]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - sound/core/pcm_lib.c
Merge branch 'for-2.6.39' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-zesty-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34 * fill ring buffer with silence
35 * runtime->silence_start: starting pointer to silence area
36 * runtime->silence_filled: size filled with silence
37 * runtime->silence_threshold: threshold from application
38 * runtime->silence_size: maximal size from application
39 *
40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41 */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 struct snd_pcm_runtime *runtime = substream->runtime;
45 snd_pcm_uframes_t frames, ofs, transfer;
46
47 if (runtime->silence_size < runtime->boundary) {
48 snd_pcm_sframes_t noise_dist, n;
49 if (runtime->silence_start != runtime->control->appl_ptr) {
50 n = runtime->control->appl_ptr - runtime->silence_start;
51 if (n < 0)
52 n += runtime->boundary;
53 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 runtime->silence_filled -= n;
55 else
56 runtime->silence_filled = 0;
57 runtime->silence_start = runtime->control->appl_ptr;
58 }
59 if (runtime->silence_filled >= runtime->buffer_size)
60 return;
61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63 return;
64 frames = runtime->silence_threshold - noise_dist;
65 if (frames > runtime->silence_size)
66 frames = runtime->silence_size;
67 } else {
68 if (new_hw_ptr == ULONG_MAX) { /* initialization */
69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70 if (avail > runtime->buffer_size)
71 avail = runtime->buffer_size;
72 runtime->silence_filled = avail > 0 ? avail : 0;
73 runtime->silence_start = (runtime->status->hw_ptr +
74 runtime->silence_filled) %
75 runtime->boundary;
76 } else {
77 ofs = runtime->status->hw_ptr;
78 frames = new_hw_ptr - ofs;
79 if ((snd_pcm_sframes_t)frames < 0)
80 frames += runtime->boundary;
81 runtime->silence_filled -= frames;
82 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83 runtime->silence_filled = 0;
84 runtime->silence_start = new_hw_ptr;
85 } else {
86 runtime->silence_start = ofs;
87 }
88 }
89 frames = runtime->buffer_size - runtime->silence_filled;
90 }
91 if (snd_BUG_ON(frames > runtime->buffer_size))
92 return;
93 if (frames == 0)
94 return;
95 ofs = runtime->silence_start % runtime->buffer_size;
96 while (frames > 0) {
97 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100 if (substream->ops->silence) {
101 int err;
102 err = substream->ops->silence(substream, -1, ofs, transfer);
103 snd_BUG_ON(err < 0);
104 } else {
105 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107 }
108 } else {
109 unsigned int c;
110 unsigned int channels = runtime->channels;
111 if (substream->ops->silence) {
112 for (c = 0; c < channels; ++c) {
113 int err;
114 err = substream->ops->silence(substream, c, ofs, transfer);
115 snd_BUG_ON(err < 0);
116 }
117 } else {
118 size_t dma_csize = runtime->dma_bytes / channels;
119 for (c = 0; c < channels; ++c) {
120 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122 }
123 }
124 }
125 runtime->silence_filled += transfer;
126 frames -= transfer;
127 ofs = 0;
128 }
129 }
130
131 static void pcm_debug_name(struct snd_pcm_substream *substream,
132 char *name, size_t len)
133 {
134 snprintf(name, len, "pcmC%dD%d%c:%d",
135 substream->pcm->card->number,
136 substream->pcm->device,
137 substream->stream ? 'c' : 'p',
138 substream->number);
139 }
140
141 #define XRUN_DEBUG_BASIC (1<<0)
142 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
143 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
144 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
145 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
146 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
147 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
148
149 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
150
151 #define xrun_debug(substream, mask) \
152 ((substream)->pstr->xrun_debug & (mask))
153 #else
154 #define xrun_debug(substream, mask) 0
155 #endif
156
157 #define dump_stack_on_xrun(substream) do { \
158 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
159 dump_stack(); \
160 } while (0)
161
162 static void xrun(struct snd_pcm_substream *substream)
163 {
164 struct snd_pcm_runtime *runtime = substream->runtime;
165
166 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
167 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
168 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
169 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
170 char name[16];
171 pcm_debug_name(substream, name, sizeof(name));
172 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
173 dump_stack_on_xrun(substream);
174 }
175 }
176
177 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
178 #define hw_ptr_error(substream, fmt, args...) \
179 do { \
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
181 xrun_log_show(substream); \
182 if (printk_ratelimit()) { \
183 snd_printd("PCM: " fmt, ##args); \
184 } \
185 dump_stack_on_xrun(substream); \
186 } \
187 } while (0)
188
189 #define XRUN_LOG_CNT 10
190
191 struct hwptr_log_entry {
192 unsigned long jiffies;
193 snd_pcm_uframes_t pos;
194 snd_pcm_uframes_t period_size;
195 snd_pcm_uframes_t buffer_size;
196 snd_pcm_uframes_t old_hw_ptr;
197 snd_pcm_uframes_t hw_ptr_base;
198 };
199
200 struct snd_pcm_hwptr_log {
201 unsigned int idx;
202 unsigned int hit: 1;
203 struct hwptr_log_entry entries[XRUN_LOG_CNT];
204 };
205
206 static void xrun_log(struct snd_pcm_substream *substream,
207 snd_pcm_uframes_t pos)
208 {
209 struct snd_pcm_runtime *runtime = substream->runtime;
210 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
211 struct hwptr_log_entry *entry;
212
213 if (log == NULL) {
214 log = kzalloc(sizeof(*log), GFP_ATOMIC);
215 if (log == NULL)
216 return;
217 runtime->hwptr_log = log;
218 } else {
219 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
220 return;
221 }
222 entry = &log->entries[log->idx];
223 entry->jiffies = jiffies;
224 entry->pos = pos;
225 entry->period_size = runtime->period_size;
226 entry->buffer_size = runtime->buffer_size;
227 entry->old_hw_ptr = runtime->status->hw_ptr;
228 entry->hw_ptr_base = runtime->hw_ptr_base;
229 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
230 }
231
232 static void xrun_log_show(struct snd_pcm_substream *substream)
233 {
234 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
235 struct hwptr_log_entry *entry;
236 char name[16];
237 unsigned int idx;
238 int cnt;
239
240 if (log == NULL)
241 return;
242 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
243 return;
244 pcm_debug_name(substream, name, sizeof(name));
245 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
246 entry = &log->entries[idx];
247 if (entry->period_size == 0)
248 break;
249 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
250 "hwptr=%ld/%ld\n",
251 name, entry->jiffies, (unsigned long)entry->pos,
252 (unsigned long)entry->period_size,
253 (unsigned long)entry->buffer_size,
254 (unsigned long)entry->old_hw_ptr,
255 (unsigned long)entry->hw_ptr_base);
256 idx++;
257 idx %= XRUN_LOG_CNT;
258 }
259 log->hit = 1;
260 }
261
262 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
263
264 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
265 #define xrun_log(substream, pos) do { } while (0)
266 #define xrun_log_show(substream) do { } while (0)
267
268 #endif
269
270 int snd_pcm_update_state(struct snd_pcm_substream *substream,
271 struct snd_pcm_runtime *runtime)
272 {
273 snd_pcm_uframes_t avail;
274
275 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
276 avail = snd_pcm_playback_avail(runtime);
277 else
278 avail = snd_pcm_capture_avail(runtime);
279 if (avail > runtime->avail_max)
280 runtime->avail_max = avail;
281 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
282 if (avail >= runtime->buffer_size) {
283 snd_pcm_drain_done(substream);
284 return -EPIPE;
285 }
286 } else {
287 if (avail >= runtime->stop_threshold) {
288 xrun(substream);
289 return -EPIPE;
290 }
291 }
292 if (runtime->twake) {
293 if (avail >= runtime->twake)
294 wake_up(&runtime->tsleep);
295 } else if (avail >= runtime->control->avail_min)
296 wake_up(&runtime->sleep);
297 return 0;
298 }
299
300 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
301 unsigned int in_interrupt)
302 {
303 struct snd_pcm_runtime *runtime = substream->runtime;
304 snd_pcm_uframes_t pos;
305 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
306 snd_pcm_sframes_t hdelta, delta;
307 unsigned long jdelta;
308
309 old_hw_ptr = runtime->status->hw_ptr;
310 pos = substream->ops->pointer(substream);
311 if (pos == SNDRV_PCM_POS_XRUN) {
312 xrun(substream);
313 return -EPIPE;
314 }
315 if (pos >= runtime->buffer_size) {
316 if (printk_ratelimit()) {
317 char name[16];
318 pcm_debug_name(substream, name, sizeof(name));
319 xrun_log_show(substream);
320 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
321 "buffer size = %ld, period size = %ld\n",
322 name, pos, runtime->buffer_size,
323 runtime->period_size);
324 }
325 pos = 0;
326 }
327 pos -= pos % runtime->min_align;
328 if (xrun_debug(substream, XRUN_DEBUG_LOG))
329 xrun_log(substream, pos);
330 hw_base = runtime->hw_ptr_base;
331 new_hw_ptr = hw_base + pos;
332 if (in_interrupt) {
333 /* we know that one period was processed */
334 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
335 delta = runtime->hw_ptr_interrupt + runtime->period_size;
336 if (delta > new_hw_ptr) {
337 /* check for double acknowledged interrupts */
338 hdelta = jiffies - runtime->hw_ptr_jiffies;
339 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
340 hw_base += runtime->buffer_size;
341 if (hw_base >= runtime->boundary)
342 hw_base = 0;
343 new_hw_ptr = hw_base + pos;
344 goto __delta;
345 }
346 }
347 }
348 /* new_hw_ptr might be lower than old_hw_ptr in case when */
349 /* pointer crosses the end of the ring buffer */
350 if (new_hw_ptr < old_hw_ptr) {
351 hw_base += runtime->buffer_size;
352 if (hw_base >= runtime->boundary)
353 hw_base = 0;
354 new_hw_ptr = hw_base + pos;
355 }
356 __delta:
357 delta = new_hw_ptr - old_hw_ptr;
358 if (delta < 0)
359 delta += runtime->boundary;
360 if (xrun_debug(substream, in_interrupt ?
