hw_rule_noresample_func,
1511 (void *)(uintptr_t)base_rate,
1512 SNDRV_PCM_HW_PARAM_RATE, -1);
1513 }
1514 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1515
1516 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1517 snd_pcm_hw_param_t var)
1518 {
1519 if (hw_is_mask(var)) {
1520 snd_mask_any(hw_param_mask(params, var));
1521 params->cmask |= 1 << var;
1522 params->rmask |= 1 << var;
1523 return;
1524 }
1525 if (hw_is_interval(var)) {
1526 snd_interval_any(hw_param_interval(params, var));
1527 params->cmask |= 1 << var;
1528 params->rmask |= 1 << var;
1529 return;
1530 }
1531 snd_BUG();
1532 }
1533
1534 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1535 {
1536 unsigned int k;
1537 memset(params, 0, sizeof(*params));
1538 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1539 _snd_pcm_hw_param_any(params, k);
1540 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1541 _snd_pcm_hw_param_any(params, k);
1542 params->info = ~0U;
1543 }
1544 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1545
1546 /**
1547 * snd_pcm_hw_param_value - return @params field @var value
1548 * @params: the hw_params instance
1549 * @var: parameter to retrieve
1550 * @dir: pointer to the direction (-1,0,1) or %NULL
1551 *
1552 * Return: The value for field @var if it's fixed in configuration space
1553 * defined by @params. -%EINVAL otherwise.
1554 */
1555 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1556 snd_pcm_hw_param_t var, int *dir)
1557 {
1558 if (hw_is_mask(var)) {
1559 const struct snd_mask *mask = hw_param_mask_c(params, var);
1560 if (!snd_mask_single(mask))
1561 return -EINVAL;
1562 if (dir)
1563 *dir = 0;
1564 return snd_mask_value(mask);
1565 }
1566 if (hw_is_interval(var)) {
1567 const struct snd_interval *i = hw_param_interval_c(params, var);
1568 if (!snd_interval_single(i))
1569 return -EINVAL;
1570 if (dir)
1571 *dir = i->openmin;
1572 return snd_interval_value(i);
1573 }
1574 return -EINVAL;
1575 }
1576 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1577
1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1579 snd_pcm_hw_param_t var)
1580 {
1581 if (hw_is_mask(var)) {
1582 snd_mask_none(hw_param_mask(params, var));
1583 params->cmask |= 1 << var;
1584 params->rmask |= 1 << var;
1585 } else if (hw_is_interval(var)) {
1586 snd_interval_none(hw_param_interval(params, var));
1587 params->cmask |= 1 << var;
1588 params->rmask |= 1 << var;
1589 } else {
1590 snd_BUG();
1591 }
1592 }
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596 snd_pcm_hw_param_t var)
1597 {
1598 int changed;
1599 if (hw_is_mask(var))
1600 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601 else if (hw_is_interval(var))
1602 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603 else
1604 return -EINVAL;
1605 if (changed > 0) {
1606 params->cmask |= 1 << var;
1607 params->rmask |= 1 << var;
1608 }
1609 return changed;
1610 }
1611
1612
1613 /**
1614 * snd_pcm_hw_param_first - refine config space and return minimum value
1615 * @pcm: PCM instance
1616 * @params: the hw_params instance
1617 * @var: parameter to retrieve
1618 * @dir: pointer to the direction (-1,0,1) or %NULL
1619 *
1620 * Inside configuration space defined by @params remove from @var all
1621 * values > minimum. Reduce configuration space accordingly.
1622 *
1623 * Return: The minimum, or a negative error code on failure.
1624 */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1626 struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var, int *dir)
1628 {
1629 int changed = _snd_pcm_hw_param_first(params, var);
1630 if (changed < 0)
1631 return changed;
1632 if (params->rmask) {
1633 int err = snd_pcm_hw_refine(pcm, params);
1634 if (err < 0)
1635 return err;
1636 }
1637 return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1640
1641 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1642 snd_pcm_hw_param_t var)
1643 {
1644 int changed;
1645 if (hw_is_mask(var))
1646 changed = snd_mask_refine_last(hw_param_mask(params, var));
1647 else if (hw_is_interval(var))
1648 changed = snd_interval_refine_last(hw_param_interval(params, var));
1649 else
1650 return -EINVAL;
1651 if (changed > 0) {
1652 params->cmask |= 1 << var;
1653 params->rmask |= 1 << var;
1654 }
1655 return changed;
1656 }
1657
1658
1659 /**
1660 * snd_pcm_hw_param_last - refine config space and return maximum value
1661 * @pcm: PCM instance
1662 * @params: the hw_params instance
1663 * @var: parameter to retrieve
1664 * @dir: pointer to the direction (-1,0,1) or %NULL
1665 *
1666 * Inside configuration space defined by @params remove from @var all
1667 * values < maximum. Reduce configuration space accordingly.
