]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - sound/core/pcm_lib.c
Merge branch 'master' of ssh://ra.kernel.org/pub/scm/linux/kernel/git/linville/wirele...
[mirror_ubuntu-zesty-kernel.git] / sound / core / pcm_lib.c
1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34 * fill ring buffer with silence
35 * runtime->silence_start: starting pointer to silence area
36 * runtime->silence_filled: size filled with silence
37 * runtime->silence_threshold: threshold from application
38 * runtime->silence_size: maximal size from application
39 *
40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41 */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 struct snd_pcm_runtime *runtime = substream->runtime;
45 snd_pcm_uframes_t frames, ofs, transfer;
46
47 if (runtime->silence_size < runtime->boundary) {
48 snd_pcm_sframes_t noise_dist, n;
49 if (runtime->silence_start != runtime->control->appl_ptr) {
50 n = runtime->control->appl_ptr - runtime->silence_start;
51 if (n < 0)
52 n += runtime->boundary;
53 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 runtime->silence_filled -= n;
55 else
56 runtime->silence_filled = 0;
57 runtime->silence_start = runtime->control->appl_ptr;
58 }
59 if (runtime->silence_filled >= runtime->buffer_size)
60 return;
61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63 return;
64 frames = runtime->silence_threshold - noise_dist;
65 if (frames > runtime->silence_size)
66 frames = runtime->silence_size;
67 } else {
68 if (new_hw_ptr == ULONG_MAX) { /* initialization */
69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70 if (avail > runtime->buffer_size)
71 avail = runtime->buffer_size;
72 runtime->silence_filled = avail > 0 ? avail : 0;
73 runtime->silence_start = (runtime->status->hw_ptr +
74 runtime->silence_filled) %
75 runtime->boundary;
76 } else {
77 ofs = runtime->status->hw_ptr;
78 frames = new_hw_ptr - ofs;
79 if ((snd_pcm_sframes_t)frames < 0)
80 frames += runtime->boundary;
81 runtime->silence_filled -= frames;
82 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83 runtime->silence_filled = 0;
84 runtime->silence_start = new_hw_ptr;
85 } else {
86 runtime->silence_start = ofs;
87 }
88 }
89 frames = runtime->buffer_size - runtime->silence_filled;
90 }
91 if (snd_BUG_ON(frames > runtime->buffer_size))
92 return;
93 if (frames == 0)
94 return;
95 ofs = runtime->silence_start % runtime->buffer_size;
96 while (frames > 0) {
97 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100 if (substream->ops->silence) {
101 int err;
102 err = substream->ops->silence(substream, -1, ofs, transfer);
103 snd_BUG_ON(err < 0);
104 } else {
105 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107 }
108 } else {
109 unsigned int c;
110 unsigned int channels = runtime->channels;
111 if (substream->ops->silence) {
112 for (c = 0; c < channels; ++c) {
113 int err;
114 err = substream->ops->silence(substream, c, ofs, transfer);
115 snd_BUG_ON(err < 0);
116 }
117 } else {
118 size_t dma_csize = runtime->dma_bytes / channels;
119 for (c = 0; c < channels; ++c) {
120 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122 }
123 }
124 }
125 runtime->silence_filled += transfer;
126 frames -= transfer;
127 ofs = 0;
128 }
129 }
130
131 #ifdef CONFIG_SND_DEBUG
132 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
133 char *name, size_t len)
134 {
135 snprintf(name, len, "pcmC%dD%d%c:%d",
136 substream->pcm->card->number,
137 substream->pcm->device,
138 substream->stream ? 'c' : 'p',
139 substream->number);
140 }
141 EXPORT_SYMBOL(snd_pcm_debug_name);
142 #endif
143
144 #define XRUN_DEBUG_BASIC (1<<0)
145 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
146 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
147 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
148 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
149 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
150 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
151
152 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
153
154 #define xrun_debug(substream, mask) \
155 ((substream)->pstr->xrun_debug & (mask))
156 #else
157 #define xrun_debug(substream, mask) 0
158 #endif
159
160 #define dump_stack_on_xrun(substream) do { \
161 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
162 dump_stack(); \
163 } while (0)
164
165 static void xrun(struct snd_pcm_substream *substream)
166 {
167 struct snd_pcm_runtime *runtime = substream->runtime;
168
169 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
170 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
171 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
172 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
173 char name[16];
174 snd_pcm_debug_name(substream, name, sizeof(name));
175 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
176 dump_stack_on_xrun(substream);
177 }
178 }
179
180 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
181 #define hw_ptr_error(substream, fmt, args...) \
182 do { \
183 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
184 xrun_log_show(substream); \
185 if (printk_ratelimit()) { \
186 snd_printd("PCM: " fmt, ##args); \
187 } \
188 dump_stack_on_xrun(substream); \
189 } \
190 } while (0)
191
192 #define XRUN_LOG_CNT 10
193
194 struct hwptr_log_entry {
195 unsigned int in_interrupt;
196 unsigned long jiffies;
197 snd_pcm_uframes_t pos;
198 snd_pcm_uframes_t period_size;
199 snd_pcm_uframes_t buffer_size;
200 snd_pcm_uframes_t old_hw_ptr;
201 snd_pcm_uframes_t hw_ptr_base;
202 };
203
204 struct snd_pcm_hwptr_log {
205 unsigned int idx;
206 unsigned int hit: 1;
207 struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209
210 static void xrun_log(struct snd_pcm_substream *substream,
211 snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 struct snd_pcm_runtime *runtime = substream->runtime;
214 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 struct hwptr_log_entry *entry;
216
217 if (log == NULL) {
218 log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 if (log == NULL)
220 return;
221 runtime->hwptr_log = log;
222 } else {
223 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 return;
225 }
226 entry = &log->entries[log->idx];
227 entry->in_interrupt = in_interrupt;
228 entry->jiffies = jiffies;
229 entry->pos = pos;
230 entry->period_size = runtime->period_size;
231 entry->buffer_size = runtime->buffer_size;
232 entry->old_hw_ptr = runtime->status->hw_ptr;
233 entry->hw_ptr_base = runtime->hw_ptr_base;
234 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236
237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 struct hwptr_log_entry *entry;
241 char name[16];
242 unsigned int idx;
243 int cnt;
244
245 if (log == NULL)
246 return;
247 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 return;
249 snd_pcm_debug_name(substream, name, sizeof(name));
250 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 entry = &log->entries[idx];
252 if (entry->period_size == 0)
253 break;
254 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 "hwptr=%ld/%ld\n",
256 name, entry->in_interrupt ? "[Q] " : "",
257 entry->jiffies,
258 (unsigned long)entry->pos,
259 (unsigned long)entry->period_size,
260 (unsigned long)entry->buffer_size,
261 (unsigned long)entry->old_hw_ptr,
262 (unsigned long)entry->hw_ptr_base);
263 idx++;
264 idx %= XRUN_LOG_CNT;
265 }
266 log->hit = 1;
267 }
268
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
273 #define xrun_log_show(substream) do { } while (0)
274
275 #endif
276
277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 struct snd_pcm_runtime *runtime)
279 {
280 snd_pcm_uframes_t avail;
281
282 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 avail = snd_pcm_playback_avail(runtime);
284 else
285 avail = snd_pcm_capture_avail(runtime);
286 if (avail > runtime->avail_max)
287 runtime->avail_max = avail;
288 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 if (avail >= runtime->buffer_size) {
290 snd_pcm_drain_done(substream);
291 return -EPIPE;
292 }
293 } else {
294 if (avail >= runtime->stop_threshold) {
295 xrun(substream);
296 return -EPIPE;
297 }
298 }
299 if (runtime->twake) {
300 if (avail >= runtime->twake)
301 wake_up(&runtime->tsleep);
302 } else if (avail >= runtime->control->avail_min)
303 wake_up(&runtime->sleep);
304 return 0;
305 }
306
307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 unsigned int in_interrupt)
309 {
310 struct snd_pcm_runtime *runtime = substream->runtime;
311 snd_pcm_uframes_t pos;
312 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 snd_pcm_sframes_t hdelta, delta;
314 unsigned long jdelta;
315
316 old_hw_ptr = runtime->status->hw_ptr;
317 pos = substream->ops->pointer(substream);
318 if (pos == SNDRV_PCM_POS_XRUN) {
319 xrun(substream);
320 return -EPIPE;
321 }
322 if (pos >= runtime->buffer_size) {
323 if (printk_ratelimit()) {
324 char name[16];
325 snd_pcm_debug_name(substream, name, sizeof(name));
326 xrun_log_show(substream);
327 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
328 "buffer size = %ld, period size = %ld\n",
329 name, pos, runtime->buffer_size,
330 runtime->period_size);
331 }
332 pos = 0;
333 }
334 pos -= pos % runtime->min_align;
335 if (xrun_debug(substream, XRUN_DEBUG_LOG))
336 xrun_log(substream, pos, in_interrupt);
337 hw_base = runtime->hw_ptr_base;
338 new_hw_ptr = hw_base + pos;
339 if (in_interrupt) {
340 /* we know that one period was processed */
341 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
342 delta = runtime->hw_ptr_interrupt + runtime->period_size;
343 if (delta > new_hw_ptr) {
344 /* check for double acknowledged interrupts */
345 hdelta = jiffies - runtime->hw_ptr_jiffies;
346 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
347 hw_base += runtime->buffer_size;
348 if (hw_base >= runtime->boundary)
349 hw_base = 0;
350 new_hw_ptr = hw_base + pos;
351 goto __delta;
352 }
353 }
354 }
355 /* new_hw_ptr might be lower than old_hw_ptr in case when */
356 /* pointer crosses the end of the ring buffer */
357 if (new_hw_ptr < old_hw_ptr) {
358 hw_base += runtime->buffer_size;
359 if (hw_base >= runtime->boundary)
360 hw_base = 0;
361 new_hw_ptr = hw_base + pos;
362 }
363 __delta:
364 delta = new_hw_ptr - old_hw_ptr;
365 if (delta < 0)
366 delta += runtime->boundary;
367 if (xrun_debug(substream, in_interrupt ?
