]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/core/pcm_lib.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
57 *
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59 */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 struct snd_pcm_runtime *runtime = substream->runtime;
63 snd_pcm_uframes_t frames, ofs, transfer;
64 int err;
65
66 if (runtime->silence_size < runtime->boundary) {
67 snd_pcm_sframes_t noise_dist, n;
68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 if (runtime->silence_start != appl_ptr) {
70 n = appl_ptr - runtime->silence_start;
71 if (n < 0)
72 n += runtime->boundary;
73 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 runtime->silence_filled -= n;
75 else
76 runtime->silence_filled = 0;
77 runtime->silence_start = appl_ptr;
78 }
79 if (runtime->silence_filled >= runtime->buffer_size)
80 return;
81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 return;
84 frames = runtime->silence_threshold - noise_dist;
85 if (frames > runtime->silence_size)
86 frames = runtime->silence_size;
87 } else {
88 if (new_hw_ptr == ULONG_MAX) { /* initialization */
89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 if (avail > runtime->buffer_size)
91 avail = runtime->buffer_size;
92 runtime->silence_filled = avail > 0 ? avail : 0;
93 runtime->silence_start = (runtime->status->hw_ptr +
94 runtime->silence_filled) %
95 runtime->boundary;
96 } else {
97 ofs = runtime->status->hw_ptr;
98 frames = new_hw_ptr - ofs;
99 if ((snd_pcm_sframes_t)frames < 0)
100 frames += runtime->boundary;
101 runtime->silence_filled -= frames;
102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 runtime->silence_filled = 0;
104 runtime->silence_start = new_hw_ptr;
105 } else {
106 runtime->silence_start = ofs;
107 }
108 }
109 frames = runtime->buffer_size - runtime->silence_filled;
110 }
111 if (snd_BUG_ON(frames > runtime->buffer_size))
112 return;
113 if (frames == 0)
114 return;
115 ofs = runtime->silence_start % runtime->buffer_size;
116 while (frames > 0) {
117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 err = fill_silence_frames(substream, ofs, transfer);
119 snd_BUG_ON(err < 0);
120 runtime->silence_filled += transfer;
121 frames -= transfer;
122 ofs = 0;
123 }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 char *name, size_t len)
129 {
130 snprintf(name, len, "pcmC%dD%d%c:%d",
131 substream->pcm->card->number,
132 substream->pcm->device,
133 substream->stream ? 'c' : 'p',
134 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask) 0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
153 dump_stack(); \
154 } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158 struct snd_pcm_runtime *runtime = substream->runtime;
159
160 trace_xrun(substream);
161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 char name[16];
166 snd_pcm_debug_name(substream, name, sizeof(name));
167 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 dump_stack_on_xrun(substream);
169 }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
174 do { \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
180 } \
181 } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 struct snd_pcm_runtime *runtime)
191 {
192 snd_pcm_uframes_t avail;
193
194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195 avail = snd_pcm_playback_avail(runtime);
196 else
197 avail = snd_pcm_capture_avail(runtime);
198 if (avail > runtime->avail_max)
199 runtime->avail_max = avail;
200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201 if (avail >= runtime->buffer_size) {
202 snd_pcm_drain_done(substream);
203 return -EPIPE;
204 }
205 } else {
206 if (avail >= runtime->stop_threshold) {
207 xrun(substream);
208 return -EPIPE;
209 }
210 }
211 if (runtime->twake) {
212 if (avail >= runtime->twake)
213 wake_up(&runtime->tsleep);
214 } else if (avail >= runtime->control->avail_min)
215 wake_up(&runtime->sleep);
216 return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220 struct timespec *curr_tstamp,
221 struct timespec *audio_tstamp)
222 {
223 struct snd_pcm_runtime *runtime = substream->runtime;
224 u64 audio_frames, audio_nsecs;
225 struct timespec driver_tstamp;
226
227 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228 return;
229
230 if (!(substream->ops->get_time_info) ||
231 (runtime->audio_tstamp_report.actual_type ==
232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234 /*
235 * provide audio timestamp derived from pointer position
236 * add delay only if requested
237 */
238
239 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241 if (runtime->audio_tstamp_config.report_delay) {
242 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243 audio_frames -= runtime->delay;
244 else
245 audio_frames += runtime->delay;
246 }
247 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248 runtime->rate);
249 *audio_tstamp = ns_to_timespec(audio_nsecs);
250 }
251 runtime->status->audio_tstamp = *audio_tstamp;
252 runtime->status->tstamp = *curr_tstamp;
253
254 /*
255 * re-take a driver timestamp to let apps detect if the reference tstamp
256 * read by low-level hardware was provided with a delay
257 */
258 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
259 runtime->driver_tstamp = driver_tstamp;
260 }
261
262 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
263 unsigned int in_interrupt)
264 {
265 struct snd_pcm_runtime *runtime = substream->runtime;
266 snd_pcm_uframes_t pos;
267 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
268 snd_pcm_sframes_t hdelta, delta;
269 unsigned long jdelta;
270 unsigned long curr_jiffies;
271 struct timespec curr_tstamp;
272 struct timespec audio_tstamp;
273 int crossed_boundary = 0;
274
275 old_hw_ptr = runtime->status->hw_ptr;
276
277 /*
278 * group pointer, time and jiffies reads to allow for more
279 * accurate correlations/corrections.
280 * The values are stored at the end of this routine after
281 * corrections for hw_ptr position
282 */
283 pos = substream->ops->pointer(substream);
284 curr_jiffies = jiffies;
285 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
286 if ((substream->ops->get_time_info) &&
287 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
288 substream->ops->get_time_info(substream, &curr_tstamp,
289 &audio_tstamp,
290 &runtime->audio_tstamp_config,
291 &runtime->audio_tstamp_report);
292
293 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
294 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
295 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
296 } else
297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 }
299
300 if (pos == SNDRV_PCM_POS_XRUN) {
301 xrun(substream);
302 return -EPIPE;
303 }
304 if (pos >= runtime->buffer_size) {
305 if (printk_ratelimit()) {
306 char name[16];
307 snd_pcm_debug_name(substream, name, sizeof(name));
308 pcm_err(substream->pcm,
309 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
310 name, pos, runtime->buffer_size,
311 runtime->period_size);
312 }
313 pos = 0;
314 }
315 pos -= pos % runtime->min_align;
316 trace_hwptr(substream, pos, in_interrupt);
317 hw_base = runtime->hw_ptr_base;
318 new_hw_ptr = hw_base + pos;
319 if (in_interrupt) {
320 /* we know that one period was processed */
321 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
322 delta = runtime->hw_ptr_interrupt + runtime->period_size;
323 if (delta > new_hw_ptr) {
324 /* check for double acknowledged interrupts */
325 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
326 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
327 hw_base += runtime->buffer_size;
328 if (hw_base >= runtime->boundary) {
329 hw_base = 0;
330 crossed_boundary++;
331 }
332 new_hw_ptr = hw_base + pos;
333 goto __delta;
334 }
335 }
336 }
337 /* new_hw_ptr might be lower than old_hw_ptr in case when */
338 /* pointer crosses the end of the ring buffer */
339 if (new_hw_ptr < old_hw_ptr) {
340 hw_base += runtime->buffer_size;
341 if (hw_base >= runtime->boundary) {
342 hw_base = 0;
343 crossed_boundary++;
344 }
345 new_hw_ptr = hw_base + pos;
346 }
347 __delta:
348 delta = new_hw_ptr - old_hw_ptr;
349 if (delta < 0)
350 delta += runtime->boundary;
351
352 if (runtime->no_period_wakeup) {
353 snd_pcm_sframes_t xrun_threshold;
354 /*
355 * Without regular period interrupts, we have to check
356 * the elapsed time to detect xruns.
357 */
358 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
359 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
360 goto no_delta_check;
361 hdelta = jdelta - delta * HZ / runtime->rate;
362 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
363 while (hdelta > xrun_threshold) {
364 delta += runtime->buffer_size;
365 hw_base += runtime->buffer_size;
366 if (hw_base >= runtime->boundary) {
367 hw_base = 0;
368 crossed_boundary++;
369 }
370 new_hw_ptr = hw_base + pos;
371 hdelta -= runtime->hw_ptr_buffer_jiffies;
372 }
373 goto no_delta_check;
374 }
375
376 /* something must be really wrong */
377 if (delta >= runtime->buffer_size + runtime->period_size) {
378 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
379 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
380 substream->stream, (long)pos,
381 (long)new_hw_ptr, (long)old_hw_ptr);
382 return 0;
383 }
384
385 /* Do jiffies check only in xrun_debug mode */
386 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
387 goto no_jiffies_check;
388
389 /* Skip the jiffies check for hardwares with BATCH flag.
390 * Such hardware usually just increases the position at each IRQ,
391 * thus it can't give any strange position.
