]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - sound/firewire/amdtp-stream.c
9be2260e4ca2d26b41c9784b686ae6080a0e6954
[mirror_ubuntu-jammy-kernel.git] / sound / firewire / amdtp-stream.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4 * with Common Isochronous Packet (IEC 61883-1) headers
5 *
6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7 */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18
19 #define TICKS_PER_CYCLE 3072
20 #define CYCLES_PER_SECOND 8000
21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23 #define OHCI_SECOND_MODULUS 8
24
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28
29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
30
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT 16
33 #define TAG_NO_CIP_HEADER 0
34 #define TAG_CIP 1
35
36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37 #define CIP_HEADER_QUADLETS 2
38 #define CIP_EOH_SHIFT 31
39 #define CIP_EOH (1u << CIP_EOH_SHIFT)
40 #define CIP_EOH_MASK 0x80000000
41 #define CIP_SID_SHIFT 24
42 #define CIP_SID_MASK 0x3f000000
43 #define CIP_DBS_MASK 0x00ff0000
44 #define CIP_DBS_SHIFT 16
45 #define CIP_SPH_MASK 0x00000400
46 #define CIP_SPH_SHIFT 10
47 #define CIP_DBC_MASK 0x000000ff
48 #define CIP_FMT_SHIFT 24
49 #define CIP_FMT_MASK 0x3f000000
50 #define CIP_FDF_MASK 0x00ff0000
51 #define CIP_FDF_SHIFT 16
52 #define CIP_FDF_NO_DATA 0xff
53 #define CIP_SYT_MASK 0x0000ffff
54 #define CIP_SYT_NO_INFO 0xffff
55 #define CIP_SYT_CYCLE_MODULUS 16
56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57
58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS)
59
60 /* Audio and Music transfer protocol specific parameters */
61 #define CIP_FMT_AM 0x10
62 #define AMDTP_FDF_NO_DATA 0xff
63
64 // For iso header and tstamp.
65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2
66 // Add nothing.
67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68 // Add two quadlets CIP header.
69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70 #define HEADER_TSTAMP_MASK 0x0000ffff
71
72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE
73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
74
75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing
76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77 // overrun. Actual device can skip more, then this module stops the packet streaming.
78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5
79
80 /**
81 * amdtp_stream_init - initialize an AMDTP stream structure
82 * @s: the AMDTP stream to initialize
83 * @unit: the target of the stream
84 * @dir: the direction of stream
85 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
86 * @fmt: the value of fmt field in CIP header
87 * @process_ctx_payloads: callback handler to process payloads of isoc context
88 * @protocol_size: the size to allocate newly for protocol
89 */
90 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
91 enum amdtp_stream_direction dir, unsigned int flags,
92 unsigned int fmt,
93 amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
94 unsigned int protocol_size)
95 {
96 if (process_ctx_payloads == NULL)
97 return -EINVAL;
98
99 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
100 if (!s->protocol)
101 return -ENOMEM;
102
103 s->unit = unit;
104 s->direction = dir;
105 s->flags = flags;
106 s->context = ERR_PTR(-1);
107 mutex_init(&s->mutex);
108 s->packet_index = 0;
109
110 init_waitqueue_head(&s->ready_wait);
111
112 s->fmt = fmt;
113 s->process_ctx_payloads = process_ctx_payloads;
114
115 return 0;
116 }
117 EXPORT_SYMBOL(amdtp_stream_init);
118
119 /**
120 * amdtp_stream_destroy - free stream resources
121 * @s: the AMDTP stream to destroy
122 */
123 void amdtp_stream_destroy(struct amdtp_stream *s)
124 {
125 /* Not initialized. */
126 if (s->protocol == NULL)
127 return;
128
129 WARN_ON(amdtp_stream_running(s));
130 kfree(s->protocol);
131 mutex_destroy(&s->mutex);
132 }
133 EXPORT_SYMBOL(amdtp_stream_destroy);
134
135 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
136 [CIP_SFC_32000] = 8,
137 [CIP_SFC_44100] = 8,
138 [CIP_SFC_48000] = 8,
139 [CIP_SFC_88200] = 16,
140 [CIP_SFC_96000] = 16,
141 [CIP_SFC_176400] = 32,
142 [CIP_SFC_192000] = 32,
143 };
144 EXPORT_SYMBOL(amdtp_syt_intervals);
145
146 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
147 [CIP_SFC_32000] = 32000,
148 [CIP_SFC_44100] = 44100,
149 [CIP_SFC_48000] = 48000,
150 [CIP_SFC_88200] = 88200,
151 [CIP_SFC_96000] = 96000,
152 [CIP_SFC_176400] = 176400,
153 [CIP_SFC_192000] = 192000,
154 };
155 EXPORT_SYMBOL(amdtp_rate_table);
156
157 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
158 struct snd_pcm_hw_rule *rule)
159 {
160 struct snd_interval *s = hw_param_interval(params, rule->var);
161 const struct snd_interval *r =
162 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
163 struct snd_interval t = {0};
164 unsigned int step = 0;
165 int i;
166
167 for (i = 0; i < CIP_SFC_COUNT; ++i) {
168 if (snd_interval_test(r, amdtp_rate_table[i]))
169 step = max(step, amdtp_syt_intervals[i]);
170 }
171
172 t.min = roundup(s->min, step);
173 t.max = rounddown(s->max, step);
174 t.integer = 1;
175
176 return snd_interval_refine(s, &t);
177 }
178
179 /**
180 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
181 * @s: the AMDTP stream, which must be initialized.
182 * @runtime: the PCM substream runtime
183 */
184 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
185 struct snd_pcm_runtime *runtime)
186 {
187 struct snd_pcm_hardware *hw = &runtime->hw;
188 unsigned int ctx_header_size;
189 unsigned int maximum_usec_per_period;
190 int err;
191
192 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
193 SNDRV_PCM_INFO_INTERLEAVED |
194 SNDRV_PCM_INFO_JOINT_DUPLEX |
195 SNDRV_PCM_INFO_MMAP |
196 SNDRV_PCM_INFO_MMAP_VALID |
197 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
198
199 hw->periods_min = 2;
200 hw->periods_max = UINT_MAX;
201
202 /* bytes for a frame */
203 hw->period_bytes_min = 4 * hw->channels_max;
204
205 /* Just to prevent from allocating much pages. */
206 hw->period_bytes_max = hw->period_bytes_min * 2048;
207 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
208
209 // Linux driver for 1394 OHCI controller voluntarily flushes isoc
210 // context when total size of accumulated context header reaches
211 // PAGE_SIZE. This kicks work for the isoc context and brings
212 // callback in the middle of scheduled interrupts.
213 // Although AMDTP streams in the same domain use the same events per
214 // IRQ, use the largest size of context header between IT/IR contexts.
215 // Here, use the value of context header in IR context is for both
216 // contexts.
217 if (!(s->flags & CIP_NO_HEADER))
218 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
219 else
220 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
221 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
222 CYCLES_PER_SECOND / ctx_header_size;
223
224 // In IEC 61883-6, one isoc packet can transfer events up to the value
225 // of syt interval. This comes from the interval of isoc cycle. As 1394
226 // OHCI controller can generate hardware IRQ per isoc packet, the
227 // interval is 125 usec.
228 // However, there are two ways of transmission in IEC 61883-6; blocking
229 // and non-blocking modes. In blocking mode, the sequence of isoc packet
230 // includes 'empty' or 'NODATA' packets which include no event. In
231 // non-blocking mode, the number of events per packet is variable up to
232 // the syt interval.
