]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/core/pcm_lib.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6
[mirror_ubuntu-artful-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34 * fill ring buffer with silence
35 * runtime->silence_start: starting pointer to silence area
36 * runtime->silence_filled: size filled with silence
37 * runtime->silence_threshold: threshold from application
38 * runtime->silence_size: maximal size from application
39 *
40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41 */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 struct snd_pcm_runtime *runtime = substream->runtime;
45 snd_pcm_uframes_t frames, ofs, transfer;
46
47 if (runtime->silence_size < runtime->boundary) {
48 snd_pcm_sframes_t noise_dist, n;
49 if (runtime->silence_start != runtime->control->appl_ptr) {
50 n = runtime->control->appl_ptr - runtime->silence_start;
51 if (n < 0)
52 n += runtime->boundary;
53 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 runtime->silence_filled -= n;
55 else
56 runtime->silence_filled = 0;
57 runtime->silence_start = runtime->control->appl_ptr;
58 }
59 if (runtime->silence_filled >= runtime->buffer_size)
60 return;
61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63 return;
64 frames = runtime->silence_threshold - noise_dist;
65 if (frames > runtime->silence_size)
66 frames = runtime->silence_size;
67 } else {
68 if (new_hw_ptr == ULONG_MAX) { /* initialization */
69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70 runtime->silence_filled = avail > 0 ? avail : 0;
71 runtime->silence_start = (runtime->status->hw_ptr +
72 runtime->silence_filled) %
73 runtime->boundary;
74 } else {
75 ofs = runtime->status->hw_ptr;
76 frames = new_hw_ptr - ofs;
77 if ((snd_pcm_sframes_t)frames < 0)
78 frames += runtime->boundary;
79 runtime->silence_filled -= frames;
80 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81 runtime->silence_filled = 0;
82 runtime->silence_start = new_hw_ptr;
83 } else {
84 runtime->silence_start = ofs;
85 }
86 }
87 frames = runtime->buffer_size - runtime->silence_filled;
88 }
89 snd_assert(frames <= runtime->buffer_size, return);
90 if (frames == 0)
91 return;
92 ofs = runtime->silence_start % runtime->buffer_size;
93 while (frames > 0) {
94 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97 if (substream->ops->silence) {
98 int err;
99 err = substream->ops->silence(substream, -1, ofs, transfer);
100 snd_assert(err >= 0, );
101 } else {
102 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104 }
105 } else {
106 unsigned int c;
107 unsigned int channels = runtime->channels;
108 if (substream->ops->silence) {
109 for (c = 0; c < channels; ++c) {
110 int err;
111 err = substream->ops->silence(substream, c, ofs, transfer);
112 snd_assert(err >= 0, );
113 }
114 } else {
115 size_t dma_csize = runtime->dma_bytes / channels;
116 for (c = 0; c < channels; ++c) {
117 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119 }
120 }
121 }
122 runtime->silence_filled += transfer;
123 frames -= transfer;
124 ofs = 0;
125 }
126 }
127
128 static void xrun(struct snd_pcm_substream *substream)
129 {
130 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
131 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
132 if (substream->pstr->xrun_debug) {
133 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
134 substream->pcm->card->number,
135 substream->pcm->device,
136 substream->stream ? 'c' : 'p');
137 if (substream->pstr->xrun_debug > 1)
138 dump_stack();
139 }
140 #endif
141 }
142
143 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
144 struct snd_pcm_runtime *runtime)
145 {
146 snd_pcm_uframes_t pos;
147
148 pos = substream->ops->pointer(substream);
149 if (pos == SNDRV_PCM_POS_XRUN)
150 return pos; /* XRUN */
151 if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
152 getnstimeofday((struct timespec *)&runtime->status->tstamp);
153 #ifdef CONFIG_SND_DEBUG
154 if (pos >= runtime->buffer_size) {
155 snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
156 }
157 #endif
158 pos -= pos % runtime->min_align;
159 return pos;
160 }
161
162 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
163 struct snd_pcm_runtime *runtime)
164 {
165 snd_pcm_uframes_t avail;
166
167 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
168 avail = snd_pcm_playback_avail(runtime);
169 else
170 avail = snd_pcm_capture_avail(runtime);
171 if (avail > runtime->avail_max)
172 runtime->avail_max = avail;
173 if (avail >= runtime->stop_threshold) {
174 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
175 snd_pcm_drain_done(substream);
176 else
177 xrun(substream);
178 return -EPIPE;
179 }
180 if (avail >= runtime->control->avail_min)
181 wake_up(&runtime->sleep);
182 return 0;
183 }
184
185 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
186 {
187 struct snd_pcm_runtime *runtime = substream->runtime;
188 snd_pcm_uframes_t pos;
189 snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
190 snd_pcm_sframes_t delta;
191
192 pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
193 if (pos == SNDRV_PCM_POS_XRUN) {
194 xrun(substream);
195 return -EPIPE;
196 }
197 if (runtime->period_size == runtime->buffer_size)
198 goto __next_buf;
199 new_hw_ptr = runtime->hw_ptr_base + pos;
200 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
201
202 delta = hw_ptr_interrupt - new_hw_ptr;
203 if (delta > 0) {
204 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
205 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
206 if (runtime->periods > 1 && substream->pstr->xrun_debug) {
207 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
208 if (substream->pstr->xrun_debug > 1)
209 dump_stack();
210 }
211 #endif
212 return 0;
213 }
214 __next_buf:
215 runtime->hw_ptr_base += runtime->buffer_size;
216 if (runtime->hw_ptr_base == runtime->boundary)
217 runtime->hw_ptr_base = 0;
218 new_hw_ptr = runtime->hw_ptr_base + pos;
219 }
220
221 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
222 runtime->silence_size > 0)
223 snd_pcm_playback_silence(substream, new_hw_ptr);
224
225 runtime->status->hw_ptr = new_hw_ptr;
226 runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
227
228 return snd_pcm_update_hw_ptr_post(substream, runtime);
229 }
230
231 /* CAUTION: call it with irq disabled */
232 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
233 {
234 struct snd_pcm_runtime *runtime = substream->runtime;
235 snd_pcm_uframes_t pos;
236 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
237 snd_pcm_sframes_t delta;
238
239 old_hw_ptr = runtime->status->hw_ptr;
240 pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
241 if (pos == SNDRV_PCM_POS_XRUN) {
242 xrun(substream);
243 return -EPIPE;
244 }
245 new_hw_ptr = runtime->hw_ptr_base + pos;
246
247 delta = old_hw_ptr - new_hw_ptr;
248 if (delta > 0) {
249 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
250 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
251 if (runtime->periods > 2 && substream->pstr->xrun_debug) {
252 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
253 if (substream->pstr->xrun_debug > 1)
254 dump_stack();
255 }
256 #endif
257 return 0;
258 }
259 runtime->hw_ptr_base += runtime->buffer_size;
260 if (runtime->hw_ptr_base == runtime->boundary)
261 runtime->hw_ptr_base = 0;
262 new_hw_ptr = runtime->hw_ptr_base + pos;
263 }
264 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
265 runtime->silence_size > 0)
266 snd_pcm_playback_silence(substream, new_hw_ptr);
267
268 runtime->status->hw_ptr = new_hw_ptr;
269
270 return snd_pcm_update_hw_ptr_post(substream, runtime);
271 }
272
273 /**
274 * snd_pcm_set_ops - set the PCM operators
275 * @pcm: the pcm instance
276 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
277 * @ops: the operator table
278 *
279 * Sets the given PCM operators to the pcm instance.
280 */
281 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
282 {
283 struct snd_pcm_str *stream = &pcm->streams[direction];
284 struct snd_pcm_substream *substream;
285
286 for (substream = stream->substream; substream != NULL; substream = substream->next)
287 substream->ops = ops;
288 }
289
290 EXPORT_SYMBOL(snd_pcm_set_ops);
291
292 /**
293 * snd_pcm_sync - set the PCM sync id
294 * @substream: the pcm substream
295 *
296 * Sets the PCM sync identifier for the card.
