]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - sound/firewire/amdtp-stream.c
sh: switch to NO_BOOTMEM
[mirror_ubuntu-eoan-kernel.git] / sound / firewire / amdtp-stream.c
1 /*
2 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3 * with Common Isochronous Packet (IEC 61883-1) headers
4 *
5 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6 * Licensed under the terms of the GNU General Public License, version 2.
7 */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <sound/pcm.h>
15 #include <sound/pcm_params.h>
16 #include "amdtp-stream.h"
17
18 #define TICKS_PER_CYCLE 3072
19 #define CYCLES_PER_SECOND 8000
20 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
21
22 /* Always support Linux tracing subsystem. */
23 #define CREATE_TRACE_POINTS
24 #include "amdtp-stream-trace.h"
25
26 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
27
28 /* isochronous header parameters */
29 #define ISO_DATA_LENGTH_SHIFT 16
30 #define TAG_NO_CIP_HEADER 0
31 #define TAG_CIP 1
32
33 /* common isochronous packet header parameters */
34 #define CIP_EOH_SHIFT 31
35 #define CIP_EOH (1u << CIP_EOH_SHIFT)
36 #define CIP_EOH_MASK 0x80000000
37 #define CIP_SID_SHIFT 24
38 #define CIP_SID_MASK 0x3f000000
39 #define CIP_DBS_MASK 0x00ff0000
40 #define CIP_DBS_SHIFT 16
41 #define CIP_SPH_MASK 0x00000400
42 #define CIP_SPH_SHIFT 10
43 #define CIP_DBC_MASK 0x000000ff
44 #define CIP_FMT_SHIFT 24
45 #define CIP_FMT_MASK 0x3f000000
46 #define CIP_FDF_MASK 0x00ff0000
47 #define CIP_FDF_SHIFT 16
48 #define CIP_SYT_MASK 0x0000ffff
49 #define CIP_SYT_NO_INFO 0xffff
50
51 /* Audio and Music transfer protocol specific parameters */
52 #define CIP_FMT_AM 0x10
53 #define AMDTP_FDF_NO_DATA 0xff
54
55 /* TODO: make these configurable */
56 #define INTERRUPT_INTERVAL 16
57 #define QUEUE_LENGTH 48
58
59 #define IN_PACKET_HEADER_SIZE 4
60 #define OUT_PACKET_HEADER_SIZE 0
61
62 static void pcm_period_tasklet(unsigned long data);
63
64 /**
65 * amdtp_stream_init - initialize an AMDTP stream structure
66 * @s: the AMDTP stream to initialize
67 * @unit: the target of the stream
68 * @dir: the direction of stream
69 * @flags: the packet transmission method to use
70 * @fmt: the value of fmt field in CIP header
71 * @process_data_blocks: callback handler to process data blocks
72 * @protocol_size: the size to allocate newly for protocol
73 */
74 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
75 enum amdtp_stream_direction dir, enum cip_flags flags,
76 unsigned int fmt,
77 amdtp_stream_process_data_blocks_t process_data_blocks,
78 unsigned int protocol_size)
79 {
80 if (process_data_blocks == NULL)
81 return -EINVAL;
82
83 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
84 if (!s->protocol)
85 return -ENOMEM;
86
87 s->unit = unit;
88 s->direction = dir;
89 s->flags = flags;
90 s->context = ERR_PTR(-1);
91 mutex_init(&s->mutex);
92 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
93 s->packet_index = 0;
94
95 init_waitqueue_head(&s->callback_wait);
96 s->callbacked = false;
97
98 s->fmt = fmt;
99 s->process_data_blocks = process_data_blocks;
100
101 return 0;
102 }
103 EXPORT_SYMBOL(amdtp_stream_init);
104
105 /**
106 * amdtp_stream_destroy - free stream resources
107 * @s: the AMDTP stream to destroy
108 */
109 void amdtp_stream_destroy(struct amdtp_stream *s)
110 {
111 /* Not initialized. */
112 if (s->protocol == NULL)
113 return;
114
115 WARN_ON(amdtp_stream_running(s));
116 kfree(s->protocol);
117 mutex_destroy(&s->mutex);
118 }
119 EXPORT_SYMBOL(amdtp_stream_destroy);
120
121 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
122 [CIP_SFC_32000] = 8,
123 [CIP_SFC_44100] = 8,
124 [CIP_SFC_48000] = 8,
125 [CIP_SFC_88200] = 16,
126 [CIP_SFC_96000] = 16,
127 [CIP_SFC_176400] = 32,
128 [CIP_SFC_192000] = 32,
129 };
130 EXPORT_SYMBOL(amdtp_syt_intervals);
131
132 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
133 [CIP_SFC_32000] = 32000,
134 [CIP_SFC_44100] = 44100,
135 [CIP_SFC_48000] = 48000,
136 [CIP_SFC_88200] = 88200,
137 [CIP_SFC_96000] = 96000,
138 [CIP_SFC_176400] = 176400,
139 [CIP_SFC_192000] = 192000,
140 };
141 EXPORT_SYMBOL(amdtp_rate_table);
142
143 /**
144 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
145 * @s: the AMDTP stream, which must be initialized.
