]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - sound/firewire/amdtp.c
usb: hcd.h: Fix the values of SetHubDepth and GetPortErrorCount to match USB 3.1...
[mirror_ubuntu-zesty-kernel.git] / sound / firewire / amdtp.c
1 /*
2 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3 * with Common Isochronous Packet (IEC 61883-1) headers
4 *
5 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6 * Licensed under the terms of the GNU General Public License, version 2.
7 */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include <sound/rawmidi.h>
18 #include "amdtp.h"
19
20 #define TICKS_PER_CYCLE 3072
21 #define CYCLES_PER_SECOND 8000
22 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
23
24 /*
25 * Nominally 3125 bytes/second, but the MIDI port's clock might be
26 * 1% too slow, and the bus clock 100 ppm too fast.
27 */
28 #define MIDI_BYTES_PER_SECOND 3093
29
30 /*
31 * Several devices look only at the first eight data blocks.
32 * In any case, this is more than enough for the MIDI data rate.
33 */
34 #define MAX_MIDI_RX_BLOCKS 8
35
36 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
37
38 /* isochronous header parameters */
39 #define ISO_DATA_LENGTH_SHIFT 16
40 #define TAG_CIP 1
41
42 /* common isochronous packet header parameters */
43 #define CIP_EOH_SHIFT 31
44 #define CIP_EOH (1u << CIP_EOH_SHIFT)
45 #define CIP_EOH_MASK 0x80000000
46 #define CIP_SID_SHIFT 24
47 #define CIP_SID_MASK 0x3f000000
48 #define CIP_DBS_MASK 0x00ff0000
49 #define CIP_DBS_SHIFT 16
50 #define CIP_DBC_MASK 0x000000ff
51 #define CIP_FMT_SHIFT 24
52 #define CIP_FMT_MASK 0x3f000000
53 #define CIP_FDF_MASK 0x00ff0000
54 #define CIP_FDF_SHIFT 16
55 #define CIP_SYT_MASK 0x0000ffff
56 #define CIP_SYT_NO_INFO 0xffff
57
58 /*
59 * Audio and Music transfer protocol specific parameters
60 * only "Clock-based rate control mode" is supported
61 */
62 #define CIP_FMT_AM (0x10 << CIP_FMT_SHIFT)
63 #define AMDTP_FDF_AM824 (0 << (CIP_FDF_SHIFT + 3))
64 #define AMDTP_FDF_NO_DATA 0xff
65
66 /* TODO: make these configurable */
67 #define INTERRUPT_INTERVAL 16
68 #define QUEUE_LENGTH 48
69
70 #define IN_PACKET_HEADER_SIZE 4
71 #define OUT_PACKET_HEADER_SIZE 0
72
73 static void pcm_period_tasklet(unsigned long data);
74
75 /**
76 * amdtp_stream_init - initialize an AMDTP stream structure
77 * @s: the AMDTP stream to initialize
78 * @unit: the target of the stream
79 * @dir: the direction of stream
80 * @flags: the packet transmission method to use
81 */
82 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
83 enum amdtp_stream_direction dir, enum cip_flags flags)
84 {
85 s->unit = unit;
86 s->direction = dir;
87 s->flags = flags;
88 s->context = ERR_PTR(-1);
89 mutex_init(&s->mutex);
90 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
91 s->packet_index = 0;
92
93 init_waitqueue_head(&s->callback_wait);
94 s->callbacked = false;
95 s->sync_slave = NULL;
96
97 return 0;
98 }
99 EXPORT_SYMBOL(amdtp_stream_init);
100
101 /**
102 * amdtp_stream_destroy - free stream resources
103 * @s: the AMDTP stream to destroy
104 */
105 void amdtp_stream_destroy(struct amdtp_stream *s)
106 {
107 WARN_ON(amdtp_stream_running(s));
108 mutex_destroy(&s->mutex);
109 }
110 EXPORT_SYMBOL(amdtp_stream_destroy);
111
112 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
113 [CIP_SFC_32000] = 8,
114 [CIP_SFC_44100] = 8,
115 [CIP_SFC_48000] = 8,
116 [CIP_SFC_88200] = 16,
117 [CIP_SFC_96000] = 16,
118 [CIP_SFC_176400] = 32,
119 [CIP_SFC_192000] = 32,
120 };
121 EXPORT_SYMBOL(amdtp_syt_intervals);
122
123 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
124 [CIP_SFC_32000] = 32000,
125 [CIP_SFC_44100] = 44100,
126 [CIP_SFC_48000] = 48000,
127 [CIP_SFC_88200] = 88200,
128 [CIP_SFC_96000] = 96000,
129 [CIP_SFC_176400] = 176400,
130 [CIP_SFC_192000] = 192000,
131 };
132 EXPORT_SYMBOL(amdtp_rate_table);
133
134 /**
135 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
136 * @s: the AMDTP stream, which must be initialized.