297 */
298 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
299 {
300 struct snd_pcm_runtime *runtime = substream->runtime;
301
302 runtime->sync.id32[0] = substream->pcm->card->number;
303 runtime->sync.id32[1] = -1;
304 runtime->sync.id32[2] = -1;
305 runtime->sync.id32[3] = -1;
306 }
307
308 EXPORT_SYMBOL(snd_pcm_set_sync);
309
310 /*
311 * Standard ioctl routine
312 */
313
314 static inline unsigned int div32(unsigned int a, unsigned int b,
315 unsigned int *r)
316 {
317 if (b == 0) {
318 *r = 0;
319 return UINT_MAX;
320 }
321 *r = a % b;
322 return a / b;
323 }
324
325 static inline unsigned int div_down(unsigned int a, unsigned int b)
326 {
327 if (b == 0)
328 return UINT_MAX;
329 return a / b;
330 }
331
332 static inline unsigned int div_up(unsigned int a, unsigned int b)
333 {
334 unsigned int r;
335 unsigned int q;
336 if (b == 0)
337 return UINT_MAX;
338 q = div32(a, b, &r);
339 if (r)
340 ++q;
341 return q;
342 }
343
344 static inline unsigned int mul(unsigned int a, unsigned int b)
345 {
346 if (a == 0)
347 return 0;
348 if (div_down(UINT_MAX, a) < b)
349 return UINT_MAX;
350 return a * b;
351 }
352
353 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
354 unsigned int c, unsigned int *r)
355 {
356 u_int64_t n = (u_int64_t) a * b;
357 if (c == 0) {
358 snd_assert(n > 0, );
359 *r = 0;
360 return UINT_MAX;
361 }
362 div64_32(&n, c, r);
363 if (n >= UINT_MAX) {
364 *r = 0;
365 return UINT_MAX;
366 }
367 return n;
368 }
369
370 /**
371 * snd_interval_refine - refine the interval value of configurator
372 * @i: the interval value to refine
373 * @v: the interval value to refer to
374 *
375 * Refines the interval value with the reference value.
376 * The interval is changed to the range satisfying both intervals.
377 * The interval status (min, max, integer, etc.) are evaluated.
378 *
379 * Returns non-zero if the value is changed, zero if not changed.
380 */
381 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
382 {
383 int changed = 0;
384 snd_assert(!snd_interval_empty(i), return -EINVAL);
385 if (i->min < v->min) {
386 i->min = v->min;
387 i->openmin = v->openmin;
388 changed = 1;
389 } else if (i->min == v->min && !i->openmin && v->openmin) {
390 i->openmin = 1;
391 changed = 1;
392 }
393 if (i->max > v->max) {
394 i->max = v->max;
395 i->openmax = v->openmax;
396 changed = 1;
397 } else if (i->max == v->max && !i->openmax && v->openmax) {
398 i->openmax = 1;
399 changed = 1;
400 }
401 if (!i->integer && v->integer) {
402 i->integer = 1;
403 changed = 1;
404 }
405 if (i->integer) {
406 if (i->openmin) {
407 i->min++;
408 i->openmin = 0;
409 }
410 if (i->openmax) {
411 i->max--;
412 i->openmax = 0;
413 }
414 } else if (!i->openmin && !i->openmax && i->min == i->max)
415 i->integer = 1;
416 if (snd_interval_checkempty(i)) {
417 snd_interval_none(i);
418 return -EINVAL;
419 }
420 return changed;
421 }
422
423 EXPORT_SYMBOL(snd_interval_refine);
424
425 static int snd_interval_refine_first(struct snd_interval *i)
426 {
427 snd_assert(!snd_interval_empty(i), return -EINVAL);
428 if (snd_interval_single(i))
429 return 0;
430 i->max = i->min;
431 i->openmax = i->openmin;
432 if (i->openmax)
433 i->max++;
434 return 1;
435 }
436
437 static int snd_interval_refine_last(struct snd_interval *i)
438 {
439 snd_assert(!snd_interval_empty(i), return -EINVAL);
440 if (snd_interval_single(i))
441 return 0;
442 i->min = i->max;
443 i->openmin = i->openmax;
444 if (i->openmin)
445 i->min--;
446 return 1;
447 }
448
449 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
450 {
451 if (a->empty || b->empty) {
452 snd_interval_none(c);
453 return;
454 }
455 c->empty = 0;
456 c->min = mul(a->min, b->min);
457 c->openmin = (a->openmin || b->openmin);
458 c->max = mul(a->max, b->max);
459 c->openmax = (a->openmax || b->openmax);
460 c->integer = (a->integer && b->integer);
461 }
462
463 /**
464 * snd_interval_div - refine the interval value with division
465 * @a: dividend
466 * @b: divisor
467 * @c: quotient
468 *
469 * c = a / b
470 *
471 * Returns non-zero if the value is changed, zero if not changed.
472 */
473 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
474 {
475 unsigned int r;
476 if (a->empty || b->empty) {
477 snd_interval_none(c);
478 return;
479 }
480 c->empty = 0;
481 c->min = div32(a->min, b->max, &r);
482 c->openmin = (r || a->openmin || b->openmax);
483 if (b->min > 0) {
484 c->max = div32(a->max, b->min, &r);
485 if (r) {
486 c->max++;
487 c->openmax = 1;
488 } else
489 c->openmax = (a->openmax || b->openmin);
490 } else {
491 c->max = UINT_MAX;
492 c->openmax = 0;
493 }
494 c->integer = 0;
495 }
496
497 /**
498 * snd_interval_muldivk - refine the interval value
499 * @a: dividend 1
500 * @b: dividend 2
501 * @k: divisor (as integer)
502 * @c: result
503 *
504 * c = a * b / k
505 *
506 * Returns non-zero if the value is changed, zero if not changed.
507 */
508 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
509 unsigned int k, struct snd_interval *c)
510 {
511 unsigned int r;
512 if (a->empty || b->empty) {
513 snd_interval_none(c);
514 return;
515 }
516 c->empty = 0;
517 c->min = muldiv32(a->min, b->min, k, &r);
518 c->openmin = (r || a->openmin || b->openmin);
519 c->max = muldiv32(a->max, b->max, k, &r);
520 if (r) {
521 c->max++;
522 c->openmax = 1;
523 } else
524 c->openmax = (a->openmax || b->openmax);
525 c->integer = 0;
526 }
527
528 /**
529 * snd_interval_mulkdiv - refine the interval value
530 * @a: dividend 1
531 * @k: dividend 2 (as integer)
532 * @b: divisor
533 * @c: result
534 *
535 * c = a * k / b
536 *
537 * Returns non-zero if the value is changed, zero if not changed.
538 */
539 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
540 const struct snd_interval *b, struct snd_interval *c)
541 {
542 unsigned int r;
543 if (a->empty || b->empty) {
544 snd_interval_none(c);
545 return;
546 }
547 c->empty = 0;
548 c->min = muldiv32(a->min, k, b->max, &r);
549 c->openmin = (r || a->openmin || b->openmax);
550 if (b->min > 0) {
551 c->max = muldiv32(a->max, k, b->min, &r);
552 if (r) {
553 c->max++;
554 c->openmax = 1;
555 } else
556 c->openmax = (a->openmax || b->openmin);
557 } else {
558 c->max = UINT_MAX;
559 c->openmax = 0;
560 }
561 c->integer = 0;
562 }
563
564 /* ---- */
565
566
567 /**
568 * snd_interval_ratnum - refine the interval value
569 * @i: interval to refine
570 * @rats_count: number of ratnum_t
571 * @rats: ratnum_t array
572 * @nump: pointer to store the resultant numerator
573 * @denp: pointer to store the resultant denominator
574 *
575 * Returns non-zero if the value is changed, zero if not changed.