368 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
369 char name[16];
370 snd_pcm_debug_name(substream, name, sizeof(name));
371 snd_printd("%s_update: %s: pos=%u/%u/%u, "
372 "hwptr=%ld/%ld/%ld/%ld\n",
373 in_interrupt ? "period" : "hwptr",
374 name,
375 (unsigned int)pos,
376 (unsigned int)runtime->period_size,
377 (unsigned int)runtime->buffer_size,
378 (unsigned long)delta,
379 (unsigned long)old_hw_ptr,
380 (unsigned long)new_hw_ptr,
381 (unsigned long)runtime->hw_ptr_base);
382 }
383
384 if (runtime->no_period_wakeup) {
385 snd_pcm_sframes_t xrun_threshold;
386 /*
387 * Without regular period interrupts, we have to check
388 * the elapsed time to detect xruns.
389 */
390 jdelta = jiffies - runtime->hw_ptr_jiffies;
391 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
392 goto no_delta_check;
393 hdelta = jdelta - delta * HZ / runtime->rate;
394 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
395 while (hdelta > xrun_threshold) {
396 delta += runtime->buffer_size;
397 hw_base += runtime->buffer_size;
398 if (hw_base >= runtime->boundary)
399 hw_base = 0;
400 new_hw_ptr = hw_base + pos;
401 hdelta -= runtime->hw_ptr_buffer_jiffies;
402 }
403 goto no_delta_check;
404 }
405
406 /* something must be really wrong */
407 if (delta >= runtime->buffer_size + runtime->period_size) {
408 hw_ptr_error(substream,
409 "Unexpected hw_pointer value %s"
410 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
411 "old_hw_ptr=%ld)\n",
412 in_interrupt ? "[Q] " : "[P]",
413 substream->stream, (long)pos,
414 (long)new_hw_ptr, (long)old_hw_ptr);
415 return 0;
416 }
417
418 /* Do jiffies check only in xrun_debug mode */
419 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
420 goto no_jiffies_check;
421
422 /* Skip the jiffies check for hardwares with BATCH flag.
423 * Such hardware usually just increases the position at each IRQ,
424 * thus it can't give any strange position.
425 */
426 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
427 goto no_jiffies_check;
428 hdelta = delta;
429 if (hdelta < runtime->delay)
430 goto no_jiffies_check;
431 hdelta -= runtime->delay;
432 jdelta = jiffies - runtime->hw_ptr_jiffies;
433 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
434 delta = jdelta /
435 (((runtime->period_size * HZ) / runtime->rate)
436 + HZ/100);
437 /* move new_hw_ptr according jiffies not pos variable */
438 new_hw_ptr = old_hw_ptr;
439 hw_base = delta;
440 /* use loop to avoid checks for delta overflows */
441 /* the delta value is small or zero in most cases */
442 while (delta > 0) {
443 new_hw_ptr += runtime->period_size;
444 if (new_hw_ptr >= runtime->boundary)
445 new_hw_ptr -= runtime->boundary;
446 delta--;
447 }
448 /* align hw_base to buffer_size */
449 hw_ptr_error(substream,
450 "hw_ptr skipping! %s"
451 "(pos=%ld, delta=%ld, period=%ld, "
452 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
453 in_interrupt ? "[Q] " : "",
454 (long)pos, (long)hdelta,
455 (long)runtime->period_size, jdelta,
456 ((hdelta * HZ) / runtime->rate), hw_base,
457 (unsigned long)old_hw_ptr,
458 (unsigned long)new_hw_ptr);
459 /* reset values to proper state */
460 delta = 0;
461 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
462 }
463 no_jiffies_check:
464 if (delta > runtime->period_size + runtime->period_size / 2) {
465 hw_ptr_error(substream,
466 "Lost interrupts? %s"
467 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
468 "old_hw_ptr=%ld)\n",
469 in_interrupt ? "[Q] " : "",
470 substream->stream, (long)delta,
471 (long)new_hw_ptr,
472 (long)old_hw_ptr);
473 }
474
475 no_delta_check:
476 if (runtime->status->hw_ptr == new_hw_ptr)
477 return 0;
478
479 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
480 runtime->silence_size > 0)
481 snd_pcm_playback_silence(substream, new_hw_ptr);
482
483 if (in_interrupt) {
484 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
485 if (delta < 0)
486 delta += runtime->boundary;
487 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
488 runtime->hw_ptr_interrupt += delta;
489 if (runtime->hw_ptr_interrupt >= runtime->boundary)
490 runtime->hw_ptr_interrupt -= runtime->boundary;
491 }
492 runtime->hw_ptr_base = hw_base;
493 runtime->status->hw_ptr = new_hw_ptr;
494 runtime->hw_ptr_jiffies = jiffies;
495 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
496 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
497
498 return snd_pcm_update_state(substream, runtime);
499 }
500
501 /* CAUTION: call it with irq disabled */
502 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
503 {
504 return snd_pcm_update_hw_ptr0(substream, 0);
505 }
506
507 /**
508 * snd_pcm_set_ops - set the PCM operators
509 * @pcm: the pcm instance
510 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
511 * @ops: the operator table
512 *
513 * Sets the given PCM operators to the pcm instance.
514 */
515 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
516 {
517 struct snd_pcm_str *stream = &pcm->streams[direction];
518 struct snd_pcm_substream *substream;
519
520 for (substream = stream->substream; substream != NULL; substream = substream->next)
521 substream->ops = ops;
522 }
523
524 EXPORT_SYMBOL(snd_pcm_set_ops);
525
526 /**
527 * snd_pcm_sync - set the PCM sync id
528 * @substream: the pcm substream
529 *
530 * Sets the PCM sync identifier for the card.
531 */
532 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
533 {
534 struct snd_pcm_runtime *runtime = substream->runtime;
535
536 runtime->sync.id32[0] = substream->pcm->card->number;
537 runtime->sync.id32[1] = -1;
538 runtime->sync.id32[2] = -1;
539 runtime->sync.id32[3] = -1;
540 }
541
542 EXPORT_SYMBOL(snd_pcm_set_sync);
543
544 /*
545 * Standard ioctl routine
546 */
547
548 static inline unsigned int div32(unsigned int a, unsigned int b,
549 unsigned int *r)
550 {
551 if (b == 0) {
552 *r = 0;
553 return UINT_MAX;
554 }
555 *r = a % b;
556 return a / b;
557 }
558
559 static inline unsigned int div_down(unsigned int a, unsigned int b)
560 {
561 if (b == 0)
562 return UINT_MAX;
563 return a / b;
564 }
565
566 static inline unsigned int div_up(unsigned int a, unsigned int b)
567 {
568 unsigned int r;
569 unsigned int q;
570 if (b == 0)
571 return UINT_MAX;
572 q = div32(a, b, &r);
573 if (r)
574 ++q;
575 return q;
576 }
577
578 static inline unsigned int mul(unsigned int a, unsigned int b)
579 {
580 if (a == 0)
581 return 0;
582 if (div_down(UINT_MAX, a) < b)
583 return UINT_MAX;
584 return a * b;
585 }
586
587 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
588 unsigned int c, unsigned int *r)
589 {
590 u_int64_t n = (u_int64_t) a * b;
591 if (c == 0) {
592 snd_BUG_ON(!n);
593 *r = 0;
594 return UINT_MAX;
595 }
596 n = div_u64_rem(n, c, r);
597 if (n >= UINT_MAX) {
598 *r = 0;
599 return UINT_MAX;
600 }
601 return n;
602 }
603
604 /**
605 * snd_interval_refine - refine the interval value of configurator
606 * @i: the interval value to refine
607 * @v: the interval value to refer to
608 *
609 * Refines the interval value with the reference value.
