]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/core/pcm_lib.c
Merge branch 'master'
[mirror_ubuntu-artful-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34 * fill ring buffer with silence
35 * runtime->silence_start: starting pointer to silence area
36 * runtime->silence_filled: size filled with silence
37 * runtime->silence_threshold: threshold from application
38 * runtime->silence_size: maximal size from application
39 *
40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41 */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 struct snd_pcm_runtime *runtime = substream->runtime;
45 snd_pcm_uframes_t frames, ofs, transfer;
46
47 if (runtime->silence_size < runtime->boundary) {
48 snd_pcm_sframes_t noise_dist, n;
49 if (runtime->silence_start != runtime->control->appl_ptr) {
50 n = runtime->control->appl_ptr - runtime->silence_start;
51 if (n < 0)
52 n += runtime->boundary;
53 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 runtime->silence_filled -= n;
55 else
56 runtime->silence_filled = 0;
57 runtime->silence_start = runtime->control->appl_ptr;
58 }
59 if (runtime->silence_filled >= runtime->buffer_size)
60 return;
61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63 return;
64 frames = runtime->silence_threshold - noise_dist;
65 if (frames > runtime->silence_size)
66 frames = runtime->silence_size;
67 } else {
68 if (new_hw_ptr == ULONG_MAX) { /* initialization */
69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70 runtime->silence_filled = avail > 0 ? avail : 0;
71 runtime->silence_start = (runtime->status->hw_ptr +
72 runtime->silence_filled) %
73 runtime->boundary;
74 } else {
75 ofs = runtime->status->hw_ptr;
76 frames = new_hw_ptr - ofs;
77 if ((snd_pcm_sframes_t)frames < 0)
78 frames += runtime->boundary;
79 runtime->silence_filled -= frames;
80 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81 runtime->silence_filled = 0;
82 runtime->silence_start = (ofs + frames) - runtime->buffer_size;
83 } else {
84 runtime->silence_start = ofs - runtime->silence_filled;
85 }
86 if ((snd_pcm_sframes_t)runtime->silence_start < 0)
87 runtime->silence_start += runtime->boundary;
88 }
89 frames = runtime->buffer_size - runtime->silence_filled;
90 }
91 snd_assert(frames <= runtime->buffer_size, return);
92 if (frames == 0)
93 return;
94 ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
95 while (frames > 0) {
96 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
97 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
98 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
99 if (substream->ops->silence) {
100 int err;
101 err = substream->ops->silence(substream, -1, ofs, transfer);
102 snd_assert(err >= 0, );
103 } else {
104 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
105 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
106 }
107 } else {
108 unsigned int c;
109 unsigned int channels = runtime->channels;
110 if (substream->ops->silence) {
111 for (c = 0; c < channels; ++c) {
112 int err;
113 err = substream->ops->silence(substream, c, ofs, transfer);
114 snd_assert(err >= 0, );
115 }
116 } else {
117 size_t dma_csize = runtime->dma_bytes / channels;
118 for (c = 0; c < channels; ++c) {
119 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
120 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
121 }
122 }
123 }
124 runtime->silence_filled += transfer;
125 frames -= transfer;
126 ofs = 0;
127 }
128 }
129
130 static void xrun(struct snd_pcm_substream *substream)
131 {
132 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
133 #ifdef CONFIG_SND_DEBUG
134 if (substream->pstr->xrun_debug) {
135 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
136 substream->pcm->card->number,
137 substream->pcm->device,
138 substream->stream ? 'c' : 'p');
139 if (substream->pstr->xrun_debug > 1)
140 dump_stack();
141 }
142 #endif
143 }
144
145 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
146 struct snd_pcm_runtime *runtime)
147 {
148 snd_pcm_uframes_t pos;
149
150 pos = substream->ops->pointer(substream);
151 if (pos == SNDRV_PCM_POS_XRUN)
152 return pos; /* XRUN */
153 if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
154 getnstimeofday((struct timespec *)&runtime->status->tstamp);
155 #ifdef CONFIG_SND_DEBUG
156 if (pos >= runtime->buffer_size) {
157 snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
158 }
159 #endif
160 pos -= pos % runtime->min_align;
161 return pos;
162 }
163
164 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
165 struct snd_pcm_runtime *runtime)
166 {
167 snd_pcm_uframes_t avail;
168
169 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
170 avail = snd_pcm_playback_avail(runtime);
171 else
172 avail = snd_pcm_capture_avail(runtime);
173 if (avail > runtime->avail_max)
174 runtime->avail_max = avail;
175 if (avail >= runtime->stop_threshold) {
176 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
177 snd_pcm_drain_done(substream);
178 else
179 xrun(substream);
180 return -EPIPE;
181 }
182 if (avail >= runtime->control->avail_min)
183 wake_up(&runtime->sleep);
184 return 0;
185 }
186
187 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
188 {
189 struct snd_pcm_runtime *runtime = substream->runtime;
190 snd_pcm_uframes_t pos;
191 snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
192 snd_pcm_sframes_t delta;
193
194 pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
195 if (pos == SNDRV_PCM_POS_XRUN) {
196 xrun(substream);
197 return -EPIPE;
198 }
199 if (runtime->period_size == runtime->buffer_size)
200 goto __next_buf;
201 new_hw_ptr = runtime->hw_ptr_base + pos;
202 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
203
204 delta = hw_ptr_interrupt - new_hw_ptr;
205 if (delta > 0) {
206 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
207 #ifdef CONFIG_SND_DEBUG
208 if (runtime->periods > 1 && substream->pstr->xrun_debug) {
209 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
210 if (substream->pstr->xrun_debug > 1)
211 dump_stack();
212 }
213 #endif
214 return 0;
215 }
216 __next_buf:
217 runtime->hw_ptr_base += runtime->buffer_size;
218 if (runtime->hw_ptr_base == runtime->boundary)
219 runtime->hw_ptr_base = 0;
220 new_hw_ptr = runtime->hw_ptr_base + pos;
221 }
222
223 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
224 runtime->silence_size > 0)
225 snd_pcm_playback_silence(substream, new_hw_ptr);
226
227 runtime->status->hw_ptr = new_hw_ptr;
228 runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
229
230 return snd_pcm_update_hw_ptr_post(substream, runtime);
231 }
232
233 /* CAUTION: call it with irq disabled */
234 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
235 {
236 struct snd_pcm_runtime *runtime = substream->runtime;
237 snd_pcm_uframes_t pos;
238 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
239 snd_pcm_sframes_t delta;
240
241 old_hw_ptr = runtime->status->hw_ptr;
242 pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
243 if (pos == SNDRV_PCM_POS_XRUN) {
244 xrun(substream);
245 return -EPIPE;
246 }
247 new_hw_ptr = runtime->hw_ptr_base + pos;
248
249 delta = old_hw_ptr - new_hw_ptr;
250 if (delta > 0) {
251 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
252 #ifdef CONFIG_SND_DEBUG
253 if (runtime->periods > 2 && substream->pstr->xrun_debug) {
254 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
255 if (substream->pstr->xrun_debug > 1)
256 dump_stack();
257 }
258 #endif
259 return 0;
260 }
261 runtime->hw_ptr_base += runtime->buffer_size;
262 if (runtime->hw_ptr_base == runtime->boundary)
263 runtime->hw_ptr_base = 0;
264 new_hw_ptr = runtime->hw_ptr_base + pos;
265 }
266 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
267 runtime->silence_size > 0)
268 snd_pcm_playback_silence(substream, new_hw_ptr);
269
270 runtime->status->hw_ptr = new_hw_ptr;
271
272 return snd_pcm_update_hw_ptr_post(substream, runtime);
273 }
274
275 /**
276 * snd_pcm_set_ops - set the PCM operators
277 * @pcm: the pcm instance
278 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
279 * @ops: the operator table
280 *
281 * Sets the given PCM operators to the pcm instance.
282 */
283 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
284 {
285 struct snd_pcm_str *stream = &pcm->streams[direction];
286 struct snd_pcm_substream *substream;
287
288 for (substream = stream->substream; substream != NULL; substream = substream->next)
289 substream->ops = ops;
290 }
291
292
293 /**
294 * snd_pcm_sync - set the PCM sync id
295 * @substream: the pcm substream
296 *
297 * Sets the PCM sync identifier for the card.