233 // Due to the above protocol design, the minimum PCM frames per
234 // interrupt should be double of the value of syt interval, thus it is
235 // 250 usec.
236 err = snd_pcm_hw_constraint_minmax(runtime,
237 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
238 250, maximum_usec_per_period);
239 if (err < 0)
240 goto end;
241
242 /* Non-Blocking stream has no more constraints */
243 if (!(s->flags & CIP_BLOCKING))
244 goto end;
245
246 /*
247 * One AMDTP packet can include some frames. In blocking mode, the
248 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
249 * depending on its sampling rate. For accurate period interrupt, it's
250 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
251 */
252 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
253 apply_constraint_to_size, NULL,
254 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
255 SNDRV_PCM_HW_PARAM_RATE, -1);
256 if (err < 0)
257 goto end;
258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
259 apply_constraint_to_size, NULL,
260 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
261 SNDRV_PCM_HW_PARAM_RATE, -1);
262 if (err < 0)
263 goto end;
264 end:
265 return err;
266 }
267 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
268
269 /**
270 * amdtp_stream_set_parameters - set stream parameters
271 * @s: the AMDTP stream to configure
272 * @rate: the sample rate
273 * @data_block_quadlets: the size of a data block in quadlet unit
274 *
275 * The parameters must be set before the stream is started, and must not be
276 * changed while the stream is running.
277 */
278 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
279 unsigned int data_block_quadlets)
280 {
281 unsigned int sfc;
282
283 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
284 if (amdtp_rate_table[sfc] == rate)
285 break;
286 }
287 if (sfc == ARRAY_SIZE(amdtp_rate_table))
288 return -EINVAL;
289
290 s->sfc = sfc;
291 s->data_block_quadlets = data_block_quadlets;
292 s->syt_interval = amdtp_syt_intervals[sfc];
293
294 // default buffering in the device.
295 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
296
297 // additional buffering needed to adjust for no-data packets.
298 if (s->flags & CIP_BLOCKING)
299 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
300
301 return 0;
302 }
303 EXPORT_SYMBOL(amdtp_stream_set_parameters);
304
305 // The CIP header is processed in context header apart from context payload.
306 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
307 {
308 unsigned int multiplier;
309
310 if (s->flags & CIP_JUMBO_PAYLOAD)
311 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
312 else
313 multiplier = 1;
314
315 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
316 }
317
318 /**
319 * amdtp_stream_get_max_payload - get the stream's packet size
320 * @s: the AMDTP stream
321 *
322 * This function must not be called before the stream has been configured
323 * with amdtp_stream_set_parameters().
324 */
325 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
326 {
327 unsigned int cip_header_size;
328
329 if (!(s->flags & CIP_NO_HEADER))
330 cip_header_size = CIP_HEADER_SIZE;
331 else
332 cip_header_size = 0;
333
334 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
335 }
336 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
337
338 /**
339 * amdtp_stream_pcm_prepare - prepare PCM device for running
340 * @s: the AMDTP stream
341 *
342 * This function should be called from the PCM device's .prepare callback.
343 */
344 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
345 {
346 s->pcm_buffer_pointer = 0;
347 s->pcm_period_pointer = 0;
348 }
349 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
350
351 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
352 const unsigned int seq_size, unsigned int seq_tail,
353 unsigned int count)
354 {
355 const unsigned int syt_interval = s->syt_interval;
356 int i;
357
358 for (i = 0; i < count; ++i) {
359 struct seq_desc *desc = descs + seq_tail;
360
361 if (desc->syt_offset != CIP_SYT_NO_INFO)
362 desc->data_blocks = syt_interval;
363 else
364 desc->data_blocks = 0;
365
366 seq_tail = (seq_tail + 1) % seq_size;
367 }
368 }
369
370 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
371 const unsigned int seq_size, unsigned int seq_tail,
372 unsigned int count)
373 {
374 const enum cip_sfc sfc = s->sfc;
375 unsigned int state = s->ctx_data.rx.data_block_state;
376 int i;
377
378 for (i = 0; i < count; ++i) {
379 struct seq_desc *desc = descs + seq_tail;
380
381 if (!cip_sfc_is_base_44100(sfc)) {
382 // Sample_rate / 8000 is an integer, and precomputed.
383 desc->data_blocks = state;
384 } else {
385 unsigned int phase = state;
386
387 /*
388 * This calculates the number of data blocks per packet so that
389 * 1) the overall rate is correct and exactly synchronized to
390 * the bus clock, and
391 * 2) packets with a rounded-up number of blocks occur as early
392 * as possible in the sequence (to prevent underruns of the
393 * device's buffer).
394 */
395 if (sfc == CIP_SFC_44100)
396 /* 6 6 5 6 5 6 5 ... */
397 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
398 else
399 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
400 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
401 if (++phase >= (80 >> (sfc >> 1)))
402 phase = 0;
403 state = phase;
404 }
405
406 seq_tail = (seq_tail + 1) % seq_size;
407 }
408
409 s->ctx_data.rx.data_block_state = state;
410 }
411
412 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
413 unsigned int *syt_offset_state, enum cip_sfc sfc)
414 {
415 unsigned int syt_offset;
416
417 if (*last_syt_offset < TICKS_PER_CYCLE) {
418 if (!cip_sfc_is_base_44100(sfc))
419 syt_offset = *last_syt_offset + *syt_offset_state;
420 else {
421 /*
422 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
423 * n * SYT_INTERVAL * 24576000 / sample_rate
424 * Modulo TICKS_PER_CYCLE, the difference between successive
425 * elements is about 1386.23. Rounding the results of this
426 * formula to the SYT precision results in a sequence of
427 * differences that begins with:
428 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
429 * This code generates _exactly_ the same sequence.
430 */
431 unsigned int phase = *syt_offset_state;
432 unsigned int index = phase % 13;
433
434 syt_offset = *last_syt_offset;
435 syt_offset += 1386 + ((index && !(index & 3)) ||
436 phase == 146);
437 if (++phase >= 147)
438 phase = 0;
439 *syt_offset_state = phase;
440 }
441 } else
442 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
443 *last_syt_offset = syt_offset;
444
445 if (syt_offset >= TICKS_PER_CYCLE)
446 syt_offset = CIP_SYT_NO_INFO;
447
448 return syt_offset;
449 }
450
451 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
452 const unsigned int seq_size, unsigned int seq_tail,
453 unsigned int count)
454 {
455 const enum cip_sfc sfc = s->sfc;
456 unsigned int last = s->ctx_data.rx.last_syt_offset;
457 unsigned int state = s->ctx_data.rx.syt_offset_state;
458 int i;
459
460 for (i = 0; i < count; ++i) {
461 struct seq_desc *desc = descs + seq_tail;
462
463 desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
464
465 seq_tail = (seq_tail + 1) % seq_size;
466 }
467
468 s->ctx_data.rx.last_syt_offset = last;
469 s->ctx_data.rx.syt_offset_state = state;
470 }
471
472 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
473 unsigned int transfer_delay)
474 {
475 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
476 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
477 unsigned int syt_offset;
478
479 // Round up.
480 if (syt_cycle_lo < cycle_lo)
481 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
482 syt_cycle_lo -= cycle_lo;
483
484 // Subtract transfer delay so that the synchronization offset is not so large
485 // at transmission.
486 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
487 if (syt_offset < transfer_delay)
488 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
489
490 return syt_offset - transfer_delay;
491 }
492
493 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
494 // Additionally, the sequence of tx packets is severely checked against any discontinuity
495 // before filling entries in the queue. The calculation is safe even if it looks fragile by
496 // overrun.