146 * @runtime: the PCM substream runtime
147 */
148 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
149 struct snd_pcm_runtime *runtime)
150 {
151 struct snd_pcm_hardware *hw = &runtime->hw;
152 int err;
153
154 hw->info = SNDRV_PCM_INFO_BATCH |
155 SNDRV_PCM_INFO_BLOCK_TRANSFER |
156 SNDRV_PCM_INFO_INTERLEAVED |
157 SNDRV_PCM_INFO_JOINT_DUPLEX |
158 SNDRV_PCM_INFO_MMAP |
159 SNDRV_PCM_INFO_MMAP_VALID;
160
161 /* SNDRV_PCM_INFO_BATCH */
162 hw->periods_min = 2;
163 hw->periods_max = UINT_MAX;
164
165 /* bytes for a frame */
166 hw->period_bytes_min = 4 * hw->channels_max;
167
168 /* Just to prevent from allocating much pages. */
169 hw->period_bytes_max = hw->period_bytes_min * 2048;
170 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
171
172 /*
173 * Currently firewire-lib processes 16 packets in one software
174 * interrupt callback. This equals to 2msec but actually the
175 * interval of the interrupts has a jitter.
176 * Additionally, even if adding a constraint to fit period size to
177 * 2msec, actual calculated frames per period doesn't equal to 2msec,
178 * depending on sampling rate.
179 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
180 * Here let us use 5msec for safe period interrupt.
181 */
182 err = snd_pcm_hw_constraint_minmax(runtime,
183 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
184 5000, UINT_MAX);
185 if (err < 0)
186 goto end;
187
188 /* Non-Blocking stream has no more constraints */
189 if (!(s->flags & CIP_BLOCKING))
190 goto end;
191
192 /*
193 * One AMDTP packet can include some frames. In blocking mode, the
194 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
195 * depending on its sampling rate. For accurate period interrupt, it's
196 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
197 *
198 * TODO: These constraints can be improved with proper rules.
199 * Currently apply LCM of SYT_INTERVALs.
200 */
201 err = snd_pcm_hw_constraint_step(runtime, 0,
202 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
203 if (err < 0)
204 goto end;
205 err = snd_pcm_hw_constraint_step(runtime, 0,
206 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
207 end:
208 return err;
209 }
210 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
211
212 /**
213 * amdtp_stream_set_parameters - set stream parameters
214 * @s: the AMDTP stream to configure
215 * @rate: the sample rate
216 * @data_block_quadlets: the size of a data block in quadlet unit
217 *
218 * The parameters must be set before the stream is started, and must not be
219 * changed while the stream is running.
220 */
221 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
222 unsigned int data_block_quadlets)
223 {
224 unsigned int sfc;
225
226 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
227 if (amdtp_rate_table[sfc] == rate)
228 break;
229 }
230 if (sfc == ARRAY_SIZE(amdtp_rate_table))
231 return -EINVAL;
232
233 s->sfc = sfc;
234 s->data_block_quadlets = data_block_quadlets;
235 s->syt_interval = amdtp_syt_intervals[sfc];
236
237 /* default buffering in the device */
238 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
239 if (s->flags & CIP_BLOCKING)
240 /* additional buffering needed to adjust for no-data packets */
241 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
242
243 return 0;
244 }
245 EXPORT_SYMBOL(amdtp_stream_set_parameters);
246
247 /**
248 * amdtp_stream_get_max_payload - get the stream's packet size
249 * @s: the AMDTP stream
250 *
251 * This function must not be called before the stream has been configured
252 * with amdtp_stream_set_parameters().