576 */
577 int snd_interval_ratnum(struct snd_interval *i,
578 unsigned int rats_count, struct snd_ratnum *rats,
579 unsigned int *nump, unsigned int *denp)
580 {
581 unsigned int best_num, best_diff, best_den;
582 unsigned int k;
583 struct snd_interval t;
584 int err;
585
586 best_num = best_den = best_diff = 0;
587 for (k = 0; k < rats_count; ++k) {
588 unsigned int num = rats[k].num;
589 unsigned int den;
590 unsigned int q = i->min;
591 int diff;
592 if (q == 0)
593 q = 1;
594 den = div_down(num, q);
595 if (den < rats[k].den_min)
596 continue;
597 if (den > rats[k].den_max)
598 den = rats[k].den_max;
599 else {
600 unsigned int r;
601 r = (den - rats[k].den_min) % rats[k].den_step;
602 if (r != 0)
603 den -= r;
604 }
605 diff = num - q * den;
606 if (best_num == 0 ||
607 diff * best_den < best_diff * den) {
608 best_diff = diff;
609 best_den = den;
610 best_num = num;
611 }
612 }
613 if (best_den == 0) {
614 i->empty = 1;
615 return -EINVAL;
616 }
617 t.min = div_down(best_num, best_den);
618 t.openmin = !!(best_num % best_den);
619
620 best_num = best_den = best_diff = 0;
621 for (k = 0; k < rats_count; ++k) {
622 unsigned int num = rats[k].num;
623 unsigned int den;
624 unsigned int q = i->max;
625 int diff;
626 if (q == 0) {
627 i->empty = 1;
628 return -EINVAL;
629 }
630 den = div_up(num, q);
631 if (den > rats[k].den_max)
632 continue;
633 if (den < rats[k].den_min)
634 den = rats[k].den_min;
635 else {
636 unsigned int r;
637 r = (den - rats[k].den_min) % rats[k].den_step;
638 if (r != 0)
639 den += rats[k].den_step - r;
640 }
641 diff = q * den - num;
642 if (best_num == 0 ||
643 diff * best_den < best_diff * den) {
644 best_diff = diff;
645 best_den = den;
646 best_num = num;
647 }
648 }
649 if (best_den == 0) {
650 i->empty = 1;
651 return -EINVAL;
652 }
653 t.max = div_up(best_num, best_den);
654 t.openmax = !!(best_num % best_den);
655 t.integer = 0;
656 err = snd_interval_refine(i, &t);
657 if (err < 0)
658 return err;
659
660 if (snd_interval_single(i)) {
661 if (nump)
662 *nump = best_num;
663 if (denp)
664 *denp = best_den;
665 }
666 return err;
667 }
668
669 EXPORT_SYMBOL(snd_interval_ratnum);
670
671 /**
672 * snd_interval_ratden - refine the interval value
673 * @i: interval to refine
674 * @rats_count: number of struct ratden
675 * @rats: struct ratden array
676 * @nump: pointer to store the resultant numerator
677 * @denp: pointer to store the resultant denominator
678 *
679 * Returns non-zero if the value is changed, zero if not changed.
680 */
681 static int snd_interval_ratden(struct snd_interval *i,
682 unsigned int rats_count, struct snd_ratden *rats,
683 unsigned int *nump, unsigned int *denp)
684 {
685 unsigned int best_num, best_diff, best_den;
686 unsigned int k;
687 struct snd_interval t;
688 int err;
689
690 best_num = best_den = best_diff = 0;
691 for (k = 0; k < rats_count; ++k) {
692 unsigned int num;
693 unsigned int den = rats[k].den;
694 unsigned int q = i->min;
695 int diff;
696 num = mul(q, den);
697 if (num > rats[k].num_max)
698 continue;
699 if (num < rats[k].num_min)
700 num = rats[k].num_max;
701 else {
702 unsigned int r;
703 r = (num - rats[k].num_min) % rats[k].num_step;
704 if (r != 0)
705 num += rats[k].num_step - r;
706 }
707 diff = num - q * den;
708 if (best_num == 0 ||
709 diff * best_den < best_diff * den) {
710 best_diff = diff;
711 best_den = den;
712 best_num = num;
713 }
714 }
715 if (best_den == 0) {
716 i->empty = 1;
717 return -EINVAL;
718 }
719 t.min = div_down(best_num, best_den);
720 t.openmin = !!(best_num % best_den);
721
722 best_num = best_den = best_diff = 0;
723 for (k = 0; k < rats_count; ++k) {
724 unsigned int num;
725 unsigned int den = rats[k].den;
726 unsigned int q = i->max;
727 int diff;
728 num = mul(q, den);
729 if (num < rats[k].num_min)
730 continue;
731 if (num > rats[k].num_max)
732 num = rats[k].num_max;
733 else {
734 unsigned int r;
735 r = (num - rats[k].num_min) % rats[k].num_step;
736 if (r != 0)
737 num -= r;
738 }
739 diff = q * den - num;
740 if (best_num == 0 ||
741 diff * best_den < best_diff * den) {
742 best_diff = diff;
743 best_den = den;
744 best_num = num;
745 }
746 }
747 if (best_den == 0) {
748 i->empty = 1;
749 return -EINVAL;
750 }
751 t.max = div_up(best_num, best_den);
752 t.openmax = !!(best_num % best_den);
753 t.integer = 0;
754 err = snd_interval_refine(i, &t);
755 if (err < 0)
756 return err;
757
758 if (snd_interval_single(i)) {
759 if (nump)
760 *nump = best_num;
761 if (denp)
762 *denp = best_den;
763 }
764 return err;
765 }
766
767 /**
768 * snd_interval_list - refine the interval value from the list
769 * @i: the interval value to refine
770 * @count: the number of elements in the list
771 * @list: the value list
772 * @mask: the bit-mask to evaluate
773 *
774 * Refines the interval value from the list.
775 * When mask is non-zero, only the elements corresponding to bit 1 are
776 * evaluated.
777 *
778 * Returns non-zero if the value is changed, zero if not changed.
779 */
780 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
781 {
782 unsigned int k;
783 int changed = 0;
784 for (k = 0; k < count; k++) {
785 if (mask && !(mask & (1 << k)))
786 continue;
787 if (i->min == list[k] && !i->openmin)
788 goto _l1;
789 if (i->min < list[k]) {
790 i->min = list[k];
791 i->openmin = 0;
792 changed = 1;
793 goto _l1;
794 }
795 }
796 i->empty = 1;
797 return -EINVAL;
798 _l1:
799 for (k = count; k-- > 0;) {
800 if (mask && !(mask & (1 << k)))
801 continue;
802 if (i->max == list[k] && !i->openmax)
803 goto _l2;
804 if (i->max > list[k]) {
805 i->max = list[k];
806 i->openmax = 0;
807 changed = 1;
808 goto _l2;
809 }
810 }
811 i->empty = 1;
812 return -EINVAL;
813 _l2:
814 if (snd_interval_checkempty(i)) {
815 i->empty = 1;
816 return -EINVAL;
817 }
818 return changed;
819 }
820
821 EXPORT_SYMBOL(snd_interval_list);
822
823 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
824 {
825 unsigned int n;
826 int changed = 0;
827 n = (i->min - min) % step;
828 if (n != 0 || i->openmin) {
829 i->min += step - n;
830 changed = 1;
831 }
832 n = (i->max - min) % step;
833 if (n != 0 || i->openmax) {
834 i->max -= n;
835 changed = 1;
836 }
837 if (snd_interval_checkempty(i)) {
838 i->empty = 1;
839 return -EINVAL;
840 }
841 return changed;
842 }
843
844 /* Info constraints helpers */
845
846 /**
847 * snd_pcm_hw_rule_add - add the hw-constraint rule
848 * @runtime: the pcm runtime instance
849 * @cond: condition bits
850 * @var: the variable to evaluate
851 * @func: the evaluation function
852 * @private: the private data pointer passed to function
853 * @dep: the dependent variables
854 *
855 * Returns zero if successful, or a negative error code on failure.