298 */
299 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
300 {
301 struct snd_pcm_runtime *runtime = substream->runtime;
302
303 runtime->sync.id32[0] = substream->pcm->card->number;
304 runtime->sync.id32[1] = -1;
305 runtime->sync.id32[2] = -1;
306 runtime->sync.id32[3] = -1;
307 }
308
309 /*
310 * Standard ioctl routine
311 */
312
313 /* Code taken from alsa-lib */
314 #define assert(a) snd_assert((a), return -EINVAL)
315
316 static inline unsigned int div32(unsigned int a, unsigned int b,
317 unsigned int *r)
318 {
319 if (b == 0) {
320 *r = 0;
321 return UINT_MAX;
322 }
323 *r = a % b;
324 return a / b;
325 }
326
327 static inline unsigned int div_down(unsigned int a, unsigned int b)
328 {
329 if (b == 0)
330 return UINT_MAX;
331 return a / b;
332 }
333
334 static inline unsigned int div_up(unsigned int a, unsigned int b)
335 {
336 unsigned int r;
337 unsigned int q;
338 if (b == 0)
339 return UINT_MAX;
340 q = div32(a, b, &r);
341 if (r)
342 ++q;
343 return q;
344 }
345
346 static inline unsigned int mul(unsigned int a, unsigned int b)
347 {
348 if (a == 0)
349 return 0;
350 if (div_down(UINT_MAX, a) < b)
351 return UINT_MAX;
352 return a * b;
353 }
354
355 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
356 unsigned int c, unsigned int *r)
357 {
358 u_int64_t n = (u_int64_t) a * b;
359 if (c == 0) {
360 snd_assert(n > 0, );
361 *r = 0;
362 return UINT_MAX;
363 }
364 div64_32(&n, c, r);
365 if (n >= UINT_MAX) {
366 *r = 0;
367 return UINT_MAX;
368 }
369 return n;
370 }
371
372 static int snd_interval_refine_min(struct snd_interval *i, unsigned int min, int openmin)
373 {
374 int changed = 0;
375 assert(!snd_interval_empty(i));
376 if (i->min < min) {
377 i->min = min;
378 i->openmin = openmin;
379 changed = 1;
380 } else if (i->min == min && !i->openmin && openmin) {
381 i->openmin = 1;
382 changed = 1;
383 }
384 if (i->integer) {
385 if (i->openmin) {
386 i->min++;
387 i->openmin = 0;
388 }
389 }
390 if (snd_interval_checkempty(i)) {
391 snd_interval_none(i);
392 return -EINVAL;
393 }
394 return changed;
395 }
396
397 static int snd_interval_refine_max(struct snd_interval *i, unsigned int max, int openmax)
398 {
399 int changed = 0;
400 assert(!snd_interval_empty(i));
401 if (i->max > max) {
402 i->max = max;
403 i->openmax = openmax;
404 changed = 1;
405 } else if (i->max == max && !i->openmax && openmax) {
406 i->openmax = 1;
407 changed = 1;
408 }
409 if (i->integer) {
410 if (i->openmax) {
411 i->max--;
412 i->openmax = 0;
413 }
414 }
415 if (snd_interval_checkempty(i)) {
416 snd_interval_none(i);
417 return -EINVAL;
418 }
419 return changed;
420 }
421
422 /**
423 * snd_interval_refine - refine the interval value of configurator
424 * @i: the interval value to refine
425 * @v: the interval value to refer to
426 *
427 * Refines the interval value with the reference value.
428 * The interval is changed to the range satisfying both intervals.
429 * The interval status (min, max, integer, etc.) are evaluated.
430 *
431 * Returns non-zero if the value is changed, zero if not changed.
432 */
433 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
434 {
435 int changed = 0;
436 assert(!snd_interval_empty(i));
437 if (i->min < v->min) {
438 i->min = v->min;
439 i->openmin = v->openmin;
440 changed = 1;
441 } else if (i->min == v->min && !i->openmin && v->openmin) {
442 i->openmin = 1;
443 changed = 1;
444 }
445 if (i->max > v->max) {
446 i->max = v->max;
447 i->openmax = v->openmax;
448 changed = 1;
449 } else if (i->max == v->max && !i->openmax && v->openmax) {
450 i->openmax = 1;
451 changed = 1;
452 }
453 if (!i->integer && v->integer) {
454 i->integer = 1;
455 changed = 1;
456 }
457 if (i->integer) {
458 if (i->openmin) {
459 i->min++;
460 i->openmin = 0;
461 }
462 if (i->openmax) {
463 i->max--;
464 i->openmax = 0;
465 }
466 } else if (!i->openmin && !i->openmax && i->min == i->max)
467 i->integer = 1;
468 if (snd_interval_checkempty(i)) {
469 snd_interval_none(i);
470 return -EINVAL;
471 }
472 return changed;
473 }
474
475 static int snd_interval_refine_first(struct snd_interval *i)
476 {
477 assert(!snd_interval_empty(i));
478 if (snd_interval_single(i))
479 return 0;
480 i->max = i->min;
481 i->openmax = i->openmin;
482 if (i->openmax)
483 i->max++;
484 return 1;
485 }
486
487 static int snd_interval_refine_last(struct snd_interval *i)
488 {
489 assert(!snd_interval_empty(i));
490 if (snd_interval_single(i))
491 return 0;
492 i->min = i->max;
493 i->openmin = i->openmax;
494 if (i->openmin)
495 i->min--;
496 return 1;
497 }
498
499 static int snd_interval_refine_set(struct snd_interval *i, unsigned int val)
500 {
501 struct snd_interval t;
502 t.empty = 0;
503 t.min = t.max = val;
504 t.openmin = t.openmax = 0;
505 t.integer = 1;
506 return snd_interval_refine(i, &t);
507 }
508
509 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
510 {
511 if (a->empty || b->empty) {
512 snd_interval_none(c);
513 return;
514 }
515 c->empty = 0;
516 c->min = mul(a->min, b->min);
517 c->openmin = (a->openmin || b->openmin);
518 c->max = mul(a->max, b->max);
519 c->openmax = (a->openmax || b->openmax);
520 c->integer = (a->integer && b->integer);
521 }
522
523 /**
524 * snd_interval_div - refine the interval value with division
525 * @a: dividend
526 * @b: divisor
527 * @c: quotient
528 *
529 * c = a / b
530 *
531 * Returns non-zero if the value is changed, zero if not changed.
532 */
533 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
534 {
535 unsigned int r;
536 if (a->empty || b->empty) {
537 snd_interval_none(c);
538 return;
539 }
540 c->empty = 0;
541 c->min = div32(a->min, b->max, &r);
542 c->openmin = (r || a->openmin || b->openmax);
543 if (b->min > 0) {
544 c->max = div32(a->max, b->min, &r);
545 if (r) {
546 c->max++;
547 c->openmax = 1;
548 } else
549 c->openmax = (a->openmax || b->openmin);
550 } else {
551 c->max = UINT_MAX;
552 c->openmax = 0;
553 }
554 c->integer = 0;
555 }
556
557 /**
558 * snd_interval_muldivk - refine the interval value
559 * @a: dividend 1
560 * @b: dividend 2
561 * @k: divisor (as integer)
562 * @c: result
563 *
564 * c = a * b / k
565 *
566 * Returns non-zero if the value is changed, zero if not changed.
567 */
568 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
569 unsigned int k, struct snd_interval *c)
570 {
571 unsigned int r;
572 if (a->empty || b->empty) {
573 snd_interval_none(c);
574 return;
575 }
576 c->empty = 0;
577 c->min = muldiv32(a->min, b->min, k, &r);
578 c->openmin = (r || a->openmin || b->openmin);
579 c->max = muldiv32(a->max, b->max, k, &r);
580 if (r) {
581 c->max++;
582 c->openmax = 1;
583 } else
584 c->openmax = (a->openmax || b->openmax);
585 c->integer = 0;
586 }
587
588 /**
589 * snd_interval_mulkdiv - refine the interval value
590 * @a: dividend 1
591 * @k: dividend 2 (as integer)
592 * @b: divisor
593 * @c: result
594 *
595 * c = a * k / b
596 *
597 * Returns non-zero if the value is changed, zero if not changed.
598 */
599 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
600 const struct snd_interval *b, struct snd_interval *c)
601 {
602 unsigned int r;
603 if (a->empty || b->empty) {
604 snd_interval_none(c);
605 return;
606 }
607 c->empty = 0;
608 c->min = muldiv32(a->min, k, b->max, &r);
609 c->openmin = (r || a->openmin || b->openmax);
610 if (b->min > 0) {
611 c->max = muldiv32(a->max, k, b->min, &r);
612 if (r) {
613 c->max++;
614 c->openmax = 1;
615 } else
616 c->openmax = (a->openmax || b->openmin);
617 } else {
618 c->max = UINT_MAX;
619 c->openmax = 0;
620 }
621 c->integer = 0;
622 }
623
624 #undef assert
625 /* ---- */
626
627
628 /**
629 * snd_interval_ratnum - refine the interval value
630 * @i: interval to refine
631 * @rats_count: number of ratnum_t
632 * @rats: ratnum_t array
633 * @nump: pointer to store the resultant numerator
634 * @denp: pointer to store the resultant denominator
635 *
636 * Returns non-zero if the value is changed, zero if not changed.
637 */
638 int snd_interval_ratnum(struct snd_interval *i,
639 unsigned int rats_count, struct snd_ratnum *rats,
640 unsigned int *nump, unsigned int *denp)
641 {
642 unsigned int best_num, best_diff, best_den;
643 unsigned int k;
644 struct snd_interval t;
645 int err;
646
647 best_num = best_den = best_diff = 0;
648 for (k = 0; k < rats_count; ++k) {
649 unsigned int num = rats[k].num;
650 unsigned int den;
651 unsigned int q = i->min;
652 int diff;
653 if (q == 0)
654 q = 1;
655 den = div_down(num, q);
656 if (den < rats[k].den_min)
657 continue;
658 if (den > rats[k].den_max)
659 den = rats[k].den_max;
660 else {
661 unsigned int r;
662 r = (den - rats[k].den_min) % rats[k].den_step;
663 if (r != 0)
664 den -= r;
665 }
666 diff = num - q * den;
667 if (best_num == 0 ||
668 diff * best_den < best_diff * den) {
669 best_diff = diff;
670 best_den = den;
671 best_num = num;
672 }
673 }
674 if (best_den == 0) {
675 i->empty = 1;
676 return -EINVAL;
677 }
678 t.min = div_down(best_num, best_den);
679 t.openmin = !!(best_num % best_den);
680
681 best_num = best_den = best_diff = 0;
682 for (k = 0; k < rats_count; ++k) {
683 unsigned int num = rats[k].num;
684 unsigned int den;
685 unsigned int q = i->max;
686 int diff;
687 if (q == 0) {
688 i->empty = 1;
689 return -EINVAL;
690 }
691 den = div_up(num, q);
692 if (den > rats[k].den_max)
693 continue;
694 if (den < rats[k].den_min)
695 den = rats[k].den_min;
696 else {
697 unsigned int r;
698 r = (den - rats[k].den_min) % rats[k].den_step;
699 if (r != 0)
700 den += rats[k].den_step - r;
701 }
702 diff = q * den - num;
703 if (best_num == 0 ||
704 diff * best_den < best_diff * den) {
705 best_diff = diff;
706 best_den = den;
707 best_num = num;
708 }
709 }
710 if (best_den == 0) {
711 i->empty = 1;
712 return -EINVAL;
713 }
714 t.max = div_up(best_num, best_den);
715 t.openmax = !!(best_num % best_den);
716 t.integer = 0;
717 err = snd_interval_refine(i, &t);
718 if (err < 0)
719 return err;
720
721 if (snd_interval_single(i)) {
722 if (nump)
723 *nump = best_num;
724 if (denp)
725 *denp = best_den;
726 }
727 return err;
728 }
729
730 /**
731 * snd_interval_ratden - refine the interval value
732 * @i: interval to refine
733 * @rats_count: number of struct ratden
734 * @rats: struct ratden array
735 * @nump: pointer to store the resultant numerator
736 * @denp: pointer to store the resultant denominator
737 *
738 * Returns non-zero if the value is changed, zero if not changed.