253 */
254 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
255 {
256 unsigned int multiplier = 1;
257 unsigned int header_size = 0;
258
259 if (s->flags & CIP_JUMBO_PAYLOAD)
260 multiplier = 5;
261 if (!(s->flags & CIP_NO_HEADER))
262 header_size = 8;
263
264 return header_size +
265 s->syt_interval * s->data_block_quadlets * 4 * multiplier;
266 }
267 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
268
269 /**
270 * amdtp_stream_pcm_prepare - prepare PCM device for running
271 * @s: the AMDTP stream
272 *
273 * This function should be called from the PCM device's .prepare callback.
274 */
275 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
276 {
277 tasklet_kill(&s->period_tasklet);
278 s->pcm_buffer_pointer = 0;
279 s->pcm_period_pointer = 0;
280 }
281 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
282
283 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
284 unsigned int syt)
285 {
286 unsigned int phase, data_blocks;
287
288 /* Blocking mode. */
289 if (s->flags & CIP_BLOCKING) {
290 /* This module generate empty packet for 'no data'. */
291 if (syt == CIP_SYT_NO_INFO)
292 data_blocks = 0;
293 else
294 data_blocks = s->syt_interval;
295 /* Non-blocking mode. */
296 } else {
297 if (!cip_sfc_is_base_44100(s->sfc)) {
298 /* Sample_rate / 8000 is an integer, and precomputed. */
299 data_blocks = s->data_block_state;
300 } else {
301 phase = s->data_block_state;
302
303 /*
304 * This calculates the number of data blocks per packet so that
305 * 1) the overall rate is correct and exactly synchronized to
306 * the bus clock, and
307 * 2) packets with a rounded-up number of blocks occur as early
308 * as possible in the sequence (to prevent underruns of the
309 * device's buffer).
310 */
311 if (s->sfc == CIP_SFC_44100)
312 /* 6 6 5 6 5 6 5 ... */
313 data_blocks = 5 + ((phase & 1) ^
314 (phase == 0 || phase >= 40));
315 else
316 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
317 data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
318 if (++phase >= (80 >> (s->sfc >> 1)))
319 phase = 0;
320 s->data_block_state = phase;
321 }
322 }
323
324 return data_blocks;
325 }
326
327 static unsigned int calculate_syt(struct amdtp_stream *s,
328 unsigned int cycle)
329 {
330 unsigned int syt_offset, phase, index, syt;
331
332 if (s->last_syt_offset < TICKS_PER_CYCLE) {
333 if (!cip_sfc_is_base_44100(s->sfc))
334 syt_offset = s->last_syt_offset + s->syt_offset_state;
335 else {
336 /*
337 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
338 * n * SYT_INTERVAL * 24576000 / sample_rate
339 * Modulo TICKS_PER_CYCLE, the difference between successive
340 * elements is about 1386.23. Rounding the results of this
341 * formula to the SYT precision results in a sequence of
342 * differences that begins with:
343 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
344 * This code generates _exactly_ the same sequence.