497 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
498 {
499 const unsigned int cache_size = s->ctx_data.tx.cache.size;
500 unsigned int cycles = s->ctx_data.tx.cache.tail;
501
502 if (cycles < head)
503 cycles += cache_size;
504 cycles -= head;
505
506 return cycles;
507 }
508
509 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count)
510 {
511 const unsigned int transfer_delay = s->transfer_delay;
512 const unsigned int cache_size = s->ctx_data.tx.cache.size;
513 struct seq_desc *cache = s->ctx_data.tx.cache.descs;
514 unsigned int cache_tail = s->ctx_data.tx.cache.tail;
515 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
516 int i;
517
518 for (i = 0; i < desc_count; ++i) {
519 struct seq_desc *dst = cache + cache_tail;
520 const struct pkt_desc *src = descs + i;
521
522 if (aware_syt && src->syt != CIP_SYT_NO_INFO)
523 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
524 else
525 dst->syt_offset = CIP_SYT_NO_INFO;
526 dst->data_blocks = src->data_blocks;
527
528 cache_tail = (cache_tail + 1) % cache_size;
529 }
530
531 s->ctx_data.tx.cache.tail = cache_tail;
532 }
533
534 static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count)
535 {
536 struct seq_desc *descs = s->ctx_data.rx.seq.descs;
537 unsigned int seq_tail = s->ctx_data.rx.seq.tail;
538 const unsigned int seq_size = s->ctx_data.rx.seq.size;
539
540 pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count);
541
542 if (s->flags & CIP_BLOCKING)
543 pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count);
544 else
545 pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count);
546
547 s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size;
548 }
549
550 static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count)
551 {
552 struct amdtp_stream *target = s->ctx_data.rx.replay_target;
553 const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
554 const unsigned int cache_size = target->ctx_data.tx.cache.size;
555 unsigned int cache_head = s->ctx_data.rx.cache_head;
556 struct seq_desc *descs = s->ctx_data.rx.seq.descs;
557 const unsigned int seq_size = s->ctx_data.rx.seq.size;
558 unsigned int seq_tail = s->ctx_data.rx.seq.tail;
559 int i;
560
561 for (i = 0; i < count; ++i) {
562 descs[seq_tail] = cache[cache_head];
563 seq_tail = (seq_tail + 1) % seq_size;
564 cache_head = (cache_head + 1) % cache_size;
565 }
566
567 s->ctx_data.rx.seq.tail = seq_tail;
568 s->ctx_data.rx.cache_head = cache_head;
569 }
570
571 static void pool_seq_descs(struct amdtp_stream *s, unsigned int count)
572 {
573 struct amdtp_domain *d = s->domain;
574
575 if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
576 pool_ideal_seq_descs(s, count);
577 } else {
578 if (!d->replay.on_the_fly) {
579 pool_replayed_seq(s, count);
580 } else {
581 struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
582 const unsigned int cache_size = tx->ctx_data.tx.cache.size;
583 const unsigned int cache_head = s->ctx_data.rx.cache_head;
584 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head);
585
586 if (cached_cycles > count && cached_cycles > cache_size / 2)
587 pool_replayed_seq(s, count);
588 else
589 pool_ideal_seq_descs(s, count);
590 }
591 }
592 }
593
594 static void update_pcm_pointers(struct amdtp_stream *s,
595 struct snd_pcm_substream *pcm,
596 unsigned int frames)
597 {
598 unsigned int ptr;
599
600 ptr = s->pcm_buffer_pointer + frames;
601 if (ptr >= pcm->runtime->buffer_size)
602 ptr -= pcm->runtime->buffer_size;
603 WRITE_ONCE(s->pcm_buffer_pointer, ptr);
604
605 s->pcm_period_pointer += frames;
606 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
607 s->pcm_period_pointer -= pcm->runtime->period_size;
608
609 // The program in user process should periodically check the status of intermediate
610 // buffer associated to PCM substream to process PCM frames in the buffer, instead
611 // of receiving notification of period elapsed by poll wait.
612 if (!pcm->runtime->no_period_wakeup) {
613 if (in_softirq()) {
614 // In software IRQ context for 1394 OHCI.
615 snd_pcm_period_elapsed(pcm);
616 } else {
617 // In process context of ALSA PCM application under acquired lock of
618 // PCM substream.
619 snd_pcm_period_elapsed_under_stream_lock(pcm);
620 }
621 }
622 }
623 }
624
625 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
626 bool sched_irq)
627 {
628 int err;
629
630 params->interrupt = sched_irq;
631 params->tag = s->tag;
632 params->sy = 0;
633
634 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
635 s->buffer.packets[s->packet_index].offset);
636 if (err < 0) {
637 dev_err(&s->unit->device, "queueing error: %d\n", err);
638 goto end;
639 }
640
641 if (++s->packet_index >= s->queue_size)
642 s->packet_index = 0;
643 end:
644 return err;
645 }
646
647 static inline int queue_out_packet(struct amdtp_stream *s,
648 struct fw_iso_packet *params, bool sched_irq)
649 {
650 params->skip =
651 !!(params->header_length == 0 && params->payload_length == 0);
652 return queue_packet(s, params, sched_irq);
653 }
654
655 static inline int queue_in_packet(struct amdtp_stream *s,
656 struct fw_iso_packet *params)
657 {
658 // Queue one packet for IR context.
659 params->header_length = s->ctx_data.tx.ctx_header_size;
660 params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
661 params->skip = false;
662 return queue_packet(s, params, false);
663 }
664
665 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
666 unsigned int data_block_counter, unsigned int syt)
667 {
668 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
669 (s->data_block_quadlets << CIP_DBS_SHIFT) |
670 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
671 data_block_counter);
672 cip_header[1] = cpu_to_be32(CIP_EOH |
673 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
674 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
675 (syt & CIP_SYT_MASK));
676 }
677
678 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
679 struct fw_iso_packet *params, unsigned int header_length,
680 unsigned int data_blocks,
681 unsigned int data_block_counter,
682 unsigned int syt, unsigned int index)
683 {
684 unsigned int payload_length;
685 __be32 *cip_header;
686
687 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
688 params->payload_length = payload_length;
689
690 if (header_length > 0) {
691 cip_header = (__be32 *)params->header;
692 generate_cip_header(s, cip_header, data_block_counter, syt);
693 params->header_length = header_length;
694 } else {
695 cip_header = NULL;
696 }
697
698 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
699 data_block_counter, s->packet_index, index);
700 }
701
702 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
703 unsigned int payload_length,
704 unsigned int *data_blocks,
705 unsigned int *data_block_counter, unsigned int *syt)
706 {
707 u32 cip_header[2];
708 unsigned int sph;
709 unsigned int fmt;
710 unsigned int fdf;
711 unsigned int dbc;
712 bool lost;
713
714 cip_header[0] = be32_to_cpu(buf[0]);
715 cip_header[1] = be32_to_cpu(buf[1]);
716
717 /*
718 * This module supports 'Two-quadlet CIP header with SYT field'.
719 * For convenience, also check FMT field is AM824 or not.
