]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/core/pcm_lib.c
dd9126b92c19ec77b86ecc8e293ec0291e92172f
[mirror_ubuntu-bionic-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31
32 /*
33 * fill ring buffer with silence
34 * runtime->silence_start: starting pointer to silence area
35 * runtime->silence_filled: size filled with silence
36 * runtime->silence_threshold: threshold from application
37 * runtime->silence_size: maximal size from application
38 *
39 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40 */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43 struct snd_pcm_runtime *runtime = substream->runtime;
44 snd_pcm_uframes_t frames, ofs, transfer;
45
46 if (runtime->silence_size < runtime->boundary) {
47 snd_pcm_sframes_t noise_dist, n;
48 if (runtime->silence_start != runtime->control->appl_ptr) {
49 n = runtime->control->appl_ptr - runtime->silence_start;
50 if (n < 0)
51 n += runtime->boundary;
52 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53 runtime->silence_filled -= n;
54 else
55 runtime->silence_filled = 0;
56 runtime->silence_start = runtime->control->appl_ptr;
57 }
58 if (runtime->silence_filled >= runtime->buffer_size)
59 return;
60 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62 return;
63 frames = runtime->silence_threshold - noise_dist;
64 if (frames > runtime->silence_size)
65 frames = runtime->silence_size;
66 } else {
67 if (new_hw_ptr == ULONG_MAX) { /* initialization */
68 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69 runtime->silence_filled = avail > 0 ? avail : 0;
70 runtime->silence_start = (runtime->status->hw_ptr +
71 runtime->silence_filled) %
72 runtime->boundary;
73 } else {
74 ofs = runtime->status->hw_ptr;
75 frames = new_hw_ptr - ofs;
76 if ((snd_pcm_sframes_t)frames < 0)
77 frames += runtime->boundary;
78 runtime->silence_filled -= frames;
79 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80 runtime->silence_filled = 0;
81 runtime->silence_start = new_hw_ptr;
82 } else {
83 runtime->silence_start = ofs;
84 }
85 }
86 frames = runtime->buffer_size - runtime->silence_filled;
87 }
88 if (snd_BUG_ON(frames > runtime->buffer_size))
89 return;
90 if (frames == 0)
91 return;
92 ofs = runtime->silence_start % runtime->buffer_size;
93 while (frames > 0) {
94 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97 if (substream->ops->silence) {
98 int err;
99 err = substream->ops->silence(substream, -1, ofs, transfer);
100 snd_BUG_ON(err < 0);
101 } else {
102 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104 }
105 } else {
106 unsigned int c;
107 unsigned int channels = runtime->channels;
108 if (substream->ops->silence) {
109 for (c = 0; c < channels; ++c) {
110 int err;
111 err = substream->ops->silence(substream, c, ofs, transfer);
112 snd_BUG_ON(err < 0);
113 }
114 } else {
115 size_t dma_csize = runtime->dma_bytes / channels;
116 for (c = 0; c < channels; ++c) {
117 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119 }
120 }
121 }
122 runtime->silence_filled += transfer;
123 frames -= transfer;
124 ofs = 0;
125 }
126 }
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 #define xrun_debug(substream, mask) ((substream)->pstr->xrun_debug & (mask))
130 #else
131 #define xrun_debug(substream, mask) 0
132 #endif
133
134 #define dump_stack_on_xrun(substream) do { \
135 if (xrun_debug(substream, 2)) \
136 dump_stack(); \
137 } while (0)
138
139 static void xrun(struct snd_pcm_substream *substream)
140 {
141 struct snd_pcm_runtime *runtime = substream->runtime;
142
143 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
144 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
145 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
146 if (xrun_debug(substream, 1)) {
147 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
148 substream->pcm->card->number,
149 substream->pcm->device,
150 substream->stream ? 'c' : 'p');
151 dump_stack_on_xrun(substream);
152 }
153 }
154
155 static snd_pcm_uframes_t
156 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
157 struct snd_pcm_runtime *runtime)
158 {
159 snd_pcm_uframes_t pos;
160
161 pos = substream->ops->pointer(substream);
162 if (pos == SNDRV_PCM_POS_XRUN)
163 return pos; /* XRUN */
164 if (pos >= runtime->buffer_size) {
165 if (printk_ratelimit()) {
166 snd_printd(KERN_ERR "BUG: stream = %i, pos = 0x%lx, "
167 "buffer size = 0x%lx, period size = 0x%lx\n",
168 substream->stream, pos, runtime->buffer_size,
169 runtime->period_size);
170 }
171 pos = 0;
172 }
173 pos -= pos % runtime->min_align;
174 return pos;
175 }
176
177 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
178 struct snd_pcm_runtime *runtime)
179 {
180 snd_pcm_uframes_t avail;
181
182 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
183 avail = snd_pcm_playback_avail(runtime);
184 else
185 avail = snd_pcm_capture_avail(runtime);
186 if (avail > runtime->avail_max)
187 runtime->avail_max = avail;
188 if (avail >= runtime->stop_threshold) {
189 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
190 snd_pcm_drain_done(substream);
191 else
192 xrun(substream);
193 return -EPIPE;
194 }
195 if (avail >= runtime->control->avail_min)
196 wake_up(&runtime->sleep);
197 return 0;
198 }
199
200 #define hw_ptr_error(substream, fmt, args...) \
201 do { \
202 if (xrun_debug(substream, 1)) { \
203 if (printk_ratelimit()) { \
204 snd_printd("PCM: " fmt, ##args); \
205 } \
206 dump_stack_on_xrun(substream); \
207 } \
208 } while (0)
209
210 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
211 {
212 struct snd_pcm_runtime *runtime = substream->runtime;
213 snd_pcm_uframes_t pos;
214 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
215 snd_pcm_sframes_t hdelta, delta;
216 unsigned long jdelta;
217
218 old_hw_ptr = runtime->status->hw_ptr;
219 pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
220 if (pos == SNDRV_PCM_POS_XRUN) {
221 xrun(substream);
222 return -EPIPE;
223 }
224 hw_base = runtime->hw_ptr_base;
225 new_hw_ptr = hw_base + pos;
226 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
227 delta = new_hw_ptr - hw_ptr_interrupt;
228 if (hw_ptr_interrupt >= runtime->boundary) {
229 hw_ptr_interrupt -= runtime->boundary;
230 if (hw_base < runtime->boundary / 2)
231 /* hw_base was already lapped; recalc delta */
232 delta = new_hw_ptr - hw_ptr_interrupt;
233 }
234 if (delta < 0) {
235 delta += runtime->buffer_size;
236 if (delta < 0) {
237 hw_ptr_error(substream,
238 "Unexpected hw_pointer value "
239 "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
240 substream->stream, (long)pos,
241 (long)hw_ptr_interrupt);
242 /* rebase to interrupt position */
243 hw_base = new_hw_ptr = hw_ptr_interrupt;
244 /* align hw_base to buffer_size */
245 hw_base -= hw_base % runtime->buffer_size;
246 delta = 0;
247 } else {
248 hw_base += runtime->buffer_size;
249 if (hw_base >= runtime->boundary)
250 hw_base = 0;
251 new_hw_ptr = hw_base + pos;
252 }
253 }
254
255 /* Do jiffies check only in xrun_debug mode */
256 if (!xrun_debug(substream, 4))
257 goto no_jiffies_check;
258
259 /* Skip the jiffies check for hardwares with BATCH flag.
260 * Such hardware usually just increases the position at each IRQ,
261 * thus it can't give any strange position.