392 */
393 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
394 goto no_jiffies_check;
395 hdelta = delta;
396 if (hdelta < runtime->delay)
397 goto no_jiffies_check;
398 hdelta -= runtime->delay;
399 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
400 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
401 delta = jdelta /
402 (((runtime->period_size * HZ) / runtime->rate)
403 + HZ/100);
404 /* move new_hw_ptr according jiffies not pos variable */
405 new_hw_ptr = old_hw_ptr;
406 hw_base = delta;
407 /* use loop to avoid checks for delta overflows */
408 /* the delta value is small or zero in most cases */
409 while (delta > 0) {
410 new_hw_ptr += runtime->period_size;
411 if (new_hw_ptr >= runtime->boundary) {
412 new_hw_ptr -= runtime->boundary;
413 crossed_boundary--;
414 }
415 delta--;
416 }
417 /* align hw_base to buffer_size */
418 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
419 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
420 (long)pos, (long)hdelta,
421 (long)runtime->period_size, jdelta,
422 ((hdelta * HZ) / runtime->rate), hw_base,
423 (unsigned long)old_hw_ptr,
424 (unsigned long)new_hw_ptr);
425 /* reset values to proper state */
426 delta = 0;
427 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
428 }
429 no_jiffies_check:
430 if (delta > runtime->period_size + runtime->period_size / 2) {
431 hw_ptr_error(substream, in_interrupt,
432 "Lost interrupts?",
433 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
434 substream->stream, (long)delta,
435 (long)new_hw_ptr,
436 (long)old_hw_ptr);
437 }
438
439 no_delta_check:
440 if (runtime->status->hw_ptr == new_hw_ptr) {
441 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
442 return 0;
443 }
444
445 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
446 runtime->silence_size > 0)
447 snd_pcm_playback_silence(substream, new_hw_ptr);
448
449 if (in_interrupt) {
450 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
451 if (delta < 0)
452 delta += runtime->boundary;
453 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
454 runtime->hw_ptr_interrupt += delta;
455 if (runtime->hw_ptr_interrupt >= runtime->boundary)
456 runtime->hw_ptr_interrupt -= runtime->boundary;
457 }
458 runtime->hw_ptr_base = hw_base;
459 runtime->status->hw_ptr = new_hw_ptr;
460 runtime->hw_ptr_jiffies = curr_jiffies;
461 if (crossed_boundary) {
462 snd_BUG_ON(crossed_boundary != 1);
463 runtime->hw_ptr_wrap += runtime->boundary;
464 }
465
466 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
467
468 return snd_pcm_update_state(substream, runtime);
469 }
470
471 /* CAUTION: call it with irq disabled */
472 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
473 {
474 return snd_pcm_update_hw_ptr0(substream, 0);
475 }
476
477 /**
478 * snd_pcm_set_ops - set the PCM operators
479 * @pcm: the pcm instance
480 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
481 * @ops: the operator table
482 *
483 * Sets the given PCM operators to the pcm instance.
484 */
485 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
486 const struct snd_pcm_ops *ops)
487 {
488 struct snd_pcm_str *stream = &pcm->streams[direction];
489 struct snd_pcm_substream *substream;
490
491 for (substream = stream->substream; substream != NULL; substream = substream->next)
492 substream->ops = ops;
493 }
494 EXPORT_SYMBOL(snd_pcm_set_ops);
495
496 /**
497 * snd_pcm_sync - set the PCM sync id
498 * @substream: the pcm substream
499 *
500 * Sets the PCM sync identifier for the card.
501 */
502 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
503 {
504 struct snd_pcm_runtime *runtime = substream->runtime;
505
506 runtime->sync.id32[0] = substream->pcm->card->number;
507 runtime->sync.id32[1] = -1;
508 runtime->sync.id32[2] = -1;
509 runtime->sync.id32[3] = -1;
510 }
511 EXPORT_SYMBOL(snd_pcm_set_sync);
512
513 /*
514 * Standard ioctl routine
515 */
516
517 static inline unsigned int div32(unsigned int a, unsigned int b,
518 unsigned int *r)
519 {
520 if (b == 0) {
521 *r = 0;
522 return UINT_MAX;
523 }
524 *r = a % b;
525 return a / b;
526 }
527
528 static inline unsigned int div_down(unsigned int a, unsigned int b)
529 {
530 if (b == 0)
531 return UINT_MAX;
532 return a / b;
533 }
534
535 static inline unsigned int div_up(unsigned int a, unsigned int b)
536 {
537 unsigned int r;
538 unsigned int q;
539 if (b == 0)
540 return UINT_MAX;
541 q = div32(a, b, &r);
542 if (r)
543 ++q;
544 return q;
545 }
546
547 static inline unsigned int mul(unsigned int a, unsigned int b)
548 {
549 if (a == 0)
550 return 0;
551 if (div_down(UINT_MAX, a) < b)
552 return UINT_MAX;
553 return a * b;
554 }
555
556 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
557 unsigned int c, unsigned int *r)
558 {
559 u_int64_t n = (u_int64_t) a * b;
560 if (c == 0) {
561 snd_BUG_ON(!n);
562 *r = 0;
563 return UINT_MAX;
564 }
565 n = div_u64_rem(n, c, r);
566 if (n >= UINT_MAX) {
567 *r = 0;
568 return UINT_MAX;
569 }
570 return n;
571 }
572
573 /**
574 * snd_interval_refine - refine the interval value of configurator
575 * @i: the interval value to refine
576 * @v: the interval value to refer to
577 *
578 * Refines the interval value with the reference value.
579 * The interval is changed to the range satisfying both intervals.
580 * The interval status (min, max, integer, etc.) are evaluated.
581 *
582 * Return: Positive if the value is changed, zero if it's not changed, or a
583 * negative error code.
584 */
585 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
586 {
587 int changed = 0;
588 if (snd_BUG_ON(snd_interval_empty(i)))
589 return -EINVAL;
590 if (i->min < v->min) {
591 i->min = v->min;
592 i->openmin = v->openmin;
593 changed = 1;
594 } else if (i->min == v->min && !i->openmin && v->openmin) {
595 i->openmin = 1;
596 changed = 1;
597 }
598 if (i->max > v->max) {
599 i->max = v->max;
600 i->openmax = v->openmax;
601 changed = 1;
602 } else if (i->max == v->max && !i->openmax && v->openmax) {
603 i->openmax = 1;
604 changed = 1;
605 }
606 if (!i->integer && v->integer) {
607 i->integer = 1;
608 changed = 1;
609 }
610 if (i->integer) {
611 if (i->openmin) {
612 i->min++;
613 i->openmin = 0;
614 }
615 if (i->openmax) {
616 i->max--;
617 i->openmax = 0;
618 }
619 } else if (!i->openmin && !i->openmax && i->min == i->max)
620 i->integer = 1;
621 if (snd_interval_checkempty(i)) {
622 snd_interval_none(i);
623 return -EINVAL;
624 }
625 return changed;
626 }
627 EXPORT_SYMBOL(snd_interval_refine);
628
629 static int snd_interval_refine_first(struct snd_interval *i)
630 {
631 if (snd_BUG_ON(snd_interval_empty(i)))
632 return -EINVAL;
633 if (snd_interval_single(i))
634 return 0;
635 i->max = i->min;
636 i->openmax = i->openmin;
637 if (i->openmax)
638 i->max++;
639 return 1;
640 }
641
642 static int snd_interval_refine_last(struct snd_interval *i)
643 {
644 if (snd_BUG_ON(snd_interval_empty(i)))
645 return -EINVAL;
646 if (snd_interval_single(i))
647 return 0;
648 i->min = i->max;
649 i->openmin = i->openmax;
650 if (i->openmin)
651 i->min--;
652 return 1;
653 }
654
655 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
656 {
657 if (a->empty || b->empty) {
658 snd_interval_none(c);
659 return;
660 }
661 c->empty = 0;
662 c->min = mul(a->min, b->min);
663 c->openmin = (a->openmin || b->openmin);
664 c->max = mul(a->max, b->max);
665 c->openmax = (a->openmax || b->openmax);
666 c->integer = (a->integer && b->integer);
667 }
668
669 /**
670 * snd_interval_div - refine the interval value with division
671 * @a: dividend
672 * @b: divisor
673 * @c: quotient
674 *
675 * c = a / b
676 *
677 * Returns non-zero if the value is changed, zero if not changed.
678 */
679 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
680 {
681 unsigned int r;
682 if (a->empty || b->empty) {
683 snd_interval_none(c);
684 return;
685 }
686 c->empty = 0;
687 c->min = div32(a->min, b->max, &r);
688 c->openmin = (r || a->openmin || b->openmax);
689 if (b->min > 0) {
690 c->max = div32(a->max, b->min, &r);
691 if (r) {
692 c->max++;
693 c->openmax = 1;
694 } else
695 c->openmax = (a->openmax || b->openmin);
696 } else {
697 c->max = UINT_MAX;
698 c->openmax = 0;
699 }
700 c->integer = 0;
701 }
702
703 /**
704 * snd_interval_muldivk - refine the interval value
705 * @a: dividend 1
706 * @b: dividend 2
707 * @k: divisor (as integer)
708 * @c: result
709 *
710 * c = a * b / k
711 *
712 * Returns non-zero if the value is changed, zero if not changed.
