]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/core/pcm_lib.c
drm/i915: Remove redundant store of logical CDCLK state
[mirror_ubuntu-bionic-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52 * fill ring buffer with silence
53 * runtime->silence_start: starting pointer to silence area
54 * runtime->silence_filled: size filled with silence
55 * runtime->silence_threshold: threshold from application
56 * runtime->silence_size: maximal size from application
57 *
58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59 */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 struct snd_pcm_runtime *runtime = substream->runtime;
63 snd_pcm_uframes_t frames, ofs, transfer;
64 int err;
65
66 if (runtime->silence_size < runtime->boundary) {
67 snd_pcm_sframes_t noise_dist, n;
68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 if (runtime->silence_start != appl_ptr) {
70 n = appl_ptr - runtime->silence_start;
71 if (n < 0)
72 n += runtime->boundary;
73 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 runtime->silence_filled -= n;
75 else
76 runtime->silence_filled = 0;
77 runtime->silence_start = appl_ptr;
78 }
79 if (runtime->silence_filled >= runtime->buffer_size)
80 return;
81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 return;
84 frames = runtime->silence_threshold - noise_dist;
85 if (frames > runtime->silence_size)
86 frames = runtime->silence_size;
87 } else {
88 if (new_hw_ptr == ULONG_MAX) { /* initialization */
89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 if (avail > runtime->buffer_size)
91 avail = runtime->buffer_size;
92 runtime->silence_filled = avail > 0 ? avail : 0;
93 runtime->silence_start = (runtime->status->hw_ptr +
94 runtime->silence_filled) %
95 runtime->boundary;
96 } else {
97 ofs = runtime->status->hw_ptr;
98 frames = new_hw_ptr - ofs;
99 if ((snd_pcm_sframes_t)frames < 0)
100 frames += runtime->boundary;
101 runtime->silence_filled -= frames;
102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 runtime->silence_filled = 0;
104 runtime->silence_start = new_hw_ptr;
105 } else {
106 runtime->silence_start = ofs;
107 }
108 }
109 frames = runtime->buffer_size - runtime->silence_filled;
110 }
111 if (snd_BUG_ON(frames > runtime->buffer_size))
112 return;
113 if (frames == 0)
114 return;
115 ofs = runtime->silence_start % runtime->buffer_size;
116 while (frames > 0) {
117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 err = fill_silence_frames(substream, ofs, transfer);
119 snd_BUG_ON(err < 0);
120 runtime->silence_filled += transfer;
121 frames -= transfer;
122 ofs = 0;
123 }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 char *name, size_t len)
129 {
130 snprintf(name, len, "pcmC%dD%d%c:%d",
131 substream->pcm->card->number,
132 substream->pcm->device,
133 substream->stream ? 'c' : 'p',
134 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC (1<<0)
140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146 ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask) 0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do { \
152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
153 dump_stack(); \
154 } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158 struct snd_pcm_runtime *runtime = substream->runtime;
159
160 trace_xrun(substream);
161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 char name[16];
166 snd_pcm_debug_name(substream, name, sizeof(name));
167 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 dump_stack_on_xrun(substream);
169 }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
174 do { \
175 trace_hw_ptr_error(substream, reason); \
176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 (in_interrupt) ? 'Q' : 'P', ##args); \
179 dump_stack_on_xrun(substream); \
180 } \
181 } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 struct snd_pcm_runtime *runtime)
191 {
192 snd_pcm_uframes_t avail;
193
194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195 avail = snd_pcm_playback_avail(runtime);
196 else
197 avail = snd_pcm_capture_avail(runtime);
198 if (avail > runtime->avail_max)
199 runtime->avail_max = avail;
200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201 if (avail >= runtime->buffer_size) {
202 snd_pcm_drain_done(substream);
203 return -EPIPE;
204 }
205 } else {
206 if (avail >= runtime->stop_threshold) {
207 xrun(substream);
208 return -EPIPE;
209 }
210 }
211 if (runtime->twake) {
212 if (avail >= runtime->twake)
213 wake_up(&runtime->tsleep);
214 } else if (avail >= runtime->control->avail_min)
215 wake_up(&runtime->sleep);
216 return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220 struct timespec *curr_tstamp,
221 struct timespec *audio_tstamp)
222 {
223 struct snd_pcm_runtime *runtime = substream->runtime;
224 u64 audio_frames, audio_nsecs;
225 struct timespec driver_tstamp;
226
227 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228 return;
229
230 if (!(substream->ops->get_time_info) ||
231 (runtime->audio_tstamp_report.actual_type ==
232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234 /*
235 * provide audio timestamp derived from pointer position
236 * add delay only if requested
237 */
238
239 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241 if (runtime->audio_tstamp_config.report_delay) {
242 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243 audio_frames -= runtime->delay;
244 else
245 audio_frames += runtime->delay;
246 }
247 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248 runtime->rate);
249 *audio_tstamp = ns_to_timespec(audio_nsecs);
250 }
251 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
252 runtime->status->audio_tstamp = *audio_tstamp;
253 runtime->status->tstamp = *curr_tstamp;
254 }
255
256 /*
257 * re-take a driver timestamp to let apps detect if the reference tstamp
258 * read by low-level hardware was provided with a delay
259 */
260 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
261 runtime->driver_tstamp = driver_tstamp;
262 }
263
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
265 unsigned int in_interrupt)
266 {
267 struct snd_pcm_runtime *runtime = substream->runtime;
268 snd_pcm_uframes_t pos;
269 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
270 snd_pcm_sframes_t hdelta, delta;
271 unsigned long jdelta;
272 unsigned long curr_jiffies;
273 struct timespec curr_tstamp;
274 struct timespec audio_tstamp;
275 int crossed_boundary = 0;
276
277 old_hw_ptr = runtime->status->hw_ptr;
278
279 /*
280 * group pointer, time and jiffies reads to allow for more
281 * accurate correlations/corrections.
282 * The values are stored at the end of this routine after
283 * corrections for hw_ptr position
284 */
285 pos = substream->ops->pointer(substream);
286 curr_jiffies = jiffies;
287 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
288 if ((substream->ops->get_time_info) &&
289 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
290 substream->ops->get_time_info(substream, &curr_tstamp,
291 &audio_tstamp,
292 &runtime->audio_tstamp_config,
293 &runtime->audio_tstamp_report);
294
295 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 } else
299 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
300 }
301
302 if (pos == SNDRV_PCM_POS_XRUN) {
303 xrun(substream);
304 return -EPIPE;
305 }
306 if (pos >= runtime->buffer_size) {
307 if (printk_ratelimit()) {
308 char name[16];
309 snd_pcm_debug_name(substream, name, sizeof(name));
310 pcm_err(substream->pcm,
311 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312 name, pos, runtime->buffer_size,
313 runtime->period_size);
314 }
315 pos = 0;
316 }
317 pos -= pos % runtime->min_align;
318 trace_hwptr(substream, pos, in_interrupt);
319 hw_base = runtime->hw_ptr_base;
320 new_hw_ptr = hw_base + pos;
321 if (in_interrupt) {
322 /* we know that one period was processed */
323 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
324 delta = runtime->hw_ptr_interrupt + runtime->period_size;
325 if (delta > new_hw_ptr) {
326 /* check for double acknowledged interrupts */
327 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
328 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
329 hw_base += runtime->buffer_size;
330 if (hw_base >= runtime->boundary) {
331 hw_base = 0;
332 crossed_boundary++;
333 }
334 new_hw_ptr = hw_base + pos;
335 goto __delta;
336 }
337 }
338 }
339 /* new_hw_ptr might be lower than old_hw_ptr in case when */
340 /* pointer crosses the end of the ring buffer */
341 if (new_hw_ptr < old_hw_ptr) {
342 hw_base += runtime->buffer_size;
343 if (hw_base >= runtime->boundary) {
344 hw_base = 0;
345 crossed_boundary++;
346 }
347 new_hw_ptr = hw_base + pos;
348 }
349 __delta:
350 delta = new_hw_ptr - old_hw_ptr;
351 if (delta < 0)
352 delta += runtime->boundary;
353
354 if (runtime->no_period_wakeup) {
355 snd_pcm_sframes_t xrun_threshold;
356 /*
357 * Without regular period interrupts, we have to check
358 * the elapsed time to detect xruns.
359 */
360 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
362 goto no_delta_check;
363 hdelta = jdelta - delta * HZ / runtime->rate;
364 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
365 while (hdelta > xrun_threshold) {
366 delta += runtime->buffer_size;
367 hw_base += runtime->buffer_size;
368 if (hw_base >= runtime->boundary) {
369 hw_base = 0;
370 crossed_boundary++;
371 }
372 new_hw_ptr = hw_base + pos;
373 hdelta -= runtime->hw_ptr_buffer_jiffies;
374 }
375 goto no_delta_check;
376 }
377
378 /* something must be really wrong */
379 if (delta >= runtime->buffer_size + runtime->period_size) {
380 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
381 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382 substream->stream, (long)pos,
383 (long)new_hw_ptr, (long)old_hw_ptr);
384 return 0;
385 }
386
387 /* Do jiffies check only in xrun_debug mode */
388 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
389 goto no_jiffies_check;
390
391 /* Skip the jiffies check for hardwares with BATCH flag.