345 */
346 phase = s->syt_offset_state;
347 index = phase % 13;
348 syt_offset = s->last_syt_offset;
349 syt_offset += 1386 + ((index && !(index & 3)) ||
350 phase == 146);
351 if (++phase >= 147)
352 phase = 0;
353 s->syt_offset_state = phase;
354 }
355 } else
356 syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
357 s->last_syt_offset = syt_offset;
358
359 if (syt_offset < TICKS_PER_CYCLE) {
360 syt_offset += s->transfer_delay;
361 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
362 syt += syt_offset % TICKS_PER_CYCLE;
363
364 return syt & CIP_SYT_MASK;
365 } else {
366 return CIP_SYT_NO_INFO;
367 }
368 }
369
370 static void update_pcm_pointers(struct amdtp_stream *s,
371 struct snd_pcm_substream *pcm,
372 unsigned int frames)
373 {
374 unsigned int ptr;
375
376 ptr = s->pcm_buffer_pointer + frames;
377 if (ptr >= pcm->runtime->buffer_size)
378 ptr -= pcm->runtime->buffer_size;
379 WRITE_ONCE(s->pcm_buffer_pointer, ptr);
380
381 s->pcm_period_pointer += frames;
382 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
383 s->pcm_period_pointer -= pcm->runtime->period_size;
384 tasklet_hi_schedule(&s->period_tasklet);
385 }
386 }
387
388 static void pcm_period_tasklet(unsigned long data)
389 {
390 struct amdtp_stream *s = (void *)data;
391 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
392
393 if (pcm)
394 snd_pcm_period_elapsed(pcm);
395 }
396
397 static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
398 unsigned int payload_length)
399 {
400 struct fw_iso_packet p = {0};
401 int err = 0;
402
403 if (IS_ERR(s->context))
404 goto end;
405
406 p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
407 p.tag = s->tag;
408 p.header_length = header_length;
409 if (payload_length > 0)
410 p.payload_length = payload_length;
411 else
412 p.skip = true;
413 err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
414 s->buffer.packets[s->packet_index].offset);
415 if (err < 0) {
416 dev_err(&s->unit->device, "queueing error: %d\n", err);
417 goto end;
418 }
419
420 if (++s->packet_index >= QUEUE_LENGTH)
421 s->packet_index = 0;
422 end:
423 return err;
424 }
425
426 static inline int queue_out_packet(struct amdtp_stream *s,
427 unsigned int payload_length)
428 {
429 return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
430 }
431
432 static inline int queue_in_packet(struct amdtp_stream *s)
433 {
434 return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length);
435 }
436
437 static int handle_out_packet(struct amdtp_stream *s,
438 unsigned int payload_length, unsigned int cycle,
439 unsigned int index)
440 {
441 __be32 *buffer;
442 unsigned int syt;
443 unsigned int data_blocks;
444 unsigned int pcm_frames;
445 struct snd_pcm_substream *pcm;
446
447 buffer = s->buffer.packets[s->packet_index].buffer;
448 syt = calculate_syt(s, cycle);
449 data_blocks = calculate_data_blocks(s, syt);
450 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
451
452 if (s->flags & CIP_DBC_IS_END_EVENT)
453 s->data_block_counter =
454 (s->data_block_counter + data_blocks) & 0xff;
455
456 buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
457 (s->data_block_quadlets << CIP_DBS_SHIFT) |
458 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
459 s->data_block_counter);
460 buffer[1] = cpu_to_be32(CIP_EOH |
461 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
462 ((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
463 (syt & CIP_SYT_MASK));
464
465 if (!(s->flags & CIP_DBC_IS_END_EVENT))
466 s->data_block_counter =
467 (s->data_block_counter + data_blocks) & 0xff;
468 payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
469
470 trace_out_packet(s, cycle, buffer, payload_length, index);
471
472 if (queue_out_packet(s, payload_length) < 0)
473 return -EIO;
474
475 pcm = READ_ONCE(s->pcm);
476 if (pcm && pcm_frames > 0)
477 update_pcm_pointers(s, pcm, pcm_frames);
478
479 /* No need to return the number of handled data blocks. */
480 return 0;
481 }
482
483 static int handle_out_packet_without_header(struct amdtp_stream *s,
484 unsigned int payload_length, unsigned int cycle,
485 unsigned int index)
486 {
487 __be32 *buffer;
488 unsigned int syt;
489 unsigned int data_blocks;
490 unsigned int pcm_frames;
491 struct snd_pcm_substream *pcm;
492
493 buffer = s->buffer.packets[s->packet_index].buffer;
494 syt = calculate_syt(s, cycle);
495 data_blocks = calculate_data_blocks(s, syt);
496 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
497 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
498
499 payload_length = data_blocks * 4 * s->data_block_quadlets;
500
501 trace_out_packet_without_header(s, cycle, payload_length, data_blocks,
502 index);
503
504 if (queue_out_packet(s, payload_length) < 0)
505 return -EIO;
506
507 pcm = READ_ONCE(s->pcm);
508 if (pcm && pcm_frames > 0)
509 update_pcm_pointers(s, pcm, pcm_frames);
510
511 /* No need to return the number of handled data blocks. */
512 return 0;
513 }
514
515 static int handle_in_packet(struct amdtp_stream *s,
516 unsigned int payload_length, unsigned int cycle,
517 unsigned int index)
518 {
519 __be32 *buffer;
520 u32 cip_header[2];
521 unsigned int sph, fmt, fdf, syt;
522 unsigned int data_block_quadlets, data_block_counter, dbc_interval;
523 unsigned int data_blocks;
524 struct snd_pcm_substream *pcm;
525 unsigned int pcm_frames;
526 bool lost;
527
528 buffer = s->buffer.packets[s->packet_index].buffer;
529 cip_header[0] = be32_to_cpu(buffer[0]);
530 cip_header[1] = be32_to_cpu(buffer[1]);
531
532 trace_in_packet(s, cycle, cip_header, payload_length, index);
533
534 /*
535 * This module supports 'Two-quadlet CIP header with SYT field'.