713 */
714 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
715 unsigned int k, struct snd_interval *c)
716 {
717 unsigned int r;
718 if (a->empty || b->empty) {
719 snd_interval_none(c);
720 return;
721 }
722 c->empty = 0;
723 c->min = muldiv32(a->min, b->min, k, &r);
724 c->openmin = (r || a->openmin || b->openmin);
725 c->max = muldiv32(a->max, b->max, k, &r);
726 if (r) {
727 c->max++;
728 c->openmax = 1;
729 } else
730 c->openmax = (a->openmax || b->openmax);
731 c->integer = 0;
732 }
733
734 /**
735 * snd_interval_mulkdiv - refine the interval value
736 * @a: dividend 1
737 * @k: dividend 2 (as integer)
738 * @b: divisor
739 * @c: result
740 *
741 * c = a * k / b
742 *
743 * Returns non-zero if the value is changed, zero if not changed.
744 */
745 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
746 const struct snd_interval *b, struct snd_interval *c)
747 {
748 unsigned int r;
749 if (a->empty || b->empty) {
750 snd_interval_none(c);
751 return;
752 }
753 c->empty = 0;
754 c->min = muldiv32(a->min, k, b->max, &r);
755 c->openmin = (r || a->openmin || b->openmax);
756 if (b->min > 0) {
757 c->max = muldiv32(a->max, k, b->min, &r);
758 if (r) {
759 c->max++;
760 c->openmax = 1;
761 } else
762 c->openmax = (a->openmax || b->openmin);
763 } else {
764 c->max = UINT_MAX;
765 c->openmax = 0;
766 }
767 c->integer = 0;
768 }
769
770 /* ---- */
771
772
773 /**
774 * snd_interval_ratnum - refine the interval value
775 * @i: interval to refine
776 * @rats_count: number of ratnum_t
777 * @rats: ratnum_t array
778 * @nump: pointer to store the resultant numerator
779 * @denp: pointer to store the resultant denominator
780 *
781 * Return: Positive if the value is changed, zero if it's not changed, or a
782 * negative error code.
783 */
784 int snd_interval_ratnum(struct snd_interval *i,
785 unsigned int rats_count, const struct snd_ratnum *rats,
786 unsigned int *nump, unsigned int *denp)
787 {
788 unsigned int best_num, best_den;
789 int best_diff;
790 unsigned int k;
791 struct snd_interval t;
792 int err;
793 unsigned int result_num, result_den;
794 int result_diff;
795
796 best_num = best_den = best_diff = 0;
797 for (k = 0; k < rats_count; ++k) {
798 unsigned int num = rats[k].num;
799 unsigned int den;
800 unsigned int q = i->min;
801 int diff;
802 if (q == 0)
803 q = 1;
804 den = div_up(num, q);
805 if (den < rats[k].den_min)
806 continue;
807 if (den > rats[k].den_max)
808 den = rats[k].den_max;
809 else {
810 unsigned int r;
811 r = (den - rats[k].den_min) % rats[k].den_step;
812 if (r != 0)
813 den -= r;
814 }
815 diff = num - q * den;
816 if (diff < 0)
817 diff = -diff;
818 if (best_num == 0 ||
819 diff * best_den < best_diff * den) {
820 best_diff = diff;
821 best_den = den;
822 best_num = num;
823 }
824 }
825 if (best_den == 0) {
826 i->empty = 1;
827 return -EINVAL;
828 }
829 t.min = div_down(best_num, best_den);
830 t.openmin = !!(best_num % best_den);
831
832 result_num = best_num;
833 result_diff = best_diff;
834 result_den = best_den;
835 best_num = best_den = best_diff = 0;
836 for (k = 0; k < rats_count; ++k) {
837 unsigned int num = rats[k].num;
838 unsigned int den;
839 unsigned int q = i->max;
840 int diff;
841 if (q == 0) {
842 i->empty = 1;
843 return -EINVAL;
844 }
845 den = div_down(num, q);
846 if (den > rats[k].den_max)
847 continue;
848 if (den < rats[k].den_min)
849 den = rats[k].den_min;
850 else {
851 unsigned int r;
852 r = (den - rats[k].den_min) % rats[k].den_step;
853 if (r != 0)
854 den += rats[k].den_step - r;
855 }
856 diff = q * den - num;
857 if (diff < 0)
858 diff = -diff;
859 if (best_num == 0 ||
860 diff * best_den < best_diff * den) {
861 best_diff = diff;
862 best_den = den;
863 best_num = num;
864 }
865 }
866 if (best_den == 0) {
867 i->empty = 1;
868 return -EINVAL;
869 }
870 t.max = div_up(best_num, best_den);
871 t.openmax = !!(best_num % best_den);
872 t.integer = 0;
873 err = snd_interval_refine(i, &t);
874 if (err < 0)
875 return err;
876
877 if (snd_interval_single(i)) {
878 if (best_diff * result_den < result_diff * best_den) {
879 result_num = best_num;
880 result_den = best_den;
881 }
882 if (nump)
883 *nump = result_num;
884 if (denp)
885 *denp = result_den;
886 }
887 return err;
888 }
889 EXPORT_SYMBOL(snd_interval_ratnum);
890
891 /**
892 * snd_interval_ratden - refine the interval value
893 * @i: interval to refine
894 * @rats_count: number of struct ratden
895 * @rats: struct ratden array
896 * @nump: pointer to store the resultant numerator
897 * @denp: pointer to store the resultant denominator
898 *
899 * Return: Positive if the value is changed, zero if it's not changed, or a
900 * negative error code.
901 */
902 static int snd_interval_ratden(struct snd_interval *i,
903 unsigned int rats_count,
904 const struct snd_ratden *rats,
905 unsigned int *nump, unsigned int *denp)
906 {
907 unsigned int best_num, best_diff, best_den;
908 unsigned int k;
909 struct snd_interval t;
910 int err;
911
912 best_num = best_den = best_diff = 0;
913 for (k = 0; k < rats_count; ++k) {
914 unsigned int num;
915 unsigned int den = rats[k].den;
916 unsigned int q = i->min;
917 int diff;
918 num = mul(q, den);
919 if (num > rats[k].num_max)
920 continue;
921 if (num < rats[k].num_min)
922 num = rats[k].num_max;
923 else {
924 unsigned int r;
925 r = (num - rats[k].num_min) % rats[k].num_step;
926 if (r != 0)
927 num += rats[k].num_step - r;
928 }
929 diff = num - q * den;
930 if (best_num == 0 ||
931 diff * best_den < best_diff * den) {
932 best_diff = diff;
933 best_den = den;
934 best_num = num;
935 }
936 }
937 if (best_den == 0) {
938 i->empty = 1;
939 return -EINVAL;
940 }
941 t.min = div_down(best_num, best_den);
942 t.openmin = !!(best_num % best_den);
943
944 best_num = best_den = best_diff = 0;
945 for (k = 0; k < rats_count; ++k) {
946 unsigned int num;
947 unsigned int den = rats[k].den;
948 unsigned int q = i->max;
949 int diff;
950 num = mul(q, den);
951 if (num < rats[k].num_min)
952 continue;
953 if (num > rats[k].num_max)
954 num = rats[k].num_max;
955 else {
956 unsigned int r;
957 r = (num - rats[k].num_min) % rats[k].num_step;
958 if (r != 0)
959 num -= r;
960 }
961 diff = q * den - num;
962 if (best_num == 0 ||
963 diff * best_den < best_diff * den) {
964 best_diff = diff;
965 best_den = den;
966 best_num = num;
967 }
968 }
969 if (best_den == 0) {
970 i->empty = 1;
971 return -EINVAL;
972 }
973 t.max = div_up(best_num, best_den);
974 t.openmax = !!(best_num % best_den);
975 t.integer = 0;
976 err = snd_interval_refine(i, &t);
977 if (err < 0)
978 return err;
979
980 if (snd_interval_single(i)) {
981 if (nump)
982 *nump = best_num;
983 if (denp)
984 *denp = best_den;
985 }
986 return err;
987 }
988
989 /**
990 * snd_interval_list - refine the interval value from the list
991 * @i: the interval value to refine
992 * @count: the number of elements in the list
993 * @list: the value list
994 * @mask: the bit-mask to evaluate
995 *
996 * Refines the interval value from the list.
997 * When mask is non-zero, only the elements corresponding to bit 1 are
998 * evaluated.
999 *
1000 * Return: Positive if the value is changed, zero if it's not changed, or a
1001 * negative error code.