392 * Such hardware usually just increases the position at each IRQ,
393 * thus it can't give any strange position.
394 */
395 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
396 goto no_jiffies_check;
397 hdelta = delta;
398 if (hdelta < runtime->delay)
399 goto no_jiffies_check;
400 hdelta -= runtime->delay;
401 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
402 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
403 delta = jdelta /
404 (((runtime->period_size * HZ) / runtime->rate)
405 + HZ/100);
406 /* move new_hw_ptr according jiffies not pos variable */
407 new_hw_ptr = old_hw_ptr;
408 hw_base = delta;
409 /* use loop to avoid checks for delta overflows */
410 /* the delta value is small or zero in most cases */
411 while (delta > 0) {
412 new_hw_ptr += runtime->period_size;
413 if (new_hw_ptr >= runtime->boundary) {
414 new_hw_ptr -= runtime->boundary;
415 crossed_boundary--;
416 }
417 delta--;
418 }
419 /* align hw_base to buffer_size */
420 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
421 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422 (long)pos, (long)hdelta,
423 (long)runtime->period_size, jdelta,
424 ((hdelta * HZ) / runtime->rate), hw_base,
425 (unsigned long)old_hw_ptr,
426 (unsigned long)new_hw_ptr);
427 /* reset values to proper state */
428 delta = 0;
429 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
430 }
431 no_jiffies_check:
432 if (delta > runtime->period_size + runtime->period_size / 2) {
433 hw_ptr_error(substream, in_interrupt,
434 "Lost interrupts?",
435 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436 substream->stream, (long)delta,
437 (long)new_hw_ptr,
438 (long)old_hw_ptr);
439 }
440
441 no_delta_check:
442 if (runtime->status->hw_ptr == new_hw_ptr) {
443 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
444 return 0;
445 }
446
447 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
448 runtime->silence_size > 0)
449 snd_pcm_playback_silence(substream, new_hw_ptr);
450
451 if (in_interrupt) {
452 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
453 if (delta < 0)
454 delta += runtime->boundary;
455 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
456 runtime->hw_ptr_interrupt += delta;
457 if (runtime->hw_ptr_interrupt >= runtime->boundary)
458 runtime->hw_ptr_interrupt -= runtime->boundary;
459 }
460 runtime->hw_ptr_base = hw_base;
461 runtime->status->hw_ptr = new_hw_ptr;
462 runtime->hw_ptr_jiffies = curr_jiffies;
463 if (crossed_boundary) {
464 snd_BUG_ON(crossed_boundary != 1);
465 runtime->hw_ptr_wrap += runtime->boundary;
466 }
467
468 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
469
470 return snd_pcm_update_state(substream, runtime);
471 }
472
473 /* CAUTION: call it with irq disabled */
474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
475 {
476 return snd_pcm_update_hw_ptr0(substream, 0);
477 }
478
479 /**
480 * snd_pcm_set_ops - set the PCM operators
481 * @pcm: the pcm instance
482 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
483 * @ops: the operator table
484 *
485 * Sets the given PCM operators to the pcm instance.
486 */
487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
488 const struct snd_pcm_ops *ops)
489 {
490 struct snd_pcm_str *stream = &pcm->streams[direction];
491 struct snd_pcm_substream *substream;
492
493 for (substream = stream->substream; substream != NULL; substream = substream->next)
494 substream->ops = ops;
495 }
496 EXPORT_SYMBOL(snd_pcm_set_ops);
497
498 /**
499 * snd_pcm_sync - set the PCM sync id
500 * @substream: the pcm substream
501 *
502 * Sets the PCM sync identifier for the card.
503 */
504 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
505 {
506 struct snd_pcm_runtime *runtime = substream->runtime;
507
508 runtime->sync.id32[0] = substream->pcm->card->number;
509 runtime->sync.id32[1] = -1;
510 runtime->sync.id32[2] = -1;
511 runtime->sync.id32[3] = -1;
512 }
513 EXPORT_SYMBOL(snd_pcm_set_sync);
514
515 /*
516 * Standard ioctl routine
517 */
518
519 static inline unsigned int div32(unsigned int a, unsigned int b,
520 unsigned int *r)
521 {
522 if (b == 0) {
523 *r = 0;
524 return UINT_MAX;
525 }
526 *r = a % b;
527 return a / b;
528 }
529
530 static inline unsigned int div_down(unsigned int a, unsigned int b)
531 {
532 if (b == 0)
533 return UINT_MAX;
534 return a / b;
535 }
536
537 static inline unsigned int div_up(unsigned int a, unsigned int b)
538 {
539 unsigned int r;
540 unsigned int q;
541 if (b == 0)
542 return UINT_MAX;
543 q = div32(a, b, &r);
544 if (r)
545 ++q;
546 return q;
547 }
548
549 static inline unsigned int mul(unsigned int a, unsigned int b)
550 {
551 if (a == 0)
552 return 0;
553 if (div_down(UINT_MAX, a) < b)
554 return UINT_MAX;
555 return a * b;
556 }
557
558 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
559 unsigned int c, unsigned int *r)
560 {
561 u_int64_t n = (u_int64_t) a * b;
562 if (c == 0) {
563 *r = 0;
564 return UINT_MAX;
565 }
566 n = div_u64_rem(n, c, r);
567 if (n >= UINT_MAX) {
568 *r = 0;
569 return UINT_MAX;
570 }
571 return n;
572 }
573
574 /**
575 * snd_interval_refine - refine the interval value of configurator
576 * @i: the interval value to refine
577 * @v: the interval value to refer to
578 *
579 * Refines the interval value with the reference value.
580 * The interval is changed to the range satisfying both intervals.
581 * The interval status (min, max, integer, etc.) are evaluated.
582 *
583 * Return: Positive if the value is changed, zero if it's not changed, or a
584 * negative error code.
585 */
586 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
587 {
588 int changed = 0;
589 if (snd_BUG_ON(snd_interval_empty(i)))
590 return -EINVAL;
591 if (i->min < v->min) {
592 i->min = v->min;
593 i->openmin = v->openmin;
594 changed = 1;
595 } else if (i->min == v->min && !i->openmin && v->openmin) {
596 i->openmin = 1;
597 changed = 1;
598 }
599 if (i->max > v->max) {
600 i->max = v->max;
601 i->openmax = v->openmax;
602 changed = 1;
603 } else if (i->max == v->max && !i->openmax && v->openmax) {
604 i->openmax = 1;
605 changed = 1;
606 }
607 if (!i->integer && v->integer) {
608 i->integer = 1;
609 changed = 1;
610 }
611 if (i->integer) {
612 if (i->openmin) {
613 i->min++;
614 i->openmin = 0;
615 }
616 if (i->openmax) {
617 i->max--;
618 i->openmax = 0;
619 }
620 } else if (!i->openmin && !i->openmax && i->min == i->max)
621 i->integer = 1;
622 if (snd_interval_checkempty(i)) {
623 snd_interval_none(i);
624 return -EINVAL;
625 }
626 return changed;
627 }
628 EXPORT_SYMBOL(snd_interval_refine);
629
630 static int snd_interval_refine_first(struct snd_interval *i)
631 {
632 if (snd_BUG_ON(snd_interval_empty(i)))
633 return -EINVAL;
634 if (snd_interval_single(i))
635 return 0;
636 i->max = i->min;
637 i->openmax = i->openmin;
638 if (i->openmax)
639 i->max++;
640 return 1;
641 }
642
643 static int snd_interval_refine_last(struct snd_interval *i)
644 {
645 if (snd_BUG_ON(snd_interval_empty(i)))
646 return -EINVAL;
647 if (snd_interval_single(i))
648 return 0;
649 i->min = i->max;
650 i->openmin = i->openmax;
651 if (i->openmin)
652 i->min--;
653 return 1;
654 }
655
656 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
657 {
658 if (a->empty || b->empty) {
659 snd_interval_none(c);
660 return;
661 }
662 c->empty = 0;
663 c->min = mul(a->min, b->min);
664 c->openmin = (a->openmin || b->openmin);
665 c->max = mul(a->max, b->max);
666 c->openmax = (a->openmax || b->openmax);
667 c->integer = (a->integer && b->integer);
668 }
669
670 /**
671 * snd_interval_div - refine the interval value with division
672 * @a: dividend
673 * @b: divisor
674 * @c: quotient
675 *
676 * c = a / b
677 *
678 * Returns non-zero if the value is changed, zero if not changed.