1668 *
1669 * Return: The maximum, or a negative error code on failure.
1670 */
1671 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1672 struct snd_pcm_hw_params *params,
1673 snd_pcm_hw_param_t var, int *dir)
1674 {
1675 int changed = _snd_pcm_hw_param_last(params, var);
1676 if (changed < 0)
1677 return changed;
1678 if (params->rmask) {
1679 int err = snd_pcm_hw_refine(pcm, params);
1680 if (err < 0)
1681 return err;
1682 }
1683 return snd_pcm_hw_param_value(params, var, dir);
1684 }
1685 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1686
1687 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1688 void *arg)
1689 {
1690 struct snd_pcm_runtime *runtime = substream->runtime;
1691 unsigned long flags;
1692 snd_pcm_stream_lock_irqsave(substream, flags);
1693 if (snd_pcm_running(substream) &&
1694 snd_pcm_update_hw_ptr(substream) >= 0)
1695 runtime->status->hw_ptr %= runtime->buffer_size;
1696 else {
1697 runtime->status->hw_ptr = 0;
1698 runtime->hw_ptr_wrap = 0;
1699 }
1700 snd_pcm_stream_unlock_irqrestore(substream, flags);
1701 return 0;
1702 }
1703
1704 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1705 void *arg)
1706 {
1707 struct snd_pcm_channel_info *info = arg;
1708 struct snd_pcm_runtime *runtime = substream->runtime;
1709 int width;
1710 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1711 info->offset = -1;
1712 return 0;
1713 }
1714 width = snd_pcm_format_physical_width(runtime->format);
1715 if (width < 0)
1716 return width;
1717 info->offset = 0;
1718 switch (runtime->access) {
1719 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1720 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1721 info->first = info->channel * width;
1722 info->step = runtime->channels * width;
1723 break;
1724 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1725 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1726 {
1727 size_t size = runtime->dma_bytes / runtime->channels;
1728 info->first = info->channel * size * 8;
1729 info->step = width;
1730 break;
1731 }
1732 default:
1733 snd_BUG();
1734 break;
1735 }
1736 return 0;
1737 }
1738
1739 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1740 void *arg)
1741 {
1742 struct snd_pcm_hw_params *params = arg;
1743 snd_pcm_format_t format;
1744 int channels;
1745 ssize_t frame_size;
1746
1747 params->fifo_size = substream->runtime->hw.fifo_size;
1748 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1749 format = params_format(params);
1750 channels = params_channels(params);
1751 frame_size = snd_pcm_format_size(format, channels);
1752 if (frame_size > 0)
1753 params->fifo_size /= (unsigned)frame_size;
1754 }
1755 return 0;
1756 }
1757
1758 /**
1759 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1760 * @substream: the pcm substream instance
1761 * @cmd: ioctl command
1762 * @arg: ioctl argument
1763 *
1764 * Processes the generic ioctl commands for PCM.
1765 * Can be passed as the ioctl callback for PCM ops.
1766 *
1767 * Return: Zero if successful, or a negative error code on failure.
1768 */
1769 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1770 unsigned int cmd, void *arg)
1771 {
1772 switch (cmd) {
1773 case SNDRV_PCM_IOCTL1_RESET:
1774 return snd_pcm_lib_ioctl_reset(substream, arg);
1775 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1776 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1777 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1778 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1779 }
1780 return -ENXIO;
1781 }
1782 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1783
1784 /**
1785 * snd_pcm_period_elapsed - update the pcm status for the next period
1786 * @substream: the pcm substream instance
1787 *
1788 * This function is called from the interrupt handler when the
1789 * PCM has processed the period size. It will update the current
1790 * pointer, wake up sleepers, etc.
1791 *
1792 * Even if more than one periods have elapsed since the last call, you
1793 * have to call this only once.