1002 */
1003 int snd_interval_list(struct snd_interval *i, unsigned int count,
1004 const unsigned int *list, unsigned int mask)
1005 {
1006 unsigned int k;
1007 struct snd_interval list_range;
1008
1009 if (!count) {
1010 i->empty = 1;
1011 return -EINVAL;
1012 }
1013 snd_interval_any(&list_range);
1014 list_range.min = UINT_MAX;
1015 list_range.max = 0;
1016 for (k = 0; k < count; k++) {
1017 if (mask && !(mask & (1 << k)))
1018 continue;
1019 if (!snd_interval_test(i, list[k]))
1020 continue;
1021 list_range.min = min(list_range.min, list[k]);
1022 list_range.max = max(list_range.max, list[k]);
1023 }
1024 return snd_interval_refine(i, &list_range);
1025 }
1026 EXPORT_SYMBOL(snd_interval_list);
1027
1028 /**
1029 * snd_interval_ranges - refine the interval value from the list of ranges
1030 * @i: the interval value to refine
1031 * @count: the number of elements in the list of ranges
1032 * @ranges: the ranges list
1033 * @mask: the bit-mask to evaluate
1034 *
1035 * Refines the interval value from the list of ranges.
1036 * When mask is non-zero, only the elements corresponding to bit 1 are
1037 * evaluated.
1038 *
1039 * Return: Positive if the value is changed, zero if it's not changed, or a
1040 * negative error code.
1041 */
1042 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1043 const struct snd_interval *ranges, unsigned int mask)
1044 {
1045 unsigned int k;
1046 struct snd_interval range_union;
1047 struct snd_interval range;
1048
1049 if (!count) {
1050 snd_interval_none(i);
1051 return -EINVAL;
1052 }
1053 snd_interval_any(&range_union);
1054 range_union.min = UINT_MAX;
1055 range_union.max = 0;
1056 for (k = 0; k < count; k++) {
1057 if (mask && !(mask & (1 << k)))
1058 continue;
1059 snd_interval_copy(&range, &ranges[k]);
1060 if (snd_interval_refine(&range, i) < 0)
1061 continue;
1062 if (snd_interval_empty(&range))
1063 continue;
1064
1065 if (range.min < range_union.min) {
1066 range_union.min = range.min;
1067 range_union.openmin = 1;
1068 }
1069 if (range.min == range_union.min && !range.openmin)
1070 range_union.openmin = 0;
1071 if (range.max > range_union.max) {
1072 range_union.max = range.max;
1073 range_union.openmax = 1;
1074 }
1075 if (range.max == range_union.max && !range.openmax)
1076 range_union.openmax = 0;
1077 }
1078 return snd_interval_refine(i, &range_union);
1079 }
1080 EXPORT_SYMBOL(snd_interval_ranges);
1081
1082 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1083 {
1084 unsigned int n;
1085 int changed = 0;
1086 n = i->min % step;
1087 if (n != 0 || i->openmin) {
1088 i->min += step - n;
1089 i->openmin = 0;
1090 changed = 1;
1091 }
1092 n = i->max % step;
1093 if (n != 0 || i->openmax) {
1094 i->max -= n;
1095 i->openmax = 0;
1096 changed = 1;
1097 }
1098 if (snd_interval_checkempty(i)) {
1099 i->empty = 1;
1100 return -EINVAL;
1101 }
1102 return changed;
1103 }
1104
1105 /* Info constraints helpers */
1106
1107 /**
1108 * snd_pcm_hw_rule_add - add the hw-constraint rule
1109 * @runtime: the pcm runtime instance
1110 * @cond: condition bits
1111 * @var: the variable to evaluate
1112 * @func: the evaluation function
1113 * @private: the private data pointer passed to function
1114 * @dep: the dependent variables
1115 *
1116 * Return: Zero if successful, or a negative error code on failure.
1117 */
1118 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1119 int var,
1120 snd_pcm_hw_rule_func_t func, void *private,
1121 int dep, ...)
1122 {
1123 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1124 struct snd_pcm_hw_rule *c;
1125 unsigned int k;
1126 va_list args;
1127 va_start(args, dep);
1128 if (constrs->rules_num >= constrs->rules_all) {
1129 struct snd_pcm_hw_rule *new;
1130 unsigned int new_rules = constrs->rules_all + 16;
1131 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1132 if (!new) {
1133 va_end(args);
1134 return -ENOMEM;
1135 }
1136 if (constrs->rules) {
1137 memcpy(new, constrs->rules,
1138 constrs->rules_num * sizeof(*c));
1139 kfree(constrs->rules);
1140 }
1141 constrs->rules = new;
1142 constrs->rules_all = new_rules;
1143 }
1144 c = &constrs->rules[constrs->rules_num];
1145 c->cond = cond;
1146 c->func = func;
1147 c->var = var;
1148 c->private = private;
1149 k = 0;
1150 while (1) {
1151 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1152 va_end(args);
1153 return -EINVAL;
1154 }
1155 c->deps[k++] = dep;
1156 if (dep < 0)
1157 break;
1158 dep = va_arg(args, int);
1159 }
1160 constrs->rules_num++;
1161 va_end(args);
1162 return 0;
1163 }
1164 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1165
1166 /**
1167 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1168 * @runtime: PCM runtime instance
1169 * @var: hw_params variable to apply the mask
1170 * @mask: the bitmap mask
1171 *
1172 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1173 *
1174 * Return: Zero if successful, or a negative error code on failure.
1175 */
1176 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1177 u_int32_t mask)
1178 {
1179 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1180 struct snd_mask *maskp = constrs_mask(constrs, var);
1181 *maskp->bits &= mask;
1182 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1183 if (*maskp->bits == 0)
1184 return -EINVAL;
1185 return 0;
1186 }
1187
1188 /**
1189 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the 64bit bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199 u_int64_t mask)
1200 {
1201 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202 struct snd_mask *maskp = constrs_mask(constrs, var);
1203 maskp->bits[0] &= (u_int32_t)mask;
1204 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1205 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1206 if (! maskp->bits[0] && ! maskp->bits[1])
1207 return -EINVAL;
1208 return 0;
1209 }
1210 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1211
1212 /**
1213 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1214 * @runtime: PCM runtime instance
1215 * @var: hw_params variable to apply the integer constraint
1216 *
1217 * Apply the constraint of integer to an interval parameter.
1218 *
1219 * Return: Positive if the value is changed, zero if it's not changed, or a
1220 * negative error code.
1221 */
1222 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1223 {
1224 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225 return snd_interval_setinteger(constrs_interval(constrs, var));
1226 }
1227 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1228
1229 /**
1230 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1231 * @runtime: PCM runtime instance
1232 * @var: hw_params variable to apply the range
1233 * @min: the minimal value
1234 * @max: the maximal value
1235 *
1236 * Apply the min/max range constraint to an interval parameter.
1237 *
1238 * Return: Positive if the value is changed, zero if it's not changed, or a
1239 * negative error code.
1240 */
1241 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1242 unsigned int min, unsigned int max)
1243 {
1244 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1245 struct snd_interval t;
1246 t.min = min;
1247 t.max = max;
1248 t.openmin = t.openmax = 0;
1249 t.integer = 0;
1250 return snd_interval_refine(constrs_interval(constrs, var), &t);
1251 }
1252 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1253
1254 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1255 struct snd_pcm_hw_rule *rule)
1256 {
1257 struct snd_pcm_hw_constraint_list *list = rule->private;
1258 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1259 }
1260
1261
1262 /**
1263 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1264 * @runtime: PCM runtime instance
1265 * @cond: condition bits
1266 * @var: hw_params variable to apply the list constraint
1267 * @l: list
1268 *
1269 * Apply the list of constraints to an interval parameter.
1270 *
1271 * Return: Zero if successful, or a negative error code on failure.
1272 */
1273 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1274 unsigned int cond,
1275 snd_pcm_hw_param_t var,
1276 const struct snd_pcm_hw_constraint_list *l)
1277 {
1278 return snd_pcm_hw_rule_add(runtime, cond, var,
1279 snd_pcm_hw_rule_list, (void *)l,
1280 var, -1);
1281 }
1282 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1283
1284 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1285 struct snd_pcm_hw_rule *rule)
1286 {
1287 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1288 return snd_interval_ranges(hw_param_interval(params, rule->var),
1289 r->count, r->ranges, r->mask);
1290 }
1291
1292
1293 /**
1294 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1295 * @runtime: PCM runtime instance
1296 * @cond: condition bits
1297 * @var: hw_params variable to apply the list of range constraints
1298 * @r: ranges
1299 *
1300 * Apply the list of range constraints to an interval parameter.
1301 *
1302 * Return: Zero if successful, or a negative error code on failure.