536 * For convenience, also check FMT field is AM824 or not.
537 */
538 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
539 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
540 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
541 dev_info_ratelimited(&s->unit->device,
542 "Invalid CIP header for AMDTP: %08X:%08X\n",
543 cip_header[0], cip_header[1]);
544 data_blocks = 0;
545 pcm_frames = 0;
546 goto end;
547 }
548
549 /* Check valid protocol or not. */
550 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
551 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
552 if (sph != s->sph || fmt != s->fmt) {
553 dev_info_ratelimited(&s->unit->device,
554 "Detect unexpected protocol: %08x %08x\n",
555 cip_header[0], cip_header[1]);
556 data_blocks = 0;
557 pcm_frames = 0;
558 goto end;
559 }
560
561 /* Calculate data blocks */
562 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
563 if (payload_length < 12 ||
564 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
565 data_blocks = 0;
566 } else {
567 data_block_quadlets =
568 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
569 /* avoid division by zero */
570 if (data_block_quadlets == 0) {
571 dev_err(&s->unit->device,
572 "Detect invalid value in dbs field: %08X\n",
573 cip_header[0]);
574 return -EPROTO;
575 }
576 if (s->flags & CIP_WRONG_DBS)
577 data_block_quadlets = s->data_block_quadlets;
578
579 data_blocks = (payload_length / 4 - 2) /
580 data_block_quadlets;
581 }
582
583 /* Check data block counter continuity */
584 data_block_counter = cip_header[0] & CIP_DBC_MASK;
585 if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
586 s->data_block_counter != UINT_MAX)
587 data_block_counter = s->data_block_counter;
588
589 if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
590 data_block_counter == s->tx_first_dbc) ||
591 s->data_block_counter == UINT_MAX) {
592 lost = false;
593 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
594 lost = data_block_counter != s->data_block_counter;
595 } else {
596 if (data_blocks > 0 && s->tx_dbc_interval > 0)
597 dbc_interval = s->tx_dbc_interval;
598 else
599 dbc_interval = data_blocks;
600
601 lost = data_block_counter !=
602 ((s->data_block_counter + dbc_interval) & 0xff);
603 }
604
605 if (lost) {
606 dev_err(&s->unit->device,
607 "Detect discontinuity of CIP: %02X %02X\n",
608 s->data_block_counter, data_block_counter);
609 return -EIO;
610 }
611
612 syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
613 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
614
615 if (s->flags & CIP_DBC_IS_END_EVENT)
616 s->data_block_counter = data_block_counter;
617 else
618 s->data_block_counter =
619 (data_block_counter + data_blocks) & 0xff;
620 end:
621 if (queue_in_packet(s) < 0)
622 return -EIO;
623
624 pcm = READ_ONCE(s->pcm);
625 if (pcm && pcm_frames > 0)
626 update_pcm_pointers(s, pcm, pcm_frames);
627
628 return 0;
629 }
630
631 static int handle_in_packet_without_header(struct amdtp_stream *s,
632 unsigned int payload_quadlets, unsigned int cycle,
633 unsigned int index)
634 {
635 __be32 *buffer;
636 unsigned int data_blocks;
637 struct snd_pcm_substream *pcm;
638 unsigned int pcm_frames;
639
640 buffer = s->buffer.packets[s->packet_index].buffer;
641 data_blocks = payload_quadlets / s->data_block_quadlets;
642
643 trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks,
644 index);
645
646 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
647 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
648