720 */
721 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
722 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
723 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
724 dev_info_ratelimited(&s->unit->device,
725 "Invalid CIP header for AMDTP: %08X:%08X\n",
726 cip_header[0], cip_header[1]);
727 return -EAGAIN;
728 }
729
730 /* Check valid protocol or not. */
731 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
732 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
733 if (sph != s->sph || fmt != s->fmt) {
734 dev_info_ratelimited(&s->unit->device,
735 "Detect unexpected protocol: %08x %08x\n",
736 cip_header[0], cip_header[1]);
737 return -EAGAIN;
738 }
739
740 /* Calculate data blocks */
741 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
742 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
743 *data_blocks = 0;
744 } else {
745 unsigned int data_block_quadlets =
746 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
747 /* avoid division by zero */
748 if (data_block_quadlets == 0) {
749 dev_err(&s->unit->device,
750 "Detect invalid value in dbs field: %08X\n",
751 cip_header[0]);
752 return -EPROTO;
753 }
754 if (s->flags & CIP_WRONG_DBS)
755 data_block_quadlets = s->data_block_quadlets;
756
757 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
758 }
759
760 /* Check data block counter continuity */
761 dbc = cip_header[0] & CIP_DBC_MASK;
762 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
763 *data_block_counter != UINT_MAX)
764 dbc = *data_block_counter;
765
766 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
767 *data_block_counter == UINT_MAX) {
768 lost = false;
769 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
770 lost = dbc != *data_block_counter;
771 } else {
772 unsigned int dbc_interval;
773
774 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
775 dbc_interval = s->ctx_data.tx.dbc_interval;
776 else
777 dbc_interval = *data_blocks;
778
779 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
780 }
781
782 if (lost) {
783 dev_err(&s->unit->device,
784 "Detect discontinuity of CIP: %02X %02X\n",
785 *data_block_counter, dbc);
786 return -EIO;
787 }
788
789 *data_block_counter = dbc;
790
791 if (!(s->flags & CIP_UNAWARE_SYT))
792 *syt = cip_header[1] & CIP_SYT_MASK;
793
794 return 0;
795 }
796
797 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
798 const __be32 *ctx_header,
799 unsigned int *data_blocks,
800 unsigned int *data_block_counter,
801 unsigned int *syt, unsigned int packet_index, unsigned int index)
802 {
803 unsigned int payload_length;
804 const __be32 *cip_header;
805 unsigned int cip_header_size;
806
807 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
808
809 if (!(s->flags & CIP_NO_HEADER))
810 cip_header_size = CIP_HEADER_SIZE;
811 else
812 cip_header_size = 0;
813
814 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
815 dev_err(&s->unit->device,
816 "Detect jumbo payload: %04x %04x\n",
817 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
818 return -EIO;
819 }
820
821 if (cip_header_size > 0) {
822 if (payload_length >= cip_header_size) {
823 int err;
824
825 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
826 err = check_cip_header(s, cip_header, payload_length - cip_header_size,
827 data_blocks, data_block_counter, syt);
828 if (err < 0)
829 return err;
830 } else {
831 // Handle the cycle so that empty packet arrives.
832 cip_header = NULL;
833 *data_blocks = 0;
834 *syt = 0;
835 }
836 } else {
837 cip_header = NULL;
838 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
839 *syt = 0;
840
841 if (*data_block_counter == UINT_MAX)
842 *data_block_counter = 0;
843 }
844
845 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
846 *data_block_counter, packet_index, index);
847
848 return 0;
849 }
850
851 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
852 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
853 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
854 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
855 {
856 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
857 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
858 }
859
860 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
861 {
862 cycle += addend;
863 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
864 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
865 return cycle;
866 }
867
868 static int compare_ohci_cycle_count(u32 lval, u32 rval)
869 {
870 if (lval == rval)
871 return 0;
872 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
873 return -1;
874 else
875 return 1;
876 }
877
878 // Align to actual cycle count for the packet which is going to be scheduled.
879 // This module queued the same number of isochronous cycle as the size of queue
880 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
881 // the size of queue for scheduled cycle.
882 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
883 unsigned int queue_size)
884 {
885 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
886 return increment_ohci_cycle_count(cycle, queue_size);
887 }
888
889 static int generate_device_pkt_descs(struct amdtp_stream *s,
890 struct pkt_desc *descs,
891 const __be32 *ctx_header,
892 unsigned int packets,
893 unsigned int *desc_count)
894 {
895 unsigned int next_cycle = s->next_cycle;
896 unsigned int dbc = s->data_block_counter;
897 unsigned int packet_index = s->packet_index;
898 unsigned int queue_size = s->queue_size;
899 int i;
900 int err;
901
902 *desc_count = 0;
903 for (i = 0; i < packets; ++i) {
904 struct pkt_desc *desc = descs + *desc_count;
905 unsigned int cycle;
906 bool lost;
907 unsigned int data_blocks;
908 unsigned int syt;
909
910 cycle = compute_ohci_cycle_count(ctx_header[1]);
911 lost = (next_cycle != cycle);
912 if (lost) {
913 if (s->flags & CIP_NO_HEADER) {
914 // Fireface skips transmission just for an isoc cycle corresponding
915 // to empty packet.
916 unsigned int prev_cycle = next_cycle;
917
918 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
919 lost = (next_cycle != cycle);
920 if (!lost) {
921 // Prepare a description for the skipped cycle for
922 // sequence replay.
923 desc->cycle = prev_cycle;
924 desc->syt = 0;
925 desc->data_blocks = 0;
926 desc->data_block_counter = dbc;
927 desc->ctx_payload = NULL;
928 ++desc;
929 ++(*desc_count);
930 }
931 } else if (s->flags & CIP_JUMBO_PAYLOAD) {
932 // OXFW970 skips transmission for several isoc cycles during
933 // asynchronous transaction. The sequence replay is impossible due
934 // to the reason.
935 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
936 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
937 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
938 }
939 if (lost) {
940 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
941 next_cycle, cycle);
942 return -EIO;
943 }
944 }
945
946 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
947 packet_index, i);
948 if (err < 0)
949 return err;
950
951 desc->cycle = cycle;
952 desc->syt = syt;
953 desc->data_blocks = data_blocks;
954 desc->data_block_counter = dbc;
955 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
956
957 if (!(s->flags & CIP_DBC_IS_END_EVENT))
958 dbc = (dbc + desc->data_blocks) & 0xff;
959
960 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
961 ++(*desc_count);
962 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
963 packet_index = (packet_index + 1) % queue_size;
964 }
965
966 s->next_cycle = next_cycle;
967 s->data_block_counter = dbc;
968
969 return 0;
970 }
971
972 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
973 unsigned int transfer_delay)
974 {
975 unsigned int syt;
976
977 syt_offset += transfer_delay;
978 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
979 (syt_offset % TICKS_PER_CYCLE);
980 return syt & CIP_SYT_MASK;
981 }
982
983 static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets)
984 {
985 struct pkt_desc *descs = s->pkt_descs;
986 const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
987 const unsigned int seq_size = s->ctx_data.rx.seq.size;
988 unsigned int dbc = s->data_block_counter;
989 unsigned int seq_head = s->ctx_data.rx.seq.head;
990 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
991 int i;
992
993 for (i = 0; i < packets; ++i) {
994 struct pkt_desc *desc = descs + i;
995 unsigned int index = (s->packet_index + i) % s->queue_size;
996 const struct seq_desc *seq = seq_descs + seq_head;
997
998 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
999
1000 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1001 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1002 else
1003 desc->syt = CIP_SYT_NO_INFO;
1004
1005 desc->data_blocks = seq->data_blocks;
1006
1007 if (s->flags & CIP_DBC_IS_END_EVENT)
1008 dbc = (dbc + desc->data_blocks) & 0xff;
1009
1010 desc->data_block_counter = dbc;
1011
1012 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1013 dbc = (dbc + desc->data_blocks) & 0xff;
1014
1015 desc->ctx_payload = s->buffer.packets[index].buffer;
1016
1017 seq_head = (seq_head + 1) % seq_size;
1018
1019 ++ctx_header;
1020 }
1021
1022 s->data_block_counter = dbc;
1023 s->ctx_data.rx.seq.head = seq_head;
1024 }
1025
1026 static inline void cancel_stream(struct amdtp_stream *s)
1027 {
1028 s->packet_index = -1;
1029 if (in_softirq())
1030 amdtp_stream_pcm_abort(s);
1031 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1032 }
1033
1034 static void process_ctx_payloads(struct amdtp_stream *s,
1035 const struct pkt_desc *descs,
1036 unsigned int packets)
1037 {
1038 struct snd_pcm_substream *pcm;
1039 unsigned int pcm_frames;
1040
1041 pcm = READ_ONCE(s->pcm);
1042 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
1043 if (pcm)
1044 update_pcm_pointers(s, pcm, pcm_frames);
1045 }
1046
1047 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1048 void *header, void *private_data)
1049 {
1050 struct amdtp_stream *s = private_data;
1051 const struct amdtp_domain *d = s->domain;
1052 const __be32 *ctx_header = header;
1053 const unsigned int events_per_period = d->events_per_period;
1054 unsigned int event_count = s->ctx_data.rx.event_count;
1055 unsigned int pkt_header_length;
1056 unsigned int packets;
1057 bool need_hw_irq;
1058 int i;
1059
1060 if (s->packet_index < 0)
1061 return;
1062
1063 // Calculate the number of packets in buffer and check XRUN.