1303 */
1304 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1305 unsigned int cond,
1306 snd_pcm_hw_param_t var,
1307 const struct snd_pcm_hw_constraint_ranges *r)
1308 {
1309 return snd_pcm_hw_rule_add(runtime, cond, var,
1310 snd_pcm_hw_rule_ranges, (void *)r,
1311 var, -1);
1312 }
1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1314
1315 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1316 struct snd_pcm_hw_rule *rule)
1317 {
1318 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1319 unsigned int num = 0, den = 0;
1320 int err;
1321 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1322 r->nrats, r->rats, &num, &den);
1323 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1324 params->rate_num = num;
1325 params->rate_den = den;
1326 }
1327 return err;
1328 }
1329
1330 /**
1331 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1332 * @runtime: PCM runtime instance
1333 * @cond: condition bits
1334 * @var: hw_params variable to apply the ratnums constraint
1335 * @r: struct snd_ratnums constriants
1336 *
1337 * Return: Zero if successful, or a negative error code on failure.
1338 */
1339 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1340 unsigned int cond,
1341 snd_pcm_hw_param_t var,
1342 const struct snd_pcm_hw_constraint_ratnums *r)
1343 {
1344 return snd_pcm_hw_rule_add(runtime, cond, var,
1345 snd_pcm_hw_rule_ratnums, (void *)r,
1346 var, -1);
1347 }
1348 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1349
1350 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1351 struct snd_pcm_hw_rule *rule)
1352 {
1353 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1354 unsigned int num = 0, den = 0;
1355 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1356 r->nrats, r->rats, &num, &den);
1357 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1358 params->rate_num = num;
1359 params->rate_den = den;
1360 }
1361 return err;
1362 }
1363
1364 /**
1365 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1366 * @runtime: PCM runtime instance
1367 * @cond: condition bits
1368 * @var: hw_params variable to apply the ratdens constraint
1369 * @r: struct snd_ratdens constriants
1370 *
1371 * Return: Zero if successful, or a negative error code on failure.
1372 */
1373 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1374 unsigned int cond,
1375 snd_pcm_hw_param_t var,
1376 const struct snd_pcm_hw_constraint_ratdens *r)
1377 {
1378 return snd_pcm_hw_rule_add(runtime, cond, var,
1379 snd_pcm_hw_rule_ratdens, (void *)r,
1380 var, -1);
1381 }
1382 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1383
1384 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1385 struct snd_pcm_hw_rule *rule)
1386 {
1387 unsigned int l = (unsigned long) rule->private;
1388 int width = l & 0xffff;
1389 unsigned int msbits = l >> 16;
1390 const struct snd_interval *i =
1391 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1392
1393 if (!snd_interval_single(i))
1394 return 0;
1395
1396 if ((snd_interval_value(i) == width) ||
1397 (width == 0 && snd_interval_value(i) > msbits))
1398 params->msbits = min_not_zero(params->msbits, msbits);
1399
1400 return 0;
1401 }
1402
1403 /**
1404 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405 * @runtime: PCM runtime instance
1406 * @cond: condition bits
1407 * @width: sample bits width
1408 * @msbits: msbits width
1409 *
1410 * This constraint will set the number of most significant bits (msbits) if a
1411 * sample format with the specified width has been select. If width is set to 0
1412 * the msbits will be set for any sample format with a width larger than the
1413 * specified msbits.
1414 *
1415 * Return: Zero if successful, or a negative error code on failure.
1416 */
1417 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1418 unsigned int cond,
1419 unsigned int width,
1420 unsigned int msbits)
1421 {
1422 unsigned long l = (msbits << 16) | width;
1423 return snd_pcm_hw_rule_add(runtime, cond, -1,
1424 snd_pcm_hw_rule_msbits,
1425 (void*) l,
1426 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1427 }
1428 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1429
1430 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1431 struct snd_pcm_hw_rule *rule)
1432 {
1433 unsigned long step = (unsigned long) rule->private;
1434 return snd_interval_step(hw_param_interval(params, rule->var), step);
1435 }
1436
1437 /**
1438 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1439 * @runtime: PCM runtime instance
1440 * @cond: condition bits
1441 * @var: hw_params variable to apply the step constraint
1442 * @step: step size
1443 *
1444 * Return: Zero if successful, or a negative error code on failure.
1445 */
1446 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1447 unsigned int cond,
1448 snd_pcm_hw_param_t var,
1449 unsigned long step)
1450 {
1451 return snd_pcm_hw_rule_add(runtime, cond, var,
1452 snd_pcm_hw_rule_step, (void *) step,
1453 var, -1);
1454 }
1455 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1456
1457 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1458 {
1459 static unsigned int pow2_sizes[] = {
1460 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1461 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1462 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1463 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1464 };
1465 return snd_interval_list(hw_param_interval(params, rule->var),
1466 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1467 }
1468
1469 /**
1470 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1471 * @runtime: PCM runtime instance
1472 * @cond: condition bits
1473 * @var: hw_params variable to apply the power-of-2 constraint
1474 *
1475 * Return: Zero if successful, or a negative error code on failure.
1476 */
1477 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1478 unsigned int cond,
1479 snd_pcm_hw_param_t var)
1480 {
1481 return snd_pcm_hw_rule_add(runtime, cond, var,
1482 snd_pcm_hw_rule_pow2, NULL,
1483 var, -1);
1484 }
1485 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1486
1487 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1488 struct snd_pcm_hw_rule *rule)
1489 {
1490 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1491 struct snd_interval *rate;
1492
1493 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1494 return snd_interval_list(rate, 1, &base_rate, 0);
1495 }
1496
1497 /**
1498 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1499 * @runtime: PCM runtime instance
1500 * @base_rate: the rate at which the hardware does not resample
1501 *
1502 * Return: Zero if successful, or a negative error code on failure.
1503 */
1504 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1505 unsigned int base_rate)
1506 {
1507 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1508 SNDRV_PCM_HW_PARAM_RATE,
1509 snd_pcm_hw_rule_noresample_func,
1510 (void *)(uintptr_t)base_rate,
1511 SNDRV_PCM_HW_PARAM_RATE, -1);
1512 }
1513 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1514
1515 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1516 snd_pcm_hw_param_t var)
1517 {
1518 if (hw_is_mask(var)) {
1519 snd_mask_any(hw_param_mask(params, var));
1520 params->cmask |= 1 << var;
1521 params->rmask |= 1 << var;
1522 return;
1523 }
1524 if (hw_is_interval(var)) {
1525 snd_interval_any(hw_param_interval(params, var));
1526 params->cmask |= 1 << var;
1527 params->rmask |= 1 << var;
1528 return;
1529 }
1530 snd_BUG();
1531 }
1532
1533 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1534 {
1535 unsigned int k;
1536 memset(params, 0, sizeof(*params));
1537 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1538 _snd_pcm_hw_param_any(params, k);
1539 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1540 _snd_pcm_hw_param_any(params, k);
1541 params->info = ~0U;
1542 }
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1544
1545 /**
1546 * snd_pcm_hw_param_value - return @params field @var value
1547 * @params: the hw_params instance
1548 * @var: parameter to retrieve
1549 * @dir: pointer to the direction (-1,0,1) or %NULL
1550 *
1551 * Return: The value for field @var if it's fixed in configuration space
1552 * defined by @params. -%EINVAL otherwise.
1553 */
1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1555 snd_pcm_hw_param_t var, int *dir)
1556 {
1557 if (hw_is_mask(var)) {
1558 const struct snd_mask *mask = hw_param_mask_c(params, var);
1559 if (!snd_mask_single(mask))
1560 return -EINVAL;
1561 if (dir)
1562 *dir = 0;
1563 return snd_mask_value(mask);
1564 }
1565 if (hw_is_interval(var)) {
1566 const struct snd_interval *i = hw_param_interval_c(params, var);
1567 if (!snd_interval_single(i))
1568 return -EINVAL;
1569 if (dir)
1570 *dir = i->openmin;
1571 return snd_interval_value(i);
1572 }
1573 return -EINVAL;
1574 }
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578 snd_pcm_hw_param_t var)
1579 {
1580 if (hw_is_mask(var)) {
1581 snd_mask_none(hw_param_mask(params, var));
1582 params->cmask |= 1 << var;
1583 params->rmask |= 1 << var;
1584 } else if (hw_is_interval(var)) {
1585 snd_interval_none(hw_param_interval(params, var));
1586 params->cmask |= 1 << var;
1587 params->rmask |= 1 << var;
1588 } else {
1589 snd_BUG();
1590 }
1591 }
1592 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1593
1594 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1595 snd_pcm_hw_param_t var)
1596 {
1597 int changed;
1598 if (hw_is_mask(var))
1599 changed = snd_mask_refine_first(hw_param_mask(params, var));
1600 else if (hw_is_interval(var))
1601 changed = snd_interval_refine_first(hw_param_interval(params, var));
1602 else
1603 return -EINVAL;
1604 if (changed) {
1605 params->cmask |= 1 << var;
1606 params->rmask |= 1 << var;
1607 }
1608 return changed;
1609 }
1610
1611
1612 /**
1613 * snd_pcm_hw_param_first - refine config space and return minimum value
1614 * @pcm: PCM instance
1615 * @params: the hw_params instance
1616 * @var: parameter to retrieve
1617 * @dir: pointer to the direction (-1,0,1) or %NULL
1618 *
1619 * Inside configuration space defined by @params remove from @var all
1620 * values > minimum. Reduce configuration space accordingly.