679 */
680 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
681 {
682 unsigned int r;
683 if (a->empty || b->empty) {
684 snd_interval_none(c);
685 return;
686 }
687 c->empty = 0;
688 c->min = div32(a->min, b->max, &r);
689 c->openmin = (r || a->openmin || b->openmax);
690 if (b->min > 0) {
691 c->max = div32(a->max, b->min, &r);
692 if (r) {
693 c->max++;
694 c->openmax = 1;
695 } else
696 c->openmax = (a->openmax || b->openmin);
697 } else {
698 c->max = UINT_MAX;
699 c->openmax = 0;
700 }
701 c->integer = 0;
702 }
703
704 /**
705 * snd_interval_muldivk - refine the interval value
706 * @a: dividend 1
707 * @b: dividend 2
708 * @k: divisor (as integer)
709 * @c: result
710 *
711 * c = a * b / k
712 *
713 * Returns non-zero if the value is changed, zero if not changed.
714 */
715 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
716 unsigned int k, struct snd_interval *c)
717 {
718 unsigned int r;
719 if (a->empty || b->empty) {
720 snd_interval_none(c);
721 return;
722 }
723 c->empty = 0;
724 c->min = muldiv32(a->min, b->min, k, &r);
725 c->openmin = (r || a->openmin || b->openmin);
726 c->max = muldiv32(a->max, b->max, k, &r);
727 if (r) {
728 c->max++;
729 c->openmax = 1;
730 } else
731 c->openmax = (a->openmax || b->openmax);
732 c->integer = 0;
733 }
734
735 /**
736 * snd_interval_mulkdiv - refine the interval value
737 * @a: dividend 1
738 * @k: dividend 2 (as integer)
739 * @b: divisor
740 * @c: result
741 *
742 * c = a * k / b
743 *
744 * Returns non-zero if the value is changed, zero if not changed.
745 */
746 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
747 const struct snd_interval *b, struct snd_interval *c)
748 {
749 unsigned int r;
750 if (a->empty || b->empty) {
751 snd_interval_none(c);
752 return;
753 }
754 c->empty = 0;
755 c->min = muldiv32(a->min, k, b->max, &r);
756 c->openmin = (r || a->openmin || b->openmax);
757 if (b->min > 0) {
758 c->max = muldiv32(a->max, k, b->min, &r);
759 if (r) {
760 c->max++;
761 c->openmax = 1;
762 } else
763 c->openmax = (a->openmax || b->openmin);
764 } else {
765 c->max = UINT_MAX;
766 c->openmax = 0;
767 }
768 c->integer = 0;
769 }
770
771 /* ---- */
772
773
774 /**
775 * snd_interval_ratnum - refine the interval value
776 * @i: interval to refine
777 * @rats_count: number of ratnum_t
778 * @rats: ratnum_t array
779 * @nump: pointer to store the resultant numerator
780 * @denp: pointer to store the resultant denominator
781 *
782 * Return: Positive if the value is changed, zero if it's not changed, or a
783 * negative error code.
784 */
785 int snd_interval_ratnum(struct snd_interval *i,
786 unsigned int rats_count, const struct snd_ratnum *rats,
787 unsigned int *nump, unsigned int *denp)
788 {
789 unsigned int best_num, best_den;
790 int best_diff;
791 unsigned int k;
792 struct snd_interval t;
793 int err;
794 unsigned int result_num, result_den;
795 int result_diff;
796
797 best_num = best_den = best_diff = 0;
798 for (k = 0; k < rats_count; ++k) {
799 unsigned int num = rats[k].num;
800 unsigned int den;
801 unsigned int q = i->min;
802 int diff;
803 if (q == 0)
804 q = 1;
805 den = div_up(num, q);
806 if (den < rats[k].den_min)
807 continue;
808 if (den > rats[k].den_max)
809 den = rats[k].den_max;
810 else {
811 unsigned int r;
812 r = (den - rats[k].den_min) % rats[k].den_step;
813 if (r != 0)
814 den -= r;
815 }
816 diff = num - q * den;
817 if (diff < 0)
818 diff = -diff;
819 if (best_num == 0 ||
820 diff * best_den < best_diff * den) {
821 best_diff = diff;
822 best_den = den;
823 best_num = num;
824 }
825 }
826 if (best_den == 0) {
827 i->empty = 1;
828 return -EINVAL;
829 }
830 t.min = div_down(best_num, best_den);
831 t.openmin = !!(best_num % best_den);
832
833 result_num = best_num;
834 result_diff = best_diff;
835 result_den = best_den;
836 best_num = best_den = best_diff = 0;
837 for (k = 0; k < rats_count; ++k) {
838 unsigned int num = rats[k].num;
839 unsigned int den;
840 unsigned int q = i->max;
841 int diff;
842 if (q == 0) {
843 i->empty = 1;
844 return -EINVAL;
845 }
846 den = div_down(num, q);
847 if (den > rats[k].den_max)
848 continue;
849 if (den < rats[k].den_min)
850 den = rats[k].den_min;
851 else {
852 unsigned int r;
853 r = (den - rats[k].den_min) % rats[k].den_step;
854 if (r != 0)
855 den += rats[k].den_step - r;
856 }
857 diff = q * den - num;
858 if (diff < 0)
859 diff = -diff;
860 if (best_num == 0 ||
861 diff * best_den < best_diff * den) {
862 best_diff = diff;
863 best_den = den;
864 best_num = num;
865 }
866 }
867 if (best_den == 0) {
868 i->empty = 1;
869 return -EINVAL;
870 }
871 t.max = div_up(best_num, best_den);
872 t.openmax = !!(best_num % best_den);
873 t.integer = 0;
874 err = snd_interval_refine(i, &t);
875 if (err < 0)
876 return err;
877
878 if (snd_interval_single(i)) {
879 if (best_diff * result_den < result_diff * best_den) {
880 result_num = best_num;
881 result_den = best_den;
882 }
883 if (nump)
884 *nump = result_num;
885 if (denp)
886 *denp = result_den;
887 }
888 return err;
889 }
890 EXPORT_SYMBOL(snd_interval_ratnum);
891
892 /**
893 * snd_interval_ratden - refine the interval value
894 * @i: interval to refine
895 * @rats_count: number of struct ratden
896 * @rats: struct ratden array
897 * @nump: pointer to store the resultant numerator
898 * @denp: pointer to store the resultant denominator
899 *
900 * Return: Positive if the value is changed, zero if it's not changed, or a
901 * negative error code.
902 */
903 static int snd_interval_ratden(struct snd_interval *i,
904 unsigned int rats_count,
905 const struct snd_ratden *rats,
906 unsigned int *nump, unsigned int *denp)
907 {
908 unsigned int best_num, best_diff, best_den;
909 unsigned int k;
910 struct snd_interval t;
911 int err;
912
913 best_num = best_den = best_diff = 0;
914 for (k = 0; k < rats_count; ++k) {
915 unsigned int num;
916 unsigned int den = rats[k].den;
917 unsigned int q = i->min;
918 int diff;
919 num = mul(q, den);
920 if (num > rats[k].num_max)
921 continue;
922 if (num < rats[k].num_min)
923 num = rats[k].num_max;
924 else {
925 unsigned int r;
926 r = (num - rats[k].num_min) % rats[k].num_step;
927 if (r != 0)
928 num += rats[k].num_step - r;
929 }
930 diff = num - q * den;
931 if (best_num == 0 ||
932 diff * best_den < best_diff * den) {
933 best_diff = diff;
934 best_den = den;
935 best_num = num;
936 }
937 }
938 if (best_den == 0) {
939 i->empty = 1;
940 return -EINVAL;
941 }
942 t.min = div_down(best_num, best_den);
943 t.openmin = !!(best_num % best_den);
944
945 best_num = best_den = best_diff = 0;
946 for (k = 0; k < rats_count; ++k) {
947 unsigned int num;
948 unsigned int den = rats[k].den;
949 unsigned int q = i->max;
950 int diff;
951 num = mul(q, den);
952 if (num < rats[k].num_min)
953 continue;
954 if (num > rats[k].num_max)
955 num = rats[k].num_max;
956 else {
957 unsigned int r;
958 r = (num - rats[k].num_min) % rats[k].num_step;
959 if (r != 0)
960 num -= r;
961 }
962 diff = q * den - num;
963 if (best_num == 0 ||
964 diff * best_den < best_diff * den) {
965 best_diff = diff;
966 best_den = den;
967 best_num = num;
968 }
969 }
970 if (best_den == 0) {
971 i->empty = 1;
972 return -EINVAL;
973 }
974 t.max = div_up(best_num, best_den);
975 t.openmax = !!(best_num % best_den);
976 t.integer = 0;
977 err = snd_interval_refine(i, &t);
978 if (err < 0)
979 return err;
980
981 if (snd_interval_single(i)) {
982 if (nump)
983 *nump = best_num;
984 if (denp)
985 *denp = best_den;
986 }
987 return err;
988 }
989
990 /**
991 * snd_interval_list - refine the interval value from the list
992 * @i: the interval value to refine
993 * @count: the number of elements in the list
994 * @list: the value list
995 * @mask: the bit-mask to evaluate
996 *
997 * Refines the interval value from the list.