1064 packets = header_length / sizeof(*ctx_header);
1065
1066 pool_seq_descs(s, packets);
1067
1068 generate_pkt_descs(s, ctx_header, packets);
1069
1070 process_ctx_payloads(s, s->pkt_descs, packets);
1071
1072 if (!(s->flags & CIP_NO_HEADER))
1073 pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1074 else
1075 pkt_header_length = 0;
1076
1077 if (s == d->irq_target) {
1078 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1079 // the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1080 // with some requests, instead of scheduled hardware IRQ of an IT context.
1081 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1082 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1083 } else {
1084 need_hw_irq = false;
1085 }
1086
1087 for (i = 0; i < packets; ++i) {
1088 const struct pkt_desc *desc = s->pkt_descs + i;
1089 struct {
1090 struct fw_iso_packet params;
1091 __be32 header[CIP_HEADER_QUADLETS];
1092 } template = { {0}, {0} };
1093 bool sched_irq = false;
1094
1095 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1096 desc->data_blocks, desc->data_block_counter,
1097 desc->syt, i);
1098
1099 if (s == s->domain->irq_target) {
1100 event_count += desc->data_blocks;
1101 if (event_count >= events_per_period) {
1102 event_count -= events_per_period;
1103 sched_irq = need_hw_irq;
1104 }
1105 }
1106
1107 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1108 cancel_stream(s);
1109 return;
1110 }
1111 }
1112
1113 s->ctx_data.rx.event_count = event_count;
1114 }
1115
1116 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1117 void *header, void *private_data)
1118 {
1119 struct amdtp_stream *s = private_data;
1120 struct amdtp_domain *d = s->domain;
1121 const __be32 *ctx_header = header;
1122 unsigned int packets;
1123 unsigned int cycle;
1124 int i;
1125
1126 if (s->packet_index < 0)
1127 return;
1128
1129 packets = header_length / sizeof(*ctx_header);
1130
1131 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1132 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1133
1134 for (i = 0; i < packets; ++i) {
1135 struct fw_iso_packet params = {
1136 .header_length = 0,
1137 .payload_length = 0,
1138 };
1139 bool sched_irq = (s == d->irq_target && i == packets - 1);
1140
1141 if (queue_out_packet(s, &params, sched_irq) < 0) {
1142 cancel_stream(s);
1143 return;
1144 }
1145 }
1146 }
1147
1148 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1149 void *header, void *private_data);
1150
1151 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1152 size_t header_length, void *header, void *private_data)
1153 {
1154 struct amdtp_stream *s = private_data;
1155 struct amdtp_domain *d = s->domain;
1156 __be32 *ctx_header = header;
1157 const unsigned int queue_size = s->queue_size;
1158 unsigned int packets;
1159 unsigned int offset;
1160
1161 if (s->packet_index < 0)
1162 return;
1163
1164 packets = header_length / sizeof(*ctx_header);
1165
1166 offset = 0;
1167 while (offset < packets) {
1168 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1169
1170 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1171 break;
1172
1173 ++offset;
1174 }
1175
1176 if (offset > 0) {
1177 unsigned int length = sizeof(*ctx_header) * offset;
1178
1179 skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1180 if (amdtp_streaming_error(s))
1181 return;
1182
1183 ctx_header += offset;
1184 header_length -= length;
1185 }
1186
1187 if (offset < packets) {
1188 s->ready_processing = true;
1189 wake_up(&s->ready_wait);
1190
1191 process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1192 if (amdtp_streaming_error(s))
1193 return;
1194
1195 if (s == d->irq_target)
1196 s->context->callback.sc = irq_target_callback;
1197 else
1198 s->context->callback.sc = process_rx_packets;
1199 }
1200 }
1201
1202 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1203 void *header, void *private_data)
1204 {
1205 struct amdtp_stream *s = private_data;
1206 __be32 *ctx_header = header;
1207 unsigned int packets;
1208 unsigned int desc_count;
1209 int i;
1210 int err;
1211
1212 if (s->packet_index < 0)
1213 return;
1214
1215 // Calculate the number of packets in buffer and check XRUN.
1216 packets = header_length / s->ctx_data.tx.ctx_header_size;
1217
1218 desc_count = 0;
1219 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count);
1220 if (err < 0) {
1221 if (err != -EAGAIN) {
1222 cancel_stream(s);
1223 return;
1224 }
1225 } else {
1226 struct amdtp_domain *d = s->domain;
1227
1228 process_ctx_payloads(s, s->pkt_descs, desc_count);
1229
1230 if (d->replay.enable)
1231 cache_seq(s, s->pkt_descs, desc_count);
1232 }
1233
1234 for (i = 0; i < packets; ++i) {
1235 struct fw_iso_packet params = {0};
1236
1237 if (queue_in_packet(s, &params) < 0) {
1238 cancel_stream(s);
1239 return;
1240 }
1241 }
1242 }
1243
1244 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1245 void *header, void *private_data)
1246 {
1247 struct amdtp_stream *s = private_data;
1248 const __be32 *ctx_header = header;
1249 unsigned int packets;
1250 unsigned int cycle;
1251 int i;
1252
1253 if (s->packet_index < 0)
1254 return;
1255
1256 packets = header_length / s->ctx_data.tx.ctx_header_size;
1257
1258 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1259 cycle = compute_ohci_cycle_count(ctx_header[1]);
1260 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1261
1262 for (i = 0; i < packets; ++i) {
1263 struct fw_iso_packet params = {0};
1264
1265 if (queue_in_packet(s, &params) < 0) {
1266 cancel_stream(s);
1267 return;
1268 }
1269 }
1270 }
1271
1272 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1273 size_t header_length, void *header, void *private_data)
1274 {
1275 struct amdtp_stream *s = private_data;
1276 struct amdtp_domain *d = s->domain;
1277 __be32 *ctx_header;
1278 unsigned int packets;
1279 unsigned int offset;
1280
1281 if (s->packet_index < 0)
1282 return;
1283
1284 packets = header_length / s->ctx_data.tx.ctx_header_size;
1285
1286 offset = 0;
1287 ctx_header = header;
1288 while (offset < packets) {
1289 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1290
1291 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1292 break;
1293
1294 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1295 ++offset;
1296 }
1297
1298 ctx_header = header;
1299
1300 if (offset > 0) {
1301 size_t length = s->ctx_data.tx.ctx_header_size * offset;
1302
1303 drop_tx_packets(context, tstamp, length, ctx_header, s);
1304 if (amdtp_streaming_error(s))
1305 return;
1306
1307 ctx_header += length / sizeof(*ctx_header);
1308 header_length -= length;
1309 }
1310
1311 if (offset < packets) {
1312 s->ready_processing = true;
1313 wake_up(&s->ready_wait);
1314
1315 process_tx_packets(context, tstamp, header_length, ctx_header, s);
1316 if (amdtp_streaming_error(s))
1317 return;
1318
1319 context->callback.sc = process_tx_packets;
1320 }
1321 }
1322
1323 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1324 size_t header_length, void *header, void *private_data)
1325 {
1326 struct amdtp_stream *s = private_data;
1327 struct amdtp_domain *d = s->domain;
1328 __be32 *ctx_header;
1329 unsigned int count;
1330 unsigned int events;
1331 int i;
1332
1333 if (s->packet_index < 0)
1334 return;
1335
1336 count = header_length / s->ctx_data.tx.ctx_header_size;
1337
1338 // Attempt to detect any event in the batch of packets.