610 * The interval is changed to the range satisfying both intervals.
611 * The interval status (min, max, integer, etc.) are evaluated.
612 *
613 * Returns non-zero if the value is changed, zero if not changed.
614 */
615 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
616 {
617 int changed = 0;
618 if (snd_BUG_ON(snd_interval_empty(i)))
619 return -EINVAL;
620 if (i->min < v->min) {
621 i->min = v->min;
622 i->openmin = v->openmin;
623 changed = 1;
624 } else if (i->min == v->min && !i->openmin && v->openmin) {
625 i->openmin = 1;
626 changed = 1;
627 }
628 if (i->max > v->max) {
629 i->max = v->max;
630 i->openmax = v->openmax;
631 changed = 1;
632 } else if (i->max == v->max && !i->openmax && v->openmax) {
633 i->openmax = 1;
634 changed = 1;
635 }
636 if (!i->integer && v->integer) {
637 i->integer = 1;
638 changed = 1;
639 }
640 if (i->integer) {
641 if (i->openmin) {
642 i->min++;
643 i->openmin = 0;
644 }
645 if (i->openmax) {
646 i->max--;
647 i->openmax = 0;
648 }
649 } else if (!i->openmin && !i->openmax && i->min == i->max)
650 i->integer = 1;
651 if (snd_interval_checkempty(i)) {
652 snd_interval_none(i);
653 return -EINVAL;
654 }
655 return changed;
656 }
657
658 EXPORT_SYMBOL(snd_interval_refine);
659
660 static int snd_interval_refine_first(struct snd_interval *i)
661 {
662 if (snd_BUG_ON(snd_interval_empty(i)))
663 return -EINVAL;
664 if (snd_interval_single(i))
665 return 0;
666 i->max = i->min;
667 i->openmax = i->openmin;
668 if (i->openmax)
669 i->max++;
670 return 1;
671 }
672
673 static int snd_interval_refine_last(struct snd_interval *i)
674 {
675 if (snd_BUG_ON(snd_interval_empty(i)))
676 return -EINVAL;
677 if (snd_interval_single(i))
678 return 0;
679 i->min = i->max;
680 i->openmin = i->openmax;
681 if (i->openmin)
682 i->min--;
683 return 1;
684 }
685
686 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
687 {
688 if (a->empty || b->empty) {
689 snd_interval_none(c);
690 return;
691 }
692 c->empty = 0;
693 c->min = mul(a->min, b->min);
694 c->openmin = (a->openmin || b->openmin);
695 c->max = mul(a->max, b->max);
696 c->openmax = (a->openmax || b->openmax);
697 c->integer = (a->integer && b->integer);
698 }
699
700 /**
701 * snd_interval_div - refine the interval value with division
702 * @a: dividend
703 * @b: divisor
704 * @c: quotient
705 *
706 * c = a / b
707 *
708 * Returns non-zero if the value is changed, zero if not changed.
709 */
710 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
711 {
712 unsigned int r;
713 if (a->empty || b->empty) {
714 snd_interval_none(c);
715 return;
716 }
717 c->empty = 0;
718 c->min = div32(a->min, b->max, &r);
719 c->openmin = (r || a->openmin || b->openmax);
720 if (b->min > 0) {
721 c->max = div32(a->max, b->min, &r);
722 if (r) {
723 c->max++;
724 c->openmax = 1;
725 } else
726 c->openmax = (a->openmax || b->openmin);
727 } else {
728 c->max = UINT_MAX;
729 c->openmax = 0;
730 }
731 c->integer = 0;
732 }
733
734 /**
735 * snd_interval_muldivk - refine the interval value
736 * @a: dividend 1
737 * @b: dividend 2
738 * @k: divisor (as integer)
739 * @c: result
740 *
741 * c = a * b / k
742 *
743 * Returns non-zero if the value is changed, zero if not changed.
744 */
745 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
746 unsigned int k, struct snd_interval *c)
747 {
748 unsigned int r;
749 if (a->empty || b->empty) {
750 snd_interval_none(c);
751 return;
752 }
753 c->empty = 0;
754 c->min = muldiv32(a->min, b->min, k, &r);
755 c->openmin = (r || a->openmin || b->openmin);
756 c->max = muldiv32(a->max, b->max, k, &r);
757 if (r) {
758 c->max++;
759 c->openmax = 1;
760 } else
761 c->openmax = (a->openmax || b->openmax);
762 c->integer = 0;
763 }
764
765 /**
766 * snd_interval_mulkdiv - refine the interval value
767 * @a: dividend 1
768 * @k: dividend 2 (as integer)
769 * @b: divisor
770 * @c: result
771 *
772 * c = a * k / b
773 *
774 * Returns non-zero if the value is changed, zero if not changed.
775 */
776 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
777 const struct snd_interval *b, struct snd_interval *c)
778 {
779 unsigned int r;
780 if (a->empty || b->empty) {
781 snd_interval_none(c);
782 return;
783 }
784 c->empty = 0;
785 c->min = muldiv32(a->min, k, b->max, &r);
786 c->openmin = (r || a->openmin || b->openmax);
787 if (b->min > 0) {
788 c->max = muldiv32(a->max, k, b->min, &r);
789 if (r) {
790 c->max++;
791 c->openmax = 1;
792 } else
793 c->openmax = (a->openmax || b->openmin);
794 } else {
795 c->max = UINT_MAX;
796 c->openmax = 0;
797 }
798 c->integer = 0;
799 }
800
801 /* ---- */
802
803
804 /**
805 * snd_interval_ratnum - refine the interval value
806 * @i: interval to refine
807 * @rats_count: number of ratnum_t
808 * @rats: ratnum_t array
809 * @nump: pointer to store the resultant numerator
810 * @denp: pointer to store the resultant denominator
811 *
812 * Returns non-zero if the value is changed, zero if not changed.