739 */
740 static int snd_interval_ratden(struct snd_interval *i,
741 unsigned int rats_count, struct snd_ratden *rats,
742 unsigned int *nump, unsigned int *denp)
743 {
744 unsigned int best_num, best_diff, best_den;
745 unsigned int k;
746 struct snd_interval t;
747 int err;
748
749 best_num = best_den = best_diff = 0;
750 for (k = 0; k < rats_count; ++k) {
751 unsigned int num;
752 unsigned int den = rats[k].den;
753 unsigned int q = i->min;
754 int diff;
755 num = mul(q, den);
756 if (num > rats[k].num_max)
757 continue;
758 if (num < rats[k].num_min)
759 num = rats[k].num_max;
760 else {
761 unsigned int r;
762 r = (num - rats[k].num_min) % rats[k].num_step;
763 if (r != 0)
764 num += rats[k].num_step - r;
765 }
766 diff = num - q * den;
767 if (best_num == 0 ||
768 diff * best_den < best_diff * den) {
769 best_diff = diff;
770 best_den = den;
771 best_num = num;
772 }
773 }
774 if (best_den == 0) {
775 i->empty = 1;
776 return -EINVAL;
777 }
778 t.min = div_down(best_num, best_den);
779 t.openmin = !!(best_num % best_den);
780
781 best_num = best_den = best_diff = 0;
782 for (k = 0; k < rats_count; ++k) {
783 unsigned int num;
784 unsigned int den = rats[k].den;
785 unsigned int q = i->max;
786 int diff;
787 num = mul(q, den);
788 if (num < rats[k].num_min)
789 continue;
790 if (num > rats[k].num_max)
791 num = rats[k].num_max;
792 else {
793 unsigned int r;
794 r = (num - rats[k].num_min) % rats[k].num_step;
795 if (r != 0)
796 num -= r;
797 }
798 diff = q * den - num;
799 if (best_num == 0 ||
800 diff * best_den < best_diff * den) {
801 best_diff = diff;
802 best_den = den;
803 best_num = num;
804 }
805 }
806 if (best_den == 0) {
807 i->empty = 1;
808 return -EINVAL;
809 }
810 t.max = div_up(best_num, best_den);
811 t.openmax = !!(best_num % best_den);
812 t.integer = 0;
813 err = snd_interval_refine(i, &t);
814 if (err < 0)
815 return err;
816
817 if (snd_interval_single(i)) {
818 if (nump)
819 *nump = best_num;
820 if (denp)
821 *denp = best_den;
822 }
823 return err;
824 }
825
826 /**
827 * snd_interval_list - refine the interval value from the list
828 * @i: the interval value to refine
829 * @count: the number of elements in the list
830 * @list: the value list
831 * @mask: the bit-mask to evaluate
832 *
833 * Refines the interval value from the list.
834 * When mask is non-zero, only the elements corresponding to bit 1 are
835 * evaluated.
836 *
837 * Returns non-zero if the value is changed, zero if not changed.
838 */
839 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
840 {
841 unsigned int k;
842 int changed = 0;
843 for (k = 0; k < count; k++) {
844 if (mask && !(mask & (1 << k)))
845 continue;
846 if (i->min == list[k] && !i->openmin)
847 goto _l1;
848 if (i->min < list[k]) {
849 i->min = list[k];
850 i->openmin = 0;
851 changed = 1;
852 goto _l1;
853 }
854 }
855 i->empty = 1;
856 return -EINVAL;
857 _l1:
858 for (k = count; k-- > 0;) {
859 if (mask && !(mask & (1 << k)))
860 continue;
861 if (i->max == list[k] && !i->openmax)
862 goto _l2;
863 if (i->max > list[k]) {
864 i->max = list[k];
865 i->openmax = 0;
866 changed = 1;
867 goto _l2;
868 }
869 }
870 i->empty = 1;
871 return -EINVAL;
872 _l2:
873 if (snd_interval_checkempty(i)) {
874 i->empty = 1;
875 return -EINVAL;
876 }
877 return changed;
878 }
879
880 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
881 {
882 unsigned int n;
883 int changed = 0;
884 n = (i->min - min) % step;
885 if (n != 0 || i->openmin) {
886 i->min += step - n;
887 changed = 1;
888 }
889 n = (i->max - min) % step;
890 if (n != 0 || i->openmax) {
891 i->max -= n;
892 changed = 1;
893 }
894 if (snd_interval_checkempty(i)) {
895 i->empty = 1;
896 return -EINVAL;
897 }
898 return changed;
899 }
900
901 /* Info constraints helpers */
902
903 /**
904 * snd_pcm_hw_rule_add - add the hw-constraint rule
905 * @runtime: the pcm runtime instance
906 * @cond: condition bits
907 * @var: the variable to evaluate
908 * @func: the evaluation function
909 * @private: the private data pointer passed to function
910 * @dep: the dependent variables
911 *
912 * Returns zero if successful, or a negative error code on failure.
913 */
914 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
915 int var,
916 snd_pcm_hw_rule_func_t func, void *private,
917 int dep, ...)
918 {
919 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
920 struct snd_pcm_hw_rule *c;
921 unsigned int k;
922 va_list args;
923 va_start(args, dep);
924 if (constrs->rules_num >= constrs->rules_all) {
925 struct snd_pcm_hw_rule *new;
926 unsigned int new_rules = constrs->rules_all + 16;
927 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
928 if (!new)
929 return -ENOMEM;
930 if (constrs->rules) {
931 memcpy(new, constrs->rules,
932 constrs->rules_num * sizeof(*c));
933 kfree(constrs->rules);
934 }
935 constrs->rules = new;
936 constrs->rules_all = new_rules;
937 }
938 c = &constrs->rules[constrs->rules_num];
939 c->cond = cond;
940 c->func = func;
941 c->var = var;
942 c->private = private;
943 k = 0;
944 while (1) {
945 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
946 c->deps[k++] = dep;
947 if (dep < 0)
948 break;
949 dep = va_arg(args, int);
950 }
951 constrs->rules_num++;
952 va_end(args);
953 return 0;
954 }
955
956 /**
957 * snd_pcm_hw_constraint_mask
958 * @runtime: PCM runtime instance
959 * @var: hw_params variable to apply the mask
960 * @mask: the bitmap mask
961 *
962 * Apply the constraint of the given bitmap mask to a mask parameter.
963 */
964 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
965 u_int32_t mask)
966 {
967 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
968 struct snd_mask *maskp = constrs_mask(constrs, var);
969 *maskp->bits &= mask;
970 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
971 if (*maskp->bits == 0)
972 return -EINVAL;
973 return 0;
974 }
975
976 /**
977 * snd_pcm_hw_constraint_mask64
978 * @runtime: PCM runtime instance
979 * @var: hw_params variable to apply the mask
980 * @mask: the 64bit bitmap mask
981 *
982 * Apply the constraint of the given bitmap mask to a mask parameter.
983 */
984 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
985 u_int64_t mask)
986 {
987 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
988 struct snd_mask *maskp = constrs_mask(constrs, var);
989 maskp->bits[0] &= (u_int32_t)mask;
990 maskp->bits[1] &= (u_int32_t)(mask >> 32);
991 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
992 if (! maskp->bits[0] && ! maskp->bits[1])
993 return -EINVAL;
994 return 0;
995 }
996
997 /**
998 * snd_pcm_hw_constraint_integer
999 * @runtime: PCM runtime instance
1000 * @var: hw_params variable to apply the integer constraint
1001 *
1002 * Apply the constraint of integer to an interval parameter.
1003 */
1004 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1005 {
1006 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1007 return snd_interval_setinteger(constrs_interval(constrs, var));
1008 }
1009
1010 /**
1011 * snd_pcm_hw_constraint_minmax
1012 * @runtime: PCM runtime instance
1013 * @var: hw_params variable to apply the range
1014 * @min: the minimal value
1015 * @max: the maximal value
1016 *
1017 * Apply the min/max range constraint to an interval parameter.
1018 */
1019 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1020 unsigned int min, unsigned int max)
1021 {
1022 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1023 struct snd_interval t;
1024 t.min = min;
1025 t.max = max;
1026 t.openmin = t.openmax = 0;
1027 t.integer = 0;
1028 return snd_interval_refine(constrs_interval(constrs, var), &t);
1029 }
1030
1031 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1032 struct snd_pcm_hw_rule *rule)
1033 {
1034 struct snd_pcm_hw_constraint_list *list = rule->private;
1035 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1036 }
1037
1038
1039 /**
1040 * snd_pcm_hw_constraint_list
1041 * @runtime: PCM runtime instance
1042 * @cond: condition bits
1043 * @var: hw_params variable to apply the list constraint
1044 * @l: list
1045 *
1046 * Apply the list of constraints to an interval parameter.