998 * When mask is non-zero, only the elements corresponding to bit 1 are
999 * evaluated.
1000 *
1001 * Return: Positive if the value is changed, zero if it's not changed, or a
1002 * negative error code.
1003 */
1004 int snd_interval_list(struct snd_interval *i, unsigned int count,
1005 const unsigned int *list, unsigned int mask)
1006 {
1007 unsigned int k;
1008 struct snd_interval list_range;
1009
1010 if (!count) {
1011 i->empty = 1;
1012 return -EINVAL;
1013 }
1014 snd_interval_any(&list_range);
1015 list_range.min = UINT_MAX;
1016 list_range.max = 0;
1017 for (k = 0; k < count; k++) {
1018 if (mask && !(mask & (1 << k)))
1019 continue;
1020 if (!snd_interval_test(i, list[k]))
1021 continue;
1022 list_range.min = min(list_range.min, list[k]);
1023 list_range.max = max(list_range.max, list[k]);
1024 }
1025 return snd_interval_refine(i, &list_range);
1026 }
1027 EXPORT_SYMBOL(snd_interval_list);
1028
1029 /**
1030 * snd_interval_ranges - refine the interval value from the list of ranges
1031 * @i: the interval value to refine
1032 * @count: the number of elements in the list of ranges
1033 * @ranges: the ranges list
1034 * @mask: the bit-mask to evaluate
1035 *
1036 * Refines the interval value from the list of ranges.
1037 * When mask is non-zero, only the elements corresponding to bit 1 are
1038 * evaluated.
1039 *
1040 * Return: Positive if the value is changed, zero if it's not changed, or a
1041 * negative error code.
1042 */
1043 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1044 const struct snd_interval *ranges, unsigned int mask)
1045 {
1046 unsigned int k;
1047 struct snd_interval range_union;
1048 struct snd_interval range;
1049
1050 if (!count) {
1051 snd_interval_none(i);
1052 return -EINVAL;
1053 }
1054 snd_interval_any(&range_union);
1055 range_union.min = UINT_MAX;
1056 range_union.max = 0;
1057 for (k = 0; k < count; k++) {
1058 if (mask && !(mask & (1 << k)))
1059 continue;
1060 snd_interval_copy(&range, &ranges[k]);
1061 if (snd_interval_refine(&range, i) < 0)
1062 continue;
1063 if (snd_interval_empty(&range))
1064 continue;
1065
1066 if (range.min < range_union.min) {
1067 range_union.min = range.min;
1068 range_union.openmin = 1;
1069 }
1070 if (range.min == range_union.min && !range.openmin)
1071 range_union.openmin = 0;
1072 if (range.max > range_union.max) {
1073 range_union.max = range.max;
1074 range_union.openmax = 1;
1075 }
1076 if (range.max == range_union.max && !range.openmax)
1077 range_union.openmax = 0;
1078 }
1079 return snd_interval_refine(i, &range_union);
1080 }
1081 EXPORT_SYMBOL(snd_interval_ranges);
1082
1083 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1084 {
1085 unsigned int n;
1086 int changed = 0;
1087 n = i->min % step;
1088 if (n != 0 || i->openmin) {
1089 i->min += step - n;
1090 i->openmin = 0;
1091 changed = 1;
1092 }
1093 n = i->max % step;
1094 if (n != 0 || i->openmax) {
1095 i->max -= n;
1096 i->openmax = 0;
1097 changed = 1;
1098 }
1099 if (snd_interval_checkempty(i)) {
1100 i->empty = 1;
1101 return -EINVAL;
1102 }
1103 return changed;
1104 }
1105
1106 /* Info constraints helpers */
1107
1108 /**
1109 * snd_pcm_hw_rule_add - add the hw-constraint rule
1110 * @runtime: the pcm runtime instance
1111 * @cond: condition bits
1112 * @var: the variable to evaluate
1113 * @func: the evaluation function
1114 * @private: the private data pointer passed to function
1115 * @dep: the dependent variables
1116 *
1117 * Return: Zero if successful, or a negative error code on failure.
1118 */
1119 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1120 int var,
1121 snd_pcm_hw_rule_func_t func, void *private,
1122 int dep, ...)
1123 {
1124 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125 struct snd_pcm_hw_rule *c;
1126 unsigned int k;
1127 va_list args;
1128 va_start(args, dep);
1129 if (constrs->rules_num >= constrs->rules_all) {
1130 struct snd_pcm_hw_rule *new;
1131 unsigned int new_rules = constrs->rules_all + 16;
1132 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1133 if (!new) {
1134 va_end(args);
1135 return -ENOMEM;
1136 }
1137 if (constrs->rules) {
1138 memcpy(new, constrs->rules,
1139 constrs->rules_num * sizeof(*c));
1140 kfree(constrs->rules);
1141 }
1142 constrs->rules = new;
1143 constrs->rules_all = new_rules;
1144 }
1145 c = &constrs->rules[constrs->rules_num];
1146 c->cond = cond;
1147 c->func = func;
1148 c->var = var;
1149 c->private = private;
1150 k = 0;
1151 while (1) {
1152 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1153 va_end(args);
1154 return -EINVAL;
1155 }
1156 c->deps[k++] = dep;
1157 if (dep < 0)
1158 break;
1159 dep = va_arg(args, int);
1160 }
1161 constrs->rules_num++;
1162 va_end(args);
1163 return 0;
1164 }
1165 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1166
1167 /**
1168 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1169 * @runtime: PCM runtime instance
1170 * @var: hw_params variable to apply the mask
1171 * @mask: the bitmap mask
1172 *
1173 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1174 *
1175 * Return: Zero if successful, or a negative error code on failure.
1176 */
1177 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1178 u_int32_t mask)
1179 {
1180 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1181 struct snd_mask *maskp = constrs_mask(constrs, var);
1182 *maskp->bits &= mask;
1183 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1184 if (*maskp->bits == 0)
1185 return -EINVAL;
1186 return 0;
1187 }
1188
1189 /**
1190 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the 64bit bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200 u_int64_t mask)
1201 {
1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203 struct snd_mask *maskp = constrs_mask(constrs, var);
1204 maskp->bits[0] &= (u_int32_t)mask;
1205 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1206 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1207 if (! maskp->bits[0] && ! maskp->bits[1])
1208 return -EINVAL;
1209 return 0;
1210 }
1211 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1212
1213 /**
1214 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1215 * @runtime: PCM runtime instance
1216 * @var: hw_params variable to apply the integer constraint
1217 *
1218 * Apply the constraint of integer to an interval parameter.
1219 *
1220 * Return: Positive if the value is changed, zero if it's not changed, or a
1221 * negative error code.
1222 */
1223 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1224 {
1225 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1226 return snd_interval_setinteger(constrs_interval(constrs, var));
1227 }
1228 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1229
1230 /**
1231 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1232 * @runtime: PCM runtime instance
1233 * @var: hw_params variable to apply the range
1234 * @min: the minimal value
1235 * @max: the maximal value
1236 *
1237 * Apply the min/max range constraint to an interval parameter.
1238 *
1239 * Return: Positive if the value is changed, zero if it's not changed, or a
1240 * negative error code.
1241 */
1242 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1243 unsigned int min, unsigned int max)
1244 {
1245 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1246 struct snd_interval t;
1247 t.min = min;
1248 t.max = max;
1249 t.openmin = t.openmax = 0;
1250 t.integer = 0;
1251 return snd_interval_refine(constrs_interval(constrs, var), &t);
1252 }
1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1254
1255 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1256 struct snd_pcm_hw_rule *rule)
1257 {
1258 struct snd_pcm_hw_constraint_list *list = rule->private;
1259 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1260 }
1261
1262
1263 /**
1264 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1265 * @runtime: PCM runtime instance
1266 * @cond: condition bits
1267 * @var: hw_params variable to apply the list constraint
1268 * @l: list
1269 *
1270 * Apply the list of constraints to an interval parameter.
1271 *
1272 * Return: Zero if successful, or a negative error code on failure.
1273 */
1274 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1275 unsigned int cond,
1276 snd_pcm_hw_param_t var,
1277 const struct snd_pcm_hw_constraint_list *l)
1278 {
1279 return snd_pcm_hw_rule_add(runtime, cond, var,
1280 snd_pcm_hw_rule_list, (void *)l,
1281 var, -1);
1282 }
1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1284
1285 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1286 struct snd_pcm_hw_rule *rule)
1287 {
1288 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1289 return snd_interval_ranges(hw_param_interval(params, rule->var),
1290 r->count, r->ranges, r->mask);
1291 }
1292
1293
1294 /**
1295 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1296 * @runtime: PCM runtime instance
1297 * @cond: condition bits
1298 * @var: hw_params variable to apply the list of range constraints
1299 * @r: ranges
1300 *
1301 * Apply the list of range constraints to an interval parameter.