361 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
362 char name[16];
363 pcm_debug_name(substream, name, sizeof(name));
364 snd_printd("%s_update: %s: pos=%u/%u/%u, "
365 "hwptr=%ld/%ld/%ld/%ld\n",
366 in_interrupt ? "period" : "hwptr",
367 name,
368 (unsigned int)pos,
369 (unsigned int)runtime->period_size,
370 (unsigned int)runtime->buffer_size,
371 (unsigned long)delta,
372 (unsigned long)old_hw_ptr,
373 (unsigned long)new_hw_ptr,
374 (unsigned long)runtime->hw_ptr_base);
375 }
376
377 if (runtime->no_period_wakeup) {
378 /*
379 * Without regular period interrupts, we have to check
380 * the elapsed time to detect xruns.
381 */
382 jdelta = jiffies - runtime->hw_ptr_jiffies;
383 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
384 goto no_delta_check;
385 hdelta = jdelta - delta * HZ / runtime->rate;
386 while (hdelta > runtime->hw_ptr_buffer_jiffies / 2 + 1) {
387 delta += runtime->buffer_size;
388 hw_base += runtime->buffer_size;
389 if (hw_base >= runtime->boundary)
390 hw_base = 0;
391 new_hw_ptr = hw_base + pos;
392 hdelta -= runtime->hw_ptr_buffer_jiffies;
393 }
394 goto no_delta_check;
395 }
396
397 /* something must be really wrong */
398 if (delta >= runtime->buffer_size + runtime->period_size) {
399 hw_ptr_error(substream,
400 "Unexpected hw_pointer value %s"
401 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
402 "old_hw_ptr=%ld)\n",
403 in_interrupt ? "[Q] " : "[P]",
404 substream->stream, (long)pos,
405 (long)new_hw_ptr, (long)old_hw_ptr);
406 return 0;
407 }
408
409 /* Do jiffies check only in xrun_debug mode */
410 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
411 goto no_jiffies_check;
412
413 /* Skip the jiffies check for hardwares with BATCH flag.
414 * Such hardware usually just increases the position at each IRQ,
415 * thus it can't give any strange position.
416 */
417 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
418 goto no_jiffies_check;
419 hdelta = delta;
420 if (hdelta < runtime->delay)
421 goto no_jiffies_check;
422 hdelta -= runtime->delay;
423 jdelta = jiffies - runtime->hw_ptr_jiffies;
424 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
425 delta = jdelta /
426 (((runtime->period_size * HZ) / runtime->rate)
427 + HZ/100);
428 /* move new_hw_ptr according jiffies not pos variable */
429 new_hw_ptr = old_hw_ptr;
430 hw_base = delta;
431 /* use loop to avoid checks for delta overflows */
432 /* the delta value is small or zero in most cases */
433 while (delta > 0) {
434 new_hw_ptr += runtime->period_size;
435 if (new_hw_ptr >= runtime->boundary)
436 new_hw_ptr -= runtime->boundary;
437 delta--;
438 }
439 /* align hw_base to buffer_size */
440 hw_ptr_error(substream,
441 "hw_ptr skipping! %s"
442 "(pos=%ld, delta=%ld, period=%ld, "
443 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
444 in_interrupt ? "[Q] " : "",
445 (long)pos, (long)hdelta,
446 (long)runtime->period_size, jdelta,
447 ((hdelta * HZ) / runtime->rate), hw_base,
448 (unsigned long)old_hw_ptr,
449 (unsigned long)new_hw_ptr);
450 /* reset values to proper state */
451 delta = 0;
452 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
453 }
454 no_jiffies_check:
455 if (delta > runtime->period_size + runtime->period_size / 2) {
456 hw_ptr_error(substream,
457 "Lost interrupts? %s"
458 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
459 "old_hw_ptr=%ld)\n",
460 in_interrupt ? "[Q] " : "",
461 substream->stream, (long)delta,
462 (long)new_hw_ptr,
463 (long)old_hw_ptr);
464 }
465
466 no_delta_check:
467 if (runtime->status->hw_ptr == new_hw_ptr)
468 return 0;
469
470 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
471 runtime->silence_size > 0)
472 snd_pcm_playback_silence(substream, new_hw_ptr);
473
474 if (in_interrupt) {
475 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
476 if (delta < 0)
477 delta += runtime->boundary;
478 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
479 runtime->hw_ptr_interrupt += delta;
480 if (runtime->hw_ptr_interrupt >= runtime->boundary)
481 runtime->hw_ptr_interrupt -= runtime->boundary;
482 }
483 runtime->hw_ptr_base = hw_base;
484 runtime->status->hw_ptr = new_hw_ptr;
485 runtime->hw_ptr_jiffies = jiffies;
486 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
487 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
488
489 return snd_pcm_update_state(substream, runtime);
490 }
491
492 /* CAUTION: call it with irq disabled */
493 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
494 {
495 return snd_pcm_update_hw_ptr0(substream, 0);
496 }
497
498 /**
499 * snd_pcm_set_ops - set the PCM operators
500 * @pcm: the pcm instance
501 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
502 * @ops: the operator table
503 *
504 * Sets the given PCM operators to the pcm instance.
505 */
506 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
507 {
508 struct snd_pcm_str *stream = &pcm->streams[direction];
509 struct snd_pcm_substream *substream;
510
511 for (substream = stream->substream; substream != NULL; substream = substream->next)
512 substream->ops = ops;
513 }
514
515 EXPORT_SYMBOL(snd_pcm_set_ops);
516
517 /**
518 * snd_pcm_sync - set the PCM sync id
519 * @substream: the pcm substream
520 *
521 * Sets the PCM sync identifier for the card.