1339 events = 0;
1340 ctx_header = header;
1341 for (i = 0; i < count; ++i) {
1342 unsigned int payload_quads =
1343 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1344 unsigned int data_blocks;
1345
1346 if (s->flags & CIP_NO_HEADER) {
1347 data_blocks = payload_quads / s->data_block_quadlets;
1348 } else {
1349 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1350
1351 if (payload_quads < CIP_HEADER_QUADLETS) {
1352 data_blocks = 0;
1353 } else {
1354 payload_quads -= CIP_HEADER_QUADLETS;
1355
1356 if (s->flags & CIP_UNAWARE_SYT) {
1357 data_blocks = payload_quads / s->data_block_quadlets;
1358 } else {
1359 u32 cip1 = be32_to_cpu(cip_headers[1]);
1360
1361 // NODATA packet can includes any data blocks but they are
1362 // not available as event.
1363 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1364 data_blocks = 0;
1365 else
1366 data_blocks = payload_quads / s->data_block_quadlets;
1367 }
1368 }
1369 }
1370
1371 events += data_blocks;
1372
1373 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1374 }
1375
1376 drop_tx_packets(context, tstamp, header_length, header, s);
1377
1378 if (events > 0)
1379 s->ctx_data.tx.event_starts = true;
1380
1381 // Decide the cycle count to begin processing content of packet in IR contexts.
1382 {
1383 unsigned int stream_count = 0;
1384 unsigned int event_starts_count = 0;
1385 unsigned int cycle = UINT_MAX;
1386
1387 list_for_each_entry(s, &d->streams, list) {
1388 if (s->direction == AMDTP_IN_STREAM) {
1389 ++stream_count;
1390 if (s->ctx_data.tx.event_starts)
1391 ++event_starts_count;
1392 }
1393 }
1394
1395 if (stream_count == event_starts_count) {
1396 unsigned int next_cycle;
1397
1398 list_for_each_entry(s, &d->streams, list) {
1399 if (s->direction != AMDTP_IN_STREAM)
1400 continue;
1401
1402 next_cycle = increment_ohci_cycle_count(s->next_cycle,
1403 d->processing_cycle.tx_init_skip);
1404 if (cycle == UINT_MAX ||
1405 compare_ohci_cycle_count(next_cycle, cycle) > 0)
1406 cycle = next_cycle;
1407
1408 s->context->callback.sc = process_tx_packets_intermediately;
1409 }
1410
1411 d->processing_cycle.tx_start = cycle;
1412 }
1413 }
1414 }
1415
1416 static void process_ctxs_in_domain(struct amdtp_domain *d)
1417 {
1418 struct amdtp_stream *s;
1419
1420 list_for_each_entry(s, &d->streams, list) {
1421 if (s != d->irq_target && amdtp_stream_running(s))
1422 fw_iso_context_flush_completions(s->context);
1423
1424 if (amdtp_streaming_error(s))
1425 goto error;
1426 }
1427
1428 return;
1429 error:
1430 if (amdtp_stream_running(d->irq_target))
1431 cancel_stream(d->irq_target);
1432
1433 list_for_each_entry(s, &d->streams, list) {
1434 if (amdtp_stream_running(s))
1435 cancel_stream(s);
1436 }
1437 }
1438
1439 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1440 void *header, void *private_data)
1441 {
1442 struct amdtp_stream *s = private_data;
1443 struct amdtp_domain *d = s->domain;
1444
1445 process_rx_packets(context, tstamp, header_length, header, private_data);
1446 process_ctxs_in_domain(d);
1447 }
1448
1449 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1450 size_t header_length, void *header, void *private_data)
1451 {
1452 struct amdtp_stream *s = private_data;
1453 struct amdtp_domain *d = s->domain;
1454
1455 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1456 process_ctxs_in_domain(d);
1457 }
1458
1459 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1460 size_t header_length, void *header, void *private_data)
1461 {
1462 struct amdtp_stream *s = private_data;
1463 struct amdtp_domain *d = s->domain;
1464 bool ready_to_start;
1465
1466 skip_rx_packets(context, tstamp, header_length, header, private_data);
1467 process_ctxs_in_domain(d);
1468
1469 if (d->replay.enable && !d->replay.on_the_fly) {
1470 unsigned int rx_count = 0;
1471 unsigned int rx_ready_count = 0;
1472 struct amdtp_stream *rx;
1473
1474 list_for_each_entry(rx, &d->streams, list) {
1475 struct amdtp_stream *tx;
1476 unsigned int cached_cycles;
1477
1478 if (rx->direction != AMDTP_OUT_STREAM)
1479 continue;
1480 ++rx_count;
1481
1482 tx = rx->ctx_data.rx.replay_target;
1483 cached_cycles = calculate_cached_cycle_count(tx, 0);
1484 if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1485 ++rx_ready_count;
1486 }
1487
1488 ready_to_start = (rx_count == rx_ready_count);
1489 } else {
1490 ready_to_start = true;
1491 }
1492
1493 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1494 // contexts are expected to start and get callback when reaching here.
1495 if (ready_to_start) {
1496 unsigned int cycle = s->next_cycle;
1497 list_for_each_entry(s, &d->streams, list) {
1498 if (s->direction != AMDTP_OUT_STREAM)
1499 continue;
1500
1501 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1502 cycle = s->next_cycle;
1503
1504 if (s == d->irq_target)
1505 s->context->callback.sc = irq_target_callback_intermediately;
1506 else
1507 s->context->callback.sc = process_rx_packets_intermediately;
1508 }
1509
1510 d->processing_cycle.rx_start = cycle;
1511 }
1512 }
1513
1514 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1515 // transmit first packet.
1516 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1517 u32 tstamp, size_t header_length,
1518 void *header, void *private_data)
1519 {
1520 struct amdtp_stream *s = private_data;
1521 struct amdtp_domain *d = s->domain;
1522
1523 if (s->direction == AMDTP_IN_STREAM) {
1524 context->callback.sc = drop_tx_packets_initially;
1525 } else {
1526 if (s == d->irq_target)
1527 context->callback.sc = irq_target_callback_skip;
1528 else
1529 context->callback.sc = skip_rx_packets;
1530 }
1531
1532 context->callback.sc(context, tstamp, header_length, header, s);
1533 }
1534
1535 /**
1536 * amdtp_stream_start - start transferring packets
1537 * @s: the AMDTP stream to start
1538 * @channel: the isochronous channel on the bus
1539 * @speed: firewire speed code
1540 * @queue_size: The number of packets in the queue.