1047 */
1048 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1049 unsigned int cond,
1050 snd_pcm_hw_param_t var,
1051 struct snd_pcm_hw_constraint_list *l)
1052 {
1053 return snd_pcm_hw_rule_add(runtime, cond, var,
1054 snd_pcm_hw_rule_list, l,
1055 var, -1);
1056 }
1057
1058 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1059 struct snd_pcm_hw_rule *rule)
1060 {
1061 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1062 unsigned int num = 0, den = 0;
1063 int err;
1064 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1065 r->nrats, r->rats, &num, &den);
1066 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1067 params->rate_num = num;
1068 params->rate_den = den;
1069 }
1070 return err;
1071 }
1072
1073 /**
1074 * snd_pcm_hw_constraint_ratnums
1075 * @runtime: PCM runtime instance
1076 * @cond: condition bits
1077 * @var: hw_params variable to apply the ratnums constraint
1078 * @r: struct snd_ratnums constriants
1079 */
1080 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1081 unsigned int cond,
1082 snd_pcm_hw_param_t var,
1083 struct snd_pcm_hw_constraint_ratnums *r)
1084 {
1085 return snd_pcm_hw_rule_add(runtime, cond, var,
1086 snd_pcm_hw_rule_ratnums, r,
1087 var, -1);
1088 }
1089
1090 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1091 struct snd_pcm_hw_rule *rule)
1092 {
1093 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1094 unsigned int num = 0, den = 0;
1095 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1096 r->nrats, r->rats, &num, &den);
1097 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1098 params->rate_num = num;
1099 params->rate_den = den;
1100 }
1101 return err;
1102 }
1103
1104 /**
1105 * snd_pcm_hw_constraint_ratdens
1106 * @runtime: PCM runtime instance
1107 * @cond: condition bits
1108 * @var: hw_params variable to apply the ratdens constraint
1109 * @r: struct snd_ratdens constriants
1110 */
1111 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1112 unsigned int cond,
1113 snd_pcm_hw_param_t var,
1114 struct snd_pcm_hw_constraint_ratdens *r)
1115 {
1116 return snd_pcm_hw_rule_add(runtime, cond, var,
1117 snd_pcm_hw_rule_ratdens, r,
1118 var, -1);
1119 }
1120
1121 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1122 struct snd_pcm_hw_rule *rule)
1123 {
1124 unsigned int l = (unsigned long) rule->private;
1125 int width = l & 0xffff;
1126 unsigned int msbits = l >> 16;
1127 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1128 if (snd_interval_single(i) && snd_interval_value(i) == width)
1129 params->msbits = msbits;
1130 return 0;
1131 }
1132
1133 /**
1134 * snd_pcm_hw_constraint_msbits
1135 * @runtime: PCM runtime instance
1136 * @cond: condition bits
1137 * @width: sample bits width
1138 * @msbits: msbits width
1139 */
1140 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1141 unsigned int cond,
1142 unsigned int width,
1143 unsigned int msbits)
1144 {
1145 unsigned long l = (msbits << 16) | width;
1146 return snd_pcm_hw_rule_add(runtime, cond, -1,
1147 snd_pcm_hw_rule_msbits,
1148 (void*) l,
1149 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1150 }
1151
1152 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1153 struct snd_pcm_hw_rule *rule)
1154 {
1155 unsigned long step = (unsigned long) rule->private;
1156 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1157 }
1158
1159 /**
1160 * snd_pcm_hw_constraint_step
1161 * @runtime: PCM runtime instance
1162 * @cond: condition bits
1163 * @var: hw_params variable to apply the step constraint
1164 * @step: step size
1165 */
1166 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1167 unsigned int cond,
1168 snd_pcm_hw_param_t var,
1169 unsigned long step)
1170 {
1171 return snd_pcm_hw_rule_add(runtime, cond, var,
1172 snd_pcm_hw_rule_step, (void *) step,
1173 var, -1);
1174 }
1175
1176 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1177 {
1178 static int pow2_sizes[] = {
1179 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1180 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1181 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1182 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1183 };
1184 return snd_interval_list(hw_param_interval(params, rule->var),
1185 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1186 }
1187
1188 /**
1189 * snd_pcm_hw_constraint_pow2
1190 * @runtime: PCM runtime instance
1191 * @cond: condition bits
1192 * @var: hw_params variable to apply the power-of-2 constraint
1193 */
1194 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1195 unsigned int cond,
1196 snd_pcm_hw_param_t var)
1197 {
1198 return snd_pcm_hw_rule_add(runtime, cond, var,
1199 snd_pcm_hw_rule_pow2, NULL,
1200 var, -1);
1201 }
1202
1203 /* To use the same code we have in alsa-lib */
1204 #define assert(i) snd_assert((i), return -EINVAL)
1205 #ifndef INT_MIN
1206 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1207 #endif
1208
1209 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1210 snd_pcm_hw_param_t var)
1211 {
1212 if (hw_is_mask(var)) {
1213 snd_mask_any(hw_param_mask(params, var));
1214 params->cmask |= 1 << var;
1215 params->rmask |= 1 << var;
1216 return;
1217 }
1218 if (hw_is_interval(var)) {
1219 snd_interval_any(hw_param_interval(params, var));
1220 params->cmask |= 1 << var;
1221 params->rmask |= 1 << var;
1222 return;
1223 }
1224 snd_BUG();
1225 }
1226
1227 #if 0
1228 /*
1229 * snd_pcm_hw_param_any
1230 */
1231 int snd_pcm_hw_param_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1232 snd_pcm_hw_param_t var)
1233 {
1234 _snd_pcm_hw_param_any(params, var);
1235 return snd_pcm_hw_refine(pcm, params);
1236 }
1237 #endif /* 0 */
1238
1239 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1240 {
1241 unsigned int k;
1242 memset(params, 0, sizeof(*params));
1243 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1244 _snd_pcm_hw_param_any(params, k);
1245 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1246 _snd_pcm_hw_param_any(params, k);
1247 params->info = ~0U;
1248 }
1249
1250 #if 0
1251 /*
1252 * snd_pcm_hw_params_any
1253 *
1254 * Fill PARAMS with full configuration space boundaries
1255 */
1256 int snd_pcm_hw_params_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params)
1257 {
1258 _snd_pcm_hw_params_any(params);
1259 return snd_pcm_hw_refine(pcm, params);
1260 }
1261 #endif /* 0 */
1262
1263 /**
1264 * snd_pcm_hw_param_value
1265 * @params: the hw_params instance
1266 * @var: parameter to retrieve
1267 * @dir: pointer to the direction (-1,0,1) or NULL
1268 *
1269 * Return the value for field PAR if it's fixed in configuration space
1270 * defined by PARAMS. Return -EINVAL otherwise
1271 */
1272 static int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1273 snd_pcm_hw_param_t var, int *dir)
1274 {
1275 if (hw_is_mask(var)) {
1276 const struct snd_mask *mask = hw_param_mask_c(params, var);
1277 if (!snd_mask_single(mask))
1278 return -EINVAL;
1279 if (dir)
1280 *dir = 0;
1281 return snd_mask_value(mask);
1282 }
1283 if (hw_is_interval(var)) {
1284 const struct snd_interval *i = hw_param_interval_c(params, var);
1285 if (!snd_interval_single(i))
1286 return -EINVAL;
1287 if (dir)
1288 *dir = i->openmin;
1289 return snd_interval_value(i);
1290 }
1291 assert(0);
1292 return -EINVAL;
1293 }
1294
1295 /**
1296 * snd_pcm_hw_param_value_min
1297 * @params: the hw_params instance
1298 * @var: parameter to retrieve
1299 * @dir: pointer to the direction (-1,0,1) or NULL
1300 *
1301 * Return the minimum value for field PAR.
1302 */
1303 unsigned int snd_pcm_hw_param_value_min(const struct snd_pcm_hw_params *params,
1304 snd_pcm_hw_param_t var, int *dir)
1305 {
1306 if (hw_is_mask(var)) {
1307 if (dir)
1308 *dir = 0;
1309 return snd_mask_min(hw_param_mask_c(params, var));
1310 }
1311 if (hw_is_interval(var)) {
1312 const struct snd_interval *i = hw_param_interval_c(params, var);
1313 if (dir)
1314 *dir = i->openmin;
1315 return snd_interval_min(i);
1316 }
1317 assert(0);
1318 return -EINVAL;
1319 }
1320
1321 /**
1322 * snd_pcm_hw_param_value_max
1323 * @params: the hw_params instance
1324 * @var: parameter to retrieve
1325 * @dir: pointer to the direction (-1,0,1) or NULL
1326 *
1327 * Return the maximum value for field PAR.
1328 */
1329 unsigned int snd_pcm_hw_param_value_max(const struct snd_pcm_hw_params *params,
1330 snd_pcm_hw_param_t var, int *dir)
1331 {
1332 if (hw_is_mask(var)) {
1333 if (dir)
1334 *dir = 0;
1335 return snd_mask_max(hw_param_mask_c(params, var));
1336 }
1337 if (hw_is_interval(var)) {
1338 const struct snd_interval *i = hw_param_interval_c(params, var);
1339 if (dir)
1340 *dir = - (int) i->openmax;
1341 return snd_interval_max(i);
1342 }
1343 assert(0);
1344 return -EINVAL;
1345 }
1346
1347 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1348 snd_pcm_hw_param_t var)
1349 {
1350 if (hw_is_mask(var)) {
1351 snd_mask_none(hw_param_mask(params, var));
1352 params->cmask |= 1 << var;
1353 params->rmask |= 1 << var;
1354 } else if (hw_is_interval(var)) {
1355 snd_interval_none(hw_param_interval(params, var));
1356 params->cmask |= 1 << var;
1357 params->rmask |= 1 << var;
1358 } else {
1359 snd_BUG();
1360 }
1361 }
1362
1363 int _snd_pcm_hw_param_setinteger(struct snd_pcm_hw_params *params,
1364 snd_pcm_hw_param_t var)
1365 {
1366 int changed;
1367 assert(hw_is_interval(var));
1368 changed = snd_interval_setinteger(hw_param_interval(params, var));
1369 if (changed) {
1370 params->cmask |= 1 << var;
1371 params->rmask |= 1 << var;
1372 }
1373 return changed;
1374 }
1375
1376 #if 0
1377 /*
1378 * snd_pcm_hw_param_setinteger
1379 *
1380 * Inside configuration space defined by PARAMS remove from PAR all
1381 * non integer values. Reduce configuration space accordingly.