522 */
523 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
524 {
525 struct snd_pcm_runtime *runtime = substream->runtime;
526
527 runtime->sync.id32[0] = substream->pcm->card->number;
528 runtime->sync.id32[1] = -1;
529 runtime->sync.id32[2] = -1;
530 runtime->sync.id32[3] = -1;
531 }
532
533 EXPORT_SYMBOL(snd_pcm_set_sync);
534
535 /*
536 * Standard ioctl routine
537 */
538
539 static inline unsigned int div32(unsigned int a, unsigned int b,
540 unsigned int *r)
541 {
542 if (b == 0) {
543 *r = 0;
544 return UINT_MAX;
545 }
546 *r = a % b;
547 return a / b;
548 }
549
550 static inline unsigned int div_down(unsigned int a, unsigned int b)
551 {
552 if (b == 0)
553 return UINT_MAX;
554 return a / b;
555 }
556
557 static inline unsigned int div_up(unsigned int a, unsigned int b)
558 {
559 unsigned int r;
560 unsigned int q;
561 if (b == 0)
562 return UINT_MAX;
563 q = div32(a, b, &r);
564 if (r)
565 ++q;
566 return q;
567 }
568
569 static inline unsigned int mul(unsigned int a, unsigned int b)
570 {
571 if (a == 0)
572 return 0;
573 if (div_down(UINT_MAX, a) < b)
574 return UINT_MAX;
575 return a * b;
576 }
577
578 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579 unsigned int c, unsigned int *r)
580 {
581 u_int64_t n = (u_int64_t) a * b;
582 if (c == 0) {
583 snd_BUG_ON(!n);
584 *r = 0;
585 return UINT_MAX;
586 }
587 n = div_u64_rem(n, c, r);
588 if (n >= UINT_MAX) {
589 *r = 0;
590 return UINT_MAX;
591 }
592 return n;
593 }
594
595 /**
596 * snd_interval_refine - refine the interval value of configurator
597 * @i: the interval value to refine
598 * @v: the interval value to refer to
599 *
600 * Refines the interval value with the reference value.
601 * The interval is changed to the range satisfying both intervals.
602 * The interval status (min, max, integer, etc.) are evaluated.
603 *
604 * Returns non-zero if the value is changed, zero if not changed.
605 */
606 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607 {
608 int changed = 0;
609 if (snd_BUG_ON(snd_interval_empty(i)))
610 return -EINVAL;
611 if (i->min < v->min) {
612 i->min = v->min;
613 i->openmin = v->openmin;
614 changed = 1;
615 } else if (i->min == v->min && !i->openmin && v->openmin) {
616 i->openmin = 1;
617 changed = 1;
618 }
619 if (i->max > v->max) {
620 i->max = v->max;
621 i->openmax = v->openmax;
622 changed = 1;
623 } else if (i->max == v->max && !i->openmax && v->openmax) {
624 i->openmax = 1;
625 changed = 1;
626 }
627 if (!i->integer && v->integer) {
628 i->integer = 1;
629 changed = 1;
630 }
631 if (i->integer) {
632 if (i->openmin) {
633 i->min++;
634 i->openmin = 0;
635 }
636 if (i->openmax) {
637 i->max--;
638 i->openmax = 0;
639 }
640 } else if (!i->openmin && !i->openmax && i->min == i->max)
641 i->integer = 1;
642 if (snd_interval_checkempty(i)) {
643 snd_interval_none(i);
644 return -EINVAL;
645 }
646 return changed;
647 }
648
649 EXPORT_SYMBOL(snd_interval_refine);
650
651 static int snd_interval_refine_first(struct snd_interval *i)
652 {
653 if (snd_BUG_ON(snd_interval_empty(i)))
654 return -EINVAL;
655 if (snd_interval_single(i))
656 return 0;
657 i->max = i->min;
658 i->openmax = i->openmin;
659 if (i->openmax)
660 i->max++;
661 return 1;
662 }
663
664 static int snd_interval_refine_last(struct snd_interval *i)
665 {
666 if (snd_BUG_ON(snd_interval_empty(i)))
667 return -EINVAL;
668 if (snd_interval_single(i))
669 return 0;
670 i->min = i->max;
671 i->openmin = i->openmax;
672 if (i->openmin)
673 i->min--;
674 return 1;
675 }
676
677 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
678 {
679 if (a->empty || b->empty) {
680 snd_interval_none(c);
681 return;
682 }
683 c->empty = 0;
684 c->min = mul(a->min, b->min);
685 c->openmin = (a->openmin || b->openmin);
686 c->max = mul(a->max, b->max);
687 c->openmax = (a->openmax || b->openmax);
688 c->integer = (a->integer && b->integer);
689 }
690
691 /**
692 * snd_interval_div - refine the interval value with division
693 * @a: dividend
694 * @b: divisor
695 * @c: quotient
696 *
697 * c = a / b
698 *
699 * Returns non-zero if the value is changed, zero if not changed.
700 */
701 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
702 {
703 unsigned int r;
704 if (a->empty || b->empty) {
705 snd_interval_none(c);
706 return;
707 }
708 c->empty = 0;
709 c->min = div32(a->min, b->max, &r);
710 c->openmin = (r || a->openmin || b->openmax);
711 if (b->min > 0) {
712 c->max = div32(a->max, b->min, &r);
713 if (r) {
714 c->max++;
715 c->openmax = 1;
716 } else
717 c->openmax = (a->openmax || b->openmin);
718 } else {
719 c->max = UINT_MAX;
720 c->openmax = 0;
721 }
722 c->integer = 0;
723 }
724
725 /**
726 * snd_interval_muldivk - refine the interval value
727 * @a: dividend 1
728 * @b: dividend 2
729 * @k: divisor (as integer)
730 * @c: result
731 *
732 * c = a * b / k
733 *
734 * Returns non-zero if the value is changed, zero if not changed.
735 */
736 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
737 unsigned int k, struct snd_interval *c)
738 {
739 unsigned int r;
740 if (a->empty || b->empty) {
741 snd_interval_none(c);
742 return;
743 }
744 c->empty = 0;
745 c->min = muldiv32(a->min, b->min, k, &r);
746 c->openmin = (r || a->openmin || b->openmin);
747 c->max = muldiv32(a->max, b->max, k, &r);
748 if (r) {
749 c->max++;
750 c->openmax = 1;
751 } else
752 c->openmax = (a->openmax || b->openmax);
753 c->integer = 0;
754 }
755
756 /**
757 * snd_interval_mulkdiv - refine the interval value
758 * @a: dividend 1
759 * @k: dividend 2 (as integer)
760 * @b: divisor
761 * @c: result
762 *
763 * c = a * k / b
764 *
765 * Returns non-zero if the value is changed, zero if not changed.
766 */
767 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
768 const struct snd_interval *b, struct snd_interval *c)
769 {
770 unsigned int r;
771 if (a->empty || b->empty) {
772 snd_interval_none(c);
773 return;
774 }
775 c->empty = 0;
776 c->min = muldiv32(a->min, k, b->max, &r);
777 c->openmin = (r || a->openmin || b->openmax);
778 if (b->min > 0) {
779 c->max = muldiv32(a->max, k, b->min, &r);
780 if (r) {
781 c->max++;
782 c->openmax = 1;
783 } else
784 c->openmax = (a->openmax || b->openmin);
785 } else {
786 c->max = UINT_MAX;
787 c->openmax = 0;
788 }
789 c->integer = 0;
790 }
791
792 /* ---- */
793
794
795 /**
796 * snd_interval_ratnum - refine the interval value
797 * @i: interval to refine
798 * @rats_count: number of ratnum_t
799 * @rats: ratnum_t array
800 * @nump: pointer to store the resultant numerator
801 * @denp: pointer to store the resultant denominator
802 *
803 * Returns non-zero if the value is changed, zero if not changed.