1302 *
1303 * Return: Zero if successful, or a negative error code on failure.
1304 */
1305 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1306 unsigned int cond,
1307 snd_pcm_hw_param_t var,
1308 const struct snd_pcm_hw_constraint_ranges *r)
1309 {
1310 return snd_pcm_hw_rule_add(runtime, cond, var,
1311 snd_pcm_hw_rule_ranges, (void *)r,
1312 var, -1);
1313 }
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1315
1316 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1317 struct snd_pcm_hw_rule *rule)
1318 {
1319 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1320 unsigned int num = 0, den = 0;
1321 int err;
1322 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1323 r->nrats, r->rats, &num, &den);
1324 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1325 params->rate_num = num;
1326 params->rate_den = den;
1327 }
1328 return err;
1329 }
1330
1331 /**
1332 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1333 * @runtime: PCM runtime instance
1334 * @cond: condition bits
1335 * @var: hw_params variable to apply the ratnums constraint
1336 * @r: struct snd_ratnums constriants
1337 *
1338 * Return: Zero if successful, or a negative error code on failure.
1339 */
1340 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1341 unsigned int cond,
1342 snd_pcm_hw_param_t var,
1343 const struct snd_pcm_hw_constraint_ratnums *r)
1344 {
1345 return snd_pcm_hw_rule_add(runtime, cond, var,
1346 snd_pcm_hw_rule_ratnums, (void *)r,
1347 var, -1);
1348 }
1349 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1350
1351 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1352 struct snd_pcm_hw_rule *rule)
1353 {
1354 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1355 unsigned int num = 0, den = 0;
1356 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1357 r->nrats, r->rats, &num, &den);
1358 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1359 params->rate_num = num;
1360 params->rate_den = den;
1361 }
1362 return err;
1363 }
1364
1365 /**
1366 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1367 * @runtime: PCM runtime instance
1368 * @cond: condition bits
1369 * @var: hw_params variable to apply the ratdens constraint
1370 * @r: struct snd_ratdens constriants
1371 *
1372 * Return: Zero if successful, or a negative error code on failure.
1373 */
1374 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1375 unsigned int cond,
1376 snd_pcm_hw_param_t var,
1377 const struct snd_pcm_hw_constraint_ratdens *r)
1378 {
1379 return snd_pcm_hw_rule_add(runtime, cond, var,
1380 snd_pcm_hw_rule_ratdens, (void *)r,
1381 var, -1);
1382 }
1383 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1384
1385 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1386 struct snd_pcm_hw_rule *rule)
1387 {
1388 unsigned int l = (unsigned long) rule->private;
1389 int width = l & 0xffff;
1390 unsigned int msbits = l >> 16;
1391 const struct snd_interval *i =
1392 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1393
1394 if (!snd_interval_single(i))
1395 return 0;
1396
1397 if ((snd_interval_value(i) == width) ||
1398 (width == 0 && snd_interval_value(i) > msbits))
1399 params->msbits = min_not_zero(params->msbits, msbits);
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406 * @runtime: PCM runtime instance
1407 * @cond: condition bits
1408 * @width: sample bits width
1409 * @msbits: msbits width
1410 *
1411 * This constraint will set the number of most significant bits (msbits) if a
1412 * sample format with the specified width has been select. If width is set to 0
1413 * the msbits will be set for any sample format with a width larger than the
1414 * specified msbits.
1415 *
1416 * Return: Zero if successful, or a negative error code on failure.
1417 */
1418 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1419 unsigned int cond,
1420 unsigned int width,
1421 unsigned int msbits)
1422 {
1423 unsigned long l = (msbits << 16) | width;
1424 return snd_pcm_hw_rule_add(runtime, cond, -1,
1425 snd_pcm_hw_rule_msbits,
1426 (void*) l,
1427 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1428 }
1429 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1430
1431 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1432 struct snd_pcm_hw_rule *rule)
1433 {
1434 unsigned long step = (unsigned long) rule->private;
1435 return snd_interval_step(hw_param_interval(params, rule->var), step);
1436 }
1437
1438 /**
1439 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1440 * @runtime: PCM runtime instance
1441 * @cond: condition bits
1442 * @var: hw_params variable to apply the step constraint
1443 * @step: step size
1444 *
1445 * Return: Zero if successful, or a negative error code on failure.
1446 */
1447 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1448 unsigned int cond,
1449 snd_pcm_hw_param_t var,
1450 unsigned long step)
1451 {
1452 return snd_pcm_hw_rule_add(runtime, cond, var,
1453 snd_pcm_hw_rule_step, (void *) step,
1454 var, -1);
1455 }
1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1457
1458 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1459 {
1460 static unsigned int pow2_sizes[] = {
1461 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1462 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1463 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1464 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1465 };
1466 return snd_interval_list(hw_param_interval(params, rule->var),
1467 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1468 }
1469
1470 /**
1471 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1472 * @runtime: PCM runtime instance
1473 * @cond: condition bits
1474 * @var: hw_params variable to apply the power-of-2 constraint
1475 *
1476 * Return: Zero if successful, or a negative error code on failure.
1477 */
1478 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1479 unsigned int cond,
1480 snd_pcm_hw_param_t var)
1481 {
1482 return snd_pcm_hw_rule_add(runtime, cond, var,
1483 snd_pcm_hw_rule_pow2, NULL,
1484 var, -1);
1485 }
1486 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1487
1488 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1489 struct snd_pcm_hw_rule *rule)
1490 {
1491 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1492 struct snd_interval *rate;
1493
1494 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1495 return snd_interval_list(rate, 1, &base_rate, 0);
1496 }
1497
1498 /**
1499 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1500 * @runtime: PCM runtime instance
1501 * @base_rate: the rate at which the hardware does not resample
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1506 unsigned int base_rate)
1507 {
1508 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1509 SNDRV_PCM_HW_PARAM_RATE,
1510 snd_pcm_hw_rule_noresample_func,
1511 (void *)(uintptr_t)base_rate,
1512 SNDRV_PCM_HW_PARAM_RATE, -1);
1513 }
1514 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1515
1516 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1517 snd_pcm_hw_param_t var)
1518 {
1519 if (hw_is_mask(var)) {
1520 snd_mask_any(hw_param_mask(params, var));
1521 params->cmask |= 1 << var;
1522 params->rmask |= 1 << var;
1523 return;
1524 }
1525 if (hw_is_interval(var)) {
1526 snd_interval_any(hw_param_interval(params, var));
1527 params->cmask |= 1 << var;
1528 params->rmask |= 1 << var;
1529 return;
1530 }
1531 snd_BUG();
1532 }
1533
1534 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1535 {
1536 unsigned int k;
1537 memset(params, 0, sizeof(*params));
1538 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1539 _snd_pcm_hw_param_any(params, k);
1540 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1541 _snd_pcm_hw_param_any(params, k);
1542 params->info = ~0U;
1543 }
1544 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1545
1546 /**
1547 * snd_pcm_hw_param_value - return @params field @var value
1548 * @params: the hw_params instance
1549 * @var: parameter to retrieve
1550 * @dir: pointer to the direction (-1,0,1) or %NULL
1551 *
1552 * Return: The value for field @var if it's fixed in configuration space
1553 * defined by @params. -%EINVAL otherwise.
1554 */
1555 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1556 snd_pcm_hw_param_t var, int *dir)
1557 {
1558 if (hw_is_mask(var)) {
1559 const struct snd_mask *mask = hw_param_mask_c(params, var);
1560 if (!snd_mask_single(mask))
1561 return -EINVAL;
1562 if (dir)
1563 *dir = 0;
1564 return snd_mask_value(mask);
1565 }
1566 if (hw_is_interval(var)) {
1567 const struct snd_interval *i = hw_param_interval_c(params, var);
1568 if (!snd_interval_single(i))
1569 return -EINVAL;
1570 if (dir)
1571 *dir = i->openmin;
1572 return snd_interval_value(i);
1573 }
1574 return -EINVAL;
1575 }
1576 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1577
1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1579 snd_pcm_hw_param_t var)
1580 {
1581 if (hw_is_mask(var)) {
1582 snd_mask_none(hw_param_mask(params, var));
1583 params->cmask |= 1 << var;
1584 params->rmask |= 1 << var;
1585 } else if (hw_is_interval(var)) {
1586 snd_interval_none(hw_param_interval(params, var));
1587 params->cmask |= 1 << var;
1588 params->rmask |= 1 << var;
1589 } else {
1590 snd_BUG();
1591 }
1592 }
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596 snd_pcm_hw_param_t var)
1597 {
1598 int changed;
1599 if (hw_is_mask(var))
1600 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601 else if (hw_is_interval(var))
1602 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603 else
1604 return -EINVAL;
1605 if (changed) {
1606 params->cmask |= 1 << var;
1607 params->rmask |= 1 << var;
1608 }
1609 return changed;
1610 }
1611
1612
1613 /**
1614 * snd_pcm_hw_param_first - refine config space and return minimum value
1615 * @pcm: PCM instance
1616 * @params: the hw_params instance
1617 * @var: parameter to retrieve
1618 * @dir: pointer to the direction (-1,0,1) or %NULL
1619 *
1620 * Inside configuration space defined by @params remove from @var all
1621 * values > minimum. Reduce configuration space accordingly.