262 */
263 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
264 goto no_jiffies_check;
265 hdelta = new_hw_ptr - old_hw_ptr;
266 if (hdelta < runtime->delay)
267 goto no_jiffies_check;
268 hdelta -= runtime->delay;
269 jdelta = jiffies - runtime->hw_ptr_jiffies;
270 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
271 delta = jdelta /
272 (((runtime->period_size * HZ) / runtime->rate)
273 + HZ/100);
274 hw_ptr_error(substream,
275 "hw_ptr skipping! [Q] "
276 "(pos=%ld, delta=%ld, period=%ld, "
277 "jdelta=%lu/%lu/%lu)\n",
278 (long)pos, (long)hdelta,
279 (long)runtime->period_size, jdelta,
280 ((hdelta * HZ) / runtime->rate), delta);
281 hw_ptr_interrupt = runtime->hw_ptr_interrupt +
282 runtime->period_size * delta;
283 if (hw_ptr_interrupt >= runtime->boundary)
284 hw_ptr_interrupt -= runtime->boundary;
285 /* rebase to interrupt position */
286 hw_base = new_hw_ptr = hw_ptr_interrupt;
287 /* align hw_base to buffer_size */
288 hw_base -= hw_base % runtime->buffer_size;
289 delta = 0;
290 }
291 no_jiffies_check:
292 if (delta > runtime->period_size + runtime->period_size / 2) {
293 hw_ptr_error(substream,
294 "Lost interrupts? "
295 "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
296 substream->stream, (long)delta,
297 (long)hw_ptr_interrupt);
298 /* rebase hw_ptr_interrupt */
299 hw_ptr_interrupt =
300 new_hw_ptr - new_hw_ptr % runtime->period_size;
301 }
302 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
303 runtime->silence_size > 0)
304 snd_pcm_playback_silence(substream, new_hw_ptr);
305
306 if (runtime->status->hw_ptr == new_hw_ptr)
307 return 0;
308
309 runtime->hw_ptr_base = hw_base;
310 runtime->status->hw_ptr = new_hw_ptr;
311 runtime->hw_ptr_jiffies = jiffies;
312 runtime->hw_ptr_interrupt = hw_ptr_interrupt;
313 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
314 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
315
316 return snd_pcm_update_hw_ptr_post(substream, runtime);
317 }
318
319 /* CAUTION: call it with irq disabled */
320 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
321 {
322 struct snd_pcm_runtime *runtime = substream->runtime;
323 snd_pcm_uframes_t pos;
324 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
325 snd_pcm_sframes_t delta;
326 unsigned long jdelta;
327
328 old_hw_ptr = runtime->status->hw_ptr;
329 pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
330 if (pos == SNDRV_PCM_POS_XRUN) {
331 xrun(substream);
332 return -EPIPE;
333 }
334 hw_base = runtime->hw_ptr_base;
335 new_hw_ptr = hw_base + pos;
336
337 delta = new_hw_ptr - old_hw_ptr;
338 jdelta = jiffies - runtime->hw_ptr_jiffies;
339 if (delta < 0) {
340 delta += runtime->buffer_size;
341 if (delta < 0) {
342 hw_ptr_error(substream,
343 "Unexpected hw_pointer value [2] "
344 "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
345 substream->stream, (long)pos,
346 (long)old_hw_ptr, jdelta);
347 return 0;
348 }
349 hw_base += runtime->buffer_size;
350 if (hw_base >= runtime->boundary)
351 hw_base = 0;
352 new_hw_ptr = hw_base + pos;
353 }
354 /* Do jiffies check only in xrun_debug mode */
355 if (!xrun_debug(substream, 4))
356 goto no_jiffies_check;
357 if (delta < runtime->delay)
358 goto no_jiffies_check;
359 delta -= runtime->delay;
360 if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
361 hw_ptr_error(substream,
362 "hw_ptr skipping! "
363 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
364 (long)pos, (long)delta,
365 (long)runtime->period_size, jdelta,
366 ((delta * HZ) / runtime->rate));
367 return 0;
368 }
369 no_jiffies_check:
370 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
371 runtime->silence_size > 0)
372 snd_pcm_playback_silence(substream, new_hw_ptr);
373
374 if (runtime->status->hw_ptr != new_hw_ptr)
375 return 0;
376
377 runtime->hw_ptr_base = hw_base;
378 runtime->status->hw_ptr = new_hw_ptr;
379 runtime->hw_ptr_jiffies = jiffies;
380 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
381 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
382
383 return snd_pcm_update_hw_ptr_post(substream, runtime);
384 }
385
386 /**
387 * snd_pcm_set_ops - set the PCM operators
388 * @pcm: the pcm instance
389 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
390 * @ops: the operator table
391 *
392 * Sets the given PCM operators to the pcm instance.
393 */
394 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
395 {
396 struct snd_pcm_str *stream = &pcm->streams[direction];
397 struct snd_pcm_substream *substream;
398
399 for (substream = stream->substream; substream != NULL; substream = substream->next)
400 substream->ops = ops;
401 }
402
403 EXPORT_SYMBOL(snd_pcm_set_ops);
404
405 /**
406 * snd_pcm_sync - set the PCM sync id
407 * @substream: the pcm substream
408 *
409 * Sets the PCM sync identifier for the card.
410 */
411 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
412 {
413 struct snd_pcm_runtime *runtime = substream->runtime;
414
415 runtime->sync.id32[0] = substream->pcm->card->number;
416 runtime->sync.id32[1] = -1;
417 runtime->sync.id32[2] = -1;
418 runtime->sync.id32[3] = -1;
419 }
420
421 EXPORT_SYMBOL(snd_pcm_set_sync);
422
423 /*
424 * Standard ioctl routine
425 */
426
427 static inline unsigned int div32(unsigned int a, unsigned int b,
428 unsigned int *r)
429 {
430 if (b == 0) {
431 *r = 0;
432 return UINT_MAX;
433 }
434 *r = a % b;
435 return a / b;
436 }
437
438 static inline unsigned int div_down(unsigned int a, unsigned int b)
439 {
440 if (b == 0)
441 return UINT_MAX;
442 return a / b;
443 }
444
445 static inline unsigned int div_up(unsigned int a, unsigned int b)
446 {
447 unsigned int r;
448 unsigned int q;
449 if (b == 0)
450 return UINT_MAX;
451 q = div32(a, b, &r);
452 if (r)
453 ++q;
454 return q;
455 }
456
457 static inline unsigned int mul(unsigned int a, unsigned int b)
458 {
459 if (a == 0)
460 return 0;
461 if (div_down(UINT_MAX, a) < b)
462 return UINT_MAX;
463 return a * b;
464 }
465
466 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
467 unsigned int c, unsigned int *r)
468 {
469 u_int64_t n = (u_int64_t) a * b;
470 if (c == 0) {
471 snd_BUG_ON(!n);
472 *r = 0;
473 return UINT_MAX;
474 }
475 div64_32(&n, c, r);
476 if (n >= UINT_MAX) {
477 *r = 0;
478 return UINT_MAX;
479 }
480 return n;
481 }
482
483 /**
484 * snd_interval_refine - refine the interval value of configurator
485 * @i: the interval value to refine
486 * @v: the interval value to refer to
487 *
488 * Refines the interval value with the reference value.
489 * The interval is changed to the range satisfying both intervals.
490 * The interval status (min, max, integer, etc.) are evaluated.
491 *
492 * Returns non-zero if the value is changed, zero if not changed.