1621 *
1622 * Return: The minimum, or a negative error code on failure.
1623 */
1624 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1625 struct snd_pcm_hw_params *params,
1626 snd_pcm_hw_param_t var, int *dir)
1627 {
1628 int changed = _snd_pcm_hw_param_first(params, var);
1629 if (changed < 0)
1630 return changed;
1631 if (params->rmask) {
1632 int err = snd_pcm_hw_refine(pcm, params);
1633 if (snd_BUG_ON(err < 0))
1634 return err;
1635 }
1636 return snd_pcm_hw_param_value(params, var, dir);
1637 }
1638 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1639
1640 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1641 snd_pcm_hw_param_t var)
1642 {
1643 int changed;
1644 if (hw_is_mask(var))
1645 changed = snd_mask_refine_last(hw_param_mask(params, var));
1646 else if (hw_is_interval(var))
1647 changed = snd_interval_refine_last(hw_param_interval(params, var));
1648 else
1649 return -EINVAL;
1650 if (changed) {
1651 params->cmask |= 1 << var;
1652 params->rmask |= 1 << var;
1653 }
1654 return changed;
1655 }
1656
1657
1658 /**
1659 * snd_pcm_hw_param_last - refine config space and return maximum value
1660 * @pcm: PCM instance
1661 * @params: the hw_params instance
1662 * @var: parameter to retrieve
1663 * @dir: pointer to the direction (-1,0,1) or %NULL
1664 *
1665 * Inside configuration space defined by @params remove from @var all
1666 * values < maximum. Reduce configuration space accordingly.
1667 *
1668 * Return: The maximum, or a negative error code on failure.
1669 */
1670 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1671 struct snd_pcm_hw_params *params,
1672 snd_pcm_hw_param_t var, int *dir)
1673 {
1674 int changed = _snd_pcm_hw_param_last(params, var);
1675 if (changed < 0)
1676 return changed;
1677 if (params->rmask) {
1678 int err = snd_pcm_hw_refine(pcm, params);
1679 if (snd_BUG_ON(err < 0))
1680 return err;
1681 }
1682 return snd_pcm_hw_param_value(params, var, dir);
1683 }
1684 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1685
1686 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1687 void *arg)
1688 {
1689 struct snd_pcm_runtime *runtime = substream->runtime;
1690 unsigned long flags;
1691 snd_pcm_stream_lock_irqsave(substream, flags);
1692 if (snd_pcm_running(substream) &&
1693 snd_pcm_update_hw_ptr(substream) >= 0)
1694 runtime->status->hw_ptr %= runtime->buffer_size;
1695 else {
1696 runtime->status->hw_ptr = 0;
1697 runtime->hw_ptr_wrap = 0;
1698 }
1699 snd_pcm_stream_unlock_irqrestore(substream, flags);
1700 return 0;
1701 }
1702
1703 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1704 void *arg)
1705 {
1706 struct snd_pcm_channel_info *info = arg;
1707 struct snd_pcm_runtime *runtime = substream->runtime;
1708 int width;
1709 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1710 info->offset = -1;
1711 return 0;
1712 }
1713 width = snd_pcm_format_physical_width(runtime->format);
1714 if (width < 0)
1715 return width;
1716 info->offset = 0;
1717 switch (runtime->access) {
1718 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1719 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1720 info->first = info->channel * width;
1721 info->step = runtime->channels * width;
1722 break;
1723 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1724 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1725 {
1726 size_t size = runtime->dma_bytes / runtime->channels;
1727 info->first = info->channel * size * 8;
1728 info->step = width;
1729 break;
1730 }
1731 default:
1732 snd_BUG();
1733 break;
1734 }
1735 return 0;
1736 }
1737
1738 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1739 void *arg)
1740 {
1741 struct snd_pcm_hw_params *params = arg;
1742 snd_pcm_format_t format;
1743 int channels;
1744 ssize_t frame_size;
1745
1746 params->fifo_size = substream->runtime->hw.fifo_size;
1747 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1748 format = params_format(params);
1749 channels = params_channels(params);
1750 frame_size = snd_pcm_format_size(format, channels);
1751 if (frame_size > 0)
1752 params->fifo_size /= (unsigned)frame_size;
1753 }
1754 return 0;
1755 }
1756
1757 /**
1758 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1759 * @substream: the pcm substream instance
1760 * @cmd: ioctl command
1761 * @arg: ioctl argument
1762 *
1763 * Processes the generic ioctl commands for PCM.
1764 * Can be passed as the ioctl callback for PCM ops.
1765 *
1766 * Return: Zero if successful, or a negative error code on failure.
1767 */
1768 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1769 unsigned int cmd, void *arg)
1770 {
1771 switch (cmd) {
1772 case SNDRV_PCM_IOCTL1_RESET:
1773 return snd_pcm_lib_ioctl_reset(substream, arg);
1774 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1775 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1776 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1777 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1778 }
1779 return -ENXIO;
1780 }
1781 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1782
1783 /**
1784 * snd_pcm_period_elapsed - update the pcm status for the next period
1785 * @substream: the pcm substream instance
1786 *
1787 * This function is called from the interrupt handler when the
1788 * PCM has processed the period size. It will update the current
1789 * pointer, wake up sleepers, etc.
1790 *
1791 * Even if more than one periods have elapsed since the last call, you
1792 * have to call this only once.
1793 */
1794 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1795 {
1796 struct snd_pcm_runtime *runtime;
1797 unsigned long flags;
1798
1799 if (PCM_RUNTIME_CHECK(substream))
1800 return;
1801 runtime = substream->runtime;
1802
1803 snd_pcm_stream_lock_irqsave(substream, flags);
1804 if (!snd_pcm_running(substream) ||
1805 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1806 goto _end;
1807
1808 #ifdef CONFIG_SND_PCM_TIMER
1809 if (substream->timer_running)
1810 snd_timer_interrupt(substream->timer, 1);
1811 #endif
1812 _end:
1813 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1814 snd_pcm_stream_unlock_irqrestore(substream, flags);
1815 }
1816 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1817
1818 /*
1819 * Wait until avail_min data becomes available
1820 * Returns a negative error code if any error occurs during operation.
1821 * The available space is stored on availp. When err = 0 and avail = 0
1822 * on the capture stream, it indicates the stream is in DRAINING state.
1823 */
1824 static int wait_for_avail(struct snd_pcm_substream *substream,
1825 snd_pcm_uframes_t *availp)
1826 {
1827 struct snd_pcm_runtime *runtime = substream->runtime;
1828 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1829 wait_queue_entry_t wait;
1830 int err = 0;
1831 snd_pcm_uframes_t avail = 0;
1832 long wait_time, tout;
1833
1834 init_waitqueue_entry(&wait, current);
1835 set_current_state(TASK_INTERRUPTIBLE);
1836 add_wait_queue(&runtime->tsleep, &wait);
1837
1838 if (runtime->no_period_wakeup)
1839 wait_time = MAX_SCHEDULE_TIMEOUT;
1840 else {
1841 wait_time = 10;
1842 if (runtime->rate) {
1843 long t = runtime->period_size * 2 / runtime->rate;
1844 wait_time = max(t, wait_time);
1845 }
1846 wait_time = msecs_to_jiffies(wait_time * 1000);
1847 }
1848
1849 for (;;) {
1850 if (signal_pending(current)) {
1851 err = -ERESTARTSYS;
1852 break;
1853 }
1854
1855 /*
1856 * We need to check if space became available already
1857 * (and thus the wakeup happened already) first to close
1858 * the race of space already having become available.
1859 * This check must happen after been added to the waitqueue
1860 * and having current state be INTERRUPTIBLE.