804 */
805 int snd_interval_ratnum(struct snd_interval *i,
806 unsigned int rats_count, struct snd_ratnum *rats,
807 unsigned int *nump, unsigned int *denp)
808 {
809 unsigned int best_num, best_den;
810 int best_diff;
811 unsigned int k;
812 struct snd_interval t;
813 int err;
814 unsigned int result_num, result_den;
815 int result_diff;
816
817 best_num = best_den = best_diff = 0;
818 for (k = 0; k < rats_count; ++k) {
819 unsigned int num = rats[k].num;
820 unsigned int den;
821 unsigned int q = i->min;
822 int diff;
823 if (q == 0)
824 q = 1;
825 den = div_up(num, q);
826 if (den < rats[k].den_min)
827 continue;
828 if (den > rats[k].den_max)
829 den = rats[k].den_max;
830 else {
831 unsigned int r;
832 r = (den - rats[k].den_min) % rats[k].den_step;
833 if (r != 0)
834 den -= r;
835 }
836 diff = num - q * den;
837 if (diff < 0)
838 diff = -diff;
839 if (best_num == 0 ||
840 diff * best_den < best_diff * den) {
841 best_diff = diff;
842 best_den = den;
843 best_num = num;
844 }
845 }
846 if (best_den == 0) {
847 i->empty = 1;
848 return -EINVAL;
849 }
850 t.min = div_down(best_num, best_den);
851 t.openmin = !!(best_num % best_den);
852
853 result_num = best_num;
854 result_diff = best_diff;
855 result_den = best_den;
856 best_num = best_den = best_diff = 0;
857 for (k = 0; k < rats_count; ++k) {
858 unsigned int num = rats[k].num;
859 unsigned int den;
860 unsigned int q = i->max;
861 int diff;
862 if (q == 0) {
863 i->empty = 1;
864 return -EINVAL;
865 }
866 den = div_down(num, q);
867 if (den > rats[k].den_max)
868 continue;
869 if (den < rats[k].den_min)
870 den = rats[k].den_min;
871 else {
872 unsigned int r;
873 r = (den - rats[k].den_min) % rats[k].den_step;
874 if (r != 0)
875 den += rats[k].den_step - r;
876 }
877 diff = q * den - num;
878 if (diff < 0)
879 diff = -diff;
880 if (best_num == 0 ||
881 diff * best_den < best_diff * den) {
882 best_diff = diff;
883 best_den = den;
884 best_num = num;
885 }
886 }
887 if (best_den == 0) {
888 i->empty = 1;
889 return -EINVAL;
890 }
891 t.max = div_up(best_num, best_den);
892 t.openmax = !!(best_num % best_den);
893 t.integer = 0;
894 err = snd_interval_refine(i, &t);
895 if (err < 0)
896 return err;
897
898 if (snd_interval_single(i)) {
899 if (best_diff * result_den < result_diff * best_den) {
900 result_num = best_num;
901 result_den = best_den;
902 }
903 if (nump)
904 *nump = result_num;
905 if (denp)
906 *denp = result_den;
907 }
908 return err;
909 }
910
911 EXPORT_SYMBOL(snd_interval_ratnum);
912
913 /**
914 * snd_interval_ratden - refine the interval value
915 * @i: interval to refine
916 * @rats_count: number of struct ratden
917 * @rats: struct ratden array
918 * @nump: pointer to store the resultant numerator
919 * @denp: pointer to store the resultant denominator
920 *
921 * Returns non-zero if the value is changed, zero if not changed.
922 */
923 static int snd_interval_ratden(struct snd_interval *i,
924 unsigned int rats_count, struct snd_ratden *rats,
925 unsigned int *nump, unsigned int *denp)
926 {
927 unsigned int best_num, best_diff, best_den;
928 unsigned int k;
929 struct snd_interval t;
930 int err;
931
932 best_num = best_den = best_diff = 0;
933 for (k = 0; k < rats_count; ++k) {
934 unsigned int num;
935 unsigned int den = rats[k].den;
936 unsigned int q = i->min;
937 int diff;
938 num = mul(q, den);
939 if (num > rats[k].num_max)
940 continue;
941 if (num < rats[k].num_min)
942 num = rats[k].num_max;
943 else {
944 unsigned int r;
945 r = (num - rats[k].num_min) % rats[k].num_step;
946 if (r != 0)
947 num += rats[k].num_step - r;
948 }
949 diff = num - q * den;
950 if (best_num == 0 ||
951 diff * best_den < best_diff * den) {
952 best_diff = diff;
953 best_den = den;
954 best_num = num;
955 }
956 }
957 if (best_den == 0) {
958 i->empty = 1;
959 return -EINVAL;
960 }
961 t.min = div_down(best_num, best_den);
962 t.openmin = !!(best_num % best_den);
963
964 best_num = best_den = best_diff = 0;
965 for (k = 0; k < rats_count; ++k) {
966 unsigned int num;
967 unsigned int den = rats[k].den;
968 unsigned int q = i->max;
969 int diff;
970 num = mul(q, den);
971 if (num < rats[k].num_min)
972 continue;
973 if (num > rats[k].num_max)
974 num = rats[k].num_max;
975 else {
976 unsigned int r;
977 r = (num - rats[k].num_min) % rats[k].num_step;
978 if (r != 0)
979 num -= r;
980 }
981 diff = q * den - num;
982 if (best_num == 0 ||
983 diff * best_den < best_diff * den) {
984 best_diff = diff;
985 best_den = den;
986 best_num = num;
987 }
988 }
989 if (best_den == 0) {
990 i->empty = 1;
991 return -EINVAL;
992 }
993 t.max = div_up(best_num, best_den);
994 t.openmax = !!(best_num % best_den);
995 t.integer = 0;
996 err = snd_interval_refine(i, &t);
997 if (err < 0)
998 return err;
999
1000 if (snd_interval_single(i)) {
1001 if (nump)
1002 *nump = best_num;
1003 if (denp)
1004 *denp = best_den;
1005 }
1006 return err;
1007 }
1008
1009 /**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Returns non-zero if the value is changed, zero if not changed.
1021 */
1022 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1023 {
1024 unsigned int k;
1025 struct snd_interval list_range;
1026
1027 if (!count) {
1028 i->empty = 1;
1029 return -EINVAL;
1030 }
1031 snd_interval_any(&list_range);
1032 list_range.min = UINT_MAX;
1033 list_range.max = 0;
1034 for (k = 0; k < count; k++) {
1035 if (mask && !(mask & (1 << k)))
1036 continue;
1037 if (!snd_interval_test(i, list[k]))
1038 continue;
1039 list_range.min = min(list_range.min, list[k]);
1040 list_range.max = max(list_range.max, list[k]);
1041 }
1042 return snd_interval_refine(i, &list_range);
1043 }
1044
1045 EXPORT_SYMBOL(snd_interval_list);
1046
1047 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1048 {
1049 unsigned int n;
1050 int changed = 0;
1051 n = (i->min - min) % step;
1052 if (n != 0 || i->openmin) {
1053 i->min += step - n;
1054 changed = 1;
1055 }
1056 n = (i->max - min) % step;
1057 if (n != 0 || i->openmax) {
1058 i->max -= n;
1059 changed = 1;
1060 }
1061 if (snd_interval_checkempty(i)) {
1062 i->empty = 1;
1063 return -EINVAL;
1064 }
1065 return changed;
1066 }
1067
1068 /* Info constraints helpers */
1069
1070 /**
1071 * snd_pcm_hw_rule_add - add the hw-constraint rule
1072 * @runtime: the pcm runtime instance
1073 * @cond: condition bits
1074 * @var: the variable to evaluate
1075 * @func: the evaluation function
1076 * @private: the private data pointer passed to function
1077 * @dep: the dependent variables
1078 *
1079 * Returns zero if successful, or a negative error code on failure.
1080 */
1081 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1082 int var,
1083 snd_pcm_hw_rule_func_t func, void *private,
1084 int dep, ...)
1085 {
1086 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1087 struct snd_pcm_hw_rule *c;
1088 unsigned int k;
1089 va_list args;
1090 va_start(args, dep);
1091 if (constrs->rules_num >= constrs->rules_all) {
1092 struct snd_pcm_hw_rule *new;
1093 unsigned int new_rules = constrs->rules_all + 16;
1094 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1095 if (!new) {
1096 va_end(args);
1097 return -ENOMEM;
1098 }
1099 if (constrs->rules) {
1100 memcpy(new, constrs->rules,
1101 constrs->rules_num * sizeof(*c));
1102 kfree(constrs->rules);
1103 }
1104 constrs->rules = new;
1105 constrs->rules_all = new_rules;
1106 }
1107 c = &constrs->rules[constrs->rules_num];
1108 c->cond = cond;
1109 c->func = func;
1110 c->var = var;
1111 c->private = private;
1112 k = 0;
1113 while (1) {
1114 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1115 va_end(args);
1116 return -EINVAL;
1117 }
1118 c->deps[k++] = dep;
1119 if (dep < 0)
1120 break;
1121 dep = va_arg(args, int);
1122 }
1123 constrs->rules_num++;
1124 va_end(args);
1125 return 0;
1126 }
1127
1128 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1129
1130 /**
1131 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1132 * @runtime: PCM runtime instance
1133 * @var: hw_params variable to apply the mask
1134 * @mask: the bitmap mask
1135 *
1136 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1137 */
1138 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1139 u_int32_t mask)
1140 {
1141 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1142 struct snd_mask *maskp = constrs_mask(constrs, var);
1143 *maskp->bits &= mask;
1144 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1145 if (*maskp->bits == 0)
1146 return -EINVAL;
1147 return 0;
1148 }
1149
1150 /**
1151 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1152 * @runtime: PCM runtime instance
1153 * @var: hw_params variable to apply the mask
1154 * @mask: the 64bit bitmap mask
1155 *
1156 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1157 */
1158 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1159 u_int64_t mask)
1160 {
1161 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1162 struct snd_mask *maskp = constrs_mask(constrs, var);
1163 maskp->bits[0] &= (u_int32_t)mask;
1164 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1165 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1166 if (! maskp->bits[0] && ! maskp->bits[1])
1167 return -EINVAL;
1168 return 0;
1169 }
1170
1171 /**
1172 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1173 * @runtime: PCM runtime instance
1174 * @var: hw_params variable to apply the integer constraint
1175 *
1176 * Apply the constraint of integer to an interval parameter.