493 */
494 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
495 {
496 int changed = 0;
497 if (snd_BUG_ON(snd_interval_empty(i)))
498 return -EINVAL;
499 if (i->min < v->min) {
500 i->min = v->min;
501 i->openmin = v->openmin;
502 changed = 1;
503 } else if (i->min == v->min && !i->openmin && v->openmin) {
504 i->openmin = 1;
505 changed = 1;
506 }
507 if (i->max > v->max) {
508 i->max = v->max;
509 i->openmax = v->openmax;
510 changed = 1;
511 } else if (i->max == v->max && !i->openmax && v->openmax) {
512 i->openmax = 1;
513 changed = 1;
514 }
515 if (!i->integer && v->integer) {
516 i->integer = 1;
517 changed = 1;
518 }
519 if (i->integer) {
520 if (i->openmin) {
521 i->min++;
522 i->openmin = 0;
523 }
524 if (i->openmax) {
525 i->max--;
526 i->openmax = 0;
527 }
528 } else if (!i->openmin && !i->openmax && i->min == i->max)
529 i->integer = 1;
530 if (snd_interval_checkempty(i)) {
531 snd_interval_none(i);
532 return -EINVAL;
533 }
534 return changed;
535 }
536
537 EXPORT_SYMBOL(snd_interval_refine);
538
539 static int snd_interval_refine_first(struct snd_interval *i)
540 {
541 if (snd_BUG_ON(snd_interval_empty(i)))
542 return -EINVAL;
543 if (snd_interval_single(i))
544 return 0;
545 i->max = i->min;
546 i->openmax = i->openmin;
547 if (i->openmax)
548 i->max++;
549 return 1;
550 }
551
552 static int snd_interval_refine_last(struct snd_interval *i)
553 {
554 if (snd_BUG_ON(snd_interval_empty(i)))
555 return -EINVAL;
556 if (snd_interval_single(i))
557 return 0;
558 i->min = i->max;
559 i->openmin = i->openmax;
560 if (i->openmin)
561 i->min--;
562 return 1;
563 }
564
565 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
566 {
567 if (a->empty || b->empty) {
568 snd_interval_none(c);
569 return;
570 }
571 c->empty = 0;
572 c->min = mul(a->min, b->min);
573 c->openmin = (a->openmin || b->openmin);
574 c->max = mul(a->max, b->max);
575 c->openmax = (a->openmax || b->openmax);
576 c->integer = (a->integer && b->integer);
577 }
578
579 /**
580 * snd_interval_div - refine the interval value with division
581 * @a: dividend
582 * @b: divisor
583 * @c: quotient
584 *
585 * c = a / b
586 *
587 * Returns non-zero if the value is changed, zero if not changed.
588 */
589 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
590 {
591 unsigned int r;
592 if (a->empty || b->empty) {
593 snd_interval_none(c);
594 return;
595 }
596 c->empty = 0;
597 c->min = div32(a->min, b->max, &r);
598 c->openmin = (r || a->openmin || b->openmax);
599 if (b->min > 0) {
600 c->max = div32(a->max, b->min, &r);
601 if (r) {
602 c->max++;
603 c->openmax = 1;
604 } else
605 c->openmax = (a->openmax || b->openmin);
606 } else {
607 c->max = UINT_MAX;
608 c->openmax = 0;
609 }
610 c->integer = 0;
611 }
612
613 /**
614 * snd_interval_muldivk - refine the interval value
615 * @a: dividend 1
616 * @b: dividend 2
617 * @k: divisor (as integer)
618 * @c: result
619 *
620 * c = a * b / k
621 *
622 * Returns non-zero if the value is changed, zero if not changed.
623 */
624 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
625 unsigned int k, struct snd_interval *c)
626 {
627 unsigned int r;
628 if (a->empty || b->empty) {
629 snd_interval_none(c);
630 return;
631 }
632 c->empty = 0;
633 c->min = muldiv32(a->min, b->min, k, &r);
634 c->openmin = (r || a->openmin || b->openmin);
635 c->max = muldiv32(a->max, b->max, k, &r);
636 if (r) {
637 c->max++;
638 c->openmax = 1;
639 } else
640 c->openmax = (a->openmax || b->openmax);
641 c->integer = 0;
642 }
643
644 /**
645 * snd_interval_mulkdiv - refine the interval value
646 * @a: dividend 1
647 * @k: dividend 2 (as integer)
648 * @b: divisor
649 * @c: result
650 *
651 * c = a * k / b
652 *
653 * Returns non-zero if the value is changed, zero if not changed.
654 */
655 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
656 const struct snd_interval *b, struct snd_interval *c)
657 {
658 unsigned int r;
659 if (a->empty || b->empty) {
660 snd_interval_none(c);
661 return;
662 }
663 c->empty = 0;
664 c->min = muldiv32(a->min, k, b->max, &r);
665 c->openmin = (r || a->openmin || b->openmax);
666 if (b->min > 0) {
667 c->max = muldiv32(a->max, k, b->min, &r);
668 if (r) {
669 c->max++;
670 c->openmax = 1;
671 } else
672 c->openmax = (a->openmax || b->openmin);
673 } else {
674 c->max = UINT_MAX;
675 c->openmax = 0;
676 }
677 c->integer = 0;
678 }
679
680 /* ---- */
681
682
683 /**
684 * snd_interval_ratnum - refine the interval value
685 * @i: interval to refine
686 * @rats_count: number of ratnum_t
687 * @rats: ratnum_t array
688 * @nump: pointer to store the resultant numerator
689 * @denp: pointer to store the resultant denominator
690 *
691 * Returns non-zero if the value is changed, zero if not changed.
692 */
693 int snd_interval_ratnum(struct snd_interval *i,
694 unsigned int rats_count, struct snd_ratnum *rats,
695 unsigned int *nump, unsigned int *denp)
696 {
697 unsigned int best_num, best_diff, best_den;
698 unsigned int k;
699 struct snd_interval t;
700 int err;
701
702 best_num = best_den = best_diff = 0;
703 for (k = 0; k < rats_count; ++k) {
704 unsigned int num = rats[k].num;
705 unsigned int den;
706 unsigned int q = i->min;
707 int diff;
708 if (q == 0)
709 q = 1;
710 den = div_down(num, q);
711 if (den < rats[k].den_min)
712 continue;
713 if (den > rats[k].den_max)
714 den = rats[k].den_max;
715 else {
716 unsigned int r;
717 r = (den - rats[k].den_min) % rats[k].den_step;
718 if (r != 0)
719 den -= r;
720 }
721 diff = num - q * den;
722 if (best_num == 0 ||
723 diff * best_den < best_diff * den) {
724 best_diff = diff;
725 best_den = den;
726 best_num = num;
727 }
728 }
729 if (best_den == 0) {
730 i->empty = 1;
731 return -EINVAL;
732 }
733 t.min = div_down(best_num, best_den);
734 t.openmin = !!(best_num % best_den);
735
736 best_num = best_den = best_diff = 0;
737 for (k = 0; k < rats_count; ++k) {
738 unsigned int num = rats[k].num;
739 unsigned int den;
740 unsigned int q = i->max;
741 int diff;
742 if (q == 0) {
743 i->empty = 1;
744 return -EINVAL;
745 }
746 den = div_up(num, q);
747 if (den > rats[k].den_max)
748 continue;
749 if (den < rats[k].den_min)
750 den = rats[k].den_min;
751 else {
752 unsigned int r;
753 r = (den - rats[k].den_min) % rats[k].den_step;
754 if (r != 0)
755 den += rats[k].den_step - r;
756 }
757 diff = q * den - num;
758 if (best_num == 0 ||
759 diff * best_den < best_diff * den) {
760 best_diff = diff;
761 best_den = den;
762 best_num = num;
763 }
764 }
765 if (best_den == 0) {
766 i->empty = 1;
767 return -EINVAL;
768 }
769 t.max = div_up(best_num, best_den);
770 t.openmax = !!(best_num % best_den);
771 t.integer = 0;
772 err = snd_interval_refine(i, &t);
773 if (err < 0)
774 return err;
775
776 if (snd_interval_single(i)) {
777 if (nump)
778 *nump = best_num;
779 if (denp)
780 *denp = best_den;
781 }
782 return err;
783 }
784
785 EXPORT_SYMBOL(snd_interval_ratnum);
786
787 /**
788 * snd_interval_ratden - refine the interval value
789 * @i: interval to refine
790 * @rats_count: number of struct ratden
791 * @rats: struct ratden array
792 * @nump: pointer to store the resultant numerator
793 * @denp: pointer to store the resultant denominator
794 *
795 * Returns non-zero if the value is changed, zero if not changed.