813 */
814 int snd_interval_ratnum(struct snd_interval *i,
815 unsigned int rats_count, struct snd_ratnum *rats,
816 unsigned int *nump, unsigned int *denp)
817 {
818 unsigned int best_num, best_den;
819 int best_diff;
820 unsigned int k;
821 struct snd_interval t;
822 int err;
823 unsigned int result_num, result_den;
824 int result_diff;
825
826 best_num = best_den = best_diff = 0;
827 for (k = 0; k < rats_count; ++k) {
828 unsigned int num = rats[k].num;
829 unsigned int den;
830 unsigned int q = i->min;
831 int diff;
832 if (q == 0)
833 q = 1;
834 den = div_up(num, q);
835 if (den < rats[k].den_min)
836 continue;
837 if (den > rats[k].den_max)
838 den = rats[k].den_max;
839 else {
840 unsigned int r;
841 r = (den - rats[k].den_min) % rats[k].den_step;
842 if (r != 0)
843 den -= r;
844 }
845 diff = num - q * den;
846 if (diff < 0)
847 diff = -diff;
848 if (best_num == 0 ||
849 diff * best_den < best_diff * den) {
850 best_diff = diff;
851 best_den = den;
852 best_num = num;
853 }
854 }
855 if (best_den == 0) {
856 i->empty = 1;
857 return -EINVAL;
858 }
859 t.min = div_down(best_num, best_den);
860 t.openmin = !!(best_num % best_den);
861
862 result_num = best_num;
863 result_diff = best_diff;
864 result_den = best_den;
865 best_num = best_den = best_diff = 0;
866 for (k = 0; k < rats_count; ++k) {
867 unsigned int num = rats[k].num;
868 unsigned int den;
869 unsigned int q = i->max;
870 int diff;
871 if (q == 0) {
872 i->empty = 1;
873 return -EINVAL;
874 }
875 den = div_down(num, q);
876 if (den > rats[k].den_max)
877 continue;
878 if (den < rats[k].den_min)
879 den = rats[k].den_min;
880 else {
881 unsigned int r;
882 r = (den - rats[k].den_min) % rats[k].den_step;
883 if (r != 0)
884 den += rats[k].den_step - r;
885 }
886 diff = q * den - num;
887 if (diff < 0)
888 diff = -diff;
889 if (best_num == 0 ||
890 diff * best_den < best_diff * den) {
891 best_diff = diff;
892 best_den = den;
893 best_num = num;
894 }
895 }
896 if (best_den == 0) {
897 i->empty = 1;
898 return -EINVAL;
899 }
900 t.max = div_up(best_num, best_den);
901 t.openmax = !!(best_num % best_den);
902 t.integer = 0;
903 err = snd_interval_refine(i, &t);
904 if (err < 0)
905 return err;
906
907 if (snd_interval_single(i)) {
908 if (best_diff * result_den < result_diff * best_den) {
909 result_num = best_num;
910 result_den = best_den;
911 }
912 if (nump)
913 *nump = result_num;
914 if (denp)
915 *denp = result_den;
916 }
917 return err;
918 }
919
920 EXPORT_SYMBOL(snd_interval_ratnum);
921
922 /**
923 * snd_interval_ratden - refine the interval value
924 * @i: interval to refine
925 * @rats_count: number of struct ratden
926 * @rats: struct ratden array
927 * @nump: pointer to store the resultant numerator
928 * @denp: pointer to store the resultant denominator
929 *
930 * Returns non-zero if the value is changed, zero if not changed.
931 */
932 static int snd_interval_ratden(struct snd_interval *i,
933 unsigned int rats_count, struct snd_ratden *rats,
934 unsigned int *nump, unsigned int *denp)
935 {
936 unsigned int best_num, best_diff, best_den;
937 unsigned int k;
938 struct snd_interval t;
939 int err;
940
941 best_num = best_den = best_diff = 0;
942 for (k = 0; k < rats_count; ++k) {
943 unsigned int num;
944 unsigned int den = rats[k].den;
945 unsigned int q = i->min;
946 int diff;
947 num = mul(q, den);
948 if (num > rats[k].num_max)
949 continue;
950 if (num < rats[k].num_min)
951 num = rats[k].num_max;
952 else {
953 unsigned int r;
954 r = (num - rats[k].num_min) % rats[k].num_step;
955 if (r != 0)
956 num += rats[k].num_step - r;
957 }
958 diff = num - q * den;
959 if (best_num == 0 ||
960 diff * best_den < best_diff * den) {
961 best_diff = diff;
962 best_den = den;
963 best_num = num;
964 }
965 }
966 if (best_den == 0) {
967 i->empty = 1;
968 return -EINVAL;
969 }
970 t.min = div_down(best_num, best_den);
971 t.openmin = !!(best_num % best_den);
972
973 best_num = best_den = best_diff = 0;
974 for (k = 0; k < rats_count; ++k) {
975 unsigned int num;
976 unsigned int den = rats[k].den;
977 unsigned int q = i->max;
978 int diff;
979 num = mul(q, den);
980 if (num < rats[k].num_min)
981 continue;
982 if (num > rats[k].num_max)
983 num = rats[k].num_max;
984 else {
985 unsigned int r;
986 r = (num - rats[k].num_min) % rats[k].num_step;
987 if (r != 0)
988 num -= r;
989 }
990 diff = q * den - num;
991 if (best_num == 0 ||
992 diff * best_den < best_diff * den) {
993 best_diff = diff;
994 best_den = den;
995 best_num = num;
996 }
997 }
998 if (best_den == 0) {
999 i->empty = 1;
1000 return -EINVAL;
1001 }
1002 t.max = div_up(best_num, best_den);
1003 t.openmax = !!(best_num % best_den);
1004 t.integer = 0;
1005 err = snd_interval_refine(i, &t);
1006 if (err < 0)
1007 return err;
1008
1009 if (snd_interval_single(i)) {
1010 if (nump)
1011 *nump = best_num;
1012 if (denp)
1013 *denp = best_den;
1014 }
1015 return err;
1016 }
1017
1018 /**
1019 * snd_interval_list - refine the interval value from the list
1020 * @i: the interval value to refine
1021 * @count: the number of elements in the list
1022 * @list: the value list
1023 * @mask: the bit-mask to evaluate
1024 *
1025 * Refines the interval value from the list.
1026 * When mask is non-zero, only the elements corresponding to bit 1 are
1027 * evaluated.
1028 *
1029 * Returns non-zero if the value is changed, zero if not changed.
1030 */
1031 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1032 {
1033 unsigned int k;
1034 struct snd_interval list_range;
1035
1036 if (!count) {
1037 i->empty = 1;
1038 return -EINVAL;
1039 }
1040 snd_interval_any(&list_range);
1041 list_range.min = UINT_MAX;
1042 list_range.max = 0;
1043 for (k = 0; k < count; k++) {
1044 if (mask && !(mask & (1 << k)))
1045 continue;
1046 if (!snd_interval_test(i, list[k]))
1047 continue;
1048 list_range.min = min(list_range.min, list[k]);
1049 list_range.max = max(list_range.max, list[k]);
1050 }
1051 return snd_interval_refine(i, &list_range);
1052 }
1053
1054 EXPORT_SYMBOL(snd_interval_list);
1055
1056 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1057 {
1058 unsigned int n;
1059 int changed = 0;
1060 n = (i->min - min) % step;
1061 if (n != 0 || i->openmin) {
1062 i->min += step - n;
1063 changed = 1;
1064 }
1065 n = (i->max - min) % step;
1066 if (n != 0 || i->openmax) {
1067 i->max -= n;
1068 changed = 1;
1069 }
1070 if (snd_interval_checkempty(i)) {
1071 i->empty = 1;
1072 return -EINVAL;
1073 }
1074 return changed;
1075 }
1076
1077 /* Info constraints helpers */
1078
1079 /**
1080 * snd_pcm_hw_rule_add - add the hw-constraint rule
1081 * @runtime: the pcm runtime instance
1082 * @cond: condition bits
1083 * @var: the variable to evaluate
1084 * @func: the evaluation function
1085 * @private: the private data pointer passed to function
1086 * @dep: the dependent variables
1087 *
1088 * Returns zero if successful, or a negative error code on failure.
1089 */
1090 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1091 int var,
1092 snd_pcm_hw_rule_func_t func, void *private,
1093 int dep, ...)
1094 {
1095 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1096 struct snd_pcm_hw_rule *c;
1097 unsigned int k;
1098 va_list args;
1099 va_start(args, dep);
1100 if (constrs->rules_num >= constrs->rules_all) {
1101 struct snd_pcm_hw_rule *new;
1102 unsigned int new_rules = constrs->rules_all + 16;
1103 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1104 if (!new) {
1105 va_end(args);
1106 return -ENOMEM;
1107 }
1108 if (constrs->rules) {
1109 memcpy(new, constrs->rules,
1110 constrs->rules_num * sizeof(*c));
1111 kfree(constrs->rules);
1112 }
1113 constrs->rules = new;
1114 constrs->rules_all = new_rules;
1115 }
1116 c = &constrs->rules[constrs->rules_num];
1117 c->cond = cond;
1118 c->func = func;
1119 c->var = var;
1120 c->private = private;
1121 k = 0;
1122 while (1) {
1123 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1124 va_end(args);
1125 return -EINVAL;
1126 }
1127 c->deps[k++] = dep;
1128 if (dep < 0)
1129 break;
1130 dep = va_arg(args, int);
1131 }
1132 constrs->rules_num++;
1133 va_end(args);
1134 return 0;
1135 }
1136
1137 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1138
1139 /**
1140 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1141 * @runtime: PCM runtime instance
1142 * @var: hw_params variable to apply the mask
1143 * @mask: the bitmap mask
1144 *
1145 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1146 */
1147 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1148 u_int32_t mask)
1149 {
1150 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151 struct snd_mask *maskp = constrs_mask(constrs, var);
1152 *maskp->bits &= mask;
1153 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1154 if (*maskp->bits == 0)
1155 return -EINVAL;
1156 return 0;
1157 }
1158
1159 /**
1160 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1161 * @runtime: PCM runtime instance
1162 * @var: hw_params variable to apply the mask
1163 * @mask: the 64bit bitmap mask
1164 *
1165 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1166 */
1167 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168 u_int64_t mask)
1169 {
1170 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171 struct snd_mask *maskp = constrs_mask(constrs, var);
1172 maskp->bits[0] &= (u_int32_t)mask;
1173 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1174 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1175 if (! maskp->bits[0] && ! maskp->bits[1])
1176 return -EINVAL;
1177 return 0;
1178 }
1179
1180 /**
1181 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1182 * @runtime: PCM runtime instance
1183 * @var: hw_params variable to apply the integer constraint
1184 *
1185 * Apply the constraint of integer to an interval parameter.