1861 */
1862 if (is_playback)
1863 avail = snd_pcm_playback_avail(runtime);
1864 else
1865 avail = snd_pcm_capture_avail(runtime);
1866 if (avail >= runtime->twake)
1867 break;
1868 snd_pcm_stream_unlock_irq(substream);
1869
1870 tout = schedule_timeout(wait_time);
1871
1872 snd_pcm_stream_lock_irq(substream);
1873 set_current_state(TASK_INTERRUPTIBLE);
1874 switch (runtime->status->state) {
1875 case SNDRV_PCM_STATE_SUSPENDED:
1876 err = -ESTRPIPE;
1877 goto _endloop;
1878 case SNDRV_PCM_STATE_XRUN:
1879 err = -EPIPE;
1880 goto _endloop;
1881 case SNDRV_PCM_STATE_DRAINING:
1882 if (is_playback)
1883 err = -EPIPE;
1884 else
1885 avail = 0; /* indicate draining */
1886 goto _endloop;
1887 case SNDRV_PCM_STATE_OPEN:
1888 case SNDRV_PCM_STATE_SETUP:
1889 case SNDRV_PCM_STATE_DISCONNECTED:
1890 err = -EBADFD;
1891 goto _endloop;
1892 case SNDRV_PCM_STATE_PAUSED:
1893 continue;
1894 }
1895 if (!tout) {
1896 pcm_dbg(substream->pcm,
1897 "%s write error (DMA or IRQ trouble?)\n",
1898 is_playback ? "playback" : "capture");
1899 err = -EIO;
1900 break;
1901 }
1902 }
1903 _endloop:
1904 set_current_state(TASK_RUNNING);
1905 remove_wait_queue(&runtime->tsleep, &wait);
1906 *availp = avail;
1907 return err;
1908 }
1909
1910 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1911 int channel, unsigned long hwoff,
1912 void *buf, unsigned long bytes);
1913
1914 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1915 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1916
1917 /* calculate the target DMA-buffer position to be written/read */
1918 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1919 int channel, unsigned long hwoff)
1920 {
1921 return runtime->dma_area + hwoff +
1922 channel * (runtime->dma_bytes / runtime->channels);
1923 }
1924
1925 /* default copy_user ops for write; used for both interleaved and non- modes */
1926 static int default_write_copy(struct snd_pcm_substream *substream,
1927 int channel, unsigned long hwoff,
1928 void *buf, unsigned long bytes)
1929 {
1930 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1931 (void __user *)buf, bytes))
1932 return -EFAULT;
1933 return 0;
1934 }
1935
1936 /* default copy_kernel ops for write */
1937 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1938 int channel, unsigned long hwoff,
1939 void *buf, unsigned long bytes)
1940 {
1941 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1942 return 0;
1943 }
1944
1945 /* fill silence instead of copy data; called as a transfer helper
1946 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1947 * a NULL buffer is passed
1948 */
1949 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1950 unsigned long hwoff, void *buf, unsigned long bytes)
1951 {
1952 struct snd_pcm_runtime *runtime = substream->runtime;
1953
1954 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1955 return 0;
1956 if (substream->ops->fill_silence)
1957 return substream->ops->fill_silence(substream, channel,
1958 hwoff, bytes);
1959
1960 snd_pcm_format_set_silence(runtime->format,
1961 get_dma_ptr(runtime, channel, hwoff),
1962 bytes_to_samples(runtime, bytes));
1963 return 0;
1964 }
1965
1966 /* default copy_user ops for read; used for both interleaved and non- modes */
1967 static int default_read_copy(struct snd_pcm_substream *substream,
1968 int channel, unsigned long hwoff,
1969 void *buf, unsigned long bytes)
1970 {
1971 if (copy_to_user((void __user *)buf,
1972 get_dma_ptr(substream->runtime, channel, hwoff),
1973 bytes))
1974 return -EFAULT;
1975 return 0;
1976 }
1977
1978 /* default copy_kernel ops for read */
1979 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1980 int channel, unsigned long hwoff,
1981 void *buf, unsigned long bytes)
1982 {
1983 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1984 return 0;
1985 }
1986
1987 /* call transfer function with the converted pointers and sizes;
1988 * for interleaved mode, it's one shot for all samples
1989 */
1990 static int interleaved_copy(struct snd_pcm_substream *substream,
1991 snd_pcm_uframes_t hwoff, void *data,
1992 snd_pcm_uframes_t off,
1993 snd_pcm_uframes_t frames,
1994 pcm_transfer_f transfer)
1995 {
1996 struct snd_pcm_runtime *runtime = substream->runtime;
1997
1998 /* convert to bytes */
1999 hwoff = frames_to_bytes(runtime, hwoff);
2000 off = frames_to_bytes(runtime, off);
2001 frames = frames_to_bytes(runtime, frames);
2002 return transfer(substream, 0, hwoff, data + off, frames);
2003 }
2004
2005 /* call transfer function with the converted pointers and sizes for each
2006 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2007 */
2008 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2009 snd_pcm_uframes_t hwoff, void *data,
2010 snd_pcm_uframes_t off,
2011 snd_pcm_uframes_t frames,
2012 pcm_transfer_f transfer)
2013 {
2014 struct snd_pcm_runtime *runtime = substream->runtime;
2015 int channels = runtime->channels;
2016 void **bufs = data;
2017 int c, err;
2018
2019 /* convert to bytes; note that it's not frames_to_bytes() here.
2020 * in non-interleaved mode, we copy for each channel, thus
2021 * each copy is n_samples bytes x channels = whole frames.
2022 */
2023 off = samples_to_bytes(runtime, off);
2024 frames = samples_to_bytes(runtime, frames);
2025 hwoff = samples_to_bytes(runtime, hwoff);
2026 for (c = 0; c < channels; ++c, ++bufs) {
2027 if (!data || !*bufs)
2028 err = fill_silence(substream, c, hwoff, NULL, frames);
2029 else
2030 err = transfer(substream, c, hwoff, *bufs + off,
2031 frames);
2032 if (err < 0)
2033 return err;
2034 }
2035 return 0;
2036 }
2037
2038 /* fill silence on the given buffer position;
2039 * called from snd_pcm_playback_silence()
2040 */
2041 static int fill_silence_frames(struct snd_pcm_substream *substream,
2042 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2043 {
2044 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2045 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2046 return interleaved_copy(substream, off, NULL, 0, frames,
2047 fill_silence);
2048 else
2049 return noninterleaved_copy(substream, off, NULL, 0, frames,
2050 fill_silence);
2051 }
2052
2053 /* sanity-check for read/write methods */
2054 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2055 {
2056 struct snd_pcm_runtime *runtime;
2057 if (PCM_RUNTIME_CHECK(substream))
2058 return -ENXIO;
2059 runtime = substream->runtime;
2060 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2061 return -EINVAL;
2062 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2063 return -EBADFD;
2064 return 0;
2065 }
2066
2067 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2068 {
2069 switch (runtime->status->state) {
2070 case SNDRV_PCM_STATE_PREPARED:
2071 case SNDRV_PCM_STATE_RUNNING:
2072 case SNDRV_PCM_STATE_PAUSED:
2073 return 0;
2074 case SNDRV_PCM_STATE_XRUN:
2075 return -EPIPE;
2076 case SNDRV_PCM_STATE_SUSPENDED:
2077 return -ESTRPIPE;
2078 default:
2079 return -EBADFD;
2080 }
2081 }
2082
2083 /* update to the given appl_ptr and call ack callback if needed;
2084 * when an error is returned, take back to the original value
2085 */
2086 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2087 snd_pcm_uframes_t appl_ptr)
2088 {
2089 struct snd_pcm_runtime *runtime = substream->runtime;
2090 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2091 int ret;
2092
2093 if (old_appl_ptr == appl_ptr)
2094 return 0;
2095
2096 runtime->control->appl_ptr = appl_ptr;
2097 if (substream->ops->ack) {
2098 ret = substream->ops->ack(substream);
2099 if (ret < 0) {
2100 runtime->control->appl_ptr = old_appl_ptr;
2101 return ret;
2102 }
2103 }
2104
2105 trace_applptr(substream, old_appl_ptr, appl_ptr);
2106
2107 return 0;
2108 }
2109
2110 /* the common loop for read/write data */
2111 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2112 void *data, bool interleaved,
2113 snd_pcm_uframes_t size, bool in_kernel)
2114 {
2115 struct snd_pcm_runtime *runtime = substream->runtime;
2116 snd_pcm_uframes_t xfer = 0;
2117 snd_pcm_uframes_t offset = 0;
2118 snd_pcm_uframes_t avail;
2119 pcm_copy_f writer;
2120 pcm_transfer_f transfer;
2121 bool nonblock;
2122 bool is_playback;
2123 int err;
2124
2125 err = pcm_sanity_check(substream);
2126 if (err < 0)
2127 return err;
2128
2129 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2130 if (interleaved) {
2131 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2132 runtime->channels > 1)
2133 return -EINVAL;
2134 writer = interleaved_copy;
2135 } else {
2136 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2137 return -EINVAL;
2138 writer = noninterleaved_copy;
2139 }
2140
2141 if (!data) {
2142 if (is_playback)
2143 transfer = fill_silence;
2144 else
2145 return -EINVAL;
2146 } else if (in_kernel) {
2147 if (substream->ops->copy_kernel)
2148 transfer = substream->ops->copy_kernel;
2149 else
2150 transfer = is_playback ?
2151 default_write_copy_kernel : default_read_copy_kernel;
2152 } else {
2153 if (substream->ops->copy_user)
2154 transfer = (pcm_transfer_f)substream->ops->copy_user;
2155 else
2156 transfer = is_playback ?