649 if (queue_in_packet(s) < 0)
650 return -EIO;
651
652 pcm = READ_ONCE(s->pcm);
653 if (pcm && pcm_frames > 0)
654 update_pcm_pointers(s, pcm, pcm_frames);
655
656 return 0;
657 }
658
659 /*
660 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
661 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
662 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
663 */
664 static inline u32 compute_cycle_count(u32 tstamp)
665 {
666 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
667 }
668
669 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
670 {
671 cycle += addend;
672 if (cycle >= 8 * CYCLES_PER_SECOND)
673 cycle -= 8 * CYCLES_PER_SECOND;
674 return cycle;
675 }
676
677 static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
678 {
679 if (cycle < subtrahend)
680 cycle += 8 * CYCLES_PER_SECOND;
681 return cycle - subtrahend;
682 }
683
684 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
685 size_t header_length, void *header,
686 void *private_data)
687 {
688 struct amdtp_stream *s = private_data;
689 unsigned int i, packets = header_length / 4;
690 u32 cycle;
691
692 if (s->packet_index < 0)
693 return;
694
695 cycle = compute_cycle_count(tstamp);
696
697 /* Align to actual cycle count for the last packet. */
698 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
699
700 for (i = 0; i < packets; ++i) {
701 cycle = increment_cycle_count(cycle, 1);
702 if (s->handle_packet(s, 0, cycle, i) < 0) {
703 s->packet_index = -1;
704 if (in_interrupt())
705 amdtp_stream_pcm_abort(s);
706 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
707 return;
708 }
709 }
710
711 fw_iso_context_queue_flush(s->context);
712 }
713
714 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
715 size_t header_length, void *header,
716 void *private_data)
717 {
718 struct amdtp_stream *s = private_data;
719 unsigned int i, packets;
720 unsigned int payload_length, max_payload_length;
721 __be32 *headers = header;
722 u32 cycle;
723
724 if (s->packet_index < 0)
725 return;
726
727 /* The number of packets in buffer */
728 packets = header_length / IN_PACKET_HEADER_SIZE;
729
730 cycle = compute_cycle_count(tstamp);
731
732 /* Align to actual cycle count for the last packet. */
733 cycle = decrement_cycle_count(cycle, packets);
734
735 /* For buffer-over-run prevention. */
736 max_payload_length = s->max_payload_length;
737
738 for (i = 0; i < packets; i++) {
739 cycle = increment_cycle_count(cycle, 1);
740
741 /* The number of bytes in this packet */
742 payload_length =
743 (be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT);
744 if (payload_length > max_payload_length) {
745 dev_err(&s->unit->device,
746 "Detect jumbo payload: %04x %04x\n",
747 payload_length, max_payload_length);
748 break;
749 }
750
751 if (s->handle_packet(s, payload_length, cycle, i) < 0)
752 break;
753 }
754
755 /* Queueing error or detecting invalid payload. */
756 if (i < packets) {
757 s->packet_index = -1;
758 if (in_interrupt())
759 amdtp_stream_pcm_abort(s);
760 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
761 return;
762 }
763
764 fw_iso_context_queue_flush(s->context);
765 }
766
767 /* this is executed one time */
768 static void amdtp_stream_first_callback(struct fw_iso_context *context,
769 u32 tstamp, size_t header_length,
770 void *header, void *private_data)
771 {
772 struct amdtp_stream *s = private_data;
773 u32 cycle;
774 unsigned int packets;
775
776 s->max_payload_length = amdtp_stream_get_max_payload(s);
777
778 /*
779 * For in-stream, first packet has come.