796 */
797 static int snd_interval_ratden(struct snd_interval *i,
798 unsigned int rats_count, struct snd_ratden *rats,
799 unsigned int *nump, unsigned int *denp)
800 {
801 unsigned int best_num, best_diff, best_den;
802 unsigned int k;
803 struct snd_interval t;
804 int err;
805
806 best_num = best_den = best_diff = 0;
807 for (k = 0; k < rats_count; ++k) {
808 unsigned int num;
809 unsigned int den = rats[k].den;
810 unsigned int q = i->min;
811 int diff;
812 num = mul(q, den);
813 if (num > rats[k].num_max)
814 continue;
815 if (num < rats[k].num_min)
816 num = rats[k].num_max;
817 else {
818 unsigned int r;
819 r = (num - rats[k].num_min) % rats[k].num_step;
820 if (r != 0)
821 num += rats[k].num_step - r;
822 }
823 diff = num - q * den;
824 if (best_num == 0 ||
825 diff * best_den < best_diff * den) {
826 best_diff = diff;
827 best_den = den;
828 best_num = num;
829 }
830 }
831 if (best_den == 0) {
832 i->empty = 1;
833 return -EINVAL;
834 }
835 t.min = div_down(best_num, best_den);
836 t.openmin = !!(best_num % best_den);
837
838 best_num = best_den = best_diff = 0;
839 for (k = 0; k < rats_count; ++k) {
840 unsigned int num;
841 unsigned int den = rats[k].den;
842 unsigned int q = i->max;
843 int diff;
844 num = mul(q, den);
845 if (num < rats[k].num_min)
846 continue;
847 if (num > rats[k].num_max)
848 num = rats[k].num_max;
849 else {
850 unsigned int r;
851 r = (num - rats[k].num_min) % rats[k].num_step;
852 if (r != 0)
853 num -= r;
854 }
855 diff = q * den - num;
856 if (best_num == 0 ||
857 diff * best_den < best_diff * den) {
858 best_diff = diff;
859 best_den = den;
860 best_num = num;
861 }
862 }
863 if (best_den == 0) {
864 i->empty = 1;
865 return -EINVAL;
866 }
867 t.max = div_up(best_num, best_den);
868 t.openmax = !!(best_num % best_den);
869 t.integer = 0;
870 err = snd_interval_refine(i, &t);
871 if (err < 0)
872 return err;
873
874 if (snd_interval_single(i)) {
875 if (nump)
876 *nump = best_num;
877 if (denp)
878 *denp = best_den;
879 }
880 return err;
881 }
882
883 /**
884 * snd_interval_list - refine the interval value from the list
885 * @i: the interval value to refine
886 * @count: the number of elements in the list
887 * @list: the value list
888 * @mask: the bit-mask to evaluate
889 *
890 * Refines the interval value from the list.
891 * When mask is non-zero, only the elements corresponding to bit 1 are
892 * evaluated.
893 *
894 * Returns non-zero if the value is changed, zero if not changed.
895 */
896 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
897 {
898 unsigned int k;
899 int changed = 0;
900
901 if (!count) {
902 i->empty = 1;
903 return -EINVAL;
904 }
905 for (k = 0; k < count; k++) {
906 if (mask && !(mask & (1 << k)))
907 continue;
908 if (i->min == list[k] && !i->openmin)
909 goto _l1;
910 if (i->min < list[k]) {
911 i->min = list[k];
912 i->openmin = 0;
913 changed = 1;
914 goto _l1;
915 }
916 }
917 i->empty = 1;
918 return -EINVAL;
919 _l1:
920 for (k = count; k-- > 0;) {
921 if (mask && !(mask & (1 << k)))
922 continue;
923 if (i->max == list[k] && !i->openmax)
924 goto _l2;
925 if (i->max > list[k]) {
926 i->max = list[k];
927 i->openmax = 0;
928 changed = 1;
929 goto _l2;
930 }
931 }
932 i->empty = 1;
933 return -EINVAL;
934 _l2:
935 if (snd_interval_checkempty(i)) {
936 i->empty = 1;
937 return -EINVAL;
938 }
939 return changed;
940 }
941
942 EXPORT_SYMBOL(snd_interval_list);
943
944 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
945 {
946 unsigned int n;
947 int changed = 0;
948 n = (i->min - min) % step;
949 if (n != 0 || i->openmin) {
950 i->min += step - n;
951 changed = 1;
952 }
953 n = (i->max - min) % step;
954 if (n != 0 || i->openmax) {
955 i->max -= n;
956 changed = 1;
957 }
958 if (snd_interval_checkempty(i)) {
959 i->empty = 1;
960 return -EINVAL;
961 }
962 return changed;
963 }
964
965 /* Info constraints helpers */
966
967 /**
968 * snd_pcm_hw_rule_add - add the hw-constraint rule
969 * @runtime: the pcm runtime instance
970 * @cond: condition bits
971 * @var: the variable to evaluate
972 * @func: the evaluation function
973 * @private: the private data pointer passed to function
974 * @dep: the dependent variables
975 *
976 * Returns zero if successful, or a negative error code on failure.
977 */
978 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
979 int var,
980 snd_pcm_hw_rule_func_t func, void *private,
981 int dep, ...)
982 {
983 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
984 struct snd_pcm_hw_rule *c;
985 unsigned int k;
986 va_list args;
987 va_start(args, dep);
988 if (constrs->rules_num >= constrs->rules_all) {
989 struct snd_pcm_hw_rule *new;
990 unsigned int new_rules = constrs->rules_all + 16;
991 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
992 if (!new)
993 return -ENOMEM;
994 if (constrs->rules) {
995 memcpy(new, constrs->rules,
996 constrs->rules_num * sizeof(*c));
997 kfree(constrs->rules);
998 }
999 constrs->rules = new;
1000 constrs->rules_all = new_rules;
1001 }
1002 c = &constrs->rules[constrs->rules_num];
1003 c->cond = cond;
1004 c->func = func;
1005 c->var = var;
1006 c->private = private;
1007 k = 0;
1008 while (1) {
1009 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1010 return -EINVAL;
1011 c->deps[k++] = dep;
1012 if (dep < 0)
1013 break;
1014 dep = va_arg(args, int);
1015 }
1016 constrs->rules_num++;
1017 va_end(args);
1018 return 0;
1019 }
1020
1021 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1022
1023 /**
1024 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1025 * @runtime: PCM runtime instance
1026 * @var: hw_params variable to apply the mask
1027 * @mask: the bitmap mask
1028 *
1029 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1030 */
1031 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1032 u_int32_t mask)
1033 {
1034 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1035 struct snd_mask *maskp = constrs_mask(constrs, var);
1036 *maskp->bits &= mask;
1037 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1038 if (*maskp->bits == 0)
1039 return -EINVAL;
1040 return 0;
1041 }
1042
1043 /**
1044 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1045 * @runtime: PCM runtime instance
1046 * @var: hw_params variable to apply the mask
1047 * @mask: the 64bit bitmap mask
1048 *
1049 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1050 */
1051 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1052 u_int64_t mask)
1053 {
1054 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1055 struct snd_mask *maskp = constrs_mask(constrs, var);
1056 maskp->bits[0] &= (u_int32_t)mask;
1057 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1058 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1059 if (! maskp->bits[0] && ! maskp->bits[1])
1060 return -EINVAL;
1061 return 0;
1062 }
1063
1064 /**
1065 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1066 * @runtime: PCM runtime instance
1067 * @var: hw_params variable to apply the integer constraint
1068 *
1069 * Apply the constraint of integer to an interval parameter.