1186 */
1187 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1188 {
1189 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1190 return snd_interval_setinteger(constrs_interval(constrs, var));
1191 }
1192
1193 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1194
1195 /**
1196 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the range
1199 * @min: the minimal value
1200 * @max: the maximal value
1201 *
1202 * Apply the min/max range constraint to an interval parameter.
1203 */
1204 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1205 unsigned int min, unsigned int max)
1206 {
1207 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1208 struct snd_interval t;
1209 t.min = min;
1210 t.max = max;
1211 t.openmin = t.openmax = 0;
1212 t.integer = 0;
1213 return snd_interval_refine(constrs_interval(constrs, var), &t);
1214 }
1215
1216 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1217
1218 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1219 struct snd_pcm_hw_rule *rule)
1220 {
1221 struct snd_pcm_hw_constraint_list *list = rule->private;
1222 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1223 }
1224
1225
1226 /**
1227 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1228 * @runtime: PCM runtime instance
1229 * @cond: condition bits
1230 * @var: hw_params variable to apply the list constraint
1231 * @l: list
1232 *
1233 * Apply the list of constraints to an interval parameter.
1234 */
1235 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1236 unsigned int cond,
1237 snd_pcm_hw_param_t var,
1238 struct snd_pcm_hw_constraint_list *l)
1239 {
1240 return snd_pcm_hw_rule_add(runtime, cond, var,
1241 snd_pcm_hw_rule_list, l,
1242 var, -1);
1243 }
1244
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1246
1247 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1248 struct snd_pcm_hw_rule *rule)
1249 {
1250 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1251 unsigned int num = 0, den = 0;
1252 int err;
1253 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1254 r->nrats, r->rats, &num, &den);
1255 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1256 params->rate_num = num;
1257 params->rate_den = den;
1258 }
1259 return err;
1260 }
1261
1262 /**
1263 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1264 * @runtime: PCM runtime instance
1265 * @cond: condition bits
1266 * @var: hw_params variable to apply the ratnums constraint
1267 * @r: struct snd_ratnums constriants
1268 */
1269 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1270 unsigned int cond,
1271 snd_pcm_hw_param_t var,
1272 struct snd_pcm_hw_constraint_ratnums *r)
1273 {
1274 return snd_pcm_hw_rule_add(runtime, cond, var,
1275 snd_pcm_hw_rule_ratnums, r,
1276 var, -1);
1277 }
1278
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1280
1281 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1282 struct snd_pcm_hw_rule *rule)
1283 {
1284 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1285 unsigned int num = 0, den = 0;
1286 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1287 r->nrats, r->rats, &num, &den);
1288 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1289 params->rate_num = num;
1290 params->rate_den = den;
1291 }
1292 return err;
1293 }
1294
1295 /**
1296 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1297 * @runtime: PCM runtime instance
1298 * @cond: condition bits
1299 * @var: hw_params variable to apply the ratdens constraint
1300 * @r: struct snd_ratdens constriants
1301 */
1302 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1303 unsigned int cond,
1304 snd_pcm_hw_param_t var,
1305 struct snd_pcm_hw_constraint_ratdens *r)
1306 {
1307 return snd_pcm_hw_rule_add(runtime, cond, var,
1308 snd_pcm_hw_rule_ratdens, r,
1309 var, -1);
1310 }
1311
1312 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1313
1314 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1315 struct snd_pcm_hw_rule *rule)
1316 {
1317 unsigned int l = (unsigned long) rule->private;
1318 int width = l & 0xffff;
1319 unsigned int msbits = l >> 16;
1320 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1321 if (snd_interval_single(i) && snd_interval_value(i) == width)
1322 params->msbits = msbits;
1323 return 0;
1324 }
1325
1326 /**
1327 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1328 * @runtime: PCM runtime instance
1329 * @cond: condition bits
1330 * @width: sample bits width
1331 * @msbits: msbits width
1332 */
1333 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1334 unsigned int cond,
1335 unsigned int width,
1336 unsigned int msbits)
1337 {
1338 unsigned long l = (msbits << 16) | width;
1339 return snd_pcm_hw_rule_add(runtime, cond, -1,
1340 snd_pcm_hw_rule_msbits,
1341 (void*) l,
1342 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1343 }
1344
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1346
1347 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1348 struct snd_pcm_hw_rule *rule)
1349 {
1350 unsigned long step = (unsigned long) rule->private;
1351 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1352 }
1353
1354 /**
1355 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1356 * @runtime: PCM runtime instance
1357 * @cond: condition bits
1358 * @var: hw_params variable to apply the step constraint
1359 * @step: step size
1360 */
1361 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1362 unsigned int cond,
1363 snd_pcm_hw_param_t var,
1364 unsigned long step)
1365 {
1366 return snd_pcm_hw_rule_add(runtime, cond, var,
1367 snd_pcm_hw_rule_step, (void *) step,
1368 var, -1);
1369 }
1370
1371 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1372
1373 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1374 {
1375 static unsigned int pow2_sizes[] = {
1376 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1377 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1378 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1379 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1380 };
1381 return snd_interval_list(hw_param_interval(params, rule->var),
1382 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1383 }
1384
1385 /**
1386 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1387 * @runtime: PCM runtime instance
1388 * @cond: condition bits
1389 * @var: hw_params variable to apply the power-of-2 constraint
1390 */
1391 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1392 unsigned int cond,
1393 snd_pcm_hw_param_t var)
1394 {
1395 return snd_pcm_hw_rule_add(runtime, cond, var,
1396 snd_pcm_hw_rule_pow2, NULL,
1397 var, -1);
1398 }
1399
1400 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1401
1402 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1403 struct snd_pcm_hw_rule *rule)
1404 {
1405 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1406 struct snd_interval *rate;
1407
1408 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1409 return snd_interval_list(rate, 1, &base_rate, 0);
1410 }
1411
1412 /**
1413 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1414 * @runtime: PCM runtime instance
1415 * @base_rate: the rate at which the hardware does not resample
1416 */
1417 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1418 unsigned int base_rate)
1419 {
1420 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1421 SNDRV_PCM_HW_PARAM_RATE,
1422 snd_pcm_hw_rule_noresample_func,
1423 (void *)(uintptr_t)base_rate,
1424 SNDRV_PCM_HW_PARAM_RATE, -1);
1425 }
1426 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1427
1428 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1429 snd_pcm_hw_param_t var)
1430 {
1431 if (hw_is_mask(var)) {
1432 snd_mask_any(hw_param_mask(params, var));
1433 params->cmask |= 1 << var;
1434 params->rmask |= 1 << var;
1435 return;
1436 }
1437 if (hw_is_interval(var)) {
1438 snd_interval_any(hw_param_interval(params, var));
1439 params->cmask |= 1 << var;
1440 params->rmask |= 1 << var;
1441 return;
1442 }
1443 snd_BUG();
1444 }
1445
1446 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1447 {
1448 unsigned int k;
1449 memset(params, 0, sizeof(*params));
1450 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1451 _snd_pcm_hw_param_any(params, k);
1452 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1453 _snd_pcm_hw_param_any(params, k);
1454 params->info = ~0U;
1455 }
1456
1457 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1458
1459 /**
1460 * snd_pcm_hw_param_value - return @params field @var value
1461 * @params: the hw_params instance
1462 * @var: parameter to retrieve
1463 * @dir: pointer to the direction (-1,0,1) or %NULL
1464 *
1465 * Return the value for field @var if it's fixed in configuration space
1466 * defined by @params. Return -%EINVAL otherwise.