780 * For out-stream, prepared to transmit first packet
781 */
782 s->callbacked = true;
783 wake_up(&s->callback_wait);
784
785 cycle = compute_cycle_count(tstamp);
786
787 if (s->direction == AMDTP_IN_STREAM) {
788 packets = header_length / IN_PACKET_HEADER_SIZE;
789 cycle = decrement_cycle_count(cycle, packets);
790 context->callback.sc = in_stream_callback;
791 if (s->flags & CIP_NO_HEADER)
792 s->handle_packet = handle_in_packet_without_header;
793 else
794 s->handle_packet = handle_in_packet;
795 } else {
796 packets = header_length / 4;
797 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
798 context->callback.sc = out_stream_callback;
799 if (s->flags & CIP_NO_HEADER)
800 s->handle_packet = handle_out_packet_without_header;
801 else
802 s->handle_packet = handle_out_packet;
803 }
804
805 s->start_cycle = cycle;
806
807 context->callback.sc(context, tstamp, header_length, header, s);
808 }
809
810 /**
811 * amdtp_stream_start - start transferring packets
812 * @s: the AMDTP stream to start
813 * @channel: the isochronous channel on the bus
814 * @speed: firewire speed code
815 *
816 * The stream cannot be started until it has been configured with
817 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
818 * device can be started.
819 */
820 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
821 {
822 static const struct {
823 unsigned int data_block;
824 unsigned int syt_offset;
825 } initial_state[] = {
826 [CIP_SFC_32000] = { 4, 3072 },
827 [CIP_SFC_48000] = { 6, 1024 },
828 [CIP_SFC_96000] = { 12, 1024 },
829 [CIP_SFC_192000] = { 24, 1024 },
830 [CIP_SFC_44100] = { 0, 67 },
831 [CIP_SFC_88200] = { 0, 67 },
832 [CIP_SFC_176400] = { 0, 67 },
833 };
834 unsigned int header_size;
835 enum dma_data_direction dir;
836 int type, tag, err;
837
838 mutex_lock(&s->mutex);
839
840 if (WARN_ON(amdtp_stream_running(s) ||
841 (s->data_block_quadlets < 1))) {
842 err = -EBADFD;
843 goto err_unlock;
844 }
845
846 if (s->direction == AMDTP_IN_STREAM)
847 s->data_block_counter = UINT_MAX;
848 else
849 s->data_block_counter = 0;
850 s->data_block_state = initial_state[s->sfc].data_block;
851 s->syt_offset_state = initial_state[s->sfc].syt_offset;
852 s->last_syt_offset = TICKS_PER_CYCLE;
853
854 /* initialize packet buffer */
855 if (s->direction == AMDTP_IN_STREAM) {
856 dir = DMA_FROM_DEVICE;
857 type = FW_ISO_CONTEXT_RECEIVE;
858 header_size = IN_PACKET_HEADER_SIZE;
859 } else {
860 dir = DMA_TO_DEVICE;
861 type = FW_ISO_CONTEXT_TRANSMIT;
862 header_size = OUT_PACKET_HEADER_SIZE;
863 }
864 err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
865 amdtp_stream_get_max_payload(s), dir);
866 if (err < 0)
867 goto err_unlock;
868
869 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
870 type, channel, speed, header_size,
871 amdtp_stream_first_callback, s);
872 if (IS_ERR(s->context)) {
873 err = PTR_ERR(s->context);
874 if (err == -EBUSY)
875 dev_err(&s->unit->device,
876 "no free stream on this controller\n");
877 goto err_buffer;
878 }
879
880 amdtp_stream_update(s);
881
882 if (s->flags & CIP_NO_HEADER)
883 s->tag = TAG_NO_CIP_HEADER;
884 else
885 s->tag = TAG_CIP;
886
887 s->packet_index = 0;
888 do {
889 if (s->direction == AMDTP_IN_STREAM)
890 err = queue_in_packet(s);
891 else
892 err = queue_out_packet(s, 0);
893 if (err < 0)
894 goto err_context;
895 } while (s->packet_index > 0);
896
897 /* NOTE: TAG1 matches CIP. This just affects in stream. */
898 tag = FW_ISO_CONTEXT_MATCH_TAG1;
899 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
900 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
901
902 s->callbacked = false;
903 err = fw_iso_context_start(s->context, -1, 0, tag);
904 if (err < 0)
905 goto err_context;
906
907 mutex_unlock(&s->mutex);
908
909 return 0;
910
911 err_context:
912 fw_iso_context_destroy(s->context);
913 s->context = ERR_PTR(-1);
914 err_buffer:
915 iso_packets_buffer_destroy(&s->buffer, s->unit);
916 err_unlock:
917 mutex_unlock(&s->mutex);
918
919 return err;
920 }
921 EXPORT_SYMBOL(amdtp_stream_start);
922
923 /**
924 * amdtp_stream_pcm_pointer - get the PCM buffer position
925 * @s: the AMDTP stream that transports the PCM data
926 *
927 * Returns the current buffer position, in frames.