1070 */
1071 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1072 {
1073 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1074 return snd_interval_setinteger(constrs_interval(constrs, var));
1075 }
1076
1077 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1078
1079 /**
1080 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1081 * @runtime: PCM runtime instance
1082 * @var: hw_params variable to apply the range
1083 * @min: the minimal value
1084 * @max: the maximal value
1085 *
1086 * Apply the min/max range constraint to an interval parameter.
1087 */
1088 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1089 unsigned int min, unsigned int max)
1090 {
1091 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1092 struct snd_interval t;
1093 t.min = min;
1094 t.max = max;
1095 t.openmin = t.openmax = 0;
1096 t.integer = 0;
1097 return snd_interval_refine(constrs_interval(constrs, var), &t);
1098 }
1099
1100 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1101
1102 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1103 struct snd_pcm_hw_rule *rule)
1104 {
1105 struct snd_pcm_hw_constraint_list *list = rule->private;
1106 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1107 }
1108
1109
1110 /**
1111 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1112 * @runtime: PCM runtime instance
1113 * @cond: condition bits
1114 * @var: hw_params variable to apply the list constraint
1115 * @l: list
1116 *
1117 * Apply the list of constraints to an interval parameter.
1118 */
1119 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1120 unsigned int cond,
1121 snd_pcm_hw_param_t var,
1122 struct snd_pcm_hw_constraint_list *l)
1123 {
1124 return snd_pcm_hw_rule_add(runtime, cond, var,
1125 snd_pcm_hw_rule_list, l,
1126 var, -1);
1127 }
1128
1129 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1130
1131 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1132 struct snd_pcm_hw_rule *rule)
1133 {
1134 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1135 unsigned int num = 0, den = 0;
1136 int err;
1137 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1138 r->nrats, r->rats, &num, &den);
1139 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1140 params->rate_num = num;
1141 params->rate_den = den;
1142 }
1143 return err;
1144 }
1145
1146 /**
1147 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1148 * @runtime: PCM runtime instance
1149 * @cond: condition bits
1150 * @var: hw_params variable to apply the ratnums constraint
1151 * @r: struct snd_ratnums constriants
1152 */
1153 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1154 unsigned int cond,
1155 snd_pcm_hw_param_t var,
1156 struct snd_pcm_hw_constraint_ratnums *r)
1157 {
1158 return snd_pcm_hw_rule_add(runtime, cond, var,
1159 snd_pcm_hw_rule_ratnums, r,
1160 var, -1);
1161 }
1162
1163 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1164
1165 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1166 struct snd_pcm_hw_rule *rule)
1167 {
1168 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1169 unsigned int num = 0, den = 0;
1170 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1171 r->nrats, r->rats, &num, &den);
1172 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1173 params->rate_num = num;
1174 params->rate_den = den;
1175 }
1176 return err;
1177 }
1178
1179 /**
1180 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1181 * @runtime: PCM runtime instance
1182 * @cond: condition bits
1183 * @var: hw_params variable to apply the ratdens constraint
1184 * @r: struct snd_ratdens constriants
1185 */
1186 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1187 unsigned int cond,
1188 snd_pcm_hw_param_t var,
1189 struct snd_pcm_hw_constraint_ratdens *r)
1190 {
1191 return snd_pcm_hw_rule_add(runtime, cond, var,
1192 snd_pcm_hw_rule_ratdens, r,
1193 var, -1);
1194 }
1195
1196 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1197
1198 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1199 struct snd_pcm_hw_rule *rule)
1200 {
1201 unsigned int l = (unsigned long) rule->private;
1202 int width = l & 0xffff;
1203 unsigned int msbits = l >> 16;
1204 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1205 if (snd_interval_single(i) && snd_interval_value(i) == width)
1206 params->msbits = msbits;
1207 return 0;
1208 }
1209
1210 /**
1211 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1212 * @runtime: PCM runtime instance
1213 * @cond: condition bits
1214 * @width: sample bits width
1215 * @msbits: msbits width
1216 */
1217 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1218 unsigned int cond,
1219 unsigned int width,
1220 unsigned int msbits)
1221 {
1222 unsigned long l = (msbits << 16) | width;
1223 return snd_pcm_hw_rule_add(runtime, cond, -1,
1224 snd_pcm_hw_rule_msbits,
1225 (void*) l,
1226 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1227 }
1228
1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1230
1231 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1232 struct snd_pcm_hw_rule *rule)
1233 {
1234 unsigned long step = (unsigned long) rule->private;
1235 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1236 }
1237
1238 /**
1239 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1240 * @runtime: PCM runtime instance
1241 * @cond: condition bits
1242 * @var: hw_params variable to apply the step constraint
1243 * @step: step size
1244 */
1245 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1246 unsigned int cond,
1247 snd_pcm_hw_param_t var,
1248 unsigned long step)
1249 {
1250 return snd_pcm_hw_rule_add(runtime, cond, var,
1251 snd_pcm_hw_rule_step, (void *) step,
1252 var, -1);
1253 }
1254
1255 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1256
1257 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1258 {
1259 static unsigned int pow2_sizes[] = {
1260 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1261 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1262 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1263 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1264 };
1265 return snd_interval_list(hw_param_interval(params, rule->var),
1266 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1267 }
1268
1269 /**
1270 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1271 * @runtime: PCM runtime instance
1272 * @cond: condition bits
1273 * @var: hw_params variable to apply the power-of-2 constraint
1274 */
1275 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1276 unsigned int cond,
1277 snd_pcm_hw_param_t var)
1278 {
1279 return snd_pcm_hw_rule_add(runtime, cond, var,
1280 snd_pcm_hw_rule_pow2, NULL,
1281 var, -1);
1282 }
1283
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1285
1286 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1287 snd_pcm_hw_param_t var)
1288 {
1289 if (hw_is_mask(var)) {
1290 snd_mask_any(hw_param_mask(params, var));
1291 params->cmask |= 1 << var;
1292 params->rmask |= 1 << var;
1293 return;
1294 }
1295 if (hw_is_interval(var)) {
1296 snd_interval_any(hw_param_interval(params, var));
1297 params->cmask |= 1 << var;
1298 params->rmask |= 1 << var;
1299 return;
1300 }
1301 snd_BUG();
1302 }
1303
1304 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1305 {
1306 unsigned int k;
1307 memset(params, 0, sizeof(*params));
1308 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1309 _snd_pcm_hw_param_any(params, k);
1310 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1311 _snd_pcm_hw_param_any(params, k);
1312 params->info = ~0U;
1313 }
1314
1315 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1316
1317 /**
1318 * snd_pcm_hw_param_value - return @params field @var value
1319 * @params: the hw_params instance
1320 * @var: parameter to retrieve
1321 * @dir: pointer to the direction (-1,0,1) or %NULL
1322 *
1323 * Return the value for field @var if it's fixed in configuration space
1324 * defined by @params. Return -%EINVAL otherwise.