1177 */
1178 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1179 {
1180 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1181 return snd_interval_setinteger(constrs_interval(constrs, var));
1182 }
1183
1184 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1185
1186 /**
1187 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1188 * @runtime: PCM runtime instance
1189 * @var: hw_params variable to apply the range
1190 * @min: the minimal value
1191 * @max: the maximal value
1192 *
1193 * Apply the min/max range constraint to an interval parameter.
1194 */
1195 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1196 unsigned int min, unsigned int max)
1197 {
1198 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1199 struct snd_interval t;
1200 t.min = min;
1201 t.max = max;
1202 t.openmin = t.openmax = 0;
1203 t.integer = 0;
1204 return snd_interval_refine(constrs_interval(constrs, var), &t);
1205 }
1206
1207 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1208
1209 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1210 struct snd_pcm_hw_rule *rule)
1211 {
1212 struct snd_pcm_hw_constraint_list *list = rule->private;
1213 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1214 }
1215
1216
1217 /**
1218 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1219 * @runtime: PCM runtime instance
1220 * @cond: condition bits
1221 * @var: hw_params variable to apply the list constraint
1222 * @l: list
1223 *
1224 * Apply the list of constraints to an interval parameter.
1225 */
1226 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1227 unsigned int cond,
1228 snd_pcm_hw_param_t var,
1229 struct snd_pcm_hw_constraint_list *l)
1230 {
1231 return snd_pcm_hw_rule_add(runtime, cond, var,
1232 snd_pcm_hw_rule_list, l,
1233 var, -1);
1234 }
1235
1236 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1237
1238 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1239 struct snd_pcm_hw_rule *rule)
1240 {
1241 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1242 unsigned int num = 0, den = 0;
1243 int err;
1244 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1245 r->nrats, r->rats, &num, &den);
1246 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1247 params->rate_num = num;
1248 params->rate_den = den;
1249 }
1250 return err;
1251 }
1252
1253 /**
1254 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1255 * @runtime: PCM runtime instance
1256 * @cond: condition bits
1257 * @var: hw_params variable to apply the ratnums constraint
1258 * @r: struct snd_ratnums constriants
1259 */
1260 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1261 unsigned int cond,
1262 snd_pcm_hw_param_t var,
1263 struct snd_pcm_hw_constraint_ratnums *r)
1264 {
1265 return snd_pcm_hw_rule_add(runtime, cond, var,
1266 snd_pcm_hw_rule_ratnums, r,
1267 var, -1);
1268 }
1269
1270 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1271
1272 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1273 struct snd_pcm_hw_rule *rule)
1274 {
1275 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1276 unsigned int num = 0, den = 0;
1277 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1278 r->nrats, r->rats, &num, &den);
1279 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1280 params->rate_num = num;
1281 params->rate_den = den;
1282 }
1283 return err;
1284 }
1285
1286 /**
1287 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the ratdens constraint
1291 * @r: struct snd_ratdens constriants
1292 */
1293 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1294 unsigned int cond,
1295 snd_pcm_hw_param_t var,
1296 struct snd_pcm_hw_constraint_ratdens *r)
1297 {
1298 return snd_pcm_hw_rule_add(runtime, cond, var,
1299 snd_pcm_hw_rule_ratdens, r,
1300 var, -1);
1301 }
1302
1303 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1304
1305 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1306 struct snd_pcm_hw_rule *rule)
1307 {
1308 unsigned int l = (unsigned long) rule->private;
1309 int width = l & 0xffff;
1310 unsigned int msbits = l >> 16;
1311 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1312 if (snd_interval_single(i) && snd_interval_value(i) == width)
1313 params->msbits = msbits;
1314 return 0;
1315 }
1316
1317 /**
1318 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1319 * @runtime: PCM runtime instance
1320 * @cond: condition bits
1321 * @width: sample bits width
1322 * @msbits: msbits width
1323 */
1324 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1325 unsigned int cond,
1326 unsigned int width,
1327 unsigned int msbits)
1328 {
1329 unsigned long l = (msbits << 16) | width;
1330 return snd_pcm_hw_rule_add(runtime, cond, -1,
1331 snd_pcm_hw_rule_msbits,
1332 (void*) l,
1333 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1334 }
1335
1336 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1337
1338 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1339 struct snd_pcm_hw_rule *rule)
1340 {
1341 unsigned long step = (unsigned long) rule->private;
1342 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1343 }
1344
1345 /**
1346 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1347 * @runtime: PCM runtime instance
1348 * @cond: condition bits
1349 * @var: hw_params variable to apply the step constraint
1350 * @step: step size
1351 */
1352 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1353 unsigned int cond,
1354 snd_pcm_hw_param_t var,
1355 unsigned long step)
1356 {
1357 return snd_pcm_hw_rule_add(runtime, cond, var,
1358 snd_pcm_hw_rule_step, (void *) step,
1359 var, -1);
1360 }
1361
1362 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1363
1364 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1365 {
1366 static unsigned int pow2_sizes[] = {
1367 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1368 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1369 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1370 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1371 };
1372 return snd_interval_list(hw_param_interval(params, rule->var),
1373 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1374 }
1375
1376 /**
1377 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1378 * @runtime: PCM runtime instance
1379 * @cond: condition bits
1380 * @var: hw_params variable to apply the power-of-2 constraint
1381 */
1382 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1383 unsigned int cond,
1384 snd_pcm_hw_param_t var)
1385 {
1386 return snd_pcm_hw_rule_add(runtime, cond, var,
1387 snd_pcm_hw_rule_pow2, NULL,
1388 var, -1);
1389 }
1390
1391 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1392
1393 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1394 snd_pcm_hw_param_t var)
1395 {
1396 if (hw_is_mask(var)) {
1397 snd_mask_any(hw_param_mask(params, var));
1398 params->cmask |= 1 << var;
1399 params->rmask |= 1 << var;
1400 return;
1401 }
1402 if (hw_is_interval(var)) {
1403 snd_interval_any(hw_param_interval(params, var));
1404 params->cmask |= 1 << var;
1405 params->rmask |= 1 << var;
1406 return;
1407 }
1408 snd_BUG();
1409 }
1410
1411 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1412 {
1413 unsigned int k;
1414 memset(params, 0, sizeof(*params));
1415 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1416 _snd_pcm_hw_param_any(params, k);
1417 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1418 _snd_pcm_hw_param_any(params, k);
1419 params->info = ~0U;
1420 }
1421
1422 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1423
1424 /**
1425 * snd_pcm_hw_param_value - return @params field @var value
1426 * @params: the hw_params instance
1427 * @var: parameter to retrieve
1428 * @dir: pointer to the direction (-1,0,1) or %NULL
1429 *
1430 * Return the value for field @var if it's fixed in configuration space
1431 * defined by @params. Return -%EINVAL otherwise.