1794 */
1795 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1796 {
1797 struct snd_pcm_runtime *runtime;
1798 unsigned long flags;
1799
1800 if (PCM_RUNTIME_CHECK(substream))
1801 return;
1802 runtime = substream->runtime;
1803
1804 snd_pcm_stream_lock_irqsave(substream, flags);
1805 if (!snd_pcm_running(substream) ||
1806 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1807 goto _end;
1808
1809 #ifdef CONFIG_SND_PCM_TIMER
1810 if (substream->timer_running)
1811 snd_timer_interrupt(substream->timer, 1);
1812 #endif
1813 _end:
1814 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1815 snd_pcm_stream_unlock_irqrestore(substream, flags);
1816 }
1817 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1818
1819 /*
1820 * Wait until avail_min data becomes available
1821 * Returns a negative error code if any error occurs during operation.
1822 * The available space is stored on availp. When err = 0 and avail = 0
1823 * on the capture stream, it indicates the stream is in DRAINING state.
1824 */
1825 static int wait_for_avail(struct snd_pcm_substream *substream,
1826 snd_pcm_uframes_t *availp)
1827 {
1828 struct snd_pcm_runtime *runtime = substream->runtime;
1829 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1830 wait_queue_entry_t wait;
1831 int err = 0;
1832 snd_pcm_uframes_t avail = 0;
1833 long wait_time, tout;
1834
1835 init_waitqueue_entry(&wait, current);
1836 set_current_state(TASK_INTERRUPTIBLE);
1837 add_wait_queue(&runtime->tsleep, &wait);
1838
1839 if (runtime->no_period_wakeup)
1840 wait_time = MAX_SCHEDULE_TIMEOUT;
1841 else {
1842 /* use wait time from substream if available */
1843 if (substream->wait_time) {
1844 wait_time = substream->wait_time;
1845 } else {
1846 wait_time = 10;
1847
1848 if (runtime->rate) {
1849 long t = runtime->period_size * 2 /
1850 runtime->rate;
1851 wait_time = max(t, wait_time);
1852 }
1853 wait_time = msecs_to_jiffies(wait_time * 1000);
1854 }
1855 }
1856
1857 for (;;) {
1858 if (signal_pending(current)) {
1859 err = -ERESTARTSYS;
1860 break;
1861 }
1862
1863 /*
1864 * We need to check if space became available already
1865 * (and thus the wakeup happened already) first to close
1866 * the race of space already having become available.
1867 * This check must happen after been added to the waitqueue
1868 * and having current state be INTERRUPTIBLE.
1869 */
1870 avail = snd_pcm_avail(substream);
1871 if (avail >= runtime->twake)
1872 break;
1873 snd_pcm_stream_unlock_irq(substream);
1874
1875 tout = schedule_timeout(wait_time);
1876
1877 snd_pcm_stream_lock_irq(substream);
1878 set_current_state(TASK_INTERRUPTIBLE);
1879 switch (runtime->status->state) {
1880 case SNDRV_PCM_STATE_SUSPENDED:
1881 err = -ESTRPIPE;
1882 goto _endloop;
1883 case SNDRV_PCM_STATE_XRUN:
1884 err = -EPIPE;
1885 goto _endloop;
1886 case SNDRV_PCM_STATE_DRAINING:
1887 if (is_playback)
1888 err = -EPIPE;
1889 else
1890 avail = 0; /* indicate draining */
1891 goto _endloop;
1892 case SNDRV_PCM_STATE_OPEN:
1893 case SNDRV_PCM_STATE_SETUP:
1894 case SNDRV_PCM_STATE_DISCONNECTED:
1895 err = -EBADFD;
1896 goto _endloop;
1897 case SNDRV_PCM_STATE_PAUSED:
1898 continue;
1899 }
1900 if (!tout) {
1901 pcm_dbg(substream->pcm,
1902 "%s write error (DMA or IRQ trouble?)\n",
1903 is_playback ? "playback" : "capture");
1904 err = -EIO;
1905 break;
1906 }
1907 }
1908 _endloop:
1909 set_current_state(TASK_RUNNING);
1910 remove_wait_queue(&runtime->tsleep, &wait);
1911 *availp = avail;
1912 return err;
1913 }
1914
1915 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1916 int channel, unsigned long hwoff,
1917 void *buf, unsigned long bytes);
1918
1919 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1920 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1921