1382 * Return -EINVAL if the configuration space is empty
1383 */
1384 int snd_pcm_hw_param_setinteger(struct snd_pcm_substream *pcm,
1385 struct snd_pcm_hw_params *params,
1386 snd_pcm_hw_param_t var)
1387 {
1388 int changed = _snd_pcm_hw_param_setinteger(params, var);
1389 if (changed < 0)
1390 return changed;
1391 if (params->rmask) {
1392 int err = snd_pcm_hw_refine(pcm, params);
1393 if (err < 0)
1394 return err;
1395 }
1396 return 0;
1397 }
1398 #endif /* 0 */
1399
1400 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1401 snd_pcm_hw_param_t var)
1402 {
1403 int changed;
1404 if (hw_is_mask(var))
1405 changed = snd_mask_refine_first(hw_param_mask(params, var));
1406 else if (hw_is_interval(var))
1407 changed = snd_interval_refine_first(hw_param_interval(params, var));
1408 else {
1409 assert(0);
1410 return -EINVAL;
1411 }
1412 if (changed) {
1413 params->cmask |= 1 << var;
1414 params->rmask |= 1 << var;
1415 }
1416 return changed;
1417 }
1418
1419
1420 /**
1421 * snd_pcm_hw_param_first
1422 * @pcm: PCM instance
1423 * @params: the hw_params instance
1424 * @var: parameter to retrieve
1425 * @dir: pointer to the direction (-1,0,1) or NULL
1426 *
1427 * Inside configuration space defined by PARAMS remove from PAR all
1428 * values > minimum. Reduce configuration space accordingly.
1429 * Return the minimum.
1430 */
1431 static int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1432 struct snd_pcm_hw_params *params,
1433 snd_pcm_hw_param_t var, int *dir)
1434 {
1435 int changed = _snd_pcm_hw_param_first(params, var);
1436 if (changed < 0)
1437 return changed;
1438 if (params->rmask) {
1439 int err = snd_pcm_hw_refine(pcm, params);
1440 assert(err >= 0);
1441 }
1442 return snd_pcm_hw_param_value(params, var, dir);
1443 }
1444
1445 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1446 snd_pcm_hw_param_t var)
1447 {
1448 int changed;
1449 if (hw_is_mask(var))
1450 changed = snd_mask_refine_last(hw_param_mask(params, var));
1451 else if (hw_is_interval(var))
1452 changed = snd_interval_refine_last(hw_param_interval(params, var));
1453 else {
1454 assert(0);
1455 return -EINVAL;
1456 }
1457 if (changed) {
1458 params->cmask |= 1 << var;
1459 params->rmask |= 1 << var;
1460 }
1461 return changed;
1462 }
1463
1464
1465 /**
1466 * snd_pcm_hw_param_last
1467 * @pcm: PCM instance
1468 * @params: the hw_params instance
1469 * @var: parameter to retrieve
1470 * @dir: pointer to the direction (-1,0,1) or NULL
1471 *
1472 * Inside configuration space defined by PARAMS remove from PAR all
1473 * values < maximum. Reduce configuration space accordingly.
1474 * Return the maximum.
1475 */
1476 static int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1477 struct snd_pcm_hw_params *params,
1478 snd_pcm_hw_param_t var, int *dir)
1479 {
1480 int changed = _snd_pcm_hw_param_last(params, var);
1481 if (changed < 0)
1482 return changed;
1483 if (params->rmask) {
1484 int err = snd_pcm_hw_refine(pcm, params);
1485 assert(err >= 0);
1486 }
1487 return snd_pcm_hw_param_value(params, var, dir);
1488 }
1489
1490 int _snd_pcm_hw_param_min(struct snd_pcm_hw_params *params,
1491 snd_pcm_hw_param_t var, unsigned int val, int dir)
1492 {
1493 int changed;
1494 int open = 0;
1495 if (dir) {
1496 if (dir > 0) {
1497 open = 1;
1498 } else if (dir < 0) {
1499 if (val > 0) {
1500 open = 1;
1501 val--;
1502 }
1503 }
1504 }
1505 if (hw_is_mask(var))
1506 changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1507 else if (hw_is_interval(var))
1508 changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1509 else {
1510 assert(0);
1511 return -EINVAL;
1512 }
1513 if (changed) {
1514 params->cmask |= 1 << var;
1515 params->rmask |= 1 << var;
1516 }
1517 return changed;
1518 }
1519
1520 /**
1521 * snd_pcm_hw_param_min
1522 * @pcm: PCM instance
1523 * @params: the hw_params instance
1524 * @var: parameter to retrieve
1525 * @val: minimal value
1526 * @dir: pointer to the direction (-1,0,1) or NULL
1527 *
1528 * Inside configuration space defined by PARAMS remove from PAR all
1529 * values < VAL. Reduce configuration space accordingly.
1530 * Return new minimum or -EINVAL if the configuration space is empty
1531 */
1532 static int snd_pcm_hw_param_min(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1533 snd_pcm_hw_param_t var, unsigned int val,
1534 int *dir)
1535 {
1536 int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1537 if (changed < 0)
1538 return changed;
1539 if (params->rmask) {
1540 int err = snd_pcm_hw_refine(pcm, params);
1541 if (err < 0)
1542 return err;
1543 }
1544 return snd_pcm_hw_param_value_min(params, var, dir);
1545 }
1546
1547 static int _snd_pcm_hw_param_max(struct snd_pcm_hw_params *params,
1548 snd_pcm_hw_param_t var, unsigned int val,
1549 int dir)
1550 {
1551 int changed;
1552 int open = 0;
1553 if (dir) {
1554 if (dir < 0) {
1555 open = 1;
1556 } else if (dir > 0) {
1557 open = 1;
1558 val++;
1559 }
1560 }
1561 if (hw_is_mask(var)) {
1562 if (val == 0 && open) {
1563 snd_mask_none(hw_param_mask(params, var));
1564 changed = -EINVAL;
1565 } else
1566 changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1567 } else if (hw_is_interval(var))
1568 changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1569 else {
1570 assert(0);
1571 return -EINVAL;
1572 }
1573 if (changed) {
1574 params->cmask |= 1 << var;
1575 params->rmask |= 1 << var;
1576 }
1577 return changed;
1578 }
1579
1580 /**
1581 * snd_pcm_hw_param_max
1582 * @pcm: PCM instance
1583 * @params: the hw_params instance
1584 * @var: parameter to retrieve
1585 * @val: maximal value
1586 * @dir: pointer to the direction (-1,0,1) or NULL
1587 *
1588 * Inside configuration space defined by PARAMS remove from PAR all
1589 * values >= VAL + 1. Reduce configuration space accordingly.
1590 * Return new maximum or -EINVAL if the configuration space is empty
1591 */
1592 static int snd_pcm_hw_param_max(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1593 snd_pcm_hw_param_t var, unsigned int val,
1594 int *dir)
1595 {
1596 int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1597 if (changed < 0)
1598 return changed;
1599 if (params->rmask) {
1600 int err = snd_pcm_hw_refine(pcm, params);
1601 if (err < 0)
1602 return err;
1603 }
1604 return snd_pcm_hw_param_value_max(params, var, dir);
1605 }
1606
1607 int _snd_pcm_hw_param_set(struct snd_pcm_hw_params *params,
1608 snd_pcm_hw_param_t var, unsigned int val, int dir)
1609 {
1610 int changed;
1611 if (hw_is_mask(var)) {
1612 struct snd_mask *m = hw_param_mask(params, var);
1613 if (val == 0 && dir < 0) {
1614 changed = -EINVAL;
1615 snd_mask_none(m);
1616 } else {
1617 if (dir > 0)
1618 val++;
1619 else if (dir < 0)
1620 val--;
1621 changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1622 }
1623 } else if (hw_is_interval(var)) {
1624 struct snd_interval *i = hw_param_interval(params, var);
1625 if (val == 0 && dir < 0) {
1626 changed = -EINVAL;
1627 snd_interval_none(i);
1628 } else if (dir == 0)
1629 changed = snd_interval_refine_set(i, val);
1630 else {
1631 struct snd_interval t;
1632 t.openmin = 1;
1633 t.openmax = 1;
1634 t.empty = 0;
1635 t.integer = 0;
1636 if (dir < 0) {
1637 t.min = val - 1;
1638 t.max = val;
1639 } else {
1640 t.min = val;
1641 t.max = val+1;
1642 }
1643 changed = snd_interval_refine(i, &t);
1644 }
1645 } else {
1646 assert(0);
1647 return -EINVAL;
1648 }
1649 if (changed) {
1650 params->cmask |= 1 << var;
1651 params->rmask |= 1 << var;
1652 }
1653 return changed;
1654 }
1655
1656 /**
1657 * snd_pcm_hw_param_set
1658 * @pcm: PCM instance
1659 * @params: the hw_params instance
1660 * @var: parameter to retrieve
1661 * @val: value to set
1662 * @dir: pointer to the direction (-1,0,1) or NULL
1663 *
1664 * Inside configuration space defined by PARAMS remove from PAR all
1665 * values != VAL. Reduce configuration space accordingly.
1666 * Return VAL or -EINVAL if the configuration space is empty
1667 */
1668 int snd_pcm_hw_param_set(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1669 snd_pcm_hw_param_t var, unsigned int val, int dir)
1670 {
1671 int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1672 if (changed < 0)
1673 return changed;
1674 if (params->rmask) {
1675 int err = snd_pcm_hw_refine(pcm, params);
1676 if (err < 0)
1677 return err;
1678 }
1679 return snd_pcm_hw_param_value(params, var, NULL);
1680 }
1681
1682 static int _snd_pcm_hw_param_mask(struct snd_pcm_hw_params *params,
1683 snd_pcm_hw_param_t var, const struct snd_mask *val)
1684 {
1685 int changed;
1686 assert(hw_is_mask(var));
1687 changed = snd_mask_refine(hw_param_mask(params, var), val);
1688 if (changed) {
1689 params->cmask |= 1 << var;
1690 params->rmask |= 1 << var;
1691 }
1692 return changed;
1693 }
1694
1695 /**
1696 * snd_pcm_hw_param_mask
1697 * @pcm: PCM instance
1698 * @params: the hw_params instance
1699 * @var: parameter to retrieve
1700 * @val: mask to apply
1701 *
1702 * Inside configuration space defined by PARAMS remove from PAR all values
1703 * not contained in MASK. Reduce configuration space accordingly.