1432 */
1433 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1434 snd_pcm_hw_param_t var, int *dir)
1435 {
1436 if (hw_is_mask(var)) {
1437 const struct snd_mask *mask = hw_param_mask_c(params, var);
1438 if (!snd_mask_single(mask))
1439 return -EINVAL;
1440 if (dir)
1441 *dir = 0;
1442 return snd_mask_value(mask);
1443 }
1444 if (hw_is_interval(var)) {
1445 const struct snd_interval *i = hw_param_interval_c(params, var);
1446 if (!snd_interval_single(i))
1447 return -EINVAL;
1448 if (dir)
1449 *dir = i->openmin;
1450 return snd_interval_value(i);
1451 }
1452 return -EINVAL;
1453 }
1454
1455 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1456
1457 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1458 snd_pcm_hw_param_t var)
1459 {
1460 if (hw_is_mask(var)) {
1461 snd_mask_none(hw_param_mask(params, var));
1462 params->cmask |= 1 << var;
1463 params->rmask |= 1 << var;
1464 } else if (hw_is_interval(var)) {
1465 snd_interval_none(hw_param_interval(params, var));
1466 params->cmask |= 1 << var;
1467 params->rmask |= 1 << var;
1468 } else {
1469 snd_BUG();
1470 }
1471 }
1472
1473 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1474
1475 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1476 snd_pcm_hw_param_t var)
1477 {
1478 int changed;
1479 if (hw_is_mask(var))
1480 changed = snd_mask_refine_first(hw_param_mask(params, var));
1481 else if (hw_is_interval(var))
1482 changed = snd_interval_refine_first(hw_param_interval(params, var));
1483 else
1484 return -EINVAL;
1485 if (changed) {
1486 params->cmask |= 1 << var;
1487 params->rmask |= 1 << var;
1488 }
1489 return changed;
1490 }
1491
1492
1493 /**
1494 * snd_pcm_hw_param_first - refine config space and return minimum value
1495 * @pcm: PCM instance
1496 * @params: the hw_params instance
1497 * @var: parameter to retrieve
1498 * @dir: pointer to the direction (-1,0,1) or %NULL
1499 *
1500 * Inside configuration space defined by @params remove from @var all
1501 * values > minimum. Reduce configuration space accordingly.
1502 * Return the minimum.
1503 */
1504 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1505 struct snd_pcm_hw_params *params,
1506 snd_pcm_hw_param_t var, int *dir)
1507 {
1508 int changed = _snd_pcm_hw_param_first(params, var);
1509 if (changed < 0)
1510 return changed;
1511 if (params->rmask) {
1512 int err = snd_pcm_hw_refine(pcm, params);
1513 if (snd_BUG_ON(err < 0))
1514 return err;
1515 }
1516 return snd_pcm_hw_param_value(params, var, dir);
1517 }
1518
1519 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1520
1521 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1522 snd_pcm_hw_param_t var)
1523 {
1524 int changed;
1525 if (hw_is_mask(var))
1526 changed = snd_mask_refine_last(hw_param_mask(params, var));
1527 else if (hw_is_interval(var))
1528 changed = snd_interval_refine_last(hw_param_interval(params, var));
1529 else
1530 return -EINVAL;
1531 if (changed) {
1532 params->cmask |= 1 << var;
1533 params->rmask |= 1 << var;
1534 }
1535 return changed;
1536 }
1537
1538
1539 /**
1540 * snd_pcm_hw_param_last - refine config space and return maximum value
1541 * @pcm: PCM instance
1542 * @params: the hw_params instance
1543 * @var: parameter to retrieve
1544 * @dir: pointer to the direction (-1,0,1) or %NULL
1545 *
1546 * Inside configuration space defined by @params remove from @var all
1547 * values < maximum. Reduce configuration space accordingly.
1548 * Return the maximum.
1549 */
1550 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1551 struct snd_pcm_hw_params *params,
1552 snd_pcm_hw_param_t var, int *dir)
1553 {
1554 int changed = _snd_pcm_hw_param_last(params, var);
1555 if (changed < 0)
1556 return changed;
1557 if (params->rmask) {
1558 int err = snd_pcm_hw_refine(pcm, params);
1559 if (snd_BUG_ON(err < 0))
1560 return err;
1561 }
1562 return snd_pcm_hw_param_value(params, var, dir);
1563 }
1564
1565 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1566
1567 /**
1568 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1569 * @pcm: PCM instance
1570 * @params: the hw_params instance
1571 *
1572 * Choose one configuration from configuration space defined by @params.
1573 * The configuration chosen is that obtained fixing in this order:
1574 * first access, first format, first subformat, min channels,
1575 * min rate, min period time, max buffer size, min tick time
1576 */
1577 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1578 struct snd_pcm_hw_params *params)
1579 {
1580 static int vars[] = {
1581 SNDRV_PCM_HW_PARAM_ACCESS,
1582 SNDRV_PCM_HW_PARAM_FORMAT,
1583 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1584 SNDRV_PCM_HW_PARAM_CHANNELS,
1585 SNDRV_PCM_HW_PARAM_RATE,
1586 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1587 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1588 SNDRV_PCM_HW_PARAM_TICK_TIME,
1589 -1
1590 };
1591 int err, *v;
1592
1593 for (v = vars; *v != -1; v++) {
1594 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1595 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1596 else
1597 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1598 if (snd_BUG_ON(err < 0))
1599 return err;
1600 }
1601 return 0;
1602 }
1603
1604 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1605 void *arg)
1606 {
1607 struct snd_pcm_runtime *runtime = substream->runtime;
1608 unsigned long flags;
1609 snd_pcm_stream_lock_irqsave(substream, flags);
1610 if (snd_pcm_running(substream) &&
1611 snd_pcm_update_hw_ptr(substream) >= 0)
1612 runtime->status->hw_ptr %= runtime->buffer_size;
1613 else
1614 runtime->status->hw_ptr = 0;
1615 snd_pcm_stream_unlock_irqrestore(substream, flags);
1616 return 0;
1617 }
1618
1619 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1620 void *arg)
1621 {
1622 struct snd_pcm_channel_info *info = arg;
1623 struct snd_pcm_runtime *runtime = substream->runtime;
1624 int width;
1625 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1626 info->offset = -1;
1627 return 0;
1628 }
1629 width = snd_pcm_format_physical_width(runtime->format);
1630 if (width < 0)
1631 return width;
1632 info->offset = 0;
1633 switch (runtime->access) {
1634 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1635 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1636 info->first = info->channel * width;
1637 info->step = runtime->channels * width;
1638 break;
1639 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1640 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1641 {
1642 size_t size = runtime->dma_bytes / runtime->channels;
1643 info->first = info->channel * size * 8;
1644 info->step = width;
1645 break;
1646 }
1647 default:
1648 snd_BUG();
1649 break;
1650 }
1651 return 0;
1652 }
1653
1654 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1655 void *arg)
1656 {
1657 struct snd_pcm_hw_params *params = arg;
1658 snd_pcm_format_t format;
1659 int channels, width;
1660
1661 params->fifo_size = substream->runtime->hw.fifo_size;
1662 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1663 format = params_format(params);
1664 channels = params_channels(params);
1665 width = snd_pcm_format_physical_width(format);
1666 params->fifo_size /= width * channels;
1667 }
1668 return 0;
1669 }
1670
1671 /**
1672 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1673 * @substream: the pcm substream instance
1674 * @cmd: ioctl command
1675 * @arg: ioctl argument
1676 *
1677 * Processes the generic ioctl commands for PCM.
1678 * Can be passed as the ioctl callback for PCM ops.
1679 *
1680 * Returns zero if successful, or a negative error code on failure.
1681 */
1682 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1683 unsigned int cmd, void *arg)
1684 {
1685 switch (cmd) {
1686 case SNDRV_PCM_IOCTL1_INFO:
1687 return 0;
1688 case SNDRV_PCM_IOCTL1_RESET:
1689 return snd_pcm_lib_ioctl_reset(substream, arg);
1690 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1691 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1692 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1693 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1694 }
1695 return -ENXIO;
1696 }
1697
1698 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1699
1700 /**
1701 * snd_pcm_period_elapsed - update the pcm status for the next period
1702 * @substream: the pcm substream instance
1703 *
1704 * This function is called from the interrupt handler when the
1705 * PCM has processed the period size. It will update the current
1706 * pointer, wake up sleepers, etc.
1707 *
1708 * Even if more than one periods have elapsed since the last call, you
1709 * have to call this only once.