1922 /* calculate the target DMA-buffer position to be written/read */
1923 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1924 int channel, unsigned long hwoff)
1925 {
1926 return runtime->dma_area + hwoff +
1927 channel * (runtime->dma_bytes / runtime->channels);
1928 }
1929
1930 /* default copy_user ops for write; used for both interleaved and non- modes */
1931 static int default_write_copy(struct snd_pcm_substream *substream,
1932 int channel, unsigned long hwoff,
1933 void *buf, unsigned long bytes)
1934 {
1935 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1936 (void __user *)buf, bytes))
1937 return -EFAULT;
1938 return 0;
1939 }
1940
1941 /* default copy_kernel ops for write */
1942 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1943 int channel, unsigned long hwoff,
1944 void *buf, unsigned long bytes)
1945 {
1946 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1947 return 0;
1948 }
1949
1950 /* fill silence instead of copy data; called as a transfer helper
1951 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1952 * a NULL buffer is passed
1953 */
1954 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1955 unsigned long hwoff, void *buf, unsigned long bytes)
1956 {
1957 struct snd_pcm_runtime *runtime = substream->runtime;
1958
1959 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1960 return 0;
1961 if (substream->ops->fill_silence)
1962 return substream->ops->fill_silence(substream, channel,
1963 hwoff, bytes);
1964
1965 snd_pcm_format_set_silence(runtime->format,
1966 get_dma_ptr(runtime, channel, hwoff),
1967 bytes_to_samples(runtime, bytes));
1968 return 0;
1969 }
1970
1971 /* default copy_user ops for read; used for both interleaved and non- modes */
1972 static int default_read_copy(struct snd_pcm_substream *substream,
1973 int channel, unsigned long hwoff,
1974 void *buf, unsigned long bytes)
1975 {
1976 if (copy_to_user((void __user *)buf,
1977 get_dma_ptr(substream->runtime, channel, hwoff),
1978 bytes))
1979 return -EFAULT;
1980 return 0;
1981 }
1982
1983 /* default copy_kernel ops for read */
1984 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1985 int channel, unsigned long hwoff,
1986 void *buf, unsigned long bytes)
1987 {
1988 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1989 return 0;
1990 }
1991
1992 /* call transfer function with the converted pointers and sizes;
1993 * for interleaved mode, it's one shot for all samples
1994 */
1995 static int interleaved_copy(struct snd_pcm_substream *substream,
1996 snd_pcm_uframes_t hwoff, void *data,
1997 snd_pcm_uframes_t off,
1998 snd_pcm_uframes_t frames,
1999 pcm_transfer_f transfer)
2000 {
2001 struct snd_pcm_runtime *runtime = substream->runtime;
2002
2003 /* convert to bytes */
2004 hwoff = frames_to_bytes(runtime, hwoff);
2005 off = frames_to_bytes(runtime, off);
2006 frames = frames_to_bytes(runtime, frames);
2007 return transfer(substream, 0, hwoff, data + off, frames);
2008 }
2009
2010 /* call transfer function with the converted pointers and sizes for each
2011 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2012 */
2013 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2014 snd_pcm_uframes_t hwoff, void *data,
2015 snd_pcm_uframes_t off,
2016 snd_pcm_uframes_t frames,
2017 pcm_transfer_f transfer)
2018 {
2019 struct snd_pcm_runtime *runtime = substream->runtime;
2020 int channels = runtime->channels;
2021 void **bufs = data;
2022 int c, err;
2023
2024 /* convert to bytes; note that it's not frames_to_bytes() here.
2025 * in non-interleaved mode, we copy for each channel, thus
2026 * each copy is n_samples bytes x channels = whole frames.