1704 * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1705 * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1706 * Return 0 on success or -EINVAL
1707 * if the configuration space is empty
1708 */
1709 int snd_pcm_hw_param_mask(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1710 snd_pcm_hw_param_t var, const struct snd_mask *val)
1711 {
1712 int changed = _snd_pcm_hw_param_mask(params, var, val);
1713 if (changed < 0)
1714 return changed;
1715 if (params->rmask) {
1716 int err = snd_pcm_hw_refine(pcm, params);
1717 if (err < 0)
1718 return err;
1719 }
1720 return 0;
1721 }
1722
1723 static int boundary_sub(int a, int adir,
1724 int b, int bdir,
1725 int *c, int *cdir)
1726 {
1727 adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1728 bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1729 *c = a - b;
1730 *cdir = adir - bdir;
1731 if (*cdir == -2) {
1732 assert(*c > INT_MIN);
1733 (*c)--;
1734 } else if (*cdir == 2) {
1735 assert(*c < INT_MAX);
1736 (*c)++;
1737 }
1738 return 0;
1739 }
1740
1741 static int boundary_lt(unsigned int a, int adir,
1742 unsigned int b, int bdir)
1743 {
1744 assert(a > 0 || adir >= 0);
1745 assert(b > 0 || bdir >= 0);
1746 if (adir < 0) {
1747 a--;
1748 adir = 1;
1749 } else if (adir > 0)
1750 adir = 1;
1751 if (bdir < 0) {
1752 b--;
1753 bdir = 1;
1754 } else if (bdir > 0)
1755 bdir = 1;
1756 return a < b || (a == b && adir < bdir);
1757 }
1758
1759 /* Return 1 if min is nearer to best than max */
1760 static int boundary_nearer(int min, int mindir,
1761 int best, int bestdir,
1762 int max, int maxdir)
1763 {
1764 int dmin, dmindir;
1765 int dmax, dmaxdir;
1766 boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1767 boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1768 return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1769 }
1770
1771 /**
1772 * snd_pcm_hw_param_near
1773 * @pcm: PCM instance
1774 * @params: the hw_params instance
1775 * @var: parameter to retrieve
1776 * @best: value to set
1777 * @dir: pointer to the direction (-1,0,1) or NULL
1778 *
1779 * Inside configuration space defined by PARAMS set PAR to the available value
1780 * nearest to VAL. Reduce configuration space accordingly.
1781 * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1782 * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1783 * Return the value found.
1784 */
1785 int snd_pcm_hw_param_near(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1786 snd_pcm_hw_param_t var, unsigned int best, int *dir)
1787 {
1788 struct snd_pcm_hw_params *save = NULL;
1789 int v;
1790 unsigned int saved_min;
1791 int last = 0;
1792 int min, max;
1793 int mindir, maxdir;
1794 int valdir = dir ? *dir : 0;
1795 /* FIXME */
1796 if (best > INT_MAX)
1797 best = INT_MAX;
1798 min = max = best;
1799 mindir = maxdir = valdir;
1800 if (maxdir > 0)
1801 maxdir = 0;
1802 else if (maxdir == 0)
1803 maxdir = -1;
1804 else {
1805 maxdir = 1;
1806 max--;
1807 }
1808 save = kmalloc(sizeof(*save), GFP_KERNEL);
1809 if (save == NULL)
1810 return -ENOMEM;
1811 *save = *params;
1812 saved_min = min;
1813 min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1814 if (min >= 0) {
1815 struct snd_pcm_hw_params *params1;
1816 if (max < 0)
1817 goto _end;
1818 if ((unsigned int)min == saved_min && mindir == valdir)
1819 goto _end;
1820 params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1821 if (params1 == NULL) {
1822 kfree(save);
1823 return -ENOMEM;
1824 }
1825 *params1 = *save;
1826 max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1827 if (max < 0) {
1828 kfree(params1);
1829 goto _end;
1830 }
1831 if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1832 *params = *params1;
1833 last = 1;
1834 }
1835 kfree(params1);
1836 } else {
1837 *params = *save;
1838 max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1839 assert(max >= 0);
1840 last = 1;
1841 }
1842 _end:
1843 kfree(save);
1844 if (last)
1845 v = snd_pcm_hw_param_last(pcm, params, var, dir);
1846 else
1847 v = snd_pcm_hw_param_first(pcm, params, var, dir);
1848 assert(v >= 0);
1849 return v;
1850 }
1851
1852 /**
1853 * snd_pcm_hw_param_choose
1854 * @pcm: PCM instance
1855 * @params: the hw_params instance
1856 *
1857 * Choose one configuration from configuration space defined by PARAMS
1858 * The configuration chosen is that obtained fixing in this order:
1859 * first access, first format, first subformat, min channels,
1860 * min rate, min period time, max buffer size, min tick time
1861 */
1862 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params)
1863 {
1864 int err;
1865
1866 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1867 assert(err >= 0);
1868
1869 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1870 assert(err >= 0);
1871
1872 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1873 assert(err >= 0);
1874
1875 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1876 assert(err >= 0);
1877
1878 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1879 assert(err >= 0);
1880
1881 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1882 assert(err >= 0);
1883
1884 err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1885 assert(err >= 0);
1886
1887 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1888 assert(err >= 0);
1889
1890 return 0;
1891 }
1892
1893 #undef assert
1894
1895 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1896 void *arg)
1897 {
1898 struct snd_pcm_runtime *runtime = substream->runtime;
1899 unsigned long flags;
1900 snd_pcm_stream_lock_irqsave(substream, flags);
1901 if (snd_pcm_running(substream) &&
1902 snd_pcm_update_hw_ptr(substream) >= 0)
1903 runtime->status->hw_ptr %= runtime->buffer_size;
1904 else
1905 runtime->status->hw_ptr = 0;
1906 snd_pcm_stream_unlock_irqrestore(substream, flags);
1907 return 0;
1908 }
1909
1910 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1911 void *arg)
1912 {
1913 struct snd_pcm_channel_info *info = arg;
1914 struct snd_pcm_runtime *runtime = substream->runtime;
1915 int width;
1916 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1917 info->offset = -1;
1918 return 0;
1919 }
1920 width = snd_pcm_format_physical_width(runtime->format);
1921 if (width < 0)
1922 return width;
1923 info->offset = 0;
1924 switch (runtime->access) {
1925 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1926 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1927 info->first = info->channel * width;
1928 info->step = runtime->channels * width;
1929 break;
1930 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1931 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1932 {
1933 size_t size = runtime->dma_bytes / runtime->channels;
1934 info->first = info->channel * size * 8;
1935 info->step = width;
1936 break;
1937 }
1938 default:
1939 snd_BUG();
1940 break;
1941 }
1942 return 0;
1943 }
1944
1945 /**
1946 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1947 * @substream: the pcm substream instance
1948 * @cmd: ioctl command
1949 * @arg: ioctl argument
1950 *
1951 * Processes the generic ioctl commands for PCM.
1952 * Can be passed as the ioctl callback for PCM ops.
1953 *
1954 * Returns zero if successful, or a negative error code on failure.
1955 */
1956 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1957 unsigned int cmd, void *arg)
1958 {
1959 switch (cmd) {
1960 case SNDRV_PCM_IOCTL1_INFO:
1961 return 0;
1962 case SNDRV_PCM_IOCTL1_RESET:
1963 return snd_pcm_lib_ioctl_reset(substream, arg);
1964 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1965 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1966 }
1967 return -ENXIO;
1968 }
1969
1970 /*
1971 * Conditions
1972 */
1973
1974 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream,
1975 unsigned long ticks)
1976 {
1977 struct snd_pcm_runtime *runtime = substream->runtime;
1978 if (ticks == 0)
1979 del_timer(&runtime->tick_timer);
1980 else {
1981 ticks += (1000000 / HZ) - 1;
1982 ticks /= (1000000 / HZ);
1983 mod_timer(&runtime->tick_timer, jiffies + ticks);
1984 }
1985 }
1986
1987 /* Temporary alias */
1988 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
1989 {
1990 snd_pcm_system_tick_set(substream, ticks);
1991 }
1992
1993 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
1994 {
1995 struct snd_pcm_runtime *runtime = substream->runtime;
1996 snd_pcm_uframes_t frames = ULONG_MAX;
1997 snd_pcm_uframes_t avail, dist;
1998 unsigned int ticks;
1999 u_int64_t n;
2000 u_int32_t r;
2001 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
2002 if (runtime->silence_size >= runtime->boundary) {
2003 frames = 1;
2004 } else if (runtime->silence_size > 0 &&
2005 runtime->silence_filled < runtime->buffer_size) {
2006 snd_pcm_sframes_t noise_dist;
2007 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
2008 if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
2009 frames = noise_dist - runtime->silence_threshold;
2010 }
2011 avail = snd_pcm_playback_avail(runtime);
2012 } else {
2013 avail = snd_pcm_capture_avail(runtime);
2014 }
2015 if (avail < runtime->control->avail_min) {
2016 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
2017 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2018 frames = n;
2019 }
2020 if (avail < runtime->buffer_size) {
2021 snd_pcm_sframes_t n = runtime->buffer_size - avail;
2022 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2023 frames = n;
2024 }
2025 if (frames == ULONG_MAX) {
2026 snd_pcm_tick_set(substream, 0);
2027 return;
2028 }
2029 dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
2030 /* Distance to next interrupt */
2031 dist = runtime->period_size - dist % runtime->period_size;
2032 if (dist <= frames) {
2033 snd_pcm_tick_set(substream, 0);
2034 return;
2035 }
2036 /* the base time is us */
2037 n = frames;
2038 n *= 1000000;
2039 div64_32(&n, runtime->tick_time * runtime->rate, &r);
2040 ticks = n + (r > 0 ? 1 : 0);
2041 if (ticks < runtime->sleep_min)
2042 ticks = runtime->sleep_min;
2043 snd_pcm_tick_set(substream, (unsigned long) ticks);
2044 }
2045
2046 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
2047 {
2048 struct snd_pcm_runtime *runtime;
2049 unsigned long flags;
2050
2051 snd_assert(substream != NULL, return);
2052 runtime = substream->runtime;
2053 snd_assert(runtime != NULL, return);
2054
2055 snd_pcm_stream_lock_irqsave(substream, flags);
2056 if (!snd_pcm_running(substream) ||
2057 snd_pcm_update_hw_ptr(substream) < 0)
2058 goto _end;
2059 if (runtime->sleep_min)
2060 snd_pcm_tick_prepare(substream);
2061 _end:
2062 snd_pcm_stream_unlock_irqrestore(substream, flags);
2063 }
2064
2065 /**
2066 * snd_pcm_period_elapsed - update the pcm status for the next period
2067 * @substream: the pcm substream instance
2068 *
2069 * This function is called from the interrupt handler when the
2070 * PCM has processed the period size. It will update the current
2071 * pointer, set up the tick, wake up sleepers, etc.