856 */
857 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
858 int var,
859 snd_pcm_hw_rule_func_t func, void *private,
860 int dep, ...)
861 {
862 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
863 struct snd_pcm_hw_rule *c;
864 unsigned int k;
865 va_list args;
866 va_start(args, dep);
867 if (constrs->rules_num >= constrs->rules_all) {
868 struct snd_pcm_hw_rule *new;
869 unsigned int new_rules = constrs->rules_all + 16;
870 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
871 if (!new)
872 return -ENOMEM;
873 if (constrs->rules) {
874 memcpy(new, constrs->rules,
875 constrs->rules_num * sizeof(*c));
876 kfree(constrs->rules);
877 }
878 constrs->rules = new;
879 constrs->rules_all = new_rules;
880 }
881 c = &constrs->rules[constrs->rules_num];
882 c->cond = cond;
883 c->func = func;
884 c->var = var;
885 c->private = private;
886 k = 0;
887 while (1) {
888 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
889 c->deps[k++] = dep;
890 if (dep < 0)
891 break;
892 dep = va_arg(args, int);
893 }
894 constrs->rules_num++;
895 va_end(args);
896 return 0;
897 }
898
899 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
900
901 /**
902 * snd_pcm_hw_constraint_mask
903 * @runtime: PCM runtime instance
904 * @var: hw_params variable to apply the mask
905 * @mask: the bitmap mask
906 *
907 * Apply the constraint of the given bitmap mask to a mask parameter.
908 */
909 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
910 u_int32_t mask)
911 {
912 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
913 struct snd_mask *maskp = constrs_mask(constrs, var);
914 *maskp->bits &= mask;
915 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
916 if (*maskp->bits == 0)
917 return -EINVAL;
918 return 0;
919 }
920
921 /**
922 * snd_pcm_hw_constraint_mask64
923 * @runtime: PCM runtime instance
924 * @var: hw_params variable to apply the mask
925 * @mask: the 64bit bitmap mask
926 *
927 * Apply the constraint of the given bitmap mask to a mask parameter.
928 */
929 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
930 u_int64_t mask)
931 {
932 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
933 struct snd_mask *maskp = constrs_mask(constrs, var);
934 maskp->bits[0] &= (u_int32_t)mask;
935 maskp->bits[1] &= (u_int32_t)(mask >> 32);
936 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
937 if (! maskp->bits[0] && ! maskp->bits[1])
938 return -EINVAL;
939 return 0;
940 }
941
942 /**
943 * snd_pcm_hw_constraint_integer
944 * @runtime: PCM runtime instance
945 * @var: hw_params variable to apply the integer constraint
946 *
947 * Apply the constraint of integer to an interval parameter.
948 */
949 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
950 {
951 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
952 return snd_interval_setinteger(constrs_interval(constrs, var));
953 }
954
955 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
956
957 /**
958 * snd_pcm_hw_constraint_minmax
959 * @runtime: PCM runtime instance
960 * @var: hw_params variable to apply the range
961 * @min: the minimal value
962 * @max: the maximal value
963 *
964 * Apply the min/max range constraint to an interval parameter.
965 */
966 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
967 unsigned int min, unsigned int max)
968 {
969 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
970 struct snd_interval t;
971 t.min = min;
972 t.max = max;
973 t.openmin = t.openmax = 0;
974 t.integer = 0;
975 return snd_interval_refine(constrs_interval(constrs, var), &t);
976 }
977
978 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
979
980 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
981 struct snd_pcm_hw_rule *rule)
982 {
983 struct snd_pcm_hw_constraint_list *list = rule->private;
984 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
985 }
986
987
988 /**
989 * snd_pcm_hw_constraint_list
990 * @runtime: PCM runtime instance
991 * @cond: condition bits
992 * @var: hw_params variable to apply the list constraint
993 * @l: list
994 *
995 * Apply the list of constraints to an interval parameter.
996 */
997 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
998 unsigned int cond,
999 snd_pcm_hw_param_t var,
1000 struct snd_pcm_hw_constraint_list *l)
1001 {
1002 return snd_pcm_hw_rule_add(runtime, cond, var,
1003 snd_pcm_hw_rule_list, l,
1004 var, -1);
1005 }
1006
1007 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1008
1009 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1010 struct snd_pcm_hw_rule *rule)
1011 {
1012 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1013 unsigned int num = 0, den = 0;
1014 int err;
1015 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1016 r->nrats, r->rats, &num, &den);
1017 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1018 params->rate_num = num;
1019 params->rate_den = den;
1020 }
1021 return err;
1022 }
1023
1024 /**
1025 * snd_pcm_hw_constraint_ratnums
1026 * @runtime: PCM runtime instance
1027 * @cond: condition bits
1028 * @var: hw_params variable to apply the ratnums constraint
1029 * @r: struct snd_ratnums constriants
1030 */
1031 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1032 unsigned int cond,
1033 snd_pcm_hw_param_t var,
1034 struct snd_pcm_hw_constraint_ratnums *r)
1035 {
1036 return snd_pcm_hw_rule_add(runtime, cond, var,
1037 snd_pcm_hw_rule_ratnums, r,
1038 var, -1);
1039 }
1040
1041 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1042
1043 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1044 struct snd_pcm_hw_rule *rule)
1045 {
1046 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1047 unsigned int num = 0, den = 0;
1048 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1049 r->nrats, r->rats, &num, &den);
1050 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1051 params->rate_num = num;
1052 params->rate_den = den;
1053 }
1054 return err;
1055 }
1056
1057 /**
1058 * snd_pcm_hw_constraint_ratdens
1059 * @runtime: PCM runtime instance
1060 * @cond: condition bits
1061 * @var: hw_params variable to apply the ratdens constraint
1062 * @r: struct snd_ratdens constriants
1063 */
1064 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1065 unsigned int cond,
1066 snd_pcm_hw_param_t var,
1067 struct snd_pcm_hw_constraint_ratdens *r)
1068 {
1069 return snd_pcm_hw_rule_add(runtime, cond, var,
1070 snd_pcm_hw_rule_ratdens, r,
1071 var, -1);
1072 }
1073
1074 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1075
1076 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1077 struct snd_pcm_hw_rule *rule)
1078 {
1079 unsigned int l = (unsigned long) rule->private;
1080 int width = l & 0xffff;
1081 unsigned int msbits = l >> 16;
1082 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1083 if (snd_interval_single(i) && snd_interval_value(i) == width)
1084 params->msbits = msbits;
1085 return 0;
1086 }
1087
1088 /**
1089 * snd_pcm_hw_constraint_msbits
1090 * @runtime: PCM runtime instance
1091 * @cond: condition bits
1092 * @width: sample bits width
1093 * @msbits: msbits width
1094 */
1095 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1096 unsigned int cond,
1097 unsigned int width,
1098 unsigned int msbits)
1099 {
1100 unsigned long l = (msbits << 16) | width;
1101 return snd_pcm_hw_rule_add(runtime, cond, -1,
1102 snd_pcm_hw_rule_msbits,
1103 (void*) l,
1104 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1105 }
1106
1107 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1108
1109 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1110 struct snd_pcm_hw_rule *rule)
1111 {
1112 unsigned long step = (unsigned long) rule->private;
1113 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1114 }
1115
1116 /**
1117 * snd_pcm_hw_constraint_step
1118 * @runtime: PCM runtime instance
1119 * @cond: condition bits
1120 * @var: hw_params variable to apply the step constraint
1121 * @step: step size
1122 */
1123 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1124 unsigned int cond,
1125 snd_pcm_hw_param_t var,
1126 unsigned long step)
1127 {
1128 return snd_pcm_hw_rule_add(runtime, cond, var,
1129 snd_pcm_hw_rule_step, (void *) step,
1130 var, -1);
1131 }
1132
1133 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1134
1135 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1136 {
1137 static int pow2_sizes[] = {
1138 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1139 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1140 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1141 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1142 };