1325 */
1326 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1327 snd_pcm_hw_param_t var, int *dir)
1328 {
1329 if (hw_is_mask(var)) {
1330 const struct snd_mask *mask = hw_param_mask_c(params, var);
1331 if (!snd_mask_single(mask))
1332 return -EINVAL;
1333 if (dir)
1334 *dir = 0;
1335 return snd_mask_value(mask);
1336 }
1337 if (hw_is_interval(var)) {
1338 const struct snd_interval *i = hw_param_interval_c(params, var);
1339 if (!snd_interval_single(i))
1340 return -EINVAL;
1341 if (dir)
1342 *dir = i->openmin;
1343 return snd_interval_value(i);
1344 }
1345 return -EINVAL;
1346 }
1347
1348 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1349
1350 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1351 snd_pcm_hw_param_t var)
1352 {
1353 if (hw_is_mask(var)) {
1354 snd_mask_none(hw_param_mask(params, var));
1355 params->cmask |= 1 << var;
1356 params->rmask |= 1 << var;
1357 } else if (hw_is_interval(var)) {
1358 snd_interval_none(hw_param_interval(params, var));
1359 params->cmask |= 1 << var;
1360 params->rmask |= 1 << var;
1361 } else {
1362 snd_BUG();
1363 }
1364 }
1365
1366 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1367
1368 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1369 snd_pcm_hw_param_t var)
1370 {
1371 int changed;
1372 if (hw_is_mask(var))
1373 changed = snd_mask_refine_first(hw_param_mask(params, var));
1374 else if (hw_is_interval(var))
1375 changed = snd_interval_refine_first(hw_param_interval(params, var));
1376 else
1377 return -EINVAL;
1378 if (changed) {
1379 params->cmask |= 1 << var;
1380 params->rmask |= 1 << var;
1381 }
1382 return changed;
1383 }
1384
1385
1386 /**
1387 * snd_pcm_hw_param_first - refine config space and return minimum value
1388 * @pcm: PCM instance
1389 * @params: the hw_params instance
1390 * @var: parameter to retrieve
1391 * @dir: pointer to the direction (-1,0,1) or %NULL
1392 *
1393 * Inside configuration space defined by @params remove from @var all
1394 * values > minimum. Reduce configuration space accordingly.
1395 * Return the minimum.
1396 */
1397 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1398 struct snd_pcm_hw_params *params,
1399 snd_pcm_hw_param_t var, int *dir)
1400 {
1401 int changed = _snd_pcm_hw_param_first(params, var);
1402 if (changed < 0)
1403 return changed;
1404 if (params->rmask) {
1405 int err = snd_pcm_hw_refine(pcm, params);
1406 if (snd_BUG_ON(err < 0))
1407 return err;
1408 }
1409 return snd_pcm_hw_param_value(params, var, dir);
1410 }
1411
1412 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1413
1414 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1415 snd_pcm_hw_param_t var)
1416 {
1417 int changed;
1418 if (hw_is_mask(var))
1419 changed = snd_mask_refine_last(hw_param_mask(params, var));
1420 else if (hw_is_interval(var))
1421 changed = snd_interval_refine_last(hw_param_interval(params, var));
1422 else
1423 return -EINVAL;
1424 if (changed) {
1425 params->cmask |= 1 << var;
1426 params->rmask |= 1 << var;
1427 }
1428 return changed;
1429 }
1430
1431
1432 /**
1433 * snd_pcm_hw_param_last - refine config space and return maximum value
1434 * @pcm: PCM instance
1435 * @params: the hw_params instance
1436 * @var: parameter to retrieve
1437 * @dir: pointer to the direction (-1,0,1) or %NULL
1438 *
1439 * Inside configuration space defined by @params remove from @var all
1440 * values < maximum. Reduce configuration space accordingly.
1441 * Return the maximum.
1442 */
1443 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1444 struct snd_pcm_hw_params *params,
1445 snd_pcm_hw_param_t var, int *dir)
1446 {
1447 int changed = _snd_pcm_hw_param_last(params, var);
1448 if (changed < 0)
1449 return changed;
1450 if (params->rmask) {
1451 int err = snd_pcm_hw_refine(pcm, params);
1452 if (snd_BUG_ON(err < 0))
1453 return err;
1454 }
1455 return snd_pcm_hw_param_value(params, var, dir);
1456 }
1457
1458 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1459
1460 /**
1461 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1462 * @pcm: PCM instance
1463 * @params: the hw_params instance
1464 *
1465 * Choose one configuration from configuration space defined by @params.
1466 * The configuration chosen is that obtained fixing in this order:
1467 * first access, first format, first subformat, min channels,
1468 * min rate, min period time, max buffer size, min tick time
1469 */
1470 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1471 struct snd_pcm_hw_params *params)
1472 {
1473 static int vars[] = {
1474 SNDRV_PCM_HW_PARAM_ACCESS,
1475 SNDRV_PCM_HW_PARAM_FORMAT,
1476 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1477 SNDRV_PCM_HW_PARAM_CHANNELS,
1478 SNDRV_PCM_HW_PARAM_RATE,
1479 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1480 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1481 SNDRV_PCM_HW_PARAM_TICK_TIME,
1482 -1
1483 };
1484 int err, *v;
1485
1486 for (v = vars; *v != -1; v++) {
1487 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1488 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1489 else
1490 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1491 if (snd_BUG_ON(err < 0))
1492 return err;
1493 }
1494 return 0;
1495 }
1496
1497 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1498 void *arg)
1499 {
1500 struct snd_pcm_runtime *runtime = substream->runtime;
1501 unsigned long flags;
1502 snd_pcm_stream_lock_irqsave(substream, flags);
1503 if (snd_pcm_running(substream) &&
1504 snd_pcm_update_hw_ptr(substream) >= 0)
1505 runtime->status->hw_ptr %= runtime->buffer_size;
1506 else
1507 runtime->status->hw_ptr = 0;
1508 snd_pcm_stream_unlock_irqrestore(substream, flags);
1509 return 0;
1510 }
1511
1512 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1513 void *arg)
1514 {
1515 struct snd_pcm_channel_info *info = arg;
1516 struct snd_pcm_runtime *runtime = substream->runtime;
1517 int width;
1518 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1519 info->offset = -1;
1520 return 0;
1521 }
1522 width = snd_pcm_format_physical_width(runtime->format);
1523 if (width < 0)
1524 return width;
1525 info->offset = 0;
1526 switch (runtime->access) {
1527 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1528 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1529 info->first = info->channel * width;
1530 info->step = runtime->channels * width;
1531 break;
1532 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1533 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1534 {
1535 size_t size = runtime->dma_bytes / runtime->channels;
1536 info->first = info->channel * size * 8;
1537 info->step = width;
1538 break;
1539 }
1540 default:
1541 snd_BUG();
1542 break;
1543 }
1544 return 0;
1545 }
1546
1547 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1548 void *arg)
1549 {
1550 struct snd_pcm_hw_params *params = arg;
1551 snd_pcm_format_t format;
1552 int channels, width;
1553
1554 params->fifo_size = substream->runtime->hw.fifo_size;
1555 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1556 format = params_format(params);
1557 channels = params_channels(params);
1558 width = snd_pcm_format_physical_width(format);
1559 params->fifo_size /= width * channels;
1560 }
1561 return 0;
1562 }
1563
1564 /**
1565 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1566 * @substream: the pcm substream instance
1567 * @cmd: ioctl command
1568 * @arg: ioctl argument
1569 *
1570 * Processes the generic ioctl commands for PCM.
1571 * Can be passed as the ioctl callback for PCM ops.
1572 *
1573 * Returns zero if successful, or a negative error code on failure.
1574 */
1575 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1576 unsigned int cmd, void *arg)
1577 {
1578 switch (cmd) {
1579 case SNDRV_PCM_IOCTL1_INFO:
1580 return 0;
1581 case SNDRV_PCM_IOCTL1_RESET:
1582 return snd_pcm_lib_ioctl_reset(substream, arg);
1583 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1584 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1585 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1586 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1587 }
1588 return -ENXIO;
1589 }
1590
1591 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1592
1593 /**
1594 * snd_pcm_period_elapsed - update the pcm status for the next period
1595 * @substream: the pcm substream instance
1596 *
1597 * This function is called from the interrupt handler when the
1598 * PCM has processed the period size. It will update the current
1599 * pointer, wake up sleepers, etc.
1600 *
1601 * Even if more than one periods have elapsed since the last call, you
1602 * have to call this only once.