1622 *
1623 * Return: The minimum, or a negative error code on failure.
1624 */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1626 struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var, int *dir)
1628 {
1629 int changed = _snd_pcm_hw_param_first(params, var);
1630 if (changed < 0)
1631 return changed;
1632 if (params->rmask) {
1633 int err = snd_pcm_hw_refine(pcm, params);
1634 if (err < 0)
1635 return err;
1636 }
1637 return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1640
1641 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1642 snd_pcm_hw_param_t var)
1643 {
1644 int changed;
1645 if (hw_is_mask(var))
1646 changed = snd_mask_refine_last(hw_param_mask(params, var));
1647 else if (hw_is_interval(var))
1648 changed = snd_interval_refine_last(hw_param_interval(params, var));
1649 else
1650 return -EINVAL;
1651 if (changed) {
1652 params->cmask |= 1 << var;
1653 params->rmask |= 1 << var;
1654 }
1655 return changed;
1656 }
1657
1658
1659 /**
1660 * snd_pcm_hw_param_last - refine config space and return maximum value
1661 * @pcm: PCM instance
1662 * @params: the hw_params instance
1663 * @var: parameter to retrieve
1664 * @dir: pointer to the direction (-1,0,1) or %NULL
1665 *
1666 * Inside configuration space defined by @params remove from @var all
1667 * values < maximum. Reduce configuration space accordingly.
1668 *
1669 * Return: The maximum, or a negative error code on failure.
1670 */
1671 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1672 struct snd_pcm_hw_params *params,
1673 snd_pcm_hw_param_t var, int *dir)
1674 {
1675 int changed = _snd_pcm_hw_param_last(params, var);
1676 if (changed < 0)
1677 return changed;
1678 if (params->rmask) {
1679 int err = snd_pcm_hw_refine(pcm, params);
1680 if (err < 0)
1681 return err;
1682 }
1683 return snd_pcm_hw_param_value(params, var, dir);
1684 }
1685 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1686
1687 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1688 void *arg)
1689 {
1690 struct snd_pcm_runtime *runtime = substream->runtime;
1691 unsigned long flags;
1692 snd_pcm_stream_lock_irqsave(substream, flags);
1693 if (snd_pcm_running(substream) &&
1694 snd_pcm_update_hw_ptr(substream) >= 0)
1695 runtime->status->hw_ptr %= runtime->buffer_size;
1696 else {
1697 runtime->status->hw_ptr = 0;
1698 runtime->hw_ptr_wrap = 0;
1699 }
1700 snd_pcm_stream_unlock_irqrestore(substream, flags);
1701 return 0;
1702 }
1703
1704 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1705 void *arg)
1706 {
1707 struct snd_pcm_channel_info *info = arg;
1708 struct snd_pcm_runtime *runtime = substream->runtime;
1709 int width;
1710 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1711 info->offset = -1;
1712 return 0;
1713 }
1714 width = snd_pcm_format_physical_width(runtime->format);
1715 if (width < 0)
1716 return width;
1717 info->offset = 0;
1718 switch (runtime->access) {
1719 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1720 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1721 info->first = info->channel * width;
1722 info->step = runtime->channels * width;
1723 break;
1724 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1725 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1726 {
1727 size_t size = runtime->dma_bytes / runtime->channels;
1728 info->first = info->channel * size * 8;
1729 info->step = width;
1730 break;
1731 }
1732 default:
1733 snd_BUG();
1734 break;
1735 }
1736 return 0;
1737 }
1738
1739 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1740 void *arg)
1741 {
1742 struct snd_pcm_hw_params *params = arg;
1743 snd_pcm_format_t format;
1744 int channels;
1745 ssize_t frame_size;
1746
1747 params->fifo_size = substream->runtime->hw.fifo_size;
1748 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1749 format = params_format(params);
1750 channels = params_channels(params);
1751 frame_size = snd_pcm_format_size(format, channels);
1752 if (frame_size > 0)
1753 params->fifo_size /= (unsigned)frame_size;
1754 }
1755 return 0;
1756 }
1757
1758 /**
1759 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1760 * @substream: the pcm substream instance
1761 * @cmd: ioctl command
1762 * @arg: ioctl argument
1763 *
1764 * Processes the generic ioctl commands for PCM.
1765 * Can be passed as the ioctl callback for PCM ops.
1766 *
1767 * Return: Zero if successful, or a negative error code on failure.
1768 */
1769 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1770 unsigned int cmd, void *arg)
1771 {
1772 switch (cmd) {
1773 case SNDRV_PCM_IOCTL1_RESET:
1774 return snd_pcm_lib_ioctl_reset(substream, arg);
1775 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1776 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1777 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1778 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1779 }
1780 return -ENXIO;
1781 }
1782 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1783
1784 /**
1785 * snd_pcm_period_elapsed - update the pcm status for the next period
1786 * @substream: the pcm substream instance
1787 *
1788 * This function is called from the interrupt handler when the
1789 * PCM has processed the period size. It will update the current
1790 * pointer, wake up sleepers, etc.
1791 *
1792 * Even if more than one periods have elapsed since the last call, you
1793 * have to call this only once.
1794 */
1795 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1796 {
1797 struct snd_pcm_runtime *runtime;
1798 unsigned long flags;
1799
1800 if (PCM_RUNTIME_CHECK(substream))
1801 return;
1802 runtime = substream->runtime;
1803
1804 snd_pcm_stream_lock_irqsave(substream, flags);
1805 if (!snd_pcm_running(substream) ||
1806 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1807 goto _end;
1808
1809 #ifdef CONFIG_SND_PCM_TIMER
1810 if (substream->timer_running)
1811 snd_timer_interrupt(substream->timer, 1);
1812 #endif
1813 _end:
1814 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1815 snd_pcm_stream_unlock_irqrestore(substream, flags);
1816 }
1817 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1818
1819 /*
1820 * Wait until avail_min data becomes available
1821 * Returns a negative error code if any error occurs during operation.
1822 * The available space is stored on availp. When err = 0 and avail = 0
1823 * on the capture stream, it indicates the stream is in DRAINING state.
1824 */
1825 static int wait_for_avail(struct snd_pcm_substream *substream,
1826 snd_pcm_uframes_t *availp)
1827 {
1828 struct snd_pcm_runtime *runtime = substream->runtime;
1829 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1830 wait_queue_entry_t wait;
1831 int err = 0;
1832 snd_pcm_uframes_t avail = 0;
1833 long wait_time, tout;
1834
1835 init_waitqueue_entry(&wait, current);
1836 set_current_state(TASK_INTERRUPTIBLE);
1837 add_wait_queue(&runtime->tsleep, &wait);
1838
1839 if (runtime->no_period_wakeup)
1840 wait_time = MAX_SCHEDULE_TIMEOUT;
1841 else {
1842 wait_time = 10;
1843 if (runtime->rate) {
1844 long t = runtime->period_size * 2 / runtime->rate;
1845 wait_time = max(t, wait_time);
1846 }
1847 wait_time = msecs_to_jiffies(wait_time * 1000);
1848 }
1849
1850 for (;;) {
1851 if (signal_pending(current)) {
1852 err = -ERESTARTSYS;
1853 break;
1854 }
1855
1856 /*
1857 * We need to check if space became available already
1858 * (and thus the wakeup happened already) first to close
1859 * the race of space already having become available.
1860 * This check must happen after been added to the waitqueue
1861 * and having current state be INTERRUPTIBLE.