1143 return snd_interval_list(hw_param_interval(params, rule->var),
1144 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1145 }
1146
1147 /**
1148 * snd_pcm_hw_constraint_pow2
1149 * @runtime: PCM runtime instance
1150 * @cond: condition bits
1151 * @var: hw_params variable to apply the power-of-2 constraint
1152 */
1153 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1154 unsigned int cond,
1155 snd_pcm_hw_param_t var)
1156 {
1157 return snd_pcm_hw_rule_add(runtime, cond, var,
1158 snd_pcm_hw_rule_pow2, NULL,
1159 var, -1);
1160 }
1161
1162 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1163
1164 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1165 snd_pcm_hw_param_t var)
1166 {
1167 if (hw_is_mask(var)) {
1168 snd_mask_any(hw_param_mask(params, var));
1169 params->cmask |= 1 << var;
1170 params->rmask |= 1 << var;
1171 return;
1172 }
1173 if (hw_is_interval(var)) {
1174 snd_interval_any(hw_param_interval(params, var));
1175 params->cmask |= 1 << var;
1176 params->rmask |= 1 << var;
1177 return;
1178 }
1179 snd_BUG();
1180 }
1181
1182 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1183 {
1184 unsigned int k;
1185 memset(params, 0, sizeof(*params));
1186 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1187 _snd_pcm_hw_param_any(params, k);
1188 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1189 _snd_pcm_hw_param_any(params, k);
1190 params->info = ~0U;
1191 }
1192
1193 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1194
1195 /**
1196 * snd_pcm_hw_param_value
1197 * @params: the hw_params instance
1198 * @var: parameter to retrieve
1199 * @dir: pointer to the direction (-1,0,1) or NULL
1200 *
1201 * Return the value for field PAR if it's fixed in configuration space
1202 * defined by PARAMS. Return -EINVAL otherwise
1203 */
1204 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1205 snd_pcm_hw_param_t var, int *dir)
1206 {
1207 if (hw_is_mask(var)) {
1208 const struct snd_mask *mask = hw_param_mask_c(params, var);
1209 if (!snd_mask_single(mask))
1210 return -EINVAL;
1211 if (dir)
1212 *dir = 0;
1213 return snd_mask_value(mask);
1214 }
1215 if (hw_is_interval(var)) {
1216 const struct snd_interval *i = hw_param_interval_c(params, var);
1217 if (!snd_interval_single(i))
1218 return -EINVAL;
1219 if (dir)
1220 *dir = i->openmin;
1221 return snd_interval_value(i);
1222 }
1223 return -EINVAL;
1224 }
1225
1226 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1227
1228 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1229 snd_pcm_hw_param_t var)
1230 {
1231 if (hw_is_mask(var)) {
1232 snd_mask_none(hw_param_mask(params, var));
1233 params->cmask |= 1 << var;
1234 params->rmask |= 1 << var;
1235 } else if (hw_is_interval(var)) {
1236 snd_interval_none(hw_param_interval(params, var));
1237 params->cmask |= 1 << var;
1238 params->rmask |= 1 << var;
1239 } else {
1240 snd_BUG();
1241 }
1242 }
1243
1244 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1245
1246 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1247 snd_pcm_hw_param_t var)
1248 {
1249 int changed;
1250 if (hw_is_mask(var))
1251 changed = snd_mask_refine_first(hw_param_mask(params, var));
1252 else if (hw_is_interval(var))
1253 changed = snd_interval_refine_first(hw_param_interval(params, var));
1254 else
1255 return -EINVAL;
1256 if (changed) {
1257 params->cmask |= 1 << var;
1258 params->rmask |= 1 << var;
1259 }
1260 return changed;
1261 }
1262
1263
1264 /**
1265 * snd_pcm_hw_param_first
1266 * @pcm: PCM instance
1267 * @params: the hw_params instance
1268 * @var: parameter to retrieve
1269 * @dir: pointer to the direction (-1,0,1) or NULL
1270 *
1271 * Inside configuration space defined by PARAMS remove from PAR all
1272 * values > minimum. Reduce configuration space accordingly.
1273 * Return the minimum.
1274 */
1275 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1276 struct snd_pcm_hw_params *params,
1277 snd_pcm_hw_param_t var, int *dir)
1278 {
1279 int changed = _snd_pcm_hw_param_first(params, var);
1280 if (changed < 0)
1281 return changed;
1282 if (params->rmask) {
1283 int err = snd_pcm_hw_refine(pcm, params);
1284 snd_assert(err >= 0, return err);
1285 }
1286 return snd_pcm_hw_param_value(params, var, dir);
1287 }
1288
1289 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1290
1291 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1292 snd_pcm_hw_param_t var)
1293 {
1294 int changed;
1295 if (hw_is_mask(var))
1296 changed = snd_mask_refine_last(hw_param_mask(params, var));
1297 else if (hw_is_interval(var))
1298 changed = snd_interval_refine_last(hw_param_interval(params, var));
1299 else
1300 return -EINVAL;
1301 if (changed) {
1302 params->cmask |= 1 << var;
1303 params->rmask |= 1 << var;
1304 }
1305 return changed;
1306 }
1307
1308
1309 /**
1310 * snd_pcm_hw_param_last
1311 * @pcm: PCM instance
1312 * @params: the hw_params instance
1313 * @var: parameter to retrieve
1314 * @dir: pointer to the direction (-1,0,1) or NULL
1315 *
1316 * Inside configuration space defined by PARAMS remove from PAR all
1317 * values < maximum. Reduce configuration space accordingly.
1318 * Return the maximum.
1319 */
1320 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1321 struct snd_pcm_hw_params *params,
1322 snd_pcm_hw_param_t var, int *dir)
1323 {
1324 int changed = _snd_pcm_hw_param_last(params, var);
1325 if (changed < 0)
1326 return changed;
1327 if (params->rmask) {
1328 int err = snd_pcm_hw_refine(pcm, params);
1329 snd_assert(err >= 0, return err);
1330 }
1331 return snd_pcm_hw_param_value(params, var, dir);
1332 }
1333
1334 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1335
1336 /**
1337 * snd_pcm_hw_param_choose
1338 * @pcm: PCM instance
1339 * @params: the hw_params instance
1340 *
1341 * Choose one configuration from configuration space defined by PARAMS
1342 * The configuration chosen is that obtained fixing in this order:
1343 * first access, first format, first subformat, min channels,
1344 * min rate, min period time, max buffer size, min tick time
1345 */
1346 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1347 struct snd_pcm_hw_params *params)
1348 {
1349 static int vars[] = {
1350 SNDRV_PCM_HW_PARAM_ACCESS,
1351 SNDRV_PCM_HW_PARAM_FORMAT,
1352 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1353 SNDRV_PCM_HW_PARAM_CHANNELS,
1354 SNDRV_PCM_HW_PARAM_RATE,
1355 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1356 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1357 SNDRV_PCM_HW_PARAM_TICK_TIME,
1358 -1
1359 };
1360 int err, *v;
1361
1362 for (v = vars; *v != -1; v++) {
1363 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1364 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1365 else
1366 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1367 snd_assert(err >= 0, return err);
1368 }
1369 return 0;
1370 }
1371
1372 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1373 void *arg)
1374 {
1375 struct snd_pcm_runtime *runtime = substream->runtime;
1376 unsigned long flags;
1377 snd_pcm_stream_lock_irqsave(substream, flags);
1378 if (snd_pcm_running(substream) &&
1379 snd_pcm_update_hw_ptr(substream) >= 0)
1380 runtime->status->hw_ptr %= runtime->buffer_size;
1381 else
1382 runtime->status->hw_ptr = 0;
1383 snd_pcm_stream_unlock_irqrestore(substream, flags);
1384 return 0;
1385 }
1386
1387 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1388 void *arg)
1389 {
1390 struct snd_pcm_channel_info *info = arg;
1391 struct snd_pcm_runtime *runtime = substream->runtime;
1392 int width;
1393 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1394 info->offset = -1;
1395 return 0;
1396 }
1397 width = snd_pcm_format_physical_width(runtime->format);
1398 if (width < 0)
1399 return width;
1400 info->offset = 0;
1401 switch (runtime->access) {
1402 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1403 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1404 info->first = info->channel * width;
1405 info->step = runtime->channels * width;
1406 break;
1407 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1408 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1409 {
1410 size_t size = runtime->dma_bytes / runtime->channels;
1411 info->first = info->channel * size * 8;
1412 info->step = width;
1413 break;
1414 }
1415 default:
1416 snd_BUG();
1417 break;
1418 }
1419 return 0;
1420 }
1421
1422 /**
1423 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1424 * @substream: the pcm substream instance
1425 * @cmd: ioctl command
1426 * @arg: ioctl argument
1427 *
1428 * Processes the generic ioctl commands for PCM.