2027 */
2028 off = samples_to_bytes(runtime, off);
2029 frames = samples_to_bytes(runtime, frames);
2030 hwoff = samples_to_bytes(runtime, hwoff);
2031 for (c = 0; c < channels; ++c, ++bufs) {
2032 if (!data || !*bufs)
2033 err = fill_silence(substream, c, hwoff, NULL, frames);
2034 else
2035 err = transfer(substream, c, hwoff, *bufs + off,
2036 frames);
2037 if (err < 0)
2038 return err;
2039 }
2040 return 0;
2041 }
2042
2043 /* fill silence on the given buffer position;
2044 * called from snd_pcm_playback_silence()
2045 */
2046 static int fill_silence_frames(struct snd_pcm_substream *substream,
2047 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2048 {
2049 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2050 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2051 return interleaved_copy(substream, off, NULL, 0, frames,
2052 fill_silence);
2053 else
2054 return noninterleaved_copy(substream, off, NULL, 0, frames,
2055 fill_silence);
2056 }
2057
2058 /* sanity-check for read/write methods */
2059 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2060 {
2061 struct snd_pcm_runtime *runtime;
2062 if (PCM_RUNTIME_CHECK(substream))
2063 return -ENXIO;
2064 runtime = substream->runtime;
2065 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2066 return -EINVAL;
2067 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2068 return -EBADFD;
2069 return 0;
2070 }
2071
2072 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2073 {
2074 switch (runtime->status->state) {
2075 case SNDRV_PCM_STATE_PREPARED:
2076 case SNDRV_PCM_STATE_RUNNING:
2077 case SNDRV_PCM_STATE_PAUSED:
2078 return 0;
2079 case SNDRV_PCM_STATE_XRUN:
2080 return -EPIPE;
2081 case SNDRV_PCM_STATE_SUSPENDED:
2082 return -ESTRPIPE;
2083 default:
2084 return -EBADFD;
2085 }
2086 }
2087
2088 /* update to the given appl_ptr and call ack callback if needed;
2089 * when an error is returned, take back to the original value
2090 */
2091 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2092 snd_pcm_uframes_t appl_ptr)
2093 {
2094 struct snd_pcm_runtime *runtime = substream->runtime;
2095 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2096 int ret;
2097
2098 if (old_appl_ptr == appl_ptr)
2099 return 0;
2100
2101 runtime->control->appl_ptr = appl_ptr;
2102 if (substream->ops->ack) {
2103 ret = substream->ops->ack(substream);
2104 if (ret < 0) {
2105 runtime->control->appl_ptr = old_appl_ptr;
2106 return ret;
2107 }
2108 }
2109
2110 trace_applptr(substream, old_appl_ptr, appl_ptr);
2111
2112 return 0;
2113 }
2114
2115 /* the common loop for read/write data */
2116 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2117 void *data, bool interleaved,
2118 snd_pcm_uframes_t size, bool in_kernel)
2119 {
2120 struct snd_pcm_runtime *runtime = substream->runtime;
2121 snd_pcm_uframes_t xfer = 0;
2122 snd_pcm_uframes_t offset = 0;
2123 snd_pcm_uframes_t avail;
2124 pcm_copy_f writer;
2125 pcm_transfer_f transfer;
2126 bool nonblock;
2127 bool is_playback;
2128 int err;
2129
2130 err = pcm_sanity_check(substream);
2131 if (err < 0)
2132 return err;
2133
2134 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2135 if (interleaved) {
2136 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2137 runtime->channels > 1)
2138 return -EINVAL;
2139 writer = interleaved_copy;
2140 } else {
2141 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2142 return -EINVAL;
2143 writer = noninterleaved_copy;
2144 }
2145
2146 if (!data) {
2147 if (is_playback)
2148 transfer = fill_silence;
2149 else
2150 return -EINVAL;
2151 } else if (in_kernel) {
2152 if (substream->ops->copy_kernel)
2153 transfer = substream->ops->copy_kernel;
2154 else
2155 transfer = is_playback ?
2156 default_write_copy_kernel : default_read_copy_kernel;
2157 } else {
2158 if (substream->ops->copy_user)
2159 transfer = (pcm_transfer_f)substream->ops->copy_user;
2160 else
2161 transfer = is_playback ?