1862 */
1863 if (is_playback)
1864 avail = snd_pcm_playback_avail(runtime);
1865 else
1866 avail = snd_pcm_capture_avail(runtime);
1867 if (avail >= runtime->twake)
1868 break;
1869 snd_pcm_stream_unlock_irq(substream);
1870
1871 tout = schedule_timeout(wait_time);
1872
1873 snd_pcm_stream_lock_irq(substream);
1874 set_current_state(TASK_INTERRUPTIBLE);
1875 switch (runtime->status->state) {
1876 case SNDRV_PCM_STATE_SUSPENDED:
1877 err = -ESTRPIPE;
1878 goto _endloop;
1879 case SNDRV_PCM_STATE_XRUN:
1880 err = -EPIPE;
1881 goto _endloop;
1882 case SNDRV_PCM_STATE_DRAINING:
1883 if (is_playback)
1884 err = -EPIPE;
1885 else
1886 avail = 0; /* indicate draining */
1887 goto _endloop;
1888 case SNDRV_PCM_STATE_OPEN:
1889 case SNDRV_PCM_STATE_SETUP:
1890 case SNDRV_PCM_STATE_DISCONNECTED:
1891 err = -EBADFD;
1892 goto _endloop;
1893 case SNDRV_PCM_STATE_PAUSED:
1894 continue;
1895 }
1896 if (!tout) {
1897 pcm_dbg(substream->pcm,
1898 "%s write error (DMA or IRQ trouble?)\n",
1899 is_playback ? "playback" : "capture");
1900 err = -EIO;
1901 break;
1902 }
1903 }
1904 _endloop:
1905 set_current_state(TASK_RUNNING);
1906 remove_wait_queue(&runtime->tsleep, &wait);
1907 *availp = avail;
1908 return err;
1909 }
1910
1911 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1912 int channel, unsigned long hwoff,
1913 void *buf, unsigned long bytes);
1914
1915 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1916 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1917
1918 /* calculate the target DMA-buffer position to be written/read */
1919 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1920 int channel, unsigned long hwoff)
1921 {
1922 return runtime->dma_area + hwoff +
1923 channel * (runtime->dma_bytes / runtime->channels);
1924 }
1925
1926 /* default copy_user ops for write; used for both interleaved and non- modes */
1927 static int default_write_copy(struct snd_pcm_substream *substream,
1928 int channel, unsigned long hwoff,
1929 void *buf, unsigned long bytes)
1930 {
1931 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1932 (void __user *)buf, bytes))
1933 return -EFAULT;
1934 return 0;
1935 }
1936
1937 /* default copy_kernel ops for write */
1938 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1939 int channel, unsigned long hwoff,
1940 void *buf, unsigned long bytes)
1941 {
1942 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1943 return 0;
1944 }
1945
1946 /* fill silence instead of copy data; called as a transfer helper
1947 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1948 * a NULL buffer is passed
1949 */
1950 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1951 unsigned long hwoff, void *buf, unsigned long bytes)
1952 {
1953 struct snd_pcm_runtime *runtime = substream->runtime;
1954
1955 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1956 return 0;
1957 if (substream->ops->fill_silence)
1958 return substream->ops->fill_silence(substream, channel,
1959 hwoff, bytes);
1960
1961 snd_pcm_format_set_silence(runtime->format,
1962 get_dma_ptr(runtime, channel, hwoff),
1963 bytes_to_samples(runtime, bytes));
1964 return 0;
1965 }
1966
1967 /* default copy_user ops for read; used for both interleaved and non- modes */
1968 static int default_read_copy(struct snd_pcm_substream *substream,
1969 int channel, unsigned long hwoff,
1970 void *buf, unsigned long bytes)
1971 {
1972 if (copy_to_user((void __user *)buf,
1973 get_dma_ptr(substream->runtime, channel, hwoff),
1974 bytes))
1975 return -EFAULT;
1976 return 0;
1977 }
1978
1979 /* default copy_kernel ops for read */
1980 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1981 int channel, unsigned long hwoff,
1982 void *buf, unsigned long bytes)
1983 {
1984 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1985 return 0;
1986 }
1987
1988 /* call transfer function with the converted pointers and sizes;
1989 * for interleaved mode, it's one shot for all samples
1990 */
1991 static int interleaved_copy(struct snd_pcm_substream *substream,
1992 snd_pcm_uframes_t hwoff, void *data,
1993 snd_pcm_uframes_t off,
1994 snd_pcm_uframes_t frames,
1995 pcm_transfer_f transfer)
1996 {
1997 struct snd_pcm_runtime *runtime = substream->runtime;
1998
1999 /* convert to bytes */
2000 hwoff = frames_to_bytes(runtime, hwoff);
2001 off = frames_to_bytes(runtime, off);
2002 frames = frames_to_bytes(runtime, frames);
2003 return transfer(substream, 0, hwoff, data + off, frames);
2004 }
2005
2006 /* call transfer function with the converted pointers and sizes for each
2007 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2008 */
2009 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2010 snd_pcm_uframes_t hwoff, void *data,
2011 snd_pcm_uframes_t off,
2012 snd_pcm_uframes_t frames,
2013 pcm_transfer_f transfer)
2014 {
2015 struct snd_pcm_runtime *runtime = substream->runtime;
2016 int channels = runtime->channels;
2017 void **bufs = data;
2018 int c, err;
2019
2020 /* convert to bytes; note that it's not frames_to_bytes() here.
2021 * in non-interleaved mode, we copy for each channel, thus
2022 * each copy is n_samples bytes x channels = whole frames.
2023 */
2024 off = samples_to_bytes(runtime, off);
2025 frames = samples_to_bytes(runtime, frames);
2026 hwoff = samples_to_bytes(runtime, hwoff);
2027 for (c = 0; c < channels; ++c, ++bufs) {
2028 if (!data || !*bufs)
2029 err = fill_silence(substream, c, hwoff, NULL, frames);
2030 else
2031 err = transfer(substream, c, hwoff, *bufs + off,
2032 frames);
2033 if (err < 0)
2034 return err;
2035 }
2036 return 0;
2037 }
2038
2039 /* fill silence on the given buffer position;
2040 * called from snd_pcm_playback_silence()
2041 */
2042 static int fill_silence_frames(struct snd_pcm_substream *substream,
2043 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2044 {
2045 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2046 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2047 return interleaved_copy(substream, off, NULL, 0, frames,
2048 fill_silence);
2049 else
2050 return noninterleaved_copy(substream, off, NULL, 0, frames,
2051 fill_silence);
2052 }
2053
2054 /* sanity-check for read/write methods */
2055 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2056 {
2057 struct snd_pcm_runtime *runtime;
2058 if (PCM_RUNTIME_CHECK(substream))
2059 return -ENXIO;
2060 runtime = substream->runtime;
2061 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2062 return -EINVAL;
2063 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2064 return -EBADFD;
2065 return 0;
2066 }
2067
2068 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2069 {
2070 switch (runtime->status->state) {
2071 case SNDRV_PCM_STATE_PREPARED:
2072 case SNDRV_PCM_STATE_RUNNING:
2073 case SNDRV_PCM_STATE_PAUSED:
2074 return 0;
2075 case SNDRV_PCM_STATE_XRUN:
2076 return -EPIPE;
2077 case SNDRV_PCM_STATE_SUSPENDED:
2078 return -ESTRPIPE;
2079 default:
2080 return -EBADFD;
2081 }
2082 }
2083
2084 /* update to the given appl_ptr and call ack callback if needed;
2085 * when an error is returned, take back to the original value
2086 */
2087 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2088 snd_pcm_uframes_t appl_ptr)
2089 {
2090 struct snd_pcm_runtime *runtime = substream->runtime;
2091 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2092 int ret;
2093
2094 if (old_appl_ptr == appl_ptr)
2095 return 0;
2096
2097 runtime->control->appl_ptr = appl_ptr;
2098 if (substream->ops->ack) {
2099 ret = substream->ops->ack(substream);
2100 if (ret < 0) {
2101 runtime->control->appl_ptr = old_appl_ptr;
2102 return ret;
2103 }
2104 }
2105
2106 trace_applptr(substream, old_appl_ptr, appl_ptr);
2107
2108 return 0;
2109 }
2110
2111 /* the common loop for read/write data */
2112 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2113 void *data, bool interleaved,
2114 snd_pcm_uframes_t size, bool in_kernel)
2115 {
2116 struct snd_pcm_runtime *runtime = substream->runtime;
2117 snd_pcm_uframes_t xfer = 0;
2118 snd_pcm_uframes_t offset = 0;
2119 snd_pcm_uframes_t avail;
2120 pcm_copy_f writer;
2121 pcm_transfer_f transfer;
2122 bool nonblock;
2123 bool is_playback;
2124 int err;
2125
2126 err = pcm_sanity_check(substream);
2127 if (err < 0)
2128 return err;
2129
2130 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2131 if (interleaved) {
2132 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2133 runtime->channels > 1)
2134 return -EINVAL;
2135 writer = interleaved_copy;
2136 } else {
2137 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2138 return -EINVAL;
2139 writer = noninterleaved_copy;
2140 }
2141
2142 if (!data) {
2143 if (is_playback)
2144 transfer = fill_silence;
2145 else
2146 return -EINVAL;
2147 } else if (in_kernel) {
2148 if (substream->ops->copy_kernel)
2149 transfer = substream->ops->copy_kernel;
2150 else
2151 transfer = is_playback ?
2152 default_write_copy_kernel : default_read_copy_kernel;
2153 } else {
2154 if (substream->ops->copy_user)
2155 transfer = (pcm_transfer_f)substream->ops->copy_user;
2156 else
2157 transfer = is_playback ?