1429 * Can be passed as the ioctl callback for PCM ops.
1430 *
1431 * Returns zero if successful, or a negative error code on failure.
1432 */
1433 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1434 unsigned int cmd, void *arg)
1435 {
1436 switch (cmd) {
1437 case SNDRV_PCM_IOCTL1_INFO:
1438 return 0;
1439 case SNDRV_PCM_IOCTL1_RESET:
1440 return snd_pcm_lib_ioctl_reset(substream, arg);
1441 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1442 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1443 }
1444 return -ENXIO;
1445 }
1446
1447 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1448
1449 /*
1450 * Conditions
1451 */
1452
1453 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream,
1454 unsigned long ticks)
1455 {
1456 struct snd_pcm_runtime *runtime = substream->runtime;
1457 if (ticks == 0)
1458 del_timer(&runtime->tick_timer);
1459 else {
1460 ticks += (1000000 / HZ) - 1;
1461 ticks /= (1000000 / HZ);
1462 mod_timer(&runtime->tick_timer, jiffies + ticks);
1463 }
1464 }
1465
1466 /* Temporary alias */
1467 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
1468 {
1469 snd_pcm_system_tick_set(substream, ticks);
1470 }
1471
1472 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
1473 {
1474 struct snd_pcm_runtime *runtime = substream->runtime;
1475 snd_pcm_uframes_t frames = ULONG_MAX;
1476 snd_pcm_uframes_t avail, dist;
1477 unsigned int ticks;
1478 u_int64_t n;
1479 u_int32_t r;
1480 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1481 if (runtime->silence_size >= runtime->boundary) {
1482 frames = 1;
1483 } else if (runtime->silence_size > 0 &&
1484 runtime->silence_filled < runtime->buffer_size) {
1485 snd_pcm_sframes_t noise_dist;
1486 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1487 if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
1488 frames = noise_dist - runtime->silence_threshold;
1489 }
1490 avail = snd_pcm_playback_avail(runtime);
1491 } else {
1492 avail = snd_pcm_capture_avail(runtime);
1493 }
1494 if (avail < runtime->control->avail_min) {
1495 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
1496 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1497 frames = n;
1498 }
1499 if (avail < runtime->buffer_size) {
1500 snd_pcm_sframes_t n = runtime->buffer_size - avail;
1501 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1502 frames = n;
1503 }
1504 if (frames == ULONG_MAX) {
1505 snd_pcm_tick_set(substream, 0);
1506 return;
1507 }
1508 dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1509 /* Distance to next interrupt */
1510 dist = runtime->period_size - dist % runtime->period_size;
1511 if (dist <= frames) {
1512 snd_pcm_tick_set(substream, 0);
1513 return;
1514 }
1515 /* the base time is us */
1516 n = frames;
1517 n *= 1000000;
1518 div64_32(&n, runtime->tick_time * runtime->rate, &r);
1519 ticks = n + (r > 0 ? 1 : 0);
1520 if (ticks < runtime->sleep_min)
1521 ticks = runtime->sleep_min;
1522 snd_pcm_tick_set(substream, (unsigned long) ticks);
1523 }
1524
1525 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
1526 {
1527 struct snd_pcm_runtime *runtime;
1528 unsigned long flags;
1529
1530 snd_assert(substream != NULL, return);
1531 runtime = substream->runtime;
1532 snd_assert(runtime != NULL, return);
1533
1534 snd_pcm_stream_lock_irqsave(substream, flags);
1535 if (!snd_pcm_running(substream) ||
1536 snd_pcm_update_hw_ptr(substream) < 0)
1537 goto _end;
1538 if (runtime->sleep_min)
1539 snd_pcm_tick_prepare(substream);
1540 _end:
1541 snd_pcm_stream_unlock_irqrestore(substream, flags);
1542 }
1543
1544 /**
1545 * snd_pcm_period_elapsed - update the pcm status for the next period
1546 * @substream: the pcm substream instance
1547 *
1548 * This function is called from the interrupt handler when the
1549 * PCM has processed the period size. It will update the current
1550 * pointer, set up the tick, wake up sleepers, etc.
1551 *
1552 * Even if more than one periods have elapsed since the last call, you
1553 * have to call this only once.