2162 default_write_copy : default_read_copy;
2163 }
2164
2165 if (size == 0)
2166 return 0;
2167
2168 nonblock = !!(substream->f_flags & O_NONBLOCK);
2169
2170 snd_pcm_stream_lock_irq(substream);
2171 err = pcm_accessible_state(runtime);
2172 if (err < 0)
2173 goto _end_unlock;
2174
2175 runtime->twake = runtime->control->avail_min ? : 1;
2176 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2177 snd_pcm_update_hw_ptr(substream);
2178
2179 if (!is_playback &&
2180 runtime->status->state == SNDRV_PCM_STATE_PREPARED) {
2181 if (size >= runtime->start_threshold) {
2182 err = snd_pcm_start(substream);
2183 if (err < 0)
2184 goto _end_unlock;
2185 } else {
2186 /* nothing to do */
2187 err = 0;
2188 goto _end_unlock;
2189 }
2190 }
2191
2192 avail = snd_pcm_avail(substream);
2193
2194 while (size > 0) {
2195 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2196 snd_pcm_uframes_t cont;
2197 if (!avail) {
2198 if (!is_playback &&
2199 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2200 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2201 goto _end_unlock;
2202 }
2203 if (nonblock) {
2204 err = -EAGAIN;
2205 goto _end_unlock;
2206 }
2207 runtime->twake = min_t(snd_pcm_uframes_t, size,
2208 runtime->control->avail_min ? : 1);
2209 err = wait_for_avail(substream, &avail);
2210 if (err < 0)
2211 goto _end_unlock;
2212 if (!avail)
2213 continue; /* draining */
2214 }
2215 frames = size > avail ? avail : size;
2216 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2217 appl_ofs = appl_ptr % runtime->buffer_size;
2218 cont = runtime->buffer_size - appl_ofs;
2219 if (frames > cont)
2220 frames = cont;
2221 if (snd_BUG_ON(!frames)) {
2222 runtime->twake = 0;
2223 snd_pcm_stream_unlock_irq(substream);
2224 return -EINVAL;
2225 }
2226 snd_pcm_stream_unlock_irq(substream);
2227 err = writer(substream, appl_ofs, data, offset, frames,
2228 transfer);
2229 snd_pcm_stream_lock_irq(substream);
2230 if (err < 0)
2231 goto _end_unlock;
2232 err = pcm_accessible_state(runtime);
2233 if (err < 0)
2234 goto _end_unlock;
2235 appl_ptr += frames;
2236 if (appl_ptr >= runtime->boundary)
2237 appl_ptr -= runtime->boundary;
2238 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2239 if (err < 0)
2240 goto _end_unlock;
2241
2242 offset += frames;
2243 size -= frames;
2244 xfer += frames;
2245 avail -= frames;
2246 if (is_playback &&
2247 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2248 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2249 err = snd_pcm_start(substream);
2250 if (err < 0)
2251 goto _end_unlock;
2252 }
2253 }
2254 _end_unlock:
2255 runtime->twake = 0;
2256 if (xfer > 0 && err >= 0)
2257 snd_pcm_update_state(substream, runtime);
2258 snd_pcm_stream_unlock_irq(substream);
2259 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2260 }
2261 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2262
2263 /*
2264 * standard channel mapping helpers
2265 */
2266
2267 /* default channel maps for multi-channel playbacks, up to 8 channels */
2268 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2269 { .channels = 1,
2270 .map = { SNDRV_CHMAP_MONO } },
2271 { .channels = 2,
2272 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2273 { .channels = 4,
2274 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2275 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2276 { .channels = 6,
2277 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2278 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2279 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2280 { .channels = 8,
2281 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2282 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2283 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2284 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2285 { }
2286 };
2287 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2288
2289 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2290 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2291 { .channels = 1,
2292 .map = { SNDRV_CHMAP_MONO } },
2293 { .channels = 2,
2294 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2295 { .channels = 4,
2296 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2297 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2298 { .channels = 6,
2299 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2300 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2301 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2302 { .channels = 8,
2303 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2304 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2305 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2306 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2307 { }
2308 };
2309 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2310
2311 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2312 {
2313 if (ch > info->max_channels)
2314 return false;
2315 return !info->channel_mask || (info->channel_mask & (1U << ch));
2316 }
2317
2318 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2319 struct snd_ctl_elem_info *uinfo)