1541 * @idle_irq_interval: the interval to queue packet during initial state.
1542 *
1543 * The stream cannot be started until it has been configured with
1544 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1545 * device can be started.
1546 */
1547 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1548 unsigned int queue_size, unsigned int idle_irq_interval)
1549 {
1550 bool is_irq_target = (s == s->domain->irq_target);
1551 unsigned int ctx_header_size;
1552 unsigned int max_ctx_payload_size;
1553 enum dma_data_direction dir;
1554 int type, tag, err;
1555
1556 mutex_lock(&s->mutex);
1557
1558 if (WARN_ON(amdtp_stream_running(s) ||
1559 (s->data_block_quadlets < 1))) {
1560 err = -EBADFD;
1561 goto err_unlock;
1562 }
1563
1564 if (s->direction == AMDTP_IN_STREAM) {
1565 // NOTE: IT context should be used for constant IRQ.
1566 if (is_irq_target) {
1567 err = -EINVAL;
1568 goto err_unlock;
1569 }
1570
1571 s->data_block_counter = UINT_MAX;
1572 } else {
1573 s->data_block_counter = 0;
1574 }
1575
1576 // initialize packet buffer.
1577 if (s->direction == AMDTP_IN_STREAM) {
1578 dir = DMA_FROM_DEVICE;
1579 type = FW_ISO_CONTEXT_RECEIVE;
1580 if (!(s->flags & CIP_NO_HEADER))
1581 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1582 else
1583 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1584 } else {
1585 dir = DMA_TO_DEVICE;
1586 type = FW_ISO_CONTEXT_TRANSMIT;
1587 ctx_header_size = 0; // No effect for IT context.
1588 }
1589 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1590
1591 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1592 if (err < 0)
1593 goto err_unlock;
1594 s->queue_size = queue_size;
1595
1596 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1597 type, channel, speed, ctx_header_size,
1598 amdtp_stream_first_callback, s);
1599 if (IS_ERR(s->context)) {
1600 err = PTR_ERR(s->context);
1601 if (err == -EBUSY)
1602 dev_err(&s->unit->device,
1603 "no free stream on this controller\n");
1604 goto err_buffer;
1605 }
1606
1607 amdtp_stream_update(s);
1608
1609 if (s->direction == AMDTP_IN_STREAM) {
1610 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1611 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1612 s->ctx_data.tx.event_starts = false;
1613
1614 if (s->domain->replay.enable) {
1615 // struct fw_iso_context.drop_overflow_headers is false therefore it's
1616 // possible to cache much unexpectedly.
1617 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1618 queue_size * 3 / 2);
1619 s->ctx_data.tx.cache.tail = 0;
1620 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1621 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1622 if (!s->ctx_data.tx.cache.descs) {
1623 err = -ENOMEM;
1624 goto err_context;
1625 }
1626 }
1627 } else {
1628 static const struct {
1629 unsigned int data_block;
1630 unsigned int syt_offset;
1631 } *entry, initial_state[] = {
1632 [CIP_SFC_32000] = { 4, 3072 },
1633 [CIP_SFC_48000] = { 6, 1024 },
1634 [CIP_SFC_96000] = { 12, 1024 },
1635 [CIP_SFC_192000] = { 24, 1024 },
1636 [CIP_SFC_44100] = { 0, 67 },
1637 [CIP_SFC_88200] = { 0, 67 },
1638 [CIP_SFC_176400] = { 0, 67 },
1639 };
1640
1641 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1642 if (!s->ctx_data.rx.seq.descs) {
1643 err = -ENOMEM;
1644 goto err_context;
1645 }
1646 s->ctx_data.rx.seq.size = queue_size;
1647 s->ctx_data.rx.seq.tail = 0;
1648 s->ctx_data.rx.seq.head = 0;
1649
1650 entry = &initial_state[s->sfc];
1651 s->ctx_data.rx.data_block_state = entry->data_block;
1652 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1653 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1654
1655 s->ctx_data.rx.event_count = 0;
1656 }
1657
1658 if (s->flags & CIP_NO_HEADER)
1659 s->tag = TAG_NO_CIP_HEADER;
1660 else
1661 s->tag = TAG_CIP;
1662
1663 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1664 GFP_KERNEL);
1665 if (!s->pkt_descs) {
1666 err = -ENOMEM;
1667 goto err_context;
1668 }
1669
1670 s->packet_index = 0;
1671 do {
1672 struct fw_iso_packet params;
1673
1674 if (s->direction == AMDTP_IN_STREAM) {
1675 err = queue_in_packet(s, &params);
1676 } else {
1677 bool sched_irq = false;
1678
1679 params.header_length = 0;
1680 params.payload_length = 0;
1681
1682 if (is_irq_target) {
1683 sched_irq = !((s->packet_index + 1) %
1684 idle_irq_interval);
1685 }
1686
1687 err = queue_out_packet(s, &params, sched_irq);
1688 }
1689 if (err < 0)
1690 goto err_pkt_descs;
1691 } while (s->packet_index > 0);
1692
1693 /* NOTE: TAG1 matches CIP. This just affects in stream. */
1694 tag = FW_ISO_CONTEXT_MATCH_TAG1;
1695 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1696 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1697
1698 s->ready_processing = false;
1699 err = fw_iso_context_start(s->context, -1, 0, tag);
1700 if (err < 0)
1701 goto err_pkt_descs;
1702
1703 mutex_unlock(&s->mutex);
1704
1705 return 0;
1706 err_pkt_descs:
1707 kfree(s->pkt_descs);
1708 err_context:
1709 if (s->direction == AMDTP_OUT_STREAM) {
1710 kfree(s->ctx_data.rx.seq.descs);
1711 } else {
1712 if (s->domain->replay.enable)
1713 kfree(s->ctx_data.tx.cache.descs);
1714 }
1715 fw_iso_context_destroy(s->context);
1716 s->context = ERR_PTR(-1);
1717 err_buffer:
1718 iso_packets_buffer_destroy(&s->buffer, s->unit);
1719 err_unlock:
1720 mutex_unlock(&s->mutex);
1721
1722 return err;
1723 }
1724
1725 /**
1726 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1727 * @d: the AMDTP domain.
1728 * @s: the AMDTP stream that transports the PCM data
1729 *
1730 * Returns the current buffer position, in frames.
1731 */
1732 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1733 struct amdtp_stream *s)
1734 {
1735 struct amdtp_stream *irq_target = d->irq_target;
1736
1737 // Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
1738 if (irq_target && amdtp_stream_running(irq_target)) {
1739 // In software IRQ context, the call causes dead-lock to disable the tasklet
1740 // synchronously.
1741 if (!in_softirq())
1742 fw_iso_context_flush_completions(irq_target->context);
1743 }
1744
1745 return READ_ONCE(s->pcm_buffer_pointer);
1746 }
1747 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1748
1749 /**
1750 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1751 * @d: the AMDTP domain.
1752 * @s: the AMDTP stream that transfers the PCM frames
1753 *
1754 * Returns zero always.
1755 */
1756 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1757 {
1758 struct amdtp_stream *irq_target = d->irq_target;
1759
1760 // Process isochronous packets for recent isochronous cycle to handle
1761 // queued PCM frames.