1710 */
1711 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1712 {
1713 struct snd_pcm_runtime *runtime;
1714 unsigned long flags;
1715
1716 if (PCM_RUNTIME_CHECK(substream))
1717 return;
1718 runtime = substream->runtime;
1719
1720 if (runtime->transfer_ack_begin)
1721 runtime->transfer_ack_begin(substream);
1722
1723 snd_pcm_stream_lock_irqsave(substream, flags);
1724 if (!snd_pcm_running(substream) ||
1725 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1726 goto _end;
1727
1728 if (substream->timer_running)
1729 snd_timer_interrupt(substream->timer, 1);
1730 _end:
1731 snd_pcm_stream_unlock_irqrestore(substream, flags);
1732 if (runtime->transfer_ack_end)
1733 runtime->transfer_ack_end(substream);
1734 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1735 }
1736
1737 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1738
1739 /*
1740 * Wait until avail_min data becomes available
1741 * Returns a negative error code if any error occurs during operation.
1742 * The available space is stored on availp. When err = 0 and avail = 0
1743 * on the capture stream, it indicates the stream is in DRAINING state.
1744 */
1745 static int wait_for_avail(struct snd_pcm_substream *substream,
1746 snd_pcm_uframes_t *availp)
1747 {
1748 struct snd_pcm_runtime *runtime = substream->runtime;
1749 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1750 wait_queue_t wait;
1751 int err = 0;
1752 snd_pcm_uframes_t avail = 0;
1753 long tout;
1754
1755 init_waitqueue_entry(&wait, current);
1756 add_wait_queue(&runtime->tsleep, &wait);
1757 for (;;) {
1758 if (signal_pending(current)) {
1759 err = -ERESTARTSYS;
1760 break;
1761 }
1762 set_current_state(TASK_INTERRUPTIBLE);
1763 snd_pcm_stream_unlock_irq(substream);
1764 tout = schedule_timeout(msecs_to_jiffies(10000));
1765 snd_pcm_stream_lock_irq(substream);
1766 switch (runtime->status->state) {
1767 case SNDRV_PCM_STATE_SUSPENDED:
1768 err = -ESTRPIPE;
1769 goto _endloop;
1770 case SNDRV_PCM_STATE_XRUN:
1771 err = -EPIPE;
1772 goto _endloop;
1773 case SNDRV_PCM_STATE_DRAINING:
1774 if (is_playback)
1775 err = -EPIPE;
1776 else
1777 avail = 0; /* indicate draining */
1778 goto _endloop;
1779 case SNDRV_PCM_STATE_OPEN:
1780 case SNDRV_PCM_STATE_SETUP:
1781 case SNDRV_PCM_STATE_DISCONNECTED:
1782 err = -EBADFD;
1783 goto _endloop;
1784 }
1785 if (!tout) {
1786 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1787 is_playback ? "playback" : "capture");
1788 err = -EIO;
1789 break;
1790 }
1791 if (is_playback)
1792 avail = snd_pcm_playback_avail(runtime);
1793 else
1794 avail = snd_pcm_capture_avail(runtime);
1795 if (avail >= runtime->twake)
1796 break;
1797 }
1798 _endloop:
1799 remove_wait_queue(&runtime->tsleep, &wait);
1800 *availp = avail;
1801 return err;
1802 }
1803
1804 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1805 unsigned int hwoff,
1806 unsigned long data, unsigned int off,
1807 snd_pcm_uframes_t frames)
1808 {
1809 struct snd_pcm_runtime *runtime = substream->runtime;
1810 int err;
1811 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1812 if (substream->ops->copy) {
1813 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1814 return err;
1815 } else {
1816 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1817 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1818 return -EFAULT;
1819 }
1820 return 0;
1821 }
1822
1823 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1824 unsigned long data, unsigned int off,
1825 snd_pcm_uframes_t size);
1826
1827 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1828 unsigned long data,
1829 snd_pcm_uframes_t size,
1830 int nonblock,
1831 transfer_f transfer)
1832 {
1833 struct snd_pcm_runtime *runtime = substream->runtime;
1834 snd_pcm_uframes_t xfer = 0;
1835 snd_pcm_uframes_t offset = 0;
1836 int err = 0;
1837
1838 if (size == 0)
1839 return 0;
1840
1841 snd_pcm_stream_lock_irq(substream);
1842 switch (runtime->status->state) {
1843 case SNDRV_PCM_STATE_PREPARED:
1844 case SNDRV_PCM_STATE_RUNNING:
1845 case SNDRV_PCM_STATE_PAUSED:
1846 break;
1847 case SNDRV_PCM_STATE_XRUN:
1848 err = -EPIPE;
1849 goto _end_unlock;
1850 case SNDRV_PCM_STATE_SUSPENDED:
1851 err = -ESTRPIPE;
1852 goto _end_unlock;
1853 default:
1854 err = -EBADFD;
1855 goto _end_unlock;
1856 }
1857
1858 runtime->twake = runtime->control->avail_min ? : 1;
1859 while (size > 0) {
1860 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1861 snd_pcm_uframes_t avail;
1862 snd_pcm_uframes_t cont;
1863 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1864 snd_pcm_update_hw_ptr(substream);
1865 avail = snd_pcm_playback_avail(runtime);
1866 if (!avail) {
1867 if (nonblock) {
1868 err = -EAGAIN;
1869 goto _end_unlock;
1870 }
1871 runtime->twake = min_t(snd_pcm_uframes_t, size,
1872 runtime->control->avail_min ? : 1);
1873 err = wait_for_avail(substream, &avail);
1874 if (err < 0)
1875 goto _end_unlock;
1876 }
1877 frames = size > avail ? avail : size;
1878 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1879 if (frames > cont)
1880 frames = cont;
1881 if (snd_BUG_ON(!frames)) {
1882 runtime->twake = 0;
1883 snd_pcm_stream_unlock_irq(substream);
1884 return -EINVAL;
1885 }
1886 appl_ptr = runtime->control->appl_ptr;
1887 appl_ofs = appl_ptr % runtime->buffer_size;
1888 snd_pcm_stream_unlock_irq(substream);
1889 err = transfer(substream, appl_ofs, data, offset, frames);
1890 snd_pcm_stream_lock_irq(substream);
1891 if (err < 0)
1892 goto _end_unlock;
1893 switch (runtime->status->state) {
1894 case SNDRV_PCM_STATE_XRUN:
1895 err = -EPIPE;
1896 goto _end_unlock;
1897 case SNDRV_PCM_STATE_SUSPENDED:
1898 err = -ESTRPIPE;
1899 goto _end_unlock;
1900 default:
1901 break;
1902 }
1903 appl_ptr += frames;
1904 if (appl_ptr >= runtime->boundary)
1905 appl_ptr -= runtime->boundary;
1906 runtime->control->appl_ptr = appl_ptr;
1907 if (substream->ops->ack)
1908 substream->ops->ack(substream);
1909
1910 offset += frames;
1911 size -= frames;
1912 xfer += frames;
1913 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1914 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1915 err = snd_pcm_start(substream);
1916 if (err < 0)
1917 goto _end_unlock;
1918 }
1919 }
1920 _end_unlock:
1921 runtime->twake = 0;
1922 if (xfer > 0 && err >= 0)
1923 snd_pcm_update_state(substream, runtime);
1924 snd_pcm_stream_unlock_irq(substream);
1925 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1926 }
1927
1928 /* sanity-check for read/write methods */
1929 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1930 {
1931 struct snd_pcm_runtime *runtime;
1932 if (PCM_RUNTIME_CHECK(substream))
1933 return -ENXIO;
1934 runtime = substream->runtime;
1935 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1936 return -EINVAL;
1937 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1938 return -EBADFD;
1939 return 0;
1940 }
1941
1942 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1943 {
1944 struct snd_pcm_runtime *runtime;
1945 int nonblock;
1946 int err;
1947
1948 err = pcm_sanity_check(substream);
1949 if (err < 0)
1950 return err;
1951 runtime = substream->runtime;
1952 nonblock = !!(substream->f_flags & O_NONBLOCK);
1953
1954 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1955 runtime->channels > 1)
1956 return -EINVAL;
1957 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1958 snd_pcm_lib_write_transfer);
1959 }
1960
1961 EXPORT_SYMBOL(snd_pcm_lib_write);
1962
1963 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1964 unsigned int hwoff,
1965 unsigned long data, unsigned int off,
1966 snd_pcm_uframes_t frames)