1554 */
1555 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1556 {
1557 struct snd_pcm_runtime *runtime;
1558 unsigned long flags;
1559
1560 snd_assert(substream != NULL, return);
1561 runtime = substream->runtime;
1562 snd_assert(runtime != NULL, return);
1563
1564 if (runtime->transfer_ack_begin)
1565 runtime->transfer_ack_begin(substream);
1566
1567 snd_pcm_stream_lock_irqsave(substream, flags);
1568 if (!snd_pcm_running(substream) ||
1569 snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1570 goto _end;
1571
1572 if (substream->timer_running)
1573 snd_timer_interrupt(substream->timer, 1);
1574 if (runtime->sleep_min)
1575 snd_pcm_tick_prepare(substream);
1576 _end:
1577 snd_pcm_stream_unlock_irqrestore(substream, flags);
1578 if (runtime->transfer_ack_end)
1579 runtime->transfer_ack_end(substream);
1580 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1581 }
1582
1583 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1584
1585 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1586 unsigned int hwoff,
1587 unsigned long data, unsigned int off,
1588 snd_pcm_uframes_t frames)
1589 {
1590 struct snd_pcm_runtime *runtime = substream->runtime;
1591 int err;
1592 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1593 if (substream->ops->copy) {
1594 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1595 return err;
1596 } else {
1597 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1598 snd_assert(runtime->dma_area, return -EFAULT);
1599 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1600 return -EFAULT;
1601 }
1602 return 0;
1603 }
1604
1605 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1606 unsigned long data, unsigned int off,
1607 snd_pcm_uframes_t size);
1608
1609 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1610 unsigned long data,
1611 snd_pcm_uframes_t size,
1612 int nonblock,
1613 transfer_f transfer)
1614 {
1615 struct snd_pcm_runtime *runtime = substream->runtime;
1616 snd_pcm_uframes_t xfer = 0;
1617 snd_pcm_uframes_t offset = 0;
1618 int err = 0;
1619
1620 if (size == 0)
1621 return 0;
1622 if (size > runtime->xfer_align)
1623 size -= size % runtime->xfer_align;
1624
1625 snd_pcm_stream_lock_irq(substream);
1626 switch (runtime->status->state) {
1627 case SNDRV_PCM_STATE_PREPARED:
1628 case SNDRV_PCM_STATE_RUNNING:
1629 case SNDRV_PCM_STATE_PAUSED:
1630 break;
1631 case SNDRV_PCM_STATE_XRUN:
1632 err = -EPIPE;
1633 goto _end_unlock;
1634 case SNDRV_PCM_STATE_SUSPENDED:
1635 err = -ESTRPIPE;
1636 goto _end_unlock;
1637 default:
1638 err = -EBADFD;
1639 goto _end_unlock;
1640 }
1641
1642 while (size > 0) {
1643 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1644 snd_pcm_uframes_t avail;
1645 snd_pcm_uframes_t cont;
1646 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1647 snd_pcm_update_hw_ptr(substream);
1648 avail = snd_pcm_playback_avail(runtime);
1649 if (((avail < runtime->control->avail_min && size > avail) ||
1650 (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
1651 wait_queue_t wait;
1652 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1653 long tout;
1654
1655 if (nonblock) {
1656 err = -EAGAIN;
1657 goto _end_unlock;
1658 }
1659
1660 init_waitqueue_entry(&wait, current);
1661 add_wait_queue(&runtime->sleep, &wait);
1662 while (1) {
1663 if (signal_pending(current)) {
1664 state = SIGNALED;
1665 break;
1666 }
1667 set_current_state(TASK_INTERRUPTIBLE);
1668 snd_pcm_stream_unlock_irq(substream);
1669 tout = schedule_timeout(10 * HZ);
1670 snd_pcm_stream_lock_irq(substream);
1671 if (tout == 0) {
1672 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1673 runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1674 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1675 break;
1676 }
1677 }
1678 switch (runtime->status->state) {
1679 case SNDRV_PCM_STATE_XRUN:
1680 case SNDRV_PCM_STATE_DRAINING:
1681 state = ERROR;
1682 goto _end_loop;
1683 case SNDRV_PCM_STATE_SUSPENDED:
1684 state = SUSPENDED;
1685 goto _end_loop;
1686 case SNDRV_PCM_STATE_SETUP:
1687 state = DROPPED;
1688 goto _end_loop;
1689 default:
1690 break;
1691 }
1692 avail = snd_pcm_playback_avail(runtime);
1693 if (avail >= runtime->control->avail_min) {
1694 state = READY;
1695 break;
1696 }
1697 }
1698 _end_loop:
1699 remove_wait_queue(&runtime->sleep, &wait);
1700
1701 switch (state) {
1702 case ERROR:
1703 err = -EPIPE;
1704 goto _end_unlock;
1705 case SUSPENDED:
1706 err = -ESTRPIPE;
1707 goto _end_unlock;
1708 case SIGNALED:
1709 err = -ERESTARTSYS;
1710 goto _end_unlock;
1711 case EXPIRED:
1712 snd_printd("playback write error (DMA or IRQ trouble?)\n");
1713 err = -EIO;
1714 goto _end_unlock;
1715 case DROPPED:
1716 err = -EBADFD;
1717 goto _end_unlock;
1718 default:
1719 break;
1720 }
1721 }
1722 if (avail > runtime->xfer_align)
1723 avail -= avail % runtime->xfer_align;
1724 frames = size > avail ? avail : size;
1725 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1726 if (frames > cont)
1727 frames = cont;
1728 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
1729 appl_ptr = runtime->control->appl_ptr;
1730 appl_ofs = appl_ptr % runtime->buffer_size;
1731 snd_pcm_stream_unlock_irq(substream);
1732 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1733 goto _end;
1734 snd_pcm_stream_lock_irq(substream);
1735 switch (runtime->status->state) {
1736 case SNDRV_PCM_STATE_XRUN:
1737 err = -EPIPE;
1738 goto _end_unlock;
1739 case SNDRV_PCM_STATE_SUSPENDED:
1740 err = -ESTRPIPE;
1741 goto _end_unlock;
1742 default:
1743 break;
1744 }
1745 appl_ptr += frames;
1746 if (appl_ptr >= runtime->boundary)
1747 appl_ptr -= runtime->boundary;
1748 runtime->control->appl_ptr = appl_ptr;
1749 if (substream->ops->ack)
1750 substream->ops->ack(substream);
1751
1752 offset += frames;
1753 size -= frames;
1754 xfer += frames;
1755 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1756 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1757 err = snd_pcm_start(substream);
1758 if (err < 0)
1759 goto _end_unlock;
1760 }
1761 if (runtime->sleep_min &&
1762 runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1763 snd_pcm_tick_prepare(substream);
1764 }
1765 _end_unlock:
1766 snd_pcm_stream_unlock_irq(substream);
1767 _end:
1768 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1769 }
1770
1771 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1772 {
1773 struct snd_pcm_runtime *runtime;
1774 int nonblock;
1775
1776 snd_assert(substream != NULL, return -ENXIO);
1777 runtime = substream->runtime;
1778 snd_assert(runtime != NULL, return -ENXIO);
1779 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1780 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1781 return -EBADFD;
1782
1783 nonblock = !!(substream->f_flags & O_NONBLOCK);
1784
1785 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1786 runtime->channels > 1)
1787 return -EINVAL;
1788 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1789 snd_pcm_lib_write_transfer);
1790 }
1791
1792 EXPORT_SYMBOL(snd_pcm_lib_write);
1793
1794 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1795 unsigned int hwoff,
1796 unsigned long data, unsigned int off,
1797 snd_pcm_uframes_t frames)
1798 {
1799 struct snd_pcm_runtime *runtime = substream->runtime;
1800 int err;
1801 void __user **bufs = (void __user **)data;
1802 int channels = runtime->channels;
1803 int c;
1804 if (substream->ops->copy) {
1805 snd_assert(substream->ops->silence != NULL, return -EINVAL);
1806 for (c = 0; c < channels; ++c, ++bufs) {
1807 if (*bufs == NULL) {
1808 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1809 return err;
1810 } else {
1811 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1812 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1813 return err;
1814 }
1815 }
1816 } else {
1817 /* default transfer behaviour */
1818 size_t dma_csize = runtime->dma_bytes / channels;
1819 snd_assert(runtime->dma_area, return -EFAULT);
1820 for (c = 0; c < channels; ++c, ++bufs) {
1821 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1822 if (*bufs == NULL) {
1823 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1824 } else {
1825 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1826 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1827 return -EFAULT;
1828 }
1829 }
1830 }
1831 return 0;
1832 }
1833
1834 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1835 void __user **bufs,
1836 snd_pcm_uframes_t frames)
1837 {