1467 */
1468 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1469 snd_pcm_hw_param_t var, int *dir)
1470 {
1471 if (hw_is_mask(var)) {
1472 const struct snd_mask *mask = hw_param_mask_c(params, var);
1473 if (!snd_mask_single(mask))
1474 return -EINVAL;
1475 if (dir)
1476 *dir = 0;
1477 return snd_mask_value(mask);
1478 }
1479 if (hw_is_interval(var)) {
1480 const struct snd_interval *i = hw_param_interval_c(params, var);
1481 if (!snd_interval_single(i))
1482 return -EINVAL;
1483 if (dir)
1484 *dir = i->openmin;
1485 return snd_interval_value(i);
1486 }
1487 return -EINVAL;
1488 }
1489
1490 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1491
1492 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1493 snd_pcm_hw_param_t var)
1494 {
1495 if (hw_is_mask(var)) {
1496 snd_mask_none(hw_param_mask(params, var));
1497 params->cmask |= 1 << var;
1498 params->rmask |= 1 << var;
1499 } else if (hw_is_interval(var)) {
1500 snd_interval_none(hw_param_interval(params, var));
1501 params->cmask |= 1 << var;
1502 params->rmask |= 1 << var;
1503 } else {
1504 snd_BUG();
1505 }
1506 }
1507
1508 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1509
1510 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1511 snd_pcm_hw_param_t var)
1512 {
1513 int changed;
1514 if (hw_is_mask(var))
1515 changed = snd_mask_refine_first(hw_param_mask(params, var));
1516 else if (hw_is_interval(var))
1517 changed = snd_interval_refine_first(hw_param_interval(params, var));
1518 else
1519 return -EINVAL;
1520 if (changed) {
1521 params->cmask |= 1 << var;
1522 params->rmask |= 1 << var;
1523 }
1524 return changed;
1525 }
1526
1527
1528 /**
1529 * snd_pcm_hw_param_first - refine config space and return minimum value
1530 * @pcm: PCM instance
1531 * @params: the hw_params instance
1532 * @var: parameter to retrieve
1533 * @dir: pointer to the direction (-1,0,1) or %NULL
1534 *
1535 * Inside configuration space defined by @params remove from @var all
1536 * values > minimum. Reduce configuration space accordingly.
1537 * Return the minimum.
1538 */
1539 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1540 struct snd_pcm_hw_params *params,
1541 snd_pcm_hw_param_t var, int *dir)
1542 {
1543 int changed = _snd_pcm_hw_param_first(params, var);
1544 if (changed < 0)
1545 return changed;
1546 if (params->rmask) {
1547 int err = snd_pcm_hw_refine(pcm, params);
1548 if (snd_BUG_ON(err < 0))
1549 return err;
1550 }
1551 return snd_pcm_hw_param_value(params, var, dir);
1552 }
1553
1554 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1555
1556 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1557 snd_pcm_hw_param_t var)
1558 {
1559 int changed;
1560 if (hw_is_mask(var))
1561 changed = snd_mask_refine_last(hw_param_mask(params, var));
1562 else if (hw_is_interval(var))
1563 changed = snd_interval_refine_last(hw_param_interval(params, var));
1564 else
1565 return -EINVAL;
1566 if (changed) {
1567 params->cmask |= 1 << var;
1568 params->rmask |= 1 << var;
1569 }
1570 return changed;
1571 }
1572
1573
1574 /**
1575 * snd_pcm_hw_param_last - refine config space and return maximum value
1576 * @pcm: PCM instance
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Inside configuration space defined by @params remove from @var all
1582 * values < maximum. Reduce configuration space accordingly.
1583 * Return the maximum.
1584 */
1585 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1586 struct snd_pcm_hw_params *params,
1587 snd_pcm_hw_param_t var, int *dir)
1588 {
1589 int changed = _snd_pcm_hw_param_last(params, var);
1590 if (changed < 0)
1591 return changed;
1592 if (params->rmask) {
1593 int err = snd_pcm_hw_refine(pcm, params);
1594 if (snd_BUG_ON(err < 0))
1595 return err;
1596 }
1597 return snd_pcm_hw_param_value(params, var, dir);
1598 }
1599
1600 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1601
1602 /**
1603 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1604 * @pcm: PCM instance
1605 * @params: the hw_params instance
1606 *
1607 * Choose one configuration from configuration space defined by @params.
1608 * The configuration chosen is that obtained fixing in this order:
1609 * first access, first format, first subformat, min channels,
1610 * min rate, min period time, max buffer size, min tick time
1611 */
1612 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1613 struct snd_pcm_hw_params *params)
1614 {
1615 static int vars[] = {
1616 SNDRV_PCM_HW_PARAM_ACCESS,
1617 SNDRV_PCM_HW_PARAM_FORMAT,
1618 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1619 SNDRV_PCM_HW_PARAM_CHANNELS,
1620 SNDRV_PCM_HW_PARAM_RATE,
1621 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1622 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1623 SNDRV_PCM_HW_PARAM_TICK_TIME,
1624 -1
1625 };
1626 int err, *v;
1627
1628 for (v = vars; *v != -1; v++) {
1629 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1630 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1631 else
1632 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1633 if (snd_BUG_ON(err < 0))
1634 return err;
1635 }
1636 return 0;
1637 }
1638
1639 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1640 void *arg)
1641 {
1642 struct snd_pcm_runtime *runtime = substream->runtime;
1643 unsigned long flags;
1644 snd_pcm_stream_lock_irqsave(substream, flags);
1645 if (snd_pcm_running(substream) &&
1646 snd_pcm_update_hw_ptr(substream) >= 0)
1647 runtime->status->hw_ptr %= runtime->buffer_size;
1648 else
1649 runtime->status->hw_ptr = 0;
1650 snd_pcm_stream_unlock_irqrestore(substream, flags);
1651 return 0;
1652 }
1653
1654 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1655 void *arg)
1656 {
1657 struct snd_pcm_channel_info *info = arg;
1658 struct snd_pcm_runtime *runtime = substream->runtime;
1659 int width;
1660 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1661 info->offset = -1;
1662 return 0;
1663 }
1664 width = snd_pcm_format_physical_width(runtime->format);
1665 if (width < 0)
1666 return width;
1667 info->offset = 0;
1668 switch (runtime->access) {
1669 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1670 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1671 info->first = info->channel * width;
1672 info->step = runtime->channels * width;
1673 break;
1674 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1675 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1676 {
1677 size_t size = runtime->dma_bytes / runtime->channels;
1678 info->first = info->channel * size * 8;
1679 info->step = width;
1680 break;
1681 }
1682 default:
1683 snd_BUG();
1684 break;
1685 }
1686 return 0;
1687 }
1688
1689 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1690 void *arg)
1691 {
1692 struct snd_pcm_hw_params *params = arg;
1693 snd_pcm_format_t format;
1694 int channels, width;
1695
1696 params->fifo_size = substream->runtime->hw.fifo_size;
1697 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1698 format = params_format(params);
1699 channels = params_channels(params);
1700 width = snd_pcm_format_physical_width(format);
1701 params->fifo_size /= width * channels;
1702 }
1703 return 0;
1704 }
1705
1706 /**
1707 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1708 * @substream: the pcm substream instance
1709 * @cmd: ioctl command
1710 * @arg: ioctl argument
1711 *
1712 * Processes the generic ioctl commands for PCM.
1713 * Can be passed as the ioctl callback for PCM ops.
1714 *
1715 * Returns zero if successful, or a negative error code on failure.
1716 */
1717 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1718 unsigned int cmd, void *arg)
1719 {
1720 switch (cmd) {
1721 case SNDRV_PCM_IOCTL1_INFO:
1722 return 0;
1723 case SNDRV_PCM_IOCTL1_RESET:
1724 return snd_pcm_lib_ioctl_reset(substream, arg);
1725 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1726 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1727 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1728 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1729 }
1730 return -ENXIO;
1731 }
1732
1733 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1734
1735 /**
1736 * snd_pcm_period_elapsed - update the pcm status for the next period
1737 * @substream: the pcm substream instance
1738 *
1739 * This function is called from the interrupt handler when the
1740 * PCM has processed the period size. It will update the current
1741 * pointer, wake up sleepers, etc.
1742 *
1743 * Even if more than one periods have elapsed since the last call, you
1744 * have to call this only once.