1762 if (irq_target && amdtp_stream_running(irq_target))
1763 fw_iso_context_flush_completions(irq_target->context);
1764
1765 return 0;
1766 }
1767 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1768
1769 /**
1770 * amdtp_stream_update - update the stream after a bus reset
1771 * @s: the AMDTP stream
1772 */
1773 void amdtp_stream_update(struct amdtp_stream *s)
1774 {
1775 /* Precomputing. */
1776 WRITE_ONCE(s->source_node_id_field,
1777 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1778 }
1779 EXPORT_SYMBOL(amdtp_stream_update);
1780
1781 /**
1782 * amdtp_stream_stop - stop sending packets
1783 * @s: the AMDTP stream to stop
1784 *
1785 * All PCM and MIDI devices of the stream must be stopped before the stream
1786 * itself can be stopped.
1787 */
1788 static void amdtp_stream_stop(struct amdtp_stream *s)
1789 {
1790 mutex_lock(&s->mutex);
1791
1792 if (!amdtp_stream_running(s)) {
1793 mutex_unlock(&s->mutex);
1794 return;
1795 }
1796
1797 fw_iso_context_stop(s->context);
1798 fw_iso_context_destroy(s->context);
1799 s->context = ERR_PTR(-1);
1800 iso_packets_buffer_destroy(&s->buffer, s->unit);
1801 kfree(s->pkt_descs);
1802
1803 if (s->direction == AMDTP_OUT_STREAM) {
1804 kfree(s->ctx_data.rx.seq.descs);
1805 } else {
1806 if (s->domain->replay.enable)
1807 kfree(s->ctx_data.tx.cache.descs);
1808 }
1809
1810 mutex_unlock(&s->mutex);
1811 }
1812
1813 /**
1814 * amdtp_stream_pcm_abort - abort the running PCM device
1815 * @s: the AMDTP stream about to be stopped
1816 *
1817 * If the isochronous stream needs to be stopped asynchronously, call this
1818 * function first to stop the PCM device.
1819 */
1820 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1821 {
1822 struct snd_pcm_substream *pcm;
1823
1824 pcm = READ_ONCE(s->pcm);
1825 if (pcm)
1826 snd_pcm_stop_xrun(pcm);
1827 }
1828 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1829
1830 /**
1831 * amdtp_domain_init - initialize an AMDTP domain structure
1832 * @d: the AMDTP domain to initialize.
1833 */
1834 int amdtp_domain_init(struct amdtp_domain *d)
1835 {
1836 INIT_LIST_HEAD(&d->streams);
1837
1838 d->events_per_period = 0;
1839
1840 return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1843
1844 /**
1845 * amdtp_domain_destroy - destroy an AMDTP domain structure
1846 * @d: the AMDTP domain to destroy.
1847 */
1848 void amdtp_domain_destroy(struct amdtp_domain *d)
1849 {
1850 // At present nothing to do.
1851 return;
1852 }
1853 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1854
1855 /**
1856 * amdtp_domain_add_stream - register isoc context into the domain.
1857 * @d: the AMDTP domain.
1858 * @s: the AMDTP stream.
1859 * @channel: the isochronous channel on the bus.
1860 * @speed: firewire speed code.
1861 */
1862 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1863 int channel, int speed)
1864 {
1865 struct amdtp_stream *tmp;
1866
1867 list_for_each_entry(tmp, &d->streams, list) {
1868 if (s == tmp)
1869 return -EBUSY;
1870 }
1871
1872 list_add(&s->list, &d->streams);
1873
1874 s->channel = channel;
1875 s->speed = speed;
1876 s->domain = d;
1877
1878 return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1881
1882 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
1883 // is less than the number of rx streams, the first tx stream is selected.
1884 static int make_association(struct amdtp_domain *d)
1885 {
1886 unsigned int dst_index = 0;
1887 struct amdtp_stream *rx;
1888
1889 // Make association to replay target.
1890 list_for_each_entry(rx, &d->streams, list) {
1891 if (rx->direction == AMDTP_OUT_STREAM) {
1892 unsigned int src_index = 0;
1893 struct amdtp_stream *tx = NULL;
1894 struct amdtp_stream *s;
1895
1896 list_for_each_entry(s, &d->streams, list) {
1897 if (s->direction == AMDTP_IN_STREAM) {
1898 if (dst_index == src_index) {
1899 tx = s;
1900 break;
1901 }
1902
1903 ++src_index;
1904 }
1905 }
1906 if (!tx) {
1907 // Select the first entry.
1908 list_for_each_entry(s, &d->streams, list) {
1909 if (s->direction == AMDTP_IN_STREAM) {
1910 tx = s;
1911 break;
1912 }
1913 }
1914 // No target is available to replay sequence.
1915 if (!tx)
1916 return -EINVAL;
1917 }
1918
1919 rx->ctx_data.rx.replay_target = tx;
1920 rx->ctx_data.rx.cache_head = 0;
1921
1922 ++dst_index;
1923 }
1924 }
1925
1926 return 0;
1927 }
1928
1929 /**
1930 * amdtp_domain_start - start sending packets for isoc context in the domain.
1931 * @d: the AMDTP domain.
1932 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
1933 * contexts.
1934 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
1935 * IT context.
1936 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
1937 * according to arrival of events in tx packets.
1938 */
1939 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
1940 bool replay_on_the_fly)
1941 {
1942 unsigned int events_per_buffer = d->events_per_buffer;
1943 unsigned int events_per_period = d->events_per_period;
1944 unsigned int queue_size;
1945 struct amdtp_stream *s;
1946 bool found = false;
1947 int err;
1948
1949 if (replay_seq) {
1950 err = make_association(d);
1951 if (err < 0)
1952 return err;
1953 }
1954 d->replay.enable = replay_seq;
1955 d->replay.on_the_fly = replay_on_the_fly;
1956
1957 // Select an IT context as IRQ target.
1958 list_for_each_entry(s, &d->streams, list) {
1959 if (s->direction == AMDTP_OUT_STREAM) {
1960 found = true;
1961 break;
1962 }
1963 }
1964 if (!found)
1965 return -ENXIO;
1966 d->irq_target = s;
1967
1968 d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
1969
1970 // This is a case that AMDTP streams in domain run just for MIDI
1971 // substream. Use the number of events equivalent to 10 msec as
1972 // interval of hardware IRQ.
1973 if (events_per_period == 0)
1974 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1975 if (events_per_buffer == 0)
1976 events_per_buffer = events_per_period * 3;
1977
1978 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1979 amdtp_rate_table[d->irq_target->sfc]);
1980
1981 list_for_each_entry(s, &d->streams, list) {
1982 unsigned int idle_irq_interval = 0;
1983
1984 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
1985 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1986 amdtp_rate_table[d->irq_target->sfc]);
1987 }
1988
1989 // Starts immediately but actually DMA context starts several hundred cycles later.
1990 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
1991 if (err < 0)
1992 goto error;
1993 }
1994
1995 return 0;
1996 error:
1997 list_for_each_entry(s, &d->streams, list)
1998 amdtp_stream_stop(s);
1999 return err;
2000 }
2001 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2002
2003 /**
2004 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2005 * @d: the AMDTP domain to which the isoc contexts belong.
2006 */
2007 void amdtp_domain_stop(struct amdtp_domain *d)
2008 {
2009 struct amdtp_stream *s, *next;
2010
2011 if (d->irq_target)
2012 amdtp_stream_stop(d->irq_target);
2013
2014 list_for_each_entry_safe(s, next, &d->streams, list) {
2015 list_del(&s->list);
2016
2017 if (s != d->irq_target)
2018 amdtp_stream_stop(s);
2019 }
2020
2021 d->events_per_period = 0;
2022 d->irq_target = NULL;
2023 }
2024 EXPORT_SYMBOL_GPL(amdtp_domain_stop);