928 */
929 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
930 {
931 /*
932 * This function is called in software IRQ context of period_tasklet or
933 * process context.
934 *
935 * When the software IRQ context was scheduled by software IRQ context
936 * of IR/IT contexts, queued packets were already handled. Therefore,
937 * no need to flush the queue in buffer anymore.
938 *
939 * When the process context reach here, some packets will be already
940 * queued in the buffer. These packets should be handled immediately
941 * to keep better granularity of PCM pointer.
942 *
943 * Later, the process context will sometimes schedules software IRQ
944 * context of the period_tasklet. Then, no need to flush the queue by
945 * the same reason as described for IR/IT contexts.
946 */
947 if (!in_interrupt() && amdtp_stream_running(s))
948 fw_iso_context_flush_completions(s->context);
949
950 return READ_ONCE(s->pcm_buffer_pointer);
951 }
952 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
953
954 /**
955 * amdtp_stream_pcm_ack - acknowledge queued PCM frames
956 * @s: the AMDTP stream that transfers the PCM frames
957 *
958 * Returns zero always.
959 */
960 int amdtp_stream_pcm_ack(struct amdtp_stream *s)
961 {
962 /*
963 * Process isochronous packets for recent isochronous cycle to handle
964 * queued PCM frames.
965 */
966 if (amdtp_stream_running(s))
967 fw_iso_context_flush_completions(s->context);
968
969 return 0;
970 }
971 EXPORT_SYMBOL(amdtp_stream_pcm_ack);
972
973 /**
974 * amdtp_stream_update - update the stream after a bus reset
975 * @s: the AMDTP stream
976 */
977 void amdtp_stream_update(struct amdtp_stream *s)
978 {
979 /* Precomputing. */
980 WRITE_ONCE(s->source_node_id_field,
981 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
982 }
983 EXPORT_SYMBOL(amdtp_stream_update);
984
985 /**
986 * amdtp_stream_stop - stop sending packets
987 * @s: the AMDTP stream to stop
988 *
989 * All PCM and MIDI devices of the stream must be stopped before the stream
990 * itself can be stopped.
991 */
992 void amdtp_stream_stop(struct amdtp_stream *s)
993 {
994 mutex_lock(&s->mutex);
995
996 if (!amdtp_stream_running(s)) {
997 mutex_unlock(&s->mutex);
998 return;
999 }
1000
1001 tasklet_kill(&s->period_tasklet);
1002 fw_iso_context_stop(s->context);
1003 fw_iso_context_destroy(s->context);
1004 s->context = ERR_PTR(-1);
1005 iso_packets_buffer_destroy(&s->buffer, s->unit);
1006
1007 s->callbacked = false;
1008
1009 mutex_unlock(&s->mutex);
1010 }
1011 EXPORT_SYMBOL(amdtp_stream_stop);
1012
1013 /**
1014 * amdtp_stream_pcm_abort - abort the running PCM device
1015 * @s: the AMDTP stream about to be stopped
1016 *
1017 * If the isochronous stream needs to be stopped asynchronously, call this
1018 * function first to stop the PCM device.
1019 */
1020 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1021 {
1022 struct snd_pcm_substream *pcm;
1023
1024 pcm = READ_ONCE(s->pcm);
1025 if (pcm)
1026 snd_pcm_stop_xrun(pcm);
1027 }
1028 EXPORT_SYMBOL(amdtp_stream_pcm_abort);