1838 struct snd_pcm_runtime *runtime;
1839 int nonblock;
1840
1841 snd_assert(substream != NULL, return -ENXIO);
1842 runtime = substream->runtime;
1843 snd_assert(runtime != NULL, return -ENXIO);
1844 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1845 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1846 return -EBADFD;
1847
1848 nonblock = !!(substream->f_flags & O_NONBLOCK);
1849
1850 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1851 return -EINVAL;
1852 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1853 nonblock, snd_pcm_lib_writev_transfer);
1854 }
1855
1856 EXPORT_SYMBOL(snd_pcm_lib_writev);
1857
1858 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
1859 unsigned int hwoff,
1860 unsigned long data, unsigned int off,
1861 snd_pcm_uframes_t frames)
1862 {
1863 struct snd_pcm_runtime *runtime = substream->runtime;
1864 int err;
1865 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1866 if (substream->ops->copy) {
1867 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1868 return err;
1869 } else {
1870 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1871 snd_assert(runtime->dma_area, return -EFAULT);
1872 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1873 return -EFAULT;
1874 }
1875 return 0;
1876 }
1877
1878 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1879 unsigned long data,
1880 snd_pcm_uframes_t size,
1881 int nonblock,
1882 transfer_f transfer)
1883 {
1884 struct snd_pcm_runtime *runtime = substream->runtime;
1885 snd_pcm_uframes_t xfer = 0;
1886 snd_pcm_uframes_t offset = 0;
1887 int err = 0;
1888
1889 if (size == 0)
1890 return 0;
1891 if (size > runtime->xfer_align)
1892 size -= size % runtime->xfer_align;
1893
1894 snd_pcm_stream_lock_irq(substream);
1895 switch (runtime->status->state) {
1896 case SNDRV_PCM_STATE_PREPARED:
1897 if (size >= runtime->start_threshold) {
1898 err = snd_pcm_start(substream);
1899 if (err < 0)
1900 goto _end_unlock;
1901 }
1902 break;
1903 case SNDRV_PCM_STATE_DRAINING:
1904 case SNDRV_PCM_STATE_RUNNING:
1905 case SNDRV_PCM_STATE_PAUSED:
1906 break;
1907 case SNDRV_PCM_STATE_XRUN:
1908 err = -EPIPE;
1909 goto _end_unlock;
1910 case SNDRV_PCM_STATE_SUSPENDED:
1911 err = -ESTRPIPE;
1912 goto _end_unlock;
1913 default:
1914 err = -EBADFD;
1915 goto _end_unlock;
1916 }
1917
1918 while (size > 0) {
1919 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1920 snd_pcm_uframes_t avail;
1921 snd_pcm_uframes_t cont;
1922 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1923 snd_pcm_update_hw_ptr(substream);
1924 __draining:
1925 avail = snd_pcm_capture_avail(runtime);
1926 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
1927 if (avail < runtime->xfer_align) {
1928 err = -EPIPE;
1929 goto _end_unlock;
1930 }
1931 } else if ((avail < runtime->control->avail_min && size > avail) ||
1932 (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
1933 wait_queue_t wait;
1934 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1935 long tout;
1936
1937 if (nonblock) {
1938 err = -EAGAIN;
1939 goto _end_unlock;
1940 }
1941
1942 init_waitqueue_entry(&wait, current);
1943 add_wait_queue(&runtime->sleep, &wait);
1944 while (1) {
1945 if (signal_pending(current)) {
1946 state = SIGNALED;
1947 break;
1948 }
1949 set_current_state(TASK_INTERRUPTIBLE);
1950 snd_pcm_stream_unlock_irq(substream);
1951 tout = schedule_timeout(10 * HZ);
1952 snd_pcm_stream_lock_irq(substream);
1953 if (tout == 0) {
1954 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1955 runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1956 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1957 break;
1958 }
1959 }
1960 switch (runtime->status->state) {
1961 case SNDRV_PCM_STATE_XRUN:
1962 state = ERROR;
1963 goto _end_loop;
1964 case SNDRV_PCM_STATE_SUSPENDED:
1965 state = SUSPENDED;
1966 goto _end_loop;
1967 case SNDRV_PCM_STATE_DRAINING:
1968 goto __draining;
1969 case SNDRV_PCM_STATE_SETUP:
1970 state = DROPPED;
1971 goto _end_loop;
1972 default:
1973 break;
1974 }
1975 avail = snd_pcm_capture_avail(runtime);
1976 if (avail >= runtime->control->avail_min) {
1977 state = READY;
1978 break;
1979 }
1980 }
1981 _end_loop:
1982 remove_wait_queue(&runtime->sleep, &wait);
1983
1984 switch (state) {
1985 case ERROR:
1986 err = -EPIPE;
1987 goto _end_unlock;
1988 case SUSPENDED:
1989 err = -ESTRPIPE;
1990 goto _end_unlock;
1991 case SIGNALED:
1992 err = -ERESTARTSYS;
1993 goto _end_unlock;
1994 case EXPIRED:
1995 snd_printd("capture read error (DMA or IRQ trouble?)\n");
1996 err = -EIO;
1997 goto _end_unlock;
1998 case DROPPED:
1999 err = -EBADFD;
2000 goto _end_unlock;
2001 default:
2002 break;
2003 }
2004 }
2005 if (avail > runtime->xfer_align)
2006 avail -= avail % runtime->xfer_align;
2007 frames = size > avail ? avail : size;
2008 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2009 if (frames > cont)
2010 frames = cont;
2011 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2012 appl_ptr = runtime->control->appl_ptr;
2013 appl_ofs = appl_ptr % runtime->buffer_size;
2014 snd_pcm_stream_unlock_irq(substream);
2015 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2016 goto _end;
2017 snd_pcm_stream_lock_irq(substream);
2018 switch (runtime->status->state) {
2019 case SNDRV_PCM_STATE_XRUN:
2020 err = -EPIPE;
2021 goto _end_unlock;
2022 case SNDRV_PCM_STATE_SUSPENDED:
2023 err = -ESTRPIPE;
2024 goto _end_unlock;
2025 default:
2026 break;
2027 }
2028 appl_ptr += frames;
2029 if (appl_ptr >= runtime->boundary)
2030 appl_ptr -= runtime->boundary;
2031 runtime->control->appl_ptr = appl_ptr;
2032 if (substream->ops->ack)
2033 substream->ops->ack(substream);
2034
2035 offset += frames;
2036 size -= frames;
2037 xfer += frames;
2038 if (runtime->sleep_min &&
2039 runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2040 snd_pcm_tick_prepare(substream);
2041 }
2042 _end_unlock:
2043 snd_pcm_stream_unlock_irq(substream);
2044 _end:
2045 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2046 }
2047
2048 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2049 {
2050 struct snd_pcm_runtime *runtime;
2051 int nonblock;
2052
2053 snd_assert(substream != NULL, return -ENXIO);
2054 runtime = substream->runtime;
2055 snd_assert(runtime != NULL, return -ENXIO);
2056 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2057 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2058 return -EBADFD;
2059
2060 nonblock = !!(substream->f_flags & O_NONBLOCK);
2061 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2062 return -EINVAL;
2063 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2064 }
2065
2066 EXPORT_SYMBOL(snd_pcm_lib_read);
2067
2068 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2069 unsigned int hwoff,
2070 unsigned long data, unsigned int off,
2071 snd_pcm_uframes_t frames)
2072 {
2073 struct snd_pcm_runtime *runtime = substream->runtime;
2074 int err;
2075 void __user **bufs = (void __user **)data;
2076 int channels = runtime->channels;
2077 int c;
2078 if (substream->ops->copy) {
2079 for (c = 0; c < channels; ++c, ++bufs) {
2080 char __user *buf;
2081 if (*bufs == NULL)
2082 continue;
2083 buf = *bufs + samples_to_bytes(runtime, off);
2084 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2085 return err;
2086 }
2087 } else {
2088 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2089 snd_assert(runtime->dma_area, return -EFAULT);
2090 for (c = 0; c < channels; ++c, ++bufs) {
2091 char *hwbuf;
2092 char __user *buf;
2093 if (*bufs == NULL)
2094 continue;
2095
2096 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2097 buf = *bufs + samples_to_bytes(runtime, off);
2098 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2099 return -EFAULT;
2100 }
2101 }
2102 return 0;
2103 }
2104
2105 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2106 void __user **bufs,
2107 snd_pcm_uframes_t frames)
2108 {
2109 struct snd_pcm_runtime *runtime;
2110 int nonblock;
2111
2112 snd_assert(substream != NULL, return -ENXIO);
2113 runtime = substream->runtime;
2114 snd_assert(runtime != NULL, return -ENXIO);
2115 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2116 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2117 return -EBADFD;
2118
2119 nonblock = !!(substream->f_flags & O_NONBLOCK);
2120 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2121 return -EINVAL;
2122 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2123 }
2124
2125 EXPORT_SYMBOL(snd_pcm_lib_readv);