2072 *
2073 * Even if more than one periods have elapsed since the last call, you
2074 * have to call this only once.
2075 */
2076 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
2077 {
2078 struct snd_pcm_runtime *runtime;
2079 unsigned long flags;
2080
2081 snd_assert(substream != NULL, return);
2082 runtime = substream->runtime;
2083 snd_assert(runtime != NULL, return);
2084
2085 if (runtime->transfer_ack_begin)
2086 runtime->transfer_ack_begin(substream);
2087
2088 snd_pcm_stream_lock_irqsave(substream, flags);
2089 if (!snd_pcm_running(substream) ||
2090 snd_pcm_update_hw_ptr_interrupt(substream) < 0)
2091 goto _end;
2092
2093 if (substream->timer_running)
2094 snd_timer_interrupt(substream->timer, 1);
2095 if (runtime->sleep_min)
2096 snd_pcm_tick_prepare(substream);
2097 _end:
2098 snd_pcm_stream_unlock_irqrestore(substream, flags);
2099 if (runtime->transfer_ack_end)
2100 runtime->transfer_ack_end(substream);
2101 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
2102 }
2103
2104 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
2105 unsigned int hwoff,
2106 unsigned long data, unsigned int off,
2107 snd_pcm_uframes_t frames)
2108 {
2109 struct snd_pcm_runtime *runtime = substream->runtime;
2110 int err;
2111 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2112 if (substream->ops->copy) {
2113 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2114 return err;
2115 } else {
2116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2117 snd_assert(runtime->dma_area, return -EFAULT);
2118 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2119 return -EFAULT;
2120 }
2121 return 0;
2122 }
2123
2124 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2125 unsigned long data, unsigned int off,
2126 snd_pcm_uframes_t size);
2127
2128 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2129 unsigned long data,
2130 snd_pcm_uframes_t size,
2131 int nonblock,
2132 transfer_f transfer)
2133 {
2134 struct snd_pcm_runtime *runtime = substream->runtime;
2135 snd_pcm_uframes_t xfer = 0;
2136 snd_pcm_uframes_t offset = 0;
2137 int err = 0;
2138
2139 if (size == 0)
2140 return 0;
2141 if (size > runtime->xfer_align)
2142 size -= size % runtime->xfer_align;
2143
2144 snd_pcm_stream_lock_irq(substream);
2145 switch (runtime->status->state) {
2146 case SNDRV_PCM_STATE_PREPARED:
2147 case SNDRV_PCM_STATE_RUNNING:
2148 case SNDRV_PCM_STATE_PAUSED:
2149 break;
2150 case SNDRV_PCM_STATE_XRUN:
2151 err = -EPIPE;
2152 goto _end_unlock;
2153 case SNDRV_PCM_STATE_SUSPENDED:
2154 err = -ESTRPIPE;
2155 goto _end_unlock;
2156 default:
2157 err = -EBADFD;
2158 goto _end_unlock;
2159 }
2160
2161 while (size > 0) {
2162 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2163 snd_pcm_uframes_t avail;
2164 snd_pcm_uframes_t cont;
2165 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2166 snd_pcm_update_hw_ptr(substream);
2167 avail = snd_pcm_playback_avail(runtime);
2168 if (((avail < runtime->control->avail_min && size > avail) ||
2169 (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2170 wait_queue_t wait;
2171 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2172 long tout;
2173
2174 if (nonblock) {
2175 err = -EAGAIN;
2176 goto _end_unlock;
2177 }
2178
2179 init_waitqueue_entry(&wait, current);
2180 add_wait_queue(&runtime->sleep, &wait);
2181 while (1) {
2182 if (signal_pending(current)) {
2183 state = SIGNALED;
2184 break;
2185 }
2186 set_current_state(TASK_INTERRUPTIBLE);
2187 snd_pcm_stream_unlock_irq(substream);
2188 tout = schedule_timeout(10 * HZ);
2189 snd_pcm_stream_lock_irq(substream);
2190 if (tout == 0) {
2191 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2192 runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2193 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2194 break;
2195 }
2196 }
2197 switch (runtime->status->state) {
2198 case SNDRV_PCM_STATE_XRUN:
2199 case SNDRV_PCM_STATE_DRAINING:
2200 state = ERROR;
2201 goto _end_loop;
2202 case SNDRV_PCM_STATE_SUSPENDED:
2203 state = SUSPENDED;
2204 goto _end_loop;
2205 case SNDRV_PCM_STATE_SETUP:
2206 state = DROPPED;
2207 goto _end_loop;
2208 default:
2209 break;
2210 }
2211 avail = snd_pcm_playback_avail(runtime);
2212 if (avail >= runtime->control->avail_min) {
2213 state = READY;
2214 break;
2215 }
2216 }
2217 _end_loop:
2218 remove_wait_queue(&runtime->sleep, &wait);
2219
2220 switch (state) {
2221 case ERROR:
2222 err = -EPIPE;
2223 goto _end_unlock;
2224 case SUSPENDED:
2225 err = -ESTRPIPE;
2226 goto _end_unlock;
2227 case SIGNALED:
2228 err = -ERESTARTSYS;
2229 goto _end_unlock;
2230 case EXPIRED:
2231 snd_printd("playback write error (DMA or IRQ trouble?)\n");
2232 err = -EIO;
2233 goto _end_unlock;
2234 case DROPPED:
2235 err = -EBADFD;
2236 goto _end_unlock;
2237 default:
2238 break;
2239 }
2240 }
2241 if (avail > runtime->xfer_align)
2242 avail -= avail % runtime->xfer_align;
2243 frames = size > avail ? avail : size;
2244 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2245 if (frames > cont)
2246 frames = cont;
2247 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2248 appl_ptr = runtime->control->appl_ptr;
2249 appl_ofs = appl_ptr % runtime->buffer_size;
2250 snd_pcm_stream_unlock_irq(substream);
2251 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2252 goto _end;
2253 snd_pcm_stream_lock_irq(substream);
2254 switch (runtime->status->state) {
2255 case SNDRV_PCM_STATE_XRUN:
2256 err = -EPIPE;
2257 goto _end_unlock;
2258 case SNDRV_PCM_STATE_SUSPENDED:
2259 err = -ESTRPIPE;
2260 goto _end_unlock;
2261 default:
2262 break;
2263 }
2264 appl_ptr += frames;
2265 if (appl_ptr >= runtime->boundary)
2266 appl_ptr -= runtime->boundary;
2267 runtime->control->appl_ptr = appl_ptr;
2268 if (substream->ops->ack)
2269 substream->ops->ack(substream);
2270
2271 offset += frames;
2272 size -= frames;
2273 xfer += frames;
2274 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2275 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2276 err = snd_pcm_start(substream);
2277 if (err < 0)
2278 goto _end_unlock;
2279 }
2280 if (runtime->sleep_min &&
2281 runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2282 snd_pcm_tick_prepare(substream);
2283 }
2284 _end_unlock:
2285 snd_pcm_stream_unlock_irq(substream);
2286 _end:
2287 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2288 }
2289
2290 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2291 {
2292 struct snd_pcm_runtime *runtime;
2293 int nonblock;
2294
2295 snd_assert(substream != NULL, return -ENXIO);
2296 runtime = substream->runtime;
2297 snd_assert(runtime != NULL, return -ENXIO);
2298 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2299 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2300 return -EBADFD;
2301
2302 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2303
2304 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2305 runtime->channels > 1)
2306 return -EINVAL;
2307 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2308 snd_pcm_lib_write_transfer);
2309 }
2310
2311 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2312 unsigned int hwoff,
2313 unsigned long data, unsigned int off,
2314 snd_pcm_uframes_t frames)
2315 {
2316 struct snd_pcm_runtime *runtime = substream->runtime;
2317 int err;
2318 void __user **bufs = (void __user **)data;
2319 int channels = runtime->channels;
2320 int c;
2321 if (substream->ops->copy) {
2322 snd_assert(substream->ops->silence != NULL, return -EINVAL);
2323 for (c = 0; c < channels; ++c, ++bufs) {
2324 if (*bufs == NULL) {
2325 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2326 return err;
2327 } else {
2328 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2329 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2330 return err;
2331 }
2332 }
2333 } else {
2334 /* default transfer behaviour */
2335 size_t dma_csize = runtime->dma_bytes / channels;
2336 snd_assert(runtime->dma_area, return -EFAULT);
2337 for (c = 0; c < channels; ++c, ++bufs) {
2338 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2339 if (*bufs == NULL) {
2340 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2341 } else {
2342 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2343 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2344 return -EFAULT;
2345 }
2346 }
2347 }
2348 return 0;
2349 }
2350
2351 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2352 void __user **bufs,
2353 snd_pcm_uframes_t frames)
2354 {
2355 struct snd_pcm_runtime *runtime;
2356 int nonblock;
2357
2358 snd_assert(substream != NULL, return -ENXIO);
2359 runtime = substream->runtime;
2360 snd_assert(runtime != NULL, return -ENXIO);
2361 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2362 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2363 return -EBADFD;
2364
2365 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2366
2367 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2368 return -EINVAL;
2369 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2370 nonblock, snd_pcm_lib_writev_transfer);
2371 }
2372
2373 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2374 unsigned int hwoff,
2375 unsigned long data, unsigned int off,
2376 snd_pcm_uframes_t frames)
2377 {
2378 struct snd_pcm_runtime *runtime = substream->runtime;
2379 int err;
2380 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2381 if (substream->ops->copy) {
2382 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2383 return err;
2384 } else {
2385 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2386 snd_assert(runtime->dma_area, return -EFAULT);