2157 default_write_copy : default_read_copy;
2158 }
2159
2160 if (size == 0)
2161 return 0;
2162
2163 nonblock = !!(substream->f_flags & O_NONBLOCK);
2164
2165 snd_pcm_stream_lock_irq(substream);
2166 err = pcm_accessible_state(runtime);
2167 if (err < 0)
2168 goto _end_unlock;
2169
2170 if (!is_playback &&
2171 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2172 size >= runtime->start_threshold) {
2173 err = snd_pcm_start(substream);
2174 if (err < 0)
2175 goto _end_unlock;
2176 }
2177
2178 runtime->twake = runtime->control->avail_min ? : 1;
2179 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2180 snd_pcm_update_hw_ptr(substream);
2181 if (is_playback)
2182 avail = snd_pcm_playback_avail(runtime);
2183 else
2184 avail = snd_pcm_capture_avail(runtime);
2185 while (size > 0) {
2186 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2187 snd_pcm_uframes_t cont;
2188 if (!avail) {
2189 if (!is_playback &&
2190 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2191 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2192 goto _end_unlock;
2193 }
2194 if (nonblock) {
2195 err = -EAGAIN;
2196 goto _end_unlock;
2197 }
2198 runtime->twake = min_t(snd_pcm_uframes_t, size,
2199 runtime->control->avail_min ? : 1);
2200 err = wait_for_avail(substream, &avail);
2201 if (err < 0)
2202 goto _end_unlock;
2203 if (!avail)
2204 continue; /* draining */
2205 }
2206 frames = size > avail ? avail : size;
2207 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2208 appl_ofs = appl_ptr % runtime->buffer_size;
2209 cont = runtime->buffer_size - appl_ofs;
2210 if (frames > cont)
2211 frames = cont;
2212 if (snd_BUG_ON(!frames)) {
2213 runtime->twake = 0;
2214 snd_pcm_stream_unlock_irq(substream);
2215 return -EINVAL;
2216 }
2217 snd_pcm_stream_unlock_irq(substream);
2218 err = writer(substream, appl_ofs, data, offset, frames,
2219 transfer);
2220 snd_pcm_stream_lock_irq(substream);
2221 if (err < 0)
2222 goto _end_unlock;
2223 err = pcm_accessible_state(runtime);
2224 if (err < 0)
2225 goto _end_unlock;
2226 appl_ptr += frames;
2227 if (appl_ptr >= runtime->boundary)
2228 appl_ptr -= runtime->boundary;
2229 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2230 if (err < 0)
2231 goto _end_unlock;
2232
2233 offset += frames;
2234 size -= frames;
2235 xfer += frames;
2236 avail -= frames;
2237 if (is_playback &&
2238 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2239 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2240 err = snd_pcm_start(substream);
2241 if (err < 0)
2242 goto _end_unlock;
2243 }
2244 }
2245 _end_unlock:
2246 runtime->twake = 0;
2247 if (xfer > 0 && err >= 0)
2248 snd_pcm_update_state(substream, runtime);
2249 snd_pcm_stream_unlock_irq(substream);
2250 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2251 }
2252 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2253
2254 /*
2255 * standard channel mapping helpers
2256 */
2257
2258 /* default channel maps for multi-channel playbacks, up to 8 channels */
2259 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2260 { .channels = 1,
2261 .map = { SNDRV_CHMAP_MONO } },
2262 { .channels = 2,
2263 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2264 { .channels = 4,
2265 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2266 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2267 { .channels = 6,
2268 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2269 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2270 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2271 { .channels = 8,
2272 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2273 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2274 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2275 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2276 { }
2277 };
2278 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2279
2280 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2281 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2282 { .channels = 1,
2283 .map = { SNDRV_CHMAP_MONO } },
2284 { .channels = 2,
2285 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2286 { .channels = 4,
2287 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2288 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2289 { .channels = 6,
2290 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2291 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2292 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2293 { .channels = 8,
2294 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2295 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2296 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2297 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2298 { }
2299 };
2300 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2301
2302 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2303 {
2304 if (ch > info->max_channels)
2305 return false;
2306 return !info->channel_mask || (info->channel_mask & (1U << ch));
2307 }
2308
2309 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2310 struct snd_ctl_elem_info *uinfo)
2311 {
2312 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2313
2314 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2315 uinfo->count = 0;
2316 uinfo->count = info->max_channels;
2317 uinfo->value.integer.min = 0;
2318 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2319 return 0;
2320 }
2321
2322 /* get callback for channel map ctl element
2323 * stores the channel position firstly matching with the current channels
2324 */
2325 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2326 struct snd_ctl_elem_value *ucontrol)
2327 {
2328 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2329 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2330 struct snd_pcm_substream *substream;
2331 const struct snd_pcm_chmap_elem *map;
2332
2333 if (!info->chmap)
2334 return -EINVAL;
2335 substream = snd_pcm_chmap_substream(info, idx);
2336 if (!substream)
2337 return -ENODEV;
2338 memset(ucontrol->value.integer.value, 0,
2339 sizeof(ucontrol->value.integer.value));
2340 if (!substream->runtime)
2341 return 0; /* no channels set */
2342 for (map = info->chmap; map->channels; map++) {
2343 int i;
2344 if (map->channels == substream->runtime->channels &&
2345 valid_chmap_channels(info, map->channels)) {
2346 for (i = 0; i < map->channels; i++)
2347 ucontrol->value.integer.value[i] = map->map[i];
2348 return 0;
2349 }
2350 }
2351 return -EINVAL;
2352 }
2353
2354 /* tlv callback for channel map ctl element
2355 * expands the pre-defined channel maps in a form of TLV
2356 */
2357 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2358 unsigned int size, unsigned int __user *tlv)
2359 {
2360 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2361 const struct snd_pcm_chmap_elem *map;
2362 unsigned int __user *dst;
2363 int c, count = 0;
2364
2365 if (!info->chmap)
2366 return -EINVAL;
2367 if (size < 8)
2368 return -ENOMEM;
2369 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2370 return -EFAULT;
2371 size -= 8;
2372 dst = tlv + 2;
2373 for (map = info->chmap; map->channels; map++) {
2374 int chs_bytes = map->channels * 4;
2375 if (!valid_chmap_channels(info, map->channels))
2376 continue;
2377 if (size < 8)
2378 return -ENOMEM;
2379 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2380 put_user(chs_bytes, dst + 1))
2381 return -EFAULT;
2382 dst += 2;
2383 size -= 8;
2384 count += 8;
2385 if (size < chs_bytes)
2386 return -ENOMEM;
2387 size -= chs_bytes;
2388 count += chs_bytes;
2389 for (c = 0; c < map->channels; c++) {
2390 if (put_user(map->map[c], dst))
2391 return -EFAULT;
2392 dst++;
2393 }
2394 }
2395 if (put_user(count, tlv + 1))
2396 return -EFAULT;
2397 return 0;
2398 }
2399
2400 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2401 {
2402 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2403 info->pcm->streams[info->stream].chmap_kctl = NULL;
2404 kfree(info);
2405 }
2406
2407 /**
2408 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2409 * @pcm: the assigned PCM instance
2410 * @stream: stream direction
2411 * @chmap: channel map elements (for query)
2412 * @max_channels: the max number of channels for the stream
2413 * @private_value: the value passed to each kcontrol's private_value field
2414 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2415 *
2416 * Create channel-mapping control elements assigned to the given PCM stream(s).
2417 * Return: Zero if successful, or a negative error value.
2418 */
2419 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2420 const struct snd_pcm_chmap_elem *chmap,
2421 int max_channels,
2422 unsigned long private_value,
2423 struct snd_pcm_chmap **info_ret)
2424 {
2425 struct snd_pcm_chmap *info;
2426 struct snd_kcontrol_new knew = {
2427 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2428 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2429 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2430 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2431 .info = pcm_chmap_ctl_info,
2432 .get = pcm_chmap_ctl_get,
2433 .tlv.c = pcm_chmap_ctl_tlv,
2434 };
2435 int err;
2436
2437 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2438 return -EBUSY;
2439 info = kzalloc(sizeof(*info), GFP_KERNEL);
2440 if (!info)
2441 return -ENOMEM;
2442 info->pcm = pcm;
2443 info->stream = stream;
2444 info->chmap = chmap;
2445 info->max_channels = max_channels;
2446 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2447 knew.name = "Playback Channel Map";
2448 else
2449 knew.name = "Capture Channel Map";
2450 knew.device = pcm->device;
2451 knew.count = pcm->streams[stream].substream_count;
2452 knew.private_value = private_value;
2453 info->kctl = snd_ctl_new1(&knew, info);
2454 if (!info->kctl) {
2455 kfree(info);
2456 return -ENOMEM;
2457 }
2458 info->kctl->private_free = pcm_chmap_ctl_private_free;
2459 err = snd_ctl_add(pcm->card, info->kctl);
2460 if (err < 0)
2461 return err;
2462 pcm->streams[stream].chmap_kctl = info->kctl;
2463 if (info_ret)
2464 *info_ret = info;
2465 return 0;
2466 }
2467 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);