1603 */
1604 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1605 {
1606 struct snd_pcm_runtime *runtime;
1607 unsigned long flags;
1608
1609 if (PCM_RUNTIME_CHECK(substream))
1610 return;
1611 runtime = substream->runtime;
1612
1613 if (runtime->transfer_ack_begin)
1614 runtime->transfer_ack_begin(substream);
1615
1616 snd_pcm_stream_lock_irqsave(substream, flags);
1617 if (!snd_pcm_running(substream) ||
1618 snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1619 goto _end;
1620
1621 if (substream->timer_running)
1622 snd_timer_interrupt(substream->timer, 1);
1623 _end:
1624 snd_pcm_stream_unlock_irqrestore(substream, flags);
1625 if (runtime->transfer_ack_end)
1626 runtime->transfer_ack_end(substream);
1627 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1628 }
1629
1630 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1631
1632 /*
1633 * Wait until avail_min data becomes available
1634 * Returns a negative error code if any error occurs during operation.
1635 * The available space is stored on availp. When err = 0 and avail = 0
1636 * on the capture stream, it indicates the stream is in DRAINING state.
1637 */
1638 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1639 snd_pcm_uframes_t *availp)
1640 {
1641 struct snd_pcm_runtime *runtime = substream->runtime;
1642 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1643 wait_queue_t wait;
1644 int err = 0;
1645 snd_pcm_uframes_t avail = 0;
1646 long tout;
1647
1648 init_waitqueue_entry(&wait, current);
1649 add_wait_queue(&runtime->sleep, &wait);
1650 for (;;) {
1651 if (signal_pending(current)) {
1652 err = -ERESTARTSYS;
1653 break;
1654 }
1655 set_current_state(TASK_INTERRUPTIBLE);
1656 snd_pcm_stream_unlock_irq(substream);
1657 tout = schedule_timeout(msecs_to_jiffies(10000));
1658 snd_pcm_stream_lock_irq(substream);
1659 switch (runtime->status->state) {
1660 case SNDRV_PCM_STATE_SUSPENDED:
1661 err = -ESTRPIPE;
1662 goto _endloop;
1663 case SNDRV_PCM_STATE_XRUN:
1664 err = -EPIPE;
1665 goto _endloop;
1666 case SNDRV_PCM_STATE_DRAINING:
1667 if (is_playback)
1668 err = -EPIPE;
1669 else
1670 avail = 0; /* indicate draining */
1671 goto _endloop;
1672 case SNDRV_PCM_STATE_OPEN:
1673 case SNDRV_PCM_STATE_SETUP:
1674 case SNDRV_PCM_STATE_DISCONNECTED:
1675 err = -EBADFD;
1676 goto _endloop;
1677 }
1678 if (!tout) {
1679 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1680 is_playback ? "playback" : "capture");
1681 err = -EIO;
1682 break;
1683 }
1684 if (is_playback)
1685 avail = snd_pcm_playback_avail(runtime);
1686 else
1687 avail = snd_pcm_capture_avail(runtime);
1688 if (avail >= runtime->control->avail_min)
1689 break;
1690 }
1691 _endloop:
1692 remove_wait_queue(&runtime->sleep, &wait);
1693 *availp = avail;
1694 return err;
1695 }
1696
1697 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1698 unsigned int hwoff,
1699 unsigned long data, unsigned int off,
1700 snd_pcm_uframes_t frames)
1701 {
1702 struct snd_pcm_runtime *runtime = substream->runtime;
1703 int err;
1704 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1705 if (substream->ops->copy) {
1706 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1707 return err;
1708 } else {
1709 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1710 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1711 return -EFAULT;
1712 }
1713 return 0;
1714 }
1715
1716 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1717 unsigned long data, unsigned int off,
1718 snd_pcm_uframes_t size);
1719
1720 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1721 unsigned long data,
1722 snd_pcm_uframes_t size,
1723 int nonblock,
1724 transfer_f transfer)
1725 {
1726 struct snd_pcm_runtime *runtime = substream->runtime;
1727 snd_pcm_uframes_t xfer = 0;
1728 snd_pcm_uframes_t offset = 0;
1729 int err = 0;
1730
1731 if (size == 0)
1732 return 0;
1733
1734 snd_pcm_stream_lock_irq(substream);
1735 switch (runtime->status->state) {
1736 case SNDRV_PCM_STATE_PREPARED:
1737 case SNDRV_PCM_STATE_RUNNING:
1738 case SNDRV_PCM_STATE_PAUSED:
1739 break;
1740 case SNDRV_PCM_STATE_XRUN:
1741 err = -EPIPE;
1742 goto _end_unlock;
1743 case SNDRV_PCM_STATE_SUSPENDED:
1744 err = -ESTRPIPE;
1745 goto _end_unlock;
1746 default:
1747 err = -EBADFD;
1748 goto _end_unlock;
1749 }
1750
1751 while (size > 0) {
1752 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1753 snd_pcm_uframes_t avail;
1754 snd_pcm_uframes_t cont;
1755 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1756 snd_pcm_update_hw_ptr(substream);
1757 avail = snd_pcm_playback_avail(runtime);
1758 if (!avail) {
1759 if (nonblock) {
1760 err = -EAGAIN;
1761 goto _end_unlock;
1762 }
1763 err = wait_for_avail_min(substream, &avail);
1764 if (err < 0)
1765 goto _end_unlock;
1766 }
1767 frames = size > avail ? avail : size;
1768 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1769 if (frames > cont)
1770 frames = cont;
1771 if (snd_BUG_ON(!frames)) {
1772 snd_pcm_stream_unlock_irq(substream);
1773 return -EINVAL;
1774 }
1775 appl_ptr = runtime->control->appl_ptr;
1776 appl_ofs = appl_ptr % runtime->buffer_size;
1777 snd_pcm_stream_unlock_irq(substream);
1778 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1779 goto _end;
1780 snd_pcm_stream_lock_irq(substream);
1781 switch (runtime->status->state) {
1782 case SNDRV_PCM_STATE_XRUN:
1783 err = -EPIPE;
1784 goto _end_unlock;
1785 case SNDRV_PCM_STATE_SUSPENDED:
1786 err = -ESTRPIPE;
1787 goto _end_unlock;
1788 default:
1789 break;
1790 }
1791 appl_ptr += frames;
1792 if (appl_ptr >= runtime->boundary)
1793 appl_ptr -= runtime->boundary;
1794 runtime->control->appl_ptr = appl_ptr;
1795 if (substream->ops->ack)
1796 substream->ops->ack(substream);
1797
1798 offset += frames;
1799 size -= frames;
1800 xfer += frames;
1801 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1802 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1803 err = snd_pcm_start(substream);
1804 if (err < 0)
1805 goto _end_unlock;
1806 }
1807 }
1808 _end_unlock:
1809 snd_pcm_stream_unlock_irq(substream);
1810 _end:
1811 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1812 }
1813
1814 /* sanity-check for read/write methods */
1815 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1816 {
1817 struct snd_pcm_runtime *runtime;
1818 if (PCM_RUNTIME_CHECK(substream))
1819 return -ENXIO;
1820 runtime = substream->runtime;
1821 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1822 return -EINVAL;
1823 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1824 return -EBADFD;
1825 return 0;
1826 }
1827
1828 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1829 {
1830 struct snd_pcm_runtime *runtime;
1831 int nonblock;
1832 int err;
1833
1834 err = pcm_sanity_check(substream);
1835 if (err < 0)
1836 return err;
1837 runtime = substream->runtime;
1838 nonblock = !!(substream->f_flags & O_NONBLOCK);
1839
1840 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1841 runtime->channels > 1)
1842 return -EINVAL;
1843 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1844 snd_pcm_lib_write_transfer);
1845 }
1846
1847 EXPORT_SYMBOL(snd_pcm_lib_write);
1848
1849 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1850 unsigned int hwoff,
1851 unsigned long data, unsigned int off,
1852 snd_pcm_uframes_t frames)