2158 default_write_copy : default_read_copy;
2159 }
2160
2161 if (size == 0)
2162 return 0;
2163
2164 nonblock = !!(substream->f_flags & O_NONBLOCK);
2165
2166 snd_pcm_stream_lock_irq(substream);
2167 err = pcm_accessible_state(runtime);
2168 if (err < 0)
2169 goto _end_unlock;
2170
2171 if (!is_playback &&
2172 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2173 size >= runtime->start_threshold) {
2174 err = snd_pcm_start(substream);
2175 if (err < 0)
2176 goto _end_unlock;
2177 }
2178
2179 runtime->twake = runtime->control->avail_min ? : 1;
2180 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2181 snd_pcm_update_hw_ptr(substream);
2182 if (is_playback)
2183 avail = snd_pcm_playback_avail(runtime);
2184 else
2185 avail = snd_pcm_capture_avail(runtime);
2186 while (size > 0) {
2187 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2188 snd_pcm_uframes_t cont;
2189 if (!avail) {
2190 if (!is_playback &&
2191 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2192 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2193 goto _end_unlock;
2194 }
2195 if (nonblock) {
2196 err = -EAGAIN;
2197 goto _end_unlock;
2198 }
2199 runtime->twake = min_t(snd_pcm_uframes_t, size,
2200 runtime->control->avail_min ? : 1);
2201 err = wait_for_avail(substream, &avail);
2202 if (err < 0)
2203 goto _end_unlock;
2204 if (!avail)
2205 continue; /* draining */
2206 }
2207 frames = size > avail ? avail : size;
2208 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2209 appl_ofs = appl_ptr % runtime->buffer_size;
2210 cont = runtime->buffer_size - appl_ofs;
2211 if (frames > cont)
2212 frames = cont;
2213 if (snd_BUG_ON(!frames)) {
2214 runtime->twake = 0;
2215 snd_pcm_stream_unlock_irq(substream);
2216 return -EINVAL;
2217 }
2218 snd_pcm_stream_unlock_irq(substream);
2219 err = writer(substream, appl_ofs, data, offset, frames,
2220 transfer);
2221 snd_pcm_stream_lock_irq(substream);
2222 if (err < 0)
2223 goto _end_unlock;
2224 err = pcm_accessible_state(runtime);
2225 if (err < 0)
2226 goto _end_unlock;
2227 appl_ptr += frames;
2228 if (appl_ptr >= runtime->boundary)
2229 appl_ptr -= runtime->boundary;
2230 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2231 if (err < 0)
2232 goto _end_unlock;
2233
2234 offset += frames;
2235 size -= frames;
2236 xfer += frames;
2237 avail -= frames;
2238 if (is_playback &&
2239 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2240 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2241 err = snd_pcm_start(substream);
2242 if (err < 0)
2243 goto _end_unlock;
2244 }
2245 }
2246 _end_unlock:
2247 runtime->twake = 0;
2248 if (xfer > 0 && err >= 0)
2249 snd_pcm_update_state(substream, runtime);
2250 snd_pcm_stream_unlock_irq(substream);
2251 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2252 }
2253 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2254
2255 /*
2256 * standard channel mapping helpers
2257 */
2258
2259 /* default channel maps for multi-channel playbacks, up to 8 channels */
2260 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2261 { .channels = 1,
2262 .map = { SNDRV_CHMAP_MONO } },
2263 { .channels = 2,
2264 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2265 { .channels = 4,
2266 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2267 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2268 { .channels = 6,
2269 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2270 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2271 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2272 { .channels = 8,
2273 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2274 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2275 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2276 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2277 { }
2278 };
2279 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2280
2281 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2282 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2283 { .channels = 1,
2284 .map = { SNDRV_CHMAP_MONO } },
2285 { .channels = 2,
2286 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2287 { .channels = 4,
2288 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2289 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2290 { .channels = 6,
2291 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2292 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2293 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2294 { .channels = 8,
2295 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2296 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2297 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2298 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2299 { }
2300 };
2301 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2302
2303 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2304 {
2305 if (ch > info->max_channels)
2306 return false;
2307 return !info->channel_mask || (info->channel_mask & (1U << ch));
2308 }
2309
2310 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2311 struct snd_ctl_elem_info *uinfo)
2312 {
2313 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2314
2315 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2316 uinfo->count = 0;
2317 uinfo->count = info->max_channels;
2318 uinfo->value.integer.min = 0;
2319 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2320 return 0;
2321 }
2322
2323 /* get callback for channel map ctl element
2324 * stores the channel position firstly matching with the current channels
2325 */
2326 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2327 struct snd_ctl_elem_value *ucontrol)
2328 {
2329 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2330 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2331 struct snd_pcm_substream *substream;
2332 const struct snd_pcm_chmap_elem *map;
2333
2334 if (!info->chmap)
2335 return -EINVAL;
2336 substream = snd_pcm_chmap_substream(info, idx);
2337 if (!substream)
2338 return -ENODEV;
2339 memset(ucontrol->value.integer.value, 0,
2340 sizeof(ucontrol->value.integer.value));
2341 if (!substream->runtime)
2342 return 0; /* no channels set */
2343 for (map = info->chmap; map->channels; map++) {
2344 int i;
2345 if (map->channels == substream->runtime->channels &&
2346 valid_chmap_channels(info, map->channels)) {
2347 for (i = 0; i < map->channels; i++)
2348 ucontrol->value.integer.value[i] = map->map[i];
2349 return 0;
2350 }
2351 }
2352 return -EINVAL;
2353 }
2354
2355 /* tlv callback for channel map ctl element
2356 * expands the pre-defined channel maps in a form of TLV
2357 */
2358 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2359 unsigned int size, unsigned int __user *tlv)
2360 {
2361 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2362 const struct snd_pcm_chmap_elem *map;
2363 unsigned int __user *dst;
2364 int c, count = 0;
2365
2366 if (!info->chmap)
2367 return -EINVAL;
2368 if (size < 8)
2369 return -ENOMEM;
2370 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2371 return -EFAULT;
2372 size -= 8;
2373 dst = tlv + 2;
2374 for (map = info->chmap; map->channels; map++) {
2375 int chs_bytes = map->channels * 4;
2376 if (!valid_chmap_channels(info, map->channels))
2377 continue;
2378 if (size < 8)
2379 return -ENOMEM;
2380 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2381 put_user(chs_bytes, dst + 1))
2382 return -EFAULT;
2383 dst += 2;
2384 size -= 8;
2385 count += 8;
2386 if (size < chs_bytes)
2387 return -ENOMEM;
2388 size -= chs_bytes;
2389 count += chs_bytes;
2390 for (c = 0; c < map->channels; c++) {
2391 if (put_user(map->map[c], dst))
2392 return -EFAULT;
2393 dst++;
2394 }
2395 }
2396 if (put_user(count, tlv + 1))
2397 return -EFAULT;
2398 return 0;
2399 }
2400
2401 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2402 {
2403 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2404 info->pcm->streams[info->stream].chmap_kctl = NULL;
2405 kfree(info);
2406 }
2407
2408 /**
2409 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2410 * @pcm: the assigned PCM instance
2411 * @stream: stream direction
2412 * @chmap: channel map elements (for query)
2413 * @max_channels: the max number of channels for the stream
2414 * @private_value: the value passed to each kcontrol's private_value field
2415 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2416 *
2417 * Create channel-mapping control elements assigned to the given PCM stream(s).
2418 * Return: Zero if successful, or a negative error value.
2419 */
2420 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2421 const struct snd_pcm_chmap_elem *chmap,
2422 int max_channels,
2423 unsigned long private_value,
2424 struct snd_pcm_chmap **info_ret)
2425 {
2426 struct snd_pcm_chmap *info;
2427 struct snd_kcontrol_new knew = {
2428 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2429 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2430 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2431 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2432 .info = pcm_chmap_ctl_info,
2433 .get = pcm_chmap_ctl_get,
2434 .tlv.c = pcm_chmap_ctl_tlv,
2435 };
2436 int err;
2437
2438 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2439 return -EBUSY;
2440 info = kzalloc(sizeof(*info), GFP_KERNEL);
2441 if (!info)
2442 return -ENOMEM;
2443 info->pcm = pcm;
2444 info->stream = stream;
2445 info->chmap = chmap;
2446 info->max_channels = max_channels;
2447 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2448 knew.name = "Playback Channel Map";
2449 else
2450 knew.name = "Capture Channel Map";
2451 knew.device = pcm->device;
2452 knew.count = pcm->streams[stream].substream_count;
2453 knew.private_value = private_value;
2454 info->kctl = snd_ctl_new1(&knew, info);
2455 if (!info->kctl) {
2456 kfree(info);
2457 return -ENOMEM;
2458 }
2459 info->kctl->private_free = pcm_chmap_ctl_private_free;
2460 err = snd_ctl_add(pcm->card, info->kctl);
2461 if (err < 0)
2462 return err;
2463 pcm->streams[stream].chmap_kctl = info->kctl;
2464 if (info_ret)
2465 *info_ret = info;
2466 return 0;
2467 }
2468 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);