2320 {
2321 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2322
2323 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2324 uinfo->count = 0;
2325 uinfo->count = info->max_channels;
2326 uinfo->value.integer.min = 0;
2327 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2328 return 0;
2329 }
2330
2331 /* get callback for channel map ctl element
2332 * stores the channel position firstly matching with the current channels
2333 */
2334 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2335 struct snd_ctl_elem_value *ucontrol)
2336 {
2337 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2338 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2339 struct snd_pcm_substream *substream;
2340 const struct snd_pcm_chmap_elem *map;
2341
2342 if (!info->chmap)
2343 return -EINVAL;
2344 substream = snd_pcm_chmap_substream(info, idx);
2345 if (!substream)
2346 return -ENODEV;
2347 memset(ucontrol->value.integer.value, 0,
2348 sizeof(ucontrol->value.integer.value));
2349 if (!substream->runtime)
2350 return 0; /* no channels set */
2351 for (map = info->chmap; map->channels; map++) {
2352 int i;
2353 if (map->channels == substream->runtime->channels &&
2354 valid_chmap_channels(info, map->channels)) {
2355 for (i = 0; i < map->channels; i++)
2356 ucontrol->value.integer.value[i] = map->map[i];
2357 return 0;
2358 }
2359 }
2360 return -EINVAL;
2361 }
2362
2363 /* tlv callback for channel map ctl element
2364 * expands the pre-defined channel maps in a form of TLV
2365 */
2366 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2367 unsigned int size, unsigned int __user *tlv)
2368 {
2369 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2370 const struct snd_pcm_chmap_elem *map;
2371 unsigned int __user *dst;
2372 int c, count = 0;
2373
2374 if (!info->chmap)
2375 return -EINVAL;
2376 if (size < 8)
2377 return -ENOMEM;
2378 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2379 return -EFAULT;
2380 size -= 8;
2381 dst = tlv + 2;
2382 for (map = info->chmap; map->channels; map++) {
2383 int chs_bytes = map->channels * 4;
2384 if (!valid_chmap_channels(info, map->channels))
2385 continue;
2386 if (size < 8)
2387 return -ENOMEM;
2388 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2389 put_user(chs_bytes, dst + 1))
2390 return -EFAULT;
2391 dst += 2;
2392 size -= 8;
2393 count += 8;
2394 if (size < chs_bytes)
2395 return -ENOMEM;
2396 size -= chs_bytes;
2397 count += chs_bytes;
2398 for (c = 0; c < map->channels; c++) {
2399 if (put_user(map->map[c], dst))
2400 return -EFAULT;
2401 dst++;
2402 }
2403 }
2404 if (put_user(count, tlv + 1))
2405 return -EFAULT;
2406 return 0;
2407 }
2408
2409 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2410 {
2411 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2412 info->pcm->streams[info->stream].chmap_kctl = NULL;
2413 kfree(info);
2414 }
2415
2416 /**
2417 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2418 * @pcm: the assigned PCM instance
2419 * @stream: stream direction
2420 * @chmap: channel map elements (for query)
2421 * @max_channels: the max number of channels for the stream
2422 * @private_value: the value passed to each kcontrol's private_value field
2423 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2424 *
2425 * Create channel-mapping control elements assigned to the given PCM stream(s).
2426 * Return: Zero if successful, or a negative error value.
2427 */
2428 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2429 const struct snd_pcm_chmap_elem *chmap,
2430 int max_channels,
2431 unsigned long private_value,
2432 struct snd_pcm_chmap **info_ret)
2433 {
2434 struct snd_pcm_chmap *info;
2435 struct snd_kcontrol_new knew = {
2436 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2437 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2438 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2439 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2440 .info = pcm_chmap_ctl_info,
2441 .get = pcm_chmap_ctl_get,
2442 .tlv.c = pcm_chmap_ctl_tlv,
2443 };
2444 int err;
2445
2446 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2447 return -EBUSY;
2448 info = kzalloc(sizeof(*info), GFP_KERNEL);
2449 if (!info)
2450 return -ENOMEM;
2451 info->pcm = pcm;
2452 info->stream = stream;
2453 info->chmap = chmap;
2454 info->max_channels = max_channels;
2455 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2456 knew.name = "Playback Channel Map";
2457 else
2458 knew.name = "Capture Channel Map";
2459 knew.device = pcm->device;
2460 knew.count = pcm->streams[stream].substream_count;
2461 knew.private_value = private_value;
2462 info->kctl = snd_ctl_new1(&knew, info);
2463 if (!info->kctl) {
2464 kfree(info);
2465 return -ENOMEM;
2466 }
2467 info->kctl->private_free = pcm_chmap_ctl_private_free;
2468 err = snd_ctl_add(pcm->card, info->kctl);
2469 if (err < 0)
2470 return err;
2471 pcm->streams[stream].chmap_kctl = info->kctl;
2472 if (info_ret)
2473 *info_ret = info;
2474 return 0;
2475 }
2476 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);