1967 {
1968 struct snd_pcm_runtime *runtime = substream->runtime;
1969 int err;
1970 void __user **bufs = (void __user **)data;
1971 int channels = runtime->channels;
1972 int c;
1973 if (substream->ops->copy) {
1974 if (snd_BUG_ON(!substream->ops->silence))
1975 return -EINVAL;
1976 for (c = 0; c < channels; ++c, ++bufs) {
1977 if (*bufs == NULL) {
1978 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1979 return err;
1980 } else {
1981 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1982 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1983 return err;
1984 }
1985 }
1986 } else {
1987 /* default transfer behaviour */
1988 size_t dma_csize = runtime->dma_bytes / channels;
1989 for (c = 0; c < channels; ++c, ++bufs) {
1990 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1991 if (*bufs == NULL) {
1992 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1993 } else {
1994 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1995 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1996 return -EFAULT;
1997 }
1998 }
1999 }
2000 return 0;
2001 }
2002
2003 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2004 void __user **bufs,
2005 snd_pcm_uframes_t frames)
2006 {
2007 struct snd_pcm_runtime *runtime;
2008 int nonblock;
2009 int err;
2010
2011 err = pcm_sanity_check(substream);
2012 if (err < 0)
2013 return err;
2014 runtime = substream->runtime;
2015 nonblock = !!(substream->f_flags & O_NONBLOCK);
2016
2017 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2018 return -EINVAL;
2019 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2020 nonblock, snd_pcm_lib_writev_transfer);
2021 }
2022
2023 EXPORT_SYMBOL(snd_pcm_lib_writev);
2024
2025 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2026 unsigned int hwoff,
2027 unsigned long data, unsigned int off,
2028 snd_pcm_uframes_t frames)
2029 {
2030 struct snd_pcm_runtime *runtime = substream->runtime;
2031 int err;
2032 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2033 if (substream->ops->copy) {
2034 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2035 return err;
2036 } else {
2037 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2038 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2039 return -EFAULT;
2040 }
2041 return 0;
2042 }
2043
2044 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2045 unsigned long data,
2046 snd_pcm_uframes_t size,
2047 int nonblock,
2048 transfer_f transfer)
2049 {
2050 struct snd_pcm_runtime *runtime = substream->runtime;
2051 snd_pcm_uframes_t xfer = 0;
2052 snd_pcm_uframes_t offset = 0;
2053 int err = 0;
2054
2055 if (size == 0)
2056 return 0;
2057
2058 snd_pcm_stream_lock_irq(substream);
2059 switch (runtime->status->state) {
2060 case SNDRV_PCM_STATE_PREPARED:
2061 if (size >= runtime->start_threshold) {
2062 err = snd_pcm_start(substream);
2063 if (err < 0)
2064 goto _end_unlock;
2065 }
2066 break;
2067 case SNDRV_PCM_STATE_DRAINING:
2068 case SNDRV_PCM_STATE_RUNNING:
2069 case SNDRV_PCM_STATE_PAUSED:
2070 break;
2071 case SNDRV_PCM_STATE_XRUN:
2072 err = -EPIPE;
2073 goto _end_unlock;
2074 case SNDRV_PCM_STATE_SUSPENDED:
2075 err = -ESTRPIPE;
2076 goto _end_unlock;
2077 default:
2078 err = -EBADFD;
2079 goto _end_unlock;
2080 }
2081
2082 runtime->twake = runtime->control->avail_min ? : 1;
2083 while (size > 0) {
2084 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2085 snd_pcm_uframes_t avail;
2086 snd_pcm_uframes_t cont;
2087 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2088 snd_pcm_update_hw_ptr(substream);
2089 avail = snd_pcm_capture_avail(runtime);
2090 if (!avail) {
2091 if (runtime->status->state ==
2092 SNDRV_PCM_STATE_DRAINING) {
2093 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2094 goto _end_unlock;
2095 }
2096 if (nonblock) {
2097 err = -EAGAIN;
2098 goto _end_unlock;
2099 }
2100 runtime->twake = min_t(snd_pcm_uframes_t, size,
2101 runtime->control->avail_min ? : 1);
2102 err = wait_for_avail(substream, &avail);
2103 if (err < 0)
2104 goto _end_unlock;
2105 if (!avail)
2106 continue; /* draining */
2107 }
2108 frames = size > avail ? avail : size;
2109 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2110 if (frames > cont)
2111 frames = cont;
2112 if (snd_BUG_ON(!frames)) {
2113 runtime->twake = 0;
2114 snd_pcm_stream_unlock_irq(substream);
2115 return -EINVAL;
2116 }
2117 appl_ptr = runtime->control->appl_ptr;
2118 appl_ofs = appl_ptr % runtime->buffer_size;
2119 snd_pcm_stream_unlock_irq(substream);
2120 err = transfer(substream, appl_ofs, data, offset, frames);
2121 snd_pcm_stream_lock_irq(substream);
2122 if (err < 0)
2123 goto _end_unlock;
2124 switch (runtime->status->state) {
2125 case SNDRV_PCM_STATE_XRUN:
2126 err = -EPIPE;
2127 goto _end_unlock;
2128 case SNDRV_PCM_STATE_SUSPENDED:
2129 err = -ESTRPIPE;
2130 goto _end_unlock;
2131 default:
2132 break;
2133 }
2134 appl_ptr += frames;
2135 if (appl_ptr >= runtime->boundary)
2136 appl_ptr -= runtime->boundary;
2137 runtime->control->appl_ptr = appl_ptr;
2138 if (substream->ops->ack)
2139 substream->ops->ack(substream);
2140
2141 offset += frames;
2142 size -= frames;
2143 xfer += frames;
2144 }
2145 _end_unlock:
2146 runtime->twake = 0;
2147 if (xfer > 0 && err >= 0)
2148 snd_pcm_update_state(substream, runtime);
2149 snd_pcm_stream_unlock_irq(substream);
2150 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2151 }
2152
2153 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2154 {
2155 struct snd_pcm_runtime *runtime;
2156 int nonblock;
2157 int err;
2158
2159 err = pcm_sanity_check(substream);
2160 if (err < 0)
2161 return err;
2162 runtime = substream->runtime;
2163 nonblock = !!(substream->f_flags & O_NONBLOCK);
2164 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2165 return -EINVAL;
2166 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2167 }
2168
2169 EXPORT_SYMBOL(snd_pcm_lib_read);
2170
2171 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2172 unsigned int hwoff,
2173 unsigned long data, unsigned int off,
2174 snd_pcm_uframes_t frames)
2175 {
2176 struct snd_pcm_runtime *runtime = substream->runtime;
2177 int err;
2178 void __user **bufs = (void __user **)data;
2179 int channels = runtime->channels;
2180 int c;
2181 if (substream->ops->copy) {
2182 for (c = 0; c < channels; ++c, ++bufs) {
2183 char __user *buf;
2184 if (*bufs == NULL)
2185 continue;
2186 buf = *bufs + samples_to_bytes(runtime, off);
2187 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2188 return err;
2189 }
2190 } else {
2191 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2192 for (c = 0; c < channels; ++c, ++bufs) {
2193 char *hwbuf;
2194 char __user *buf;
2195 if (*bufs == NULL)
2196 continue;
2197
2198 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2199 buf = *bufs + samples_to_bytes(runtime, off);
2200 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2201 return -EFAULT;
2202 }
2203 }
2204 return 0;
2205 }
2206
2207 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2208 void __user **bufs,
2209 snd_pcm_uframes_t frames)
2210 {
2211 struct snd_pcm_runtime *runtime;
2212 int nonblock;
2213 int err;
2214
2215 err = pcm_sanity_check(substream);
2216 if (err < 0)
2217 return err;
2218 runtime = substream->runtime;
2219 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2220 return -EBADFD;
2221
2222 nonblock = !!(substream->f_flags & O_NONBLOCK);
2223 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2224 return -EINVAL;
2225 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2226 }
2227
2228 EXPORT_SYMBOL(snd_pcm_lib_readv);