1745 */
1746 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1747 {
1748 struct snd_pcm_runtime *runtime;
1749 unsigned long flags;
1750
1751 if (PCM_RUNTIME_CHECK(substream))
1752 return;
1753 runtime = substream->runtime;
1754
1755 if (runtime->transfer_ack_begin)
1756 runtime->transfer_ack_begin(substream);
1757
1758 snd_pcm_stream_lock_irqsave(substream, flags);
1759 if (!snd_pcm_running(substream) ||
1760 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1761 goto _end;
1762
1763 if (substream->timer_running)
1764 snd_timer_interrupt(substream->timer, 1);
1765 _end:
1766 snd_pcm_stream_unlock_irqrestore(substream, flags);
1767 if (runtime->transfer_ack_end)
1768 runtime->transfer_ack_end(substream);
1769 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1770 }
1771
1772 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1773
1774 /*
1775 * Wait until avail_min data becomes available
1776 * Returns a negative error code if any error occurs during operation.
1777 * The available space is stored on availp. When err = 0 and avail = 0
1778 * on the capture stream, it indicates the stream is in DRAINING state.
1779 */
1780 static int wait_for_avail(struct snd_pcm_substream *substream,
1781 snd_pcm_uframes_t *availp)
1782 {
1783 struct snd_pcm_runtime *runtime = substream->runtime;
1784 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1785 wait_queue_t wait;
1786 int err = 0;
1787 snd_pcm_uframes_t avail = 0;
1788 long wait_time, tout;
1789
1790 init_waitqueue_entry(&wait, current);
1791 set_current_state(TASK_INTERRUPTIBLE);
1792 add_wait_queue(&runtime->tsleep, &wait);
1793
1794 if (runtime->no_period_wakeup)
1795 wait_time = MAX_SCHEDULE_TIMEOUT;
1796 else {
1797 wait_time = 10;
1798 if (runtime->rate) {
1799 long t = runtime->period_size * 2 / runtime->rate;
1800 wait_time = max(t, wait_time);
1801 }
1802 wait_time = msecs_to_jiffies(wait_time * 1000);
1803 }
1804
1805 for (;;) {
1806 if (signal_pending(current)) {
1807 err = -ERESTARTSYS;
1808 break;
1809 }
1810
1811 /*
1812 * We need to check if space became available already
1813 * (and thus the wakeup happened already) first to close
1814 * the race of space already having become available.
1815 * This check must happen after been added to the waitqueue
1816 * and having current state be INTERRUPTIBLE.
1817 */
1818 if (is_playback)
1819 avail = snd_pcm_playback_avail(runtime);
1820 else
1821 avail = snd_pcm_capture_avail(runtime);
1822 if (avail >= runtime->twake)
1823 break;
1824 snd_pcm_stream_unlock_irq(substream);
1825
1826 tout = schedule_timeout(wait_time);
1827
1828 snd_pcm_stream_lock_irq(substream);
1829 set_current_state(TASK_INTERRUPTIBLE);
1830 switch (runtime->status->state) {
1831 case SNDRV_PCM_STATE_SUSPENDED:
1832 err = -ESTRPIPE;
1833 goto _endloop;
1834 case SNDRV_PCM_STATE_XRUN:
1835 err = -EPIPE;
1836 goto _endloop;
1837 case SNDRV_PCM_STATE_DRAINING:
1838 if (is_playback)
1839 err = -EPIPE;
1840 else
1841 avail = 0; /* indicate draining */
1842 goto _endloop;
1843 case SNDRV_PCM_STATE_OPEN:
1844 case SNDRV_PCM_STATE_SETUP:
1845 case SNDRV_PCM_STATE_DISCONNECTED:
1846 err = -EBADFD;
1847 goto _endloop;
1848 }
1849 if (!tout) {
1850 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1851 is_playback ? "playback" : "capture");
1852 err = -EIO;
1853 break;
1854 }
1855 }
1856 _endloop:
1857 set_current_state(TASK_RUNNING);
1858 remove_wait_queue(&runtime->tsleep, &wait);
1859 *availp = avail;
1860 return err;
1861 }
1862
1863 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1864 unsigned int hwoff,
1865 unsigned long data, unsigned int off,
1866 snd_pcm_uframes_t frames)
1867 {
1868 struct snd_pcm_runtime *runtime = substream->runtime;
1869 int err;
1870 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1871 if (substream->ops->copy) {
1872 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1873 return err;
1874 } else {
1875 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1876 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1877 return -EFAULT;
1878 }
1879 return 0;
1880 }
1881
1882 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1883 unsigned long data, unsigned int off,
1884 snd_pcm_uframes_t size);
1885
1886 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1887 unsigned long data,
1888 snd_pcm_uframes_t size,
1889 int nonblock,
1890 transfer_f transfer)
1891 {
1892 struct snd_pcm_runtime *runtime = substream->runtime;
1893 snd_pcm_uframes_t xfer = 0;
1894 snd_pcm_uframes_t offset = 0;
1895 int err = 0;
1896
1897 if (size == 0)
1898 return 0;
1899
1900 snd_pcm_stream_lock_irq(substream);
1901 switch (runtime->status->state) {
1902 case SNDRV_PCM_STATE_PREPARED:
1903 case SNDRV_PCM_STATE_RUNNING:
1904 case SNDRV_PCM_STATE_PAUSED:
1905 break;
1906 case SNDRV_PCM_STATE_XRUN:
1907 err = -EPIPE;
1908 goto _end_unlock;
1909 case SNDRV_PCM_STATE_SUSPENDED:
1910 err = -ESTRPIPE;
1911 goto _end_unlock;
1912 default:
1913 err = -EBADFD;
1914 goto _end_unlock;
1915 }
1916
1917 runtime->twake = runtime->control->avail_min ? : 1;
1918 while (size > 0) {
1919 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1920 snd_pcm_uframes_t avail;
1921 snd_pcm_uframes_t cont;
1922 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1923 snd_pcm_update_hw_ptr(substream);
1924 avail = snd_pcm_playback_avail(runtime);
1925 if (!avail) {
1926 if (nonblock) {
1927 err = -EAGAIN;
1928 goto _end_unlock;
1929 }
1930 runtime->twake = min_t(snd_pcm_uframes_t, size,
1931 runtime->control->avail_min ? : 1);
1932 err = wait_for_avail(substream, &avail);
1933 if (err < 0)
1934 goto _end_unlock;
1935 }
1936 frames = size > avail ? avail : size;
1937 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1938 if (frames > cont)
1939 frames = cont;
1940 if (snd_BUG_ON(!frames)) {
1941 runtime->twake = 0;
1942 snd_pcm_stream_unlock_irq(substream);
1943 return -EINVAL;
1944 }
1945 appl_ptr = runtime->control->appl_ptr;
1946 appl_ofs = appl_ptr % runtime->buffer_size;
1947 snd_pcm_stream_unlock_irq(substream);
1948 err = transfer(substream, appl_ofs, data, offset, frames);
1949 snd_pcm_stream_lock_irq(substream);
1950 if (err < 0)
1951 goto _end_unlock;
1952 switch (runtime->status->state) {
1953 case SNDRV_PCM_STATE_XRUN:
1954 err = -EPIPE;
1955 goto _end_unlock;
1956 case SNDRV_PCM_STATE_SUSPENDED:
1957 err = -ESTRPIPE;
1958 goto _end_unlock;
1959 default:
1960 break;
1961 }
1962 appl_ptr += frames;
1963 if (appl_ptr >= runtime->boundary)
1964 appl_ptr -= runtime->boundary;
1965 runtime->control->appl_ptr = appl_ptr;
1966 if (substream->ops->ack)
1967 substream->ops->ack(substream);
1968
1969 offset += frames;
1970 size -= frames;
1971 xfer += frames;
1972 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1973 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1974 err = snd_pcm_start(substream);
1975 if (err < 0)
1976 goto _end_unlock;
1977 }
1978 }
1979 _end_unlock:
1980 runtime->twake = 0;
1981 if (xfer > 0 && err >= 0)
1982 snd_pcm_update_state(substream, runtime);
1983 snd_pcm_stream_unlock_irq(substream);
1984 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1985 }
1986
1987 /* sanity-check for read/write methods */
1988 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1989 {
1990 struct snd_pcm_runtime *runtime;
1991 if (PCM_RUNTIME_CHECK(substream))
1992 return -ENXIO;
1993 runtime = substream->runtime;
1994 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1995 return -EINVAL;
1996 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1997 return -EBADFD;
1998 return 0;
1999 }
2000
2001 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2002 {
2003 struct snd_pcm_runtime *runtime;
2004 int nonblock;
2005 int err;
2006
2007 err = pcm_sanity_check(substream);
2008 if (err < 0)
2009 return err;
2010 runtime = substream->runtime;
2011 nonblock = !!(substream->f_flags & O_NONBLOCK);
2012
2013 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2014 runtime->channels > 1)