2387 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2388 return -EFAULT;
2389 }
2390 return 0;
2391 }
2392
2393 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2394 unsigned long data,
2395 snd_pcm_uframes_t size,
2396 int nonblock,
2397 transfer_f transfer)
2398 {
2399 struct snd_pcm_runtime *runtime = substream->runtime;
2400 snd_pcm_uframes_t xfer = 0;
2401 snd_pcm_uframes_t offset = 0;
2402 int err = 0;
2403
2404 if (size == 0)
2405 return 0;
2406 if (size > runtime->xfer_align)
2407 size -= size % runtime->xfer_align;
2408
2409 snd_pcm_stream_lock_irq(substream);
2410 switch (runtime->status->state) {
2411 case SNDRV_PCM_STATE_PREPARED:
2412 if (size >= runtime->start_threshold) {
2413 err = snd_pcm_start(substream);
2414 if (err < 0)
2415 goto _end_unlock;
2416 }
2417 break;
2418 case SNDRV_PCM_STATE_DRAINING:
2419 case SNDRV_PCM_STATE_RUNNING:
2420 case SNDRV_PCM_STATE_PAUSED:
2421 break;
2422 case SNDRV_PCM_STATE_XRUN:
2423 err = -EPIPE;
2424 goto _end_unlock;
2425 case SNDRV_PCM_STATE_SUSPENDED:
2426 err = -ESTRPIPE;
2427 goto _end_unlock;
2428 default:
2429 err = -EBADFD;
2430 goto _end_unlock;
2431 }
2432
2433 while (size > 0) {
2434 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2435 snd_pcm_uframes_t avail;
2436 snd_pcm_uframes_t cont;
2437 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2438 snd_pcm_update_hw_ptr(substream);
2439 __draining:
2440 avail = snd_pcm_capture_avail(runtime);
2441 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2442 if (avail < runtime->xfer_align) {
2443 err = -EPIPE;
2444 goto _end_unlock;
2445 }
2446 } else if ((avail < runtime->control->avail_min && size > avail) ||
2447 (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2448 wait_queue_t wait;
2449 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2450 long tout;
2451
2452 if (nonblock) {
2453 err = -EAGAIN;
2454 goto _end_unlock;
2455 }
2456
2457 init_waitqueue_entry(&wait, current);
2458 add_wait_queue(&runtime->sleep, &wait);
2459 while (1) {
2460 if (signal_pending(current)) {
2461 state = SIGNALED;
2462 break;
2463 }
2464 set_current_state(TASK_INTERRUPTIBLE);
2465 snd_pcm_stream_unlock_irq(substream);
2466 tout = schedule_timeout(10 * HZ);
2467 snd_pcm_stream_lock_irq(substream);
2468 if (tout == 0) {
2469 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2470 runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2471 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2472 break;
2473 }
2474 }
2475 switch (runtime->status->state) {
2476 case SNDRV_PCM_STATE_XRUN:
2477 state = ERROR;
2478 goto _end_loop;
2479 case SNDRV_PCM_STATE_SUSPENDED:
2480 state = SUSPENDED;
2481 goto _end_loop;
2482 case SNDRV_PCM_STATE_DRAINING:
2483 goto __draining;
2484 case SNDRV_PCM_STATE_SETUP:
2485 state = DROPPED;
2486 goto _end_loop;
2487 default:
2488 break;
2489 }
2490 avail = snd_pcm_capture_avail(runtime);
2491 if (avail >= runtime->control->avail_min) {
2492 state = READY;
2493 break;
2494 }
2495 }
2496 _end_loop:
2497 remove_wait_queue(&runtime->sleep, &wait);
2498
2499 switch (state) {
2500 case ERROR:
2501 err = -EPIPE;
2502 goto _end_unlock;
2503 case SUSPENDED:
2504 err = -ESTRPIPE;
2505 goto _end_unlock;
2506 case SIGNALED:
2507 err = -ERESTARTSYS;
2508 goto _end_unlock;
2509 case EXPIRED:
2510 snd_printd("capture read error (DMA or IRQ trouble?)\n");
2511 err = -EIO;
2512 goto _end_unlock;
2513 case DROPPED:
2514 err = -EBADFD;
2515 goto _end_unlock;
2516 default:
2517 break;
2518 }
2519 }
2520 if (avail > runtime->xfer_align)
2521 avail -= avail % runtime->xfer_align;
2522 frames = size > avail ? avail : size;
2523 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2524 if (frames > cont)
2525 frames = cont;
2526 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2527 appl_ptr = runtime->control->appl_ptr;
2528 appl_ofs = appl_ptr % runtime->buffer_size;
2529 snd_pcm_stream_unlock_irq(substream);
2530 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2531 goto _end;
2532 snd_pcm_stream_lock_irq(substream);
2533 switch (runtime->status->state) {
2534 case SNDRV_PCM_STATE_XRUN:
2535 err = -EPIPE;
2536 goto _end_unlock;
2537 case SNDRV_PCM_STATE_SUSPENDED:
2538 err = -ESTRPIPE;
2539 goto _end_unlock;
2540 default:
2541 break;
2542 }
2543 appl_ptr += frames;
2544 if (appl_ptr >= runtime->boundary)
2545 appl_ptr -= runtime->boundary;
2546 runtime->control->appl_ptr = appl_ptr;
2547 if (substream->ops->ack)
2548 substream->ops->ack(substream);
2549
2550 offset += frames;
2551 size -= frames;
2552 xfer += frames;
2553 if (runtime->sleep_min &&
2554 runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2555 snd_pcm_tick_prepare(substream);
2556 }
2557 _end_unlock:
2558 snd_pcm_stream_unlock_irq(substream);
2559 _end:
2560 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2561 }
2562
2563 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2564 {
2565 struct snd_pcm_runtime *runtime;
2566 int nonblock;
2567
2568 snd_assert(substream != NULL, return -ENXIO);
2569 runtime = substream->runtime;
2570 snd_assert(runtime != NULL, return -ENXIO);
2571 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2572 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2573 return -EBADFD;
2574
2575 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2576 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2577 return -EINVAL;
2578 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2579 }
2580
2581 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2582 unsigned int hwoff,
2583 unsigned long data, unsigned int off,
2584 snd_pcm_uframes_t frames)
2585 {
2586 struct snd_pcm_runtime *runtime = substream->runtime;
2587 int err;
2588 void __user **bufs = (void __user **)data;
2589 int channels = runtime->channels;
2590 int c;
2591 if (substream->ops->copy) {
2592 for (c = 0; c < channels; ++c, ++bufs) {
2593 char __user *buf;
2594 if (*bufs == NULL)
2595 continue;
2596 buf = *bufs + samples_to_bytes(runtime, off);
2597 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2598 return err;
2599 }
2600 } else {
2601 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2602 snd_assert(runtime->dma_area, return -EFAULT);
2603 for (c = 0; c < channels; ++c, ++bufs) {
2604 char *hwbuf;
2605 char __user *buf;
2606 if (*bufs == NULL)
2607 continue;
2608
2609 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2610 buf = *bufs + samples_to_bytes(runtime, off);
2611 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2612 return -EFAULT;
2613 }
2614 }
2615 return 0;
2616 }
2617
2618 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2619 void __user **bufs,
2620 snd_pcm_uframes_t frames)
2621 {
2622 struct snd_pcm_runtime *runtime;
2623 int nonblock;
2624
2625 snd_assert(substream != NULL, return -ENXIO);
2626 runtime = substream->runtime;
2627 snd_assert(runtime != NULL, return -ENXIO);
2628 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2629 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2630 return -EBADFD;
2631
2632 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2633 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2634 return -EINVAL;
2635 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2636 }
2637
2638 /*
2639 * Exported symbols
2640 */
2641
2642 EXPORT_SYMBOL(snd_interval_refine);
2643 EXPORT_SYMBOL(snd_interval_list);
2644 EXPORT_SYMBOL(snd_interval_ratnum);
2645 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2646 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2647 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2648 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2649 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2650 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2651 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2652 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2653 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2654 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2655 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2656 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2657 EXPORT_SYMBOL(snd_pcm_hw_refine);
2658 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2659 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2660 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2661 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2662 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2663 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2664 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2665 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2666 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2667 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2668 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2669 EXPORT_SYMBOL(snd_pcm_set_ops);
2670 EXPORT_SYMBOL(snd_pcm_set_sync);
2671 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2672 EXPORT_SYMBOL(snd_pcm_stop);
2673 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2674 EXPORT_SYMBOL(snd_pcm_lib_write);
2675 EXPORT_SYMBOL(snd_pcm_lib_read);
2676 EXPORT_SYMBOL(snd_pcm_lib_writev);
2677 EXPORT_SYMBOL(snd_pcm_lib_readv);
2678 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2679 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2680 /* pcm_memory.c */
2681 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2682 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2683 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2684 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2685 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2686 EXPORT_SYMBOL(snd_pcm_lib_free_pages);