1853 {
1854 struct snd_pcm_runtime *runtime = substream->runtime;
1855 int err;
1856 void __user **bufs = (void __user **)data;
1857 int channels = runtime->channels;
1858 int c;
1859 if (substream->ops->copy) {
1860 if (snd_BUG_ON(!substream->ops->silence))
1861 return -EINVAL;
1862 for (c = 0; c < channels; ++c, ++bufs) {
1863 if (*bufs == NULL) {
1864 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1865 return err;
1866 } else {
1867 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1868 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1869 return err;
1870 }
1871 }
1872 } else {
1873 /* default transfer behaviour */
1874 size_t dma_csize = runtime->dma_bytes / channels;
1875 for (c = 0; c < channels; ++c, ++bufs) {
1876 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1877 if (*bufs == NULL) {
1878 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1879 } else {
1880 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1881 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1882 return -EFAULT;
1883 }
1884 }
1885 }
1886 return 0;
1887 }
1888
1889 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1890 void __user **bufs,
1891 snd_pcm_uframes_t frames)
1892 {
1893 struct snd_pcm_runtime *runtime;
1894 int nonblock;
1895 int err;
1896
1897 err = pcm_sanity_check(substream);
1898 if (err < 0)
1899 return err;
1900 runtime = substream->runtime;
1901 nonblock = !!(substream->f_flags & O_NONBLOCK);
1902
1903 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1904 return -EINVAL;
1905 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1906 nonblock, snd_pcm_lib_writev_transfer);
1907 }
1908
1909 EXPORT_SYMBOL(snd_pcm_lib_writev);
1910
1911 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
1912 unsigned int hwoff,
1913 unsigned long data, unsigned int off,
1914 snd_pcm_uframes_t frames)
1915 {
1916 struct snd_pcm_runtime *runtime = substream->runtime;
1917 int err;
1918 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1919 if (substream->ops->copy) {
1920 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1921 return err;
1922 } else {
1923 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1924 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1925 return -EFAULT;
1926 }
1927 return 0;
1928 }
1929
1930 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1931 unsigned long data,
1932 snd_pcm_uframes_t size,
1933 int nonblock,
1934 transfer_f transfer)
1935 {
1936 struct snd_pcm_runtime *runtime = substream->runtime;
1937 snd_pcm_uframes_t xfer = 0;
1938 snd_pcm_uframes_t offset = 0;
1939 int err = 0;
1940
1941 if (size == 0)
1942 return 0;
1943
1944 snd_pcm_stream_lock_irq(substream);
1945 switch (runtime->status->state) {
1946 case SNDRV_PCM_STATE_PREPARED:
1947 if (size >= runtime->start_threshold) {
1948 err = snd_pcm_start(substream);
1949 if (err < 0)
1950 goto _end_unlock;
1951 }
1952 break;
1953 case SNDRV_PCM_STATE_DRAINING:
1954 case SNDRV_PCM_STATE_RUNNING:
1955 case SNDRV_PCM_STATE_PAUSED:
1956 break;
1957 case SNDRV_PCM_STATE_XRUN:
1958 err = -EPIPE;
1959 goto _end_unlock;
1960 case SNDRV_PCM_STATE_SUSPENDED:
1961 err = -ESTRPIPE;
1962 goto _end_unlock;
1963 default:
1964 err = -EBADFD;
1965 goto _end_unlock;
1966 }
1967
1968 while (size > 0) {
1969 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1970 snd_pcm_uframes_t avail;
1971 snd_pcm_uframes_t cont;
1972 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1973 snd_pcm_update_hw_ptr(substream);
1974 avail = snd_pcm_capture_avail(runtime);
1975 if (!avail) {
1976 if (runtime->status->state ==
1977 SNDRV_PCM_STATE_DRAINING) {
1978 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1979 goto _end_unlock;
1980 }
1981 if (nonblock) {
1982 err = -EAGAIN;
1983 goto _end_unlock;
1984 }
1985 err = wait_for_avail_min(substream, &avail);
1986 if (err < 0)
1987 goto _end_unlock;
1988 if (!avail)
1989 continue; /* draining */
1990 }
1991 frames = size > avail ? avail : size;
1992 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1993 if (frames > cont)
1994 frames = cont;
1995 if (snd_BUG_ON(!frames)) {
1996 snd_pcm_stream_unlock_irq(substream);
1997 return -EINVAL;
1998 }
1999 appl_ptr = runtime->control->appl_ptr;
2000 appl_ofs = appl_ptr % runtime->buffer_size;
2001 snd_pcm_stream_unlock_irq(substream);
2002 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2003 goto _end;
2004 snd_pcm_stream_lock_irq(substream);
2005 switch (runtime->status->state) {
2006 case SNDRV_PCM_STATE_XRUN:
2007 err = -EPIPE;
2008 goto _end_unlock;
2009 case SNDRV_PCM_STATE_SUSPENDED:
2010 err = -ESTRPIPE;
2011 goto _end_unlock;
2012 default:
2013 break;
2014 }
2015 appl_ptr += frames;
2016 if (appl_ptr >= runtime->boundary)
2017 appl_ptr -= runtime->boundary;
2018 runtime->control->appl_ptr = appl_ptr;
2019 if (substream->ops->ack)
2020 substream->ops->ack(substream);
2021
2022 offset += frames;
2023 size -= frames;
2024 xfer += frames;
2025 }
2026 _end_unlock:
2027 snd_pcm_stream_unlock_irq(substream);
2028 _end:
2029 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2030 }
2031
2032 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2033 {
2034 struct snd_pcm_runtime *runtime;
2035 int nonblock;
2036 int err;
2037
2038 err = pcm_sanity_check(substream);
2039 if (err < 0)
2040 return err;
2041 runtime = substream->runtime;
2042 nonblock = !!(substream->f_flags & O_NONBLOCK);
2043 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2044 return -EINVAL;
2045 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2046 }
2047
2048 EXPORT_SYMBOL(snd_pcm_lib_read);
2049
2050 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2051 unsigned int hwoff,
2052 unsigned long data, unsigned int off,
2053 snd_pcm_uframes_t frames)
2054 {
2055 struct snd_pcm_runtime *runtime = substream->runtime;
2056 int err;
2057 void __user **bufs = (void __user **)data;
2058 int channels = runtime->channels;
2059 int c;
2060 if (substream->ops->copy) {
2061 for (c = 0; c < channels; ++c, ++bufs) {
2062 char __user *buf;
2063 if (*bufs == NULL)
2064 continue;
2065 buf = *bufs + samples_to_bytes(runtime, off);
2066 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2067 return err;
2068 }
2069 } else {
2070 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2071 for (c = 0; c < channels; ++c, ++bufs) {
2072 char *hwbuf;
2073 char __user *buf;
2074 if (*bufs == NULL)
2075 continue;
2076
2077 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2078 buf = *bufs + samples_to_bytes(runtime, off);
2079 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2080 return -EFAULT;
2081 }
2082 }
2083 return 0;
2084 }
2085
2086 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2087 void __user **bufs,
2088 snd_pcm_uframes_t frames)
2089 {
2090 struct snd_pcm_runtime *runtime;
2091 int nonblock;
2092 int err;
2093
2094 err = pcm_sanity_check(substream);
2095 if (err < 0)
2096 return err;
2097 runtime = substream->runtime;
2098 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2099 return -EBADFD;
2100
2101 nonblock = !!(substream->f_flags & O_NONBLOCK);
2102 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2103 return -EINVAL;
2104 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2105 }
2106
2107 EXPORT_SYMBOL(snd_pcm_lib_readv);