2015 return -EINVAL;
2016 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2017 snd_pcm_lib_write_transfer);
2018 }
2019
2020 EXPORT_SYMBOL(snd_pcm_lib_write);
2021
2022 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2023 unsigned int hwoff,
2024 unsigned long data, unsigned int off,
2025 snd_pcm_uframes_t frames)
2026 {
2027 struct snd_pcm_runtime *runtime = substream->runtime;
2028 int err;
2029 void __user **bufs = (void __user **)data;
2030 int channels = runtime->channels;
2031 int c;
2032 if (substream->ops->copy) {
2033 if (snd_BUG_ON(!substream->ops->silence))
2034 return -EINVAL;
2035 for (c = 0; c < channels; ++c, ++bufs) {
2036 if (*bufs == NULL) {
2037 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2038 return err;
2039 } else {
2040 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2041 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2042 return err;
2043 }
2044 }
2045 } else {
2046 /* default transfer behaviour */
2047 size_t dma_csize = runtime->dma_bytes / channels;
2048 for (c = 0; c < channels; ++c, ++bufs) {
2049 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2050 if (*bufs == NULL) {
2051 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2052 } else {
2053 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2054 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2055 return -EFAULT;
2056 }
2057 }
2058 }
2059 return 0;
2060 }
2061
2062 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2063 void __user **bufs,
2064 snd_pcm_uframes_t frames)
2065 {
2066 struct snd_pcm_runtime *runtime;
2067 int nonblock;
2068 int err;
2069
2070 err = pcm_sanity_check(substream);
2071 if (err < 0)
2072 return err;
2073 runtime = substream->runtime;
2074 nonblock = !!(substream->f_flags & O_NONBLOCK);
2075
2076 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2077 return -EINVAL;
2078 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2079 nonblock, snd_pcm_lib_writev_transfer);
2080 }
2081
2082 EXPORT_SYMBOL(snd_pcm_lib_writev);
2083
2084 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2085 unsigned int hwoff,
2086 unsigned long data, unsigned int off,
2087 snd_pcm_uframes_t frames)
2088 {
2089 struct snd_pcm_runtime *runtime = substream->runtime;
2090 int err;
2091 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2092 if (substream->ops->copy) {
2093 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2094 return err;
2095 } else {
2096 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2097 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2098 return -EFAULT;
2099 }
2100 return 0;
2101 }
2102
2103 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2104 unsigned long data,
2105 snd_pcm_uframes_t size,
2106 int nonblock,
2107 transfer_f transfer)
2108 {
2109 struct snd_pcm_runtime *runtime = substream->runtime;
2110 snd_pcm_uframes_t xfer = 0;
2111 snd_pcm_uframes_t offset = 0;
2112 int err = 0;
2113
2114 if (size == 0)
2115 return 0;
2116
2117 snd_pcm_stream_lock_irq(substream);
2118 switch (runtime->status->state) {
2119 case SNDRV_PCM_STATE_PREPARED:
2120 if (size >= runtime->start_threshold) {
2121 err = snd_pcm_start(substream);
2122 if (err < 0)
2123 goto _end_unlock;
2124 }
2125 break;
2126 case SNDRV_PCM_STATE_DRAINING:
2127 case SNDRV_PCM_STATE_RUNNING:
2128 case SNDRV_PCM_STATE_PAUSED:
2129 break;
2130 case SNDRV_PCM_STATE_XRUN:
2131 err = -EPIPE;
2132 goto _end_unlock;
2133 case SNDRV_PCM_STATE_SUSPENDED:
2134 err = -ESTRPIPE;
2135 goto _end_unlock;
2136 default:
2137 err = -EBADFD;
2138 goto _end_unlock;
2139 }
2140
2141 runtime->twake = runtime->control->avail_min ? : 1;
2142 while (size > 0) {
2143 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2144 snd_pcm_uframes_t avail;
2145 snd_pcm_uframes_t cont;
2146 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2147 snd_pcm_update_hw_ptr(substream);
2148 avail = snd_pcm_capture_avail(runtime);
2149 if (!avail) {
2150 if (runtime->status->state ==
2151 SNDRV_PCM_STATE_DRAINING) {
2152 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2153 goto _end_unlock;
2154 }
2155 if (nonblock) {
2156 err = -EAGAIN;
2157 goto _end_unlock;
2158 }
2159 runtime->twake = min_t(snd_pcm_uframes_t, size,
2160 runtime->control->avail_min ? : 1);
2161 err = wait_for_avail(substream, &avail);
2162 if (err < 0)
2163 goto _end_unlock;
2164 if (!avail)
2165 continue; /* draining */
2166 }
2167 frames = size > avail ? avail : size;
2168 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2169 if (frames > cont)
2170 frames = cont;
2171 if (snd_BUG_ON(!frames)) {
2172 runtime->twake = 0;
2173 snd_pcm_stream_unlock_irq(substream);
2174 return -EINVAL;
2175 }
2176 appl_ptr = runtime->control->appl_ptr;
2177 appl_ofs = appl_ptr % runtime->buffer_size;
2178 snd_pcm_stream_unlock_irq(substream);
2179 err = transfer(substream, appl_ofs, data, offset, frames);
2180 snd_pcm_stream_lock_irq(substream);
2181 if (err < 0)
2182 goto _end_unlock;
2183 switch (runtime->status->state) {
2184 case SNDRV_PCM_STATE_XRUN:
2185 err = -EPIPE;
2186 goto _end_unlock;
2187 case SNDRV_PCM_STATE_SUSPENDED:
2188 err = -ESTRPIPE;
2189 goto _end_unlock;
2190 default:
2191 break;
2192 }
2193 appl_ptr += frames;
2194 if (appl_ptr >= runtime->boundary)
2195 appl_ptr -= runtime->boundary;
2196 runtime->control->appl_ptr = appl_ptr;
2197 if (substream->ops->ack)
2198 substream->ops->ack(substream);
2199
2200 offset += frames;
2201 size -= frames;
2202 xfer += frames;
2203 }
2204 _end_unlock:
2205 runtime->twake = 0;
2206 if (xfer > 0 && err >= 0)
2207 snd_pcm_update_state(substream, runtime);
2208 snd_pcm_stream_unlock_irq(substream);
2209 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2210 }
2211
2212 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2213 {
2214 struct snd_pcm_runtime *runtime;
2215 int nonblock;
2216 int err;
2217
2218 err = pcm_sanity_check(substream);
2219 if (err < 0)
2220 return err;
2221 runtime = substream->runtime;
2222 nonblock = !!(substream->f_flags & O_NONBLOCK);
2223 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2224 return -EINVAL;
2225 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2226 }
2227
2228 EXPORT_SYMBOL(snd_pcm_lib_read);
2229
2230 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2231 unsigned int hwoff,
2232 unsigned long data, unsigned int off,
2233 snd_pcm_uframes_t frames)
2234 {
2235 struct snd_pcm_runtime *runtime = substream->runtime;
2236 int err;
2237 void __user **bufs = (void __user **)data;
2238 int channels = runtime->channels;
2239 int c;
2240 if (substream->ops->copy) {
2241 for (c = 0; c < channels; ++c, ++bufs) {
2242 char __user *buf;
2243 if (*bufs == NULL)
2244 continue;
2245 buf = *bufs + samples_to_bytes(runtime, off);
2246 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2247 return err;
2248 }
2249 } else {
2250 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2251 for (c = 0; c < channels; ++c, ++bufs) {
2252 char *hwbuf;
2253 char __user *buf;
2254 if (*bufs == NULL)
2255 continue;
2256
2257 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2258 buf = *bufs + samples_to_bytes(runtime, off);
2259 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2260 return -EFAULT;
2261 }
2262 }
2263 return 0;
2264 }
2265
2266 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2267 void __user **bufs,
2268 snd_pcm_uframes_t frames)
2269 {
2270 struct snd_pcm_runtime *runtime;
2271 int nonblock;
2272 int err;
2273
2274 err = pcm_sanity_check(substream);
2275 if (err < 0)
2276 return err;
2277 runtime = substream->runtime;
2278 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2279 return -EBADFD;
2280
2281 nonblock = !!(substream->f_flags & O_NONBLOCK);
2282 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2283 return -EINVAL;
2284 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2285 }
2286
2287 EXPORT_SYMBOL(snd_pcm_lib_readv);