137 * @runtime: the PCM substream runtime
138 */
139 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
140 struct snd_pcm_runtime *runtime)
141 {
142 int err;
143
144 /* AM824 in IEC 61883-6 can deliver 24bit data */
145 err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
146 if (err < 0)
147 goto end;
148
149 /*
150 * Currently firewire-lib processes 16 packets in one software
151 * interrupt callback. This equals to 2msec but actually the
152 * interval of the interrupts has a jitter.
153 * Additionally, even if adding a constraint to fit period size to
154 * 2msec, actual calculated frames per period doesn't equal to 2msec,
155 * depending on sampling rate.
156 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
157 * Here let us use 5msec for safe period interrupt.
158 */
159 err = snd_pcm_hw_constraint_minmax(runtime,
160 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
161 5000, UINT_MAX);
162 if (err < 0)
163 goto end;
164
165 /* Non-Blocking stream has no more constraints */
166 if (!(s->flags & CIP_BLOCKING))
167 goto end;
168
169 /*
170 * One AMDTP packet can include some frames. In blocking mode, the
171 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
172 * depending on its sampling rate. For accurate period interrupt, it's
173 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
174 *
175 * TODO: These constraints can be improved with proper rules.
176 * Currently apply LCM of SYT_INTERVALs.
177 */
178 err = snd_pcm_hw_constraint_step(runtime, 0,
179 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
180 if (err < 0)
181 goto end;
182 err = snd_pcm_hw_constraint_step(runtime, 0,
183 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
184 end:
185 return err;
186 }
187 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
188
189 /**
190 * amdtp_stream_set_parameters - set stream parameters
191 * @s: the AMDTP stream to configure
192 * @rate: the sample rate
193 * @pcm_channels: the number of PCM samples in each data block, to be encoded
194 * as AM824 multi-bit linear audio
195 * @midi_ports: the number of MIDI ports (i.e., MPX-MIDI Data Channels)
196 *
197 * The parameters must be set before the stream is started, and must not be
198 * changed while the stream is running.
199 */
200 void amdtp_stream_set_parameters(struct amdtp_stream *s,
201 unsigned int rate,
202 unsigned int pcm_channels,
203 unsigned int midi_ports)
204 {
205 unsigned int i, sfc, midi_channels;
206
207 midi_channels = DIV_ROUND_UP(midi_ports, 8);
208
209 if (WARN_ON(amdtp_stream_running(s)) |
210 WARN_ON(pcm_channels > AMDTP_MAX_CHANNELS_FOR_PCM) |
211 WARN_ON(midi_channels > AMDTP_MAX_CHANNELS_FOR_MIDI))
212 return;
213
214 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc)
215 if (amdtp_rate_table[sfc] == rate)
216 goto sfc_found;
217 WARN_ON(1);
218 return;
219
220 sfc_found:
221 s->pcm_channels = pcm_channels;
222 s->sfc = sfc;
223 s->data_block_quadlets = s->pcm_channels + midi_channels;
224 s->midi_ports = midi_ports;
225
226 s->syt_interval = amdtp_syt_intervals[sfc];
227
228 /* default buffering in the device */
229 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
230 if (s->flags & CIP_BLOCKING)
231 /* additional buffering needed to adjust for no-data packets */
232 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
233
234 /* init the position map for PCM and MIDI channels */
235 for (i = 0; i < pcm_channels; i++)
236 s->pcm_positions[i] = i;
237 s->midi_position = s->pcm_channels;
238
239 /*
240 * We do not know the actual MIDI FIFO size of most devices. Just
241 * assume two bytes, i.e., one byte can be received over the bus while
242 * the previous one is transmitted over MIDI.
243 * (The value here is adjusted for midi_ratelimit_per_packet().)
244 */
245 s->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
246 }
247 EXPORT_SYMBOL(amdtp_stream_set_parameters);
248
249 /**
250 * amdtp_stream_get_max_payload - get the stream's packet size
251 * @s: the AMDTP stream
252 *
253 * This function must not be called before the stream has been configured
254 * with amdtp_stream_set_parameters().
255 */
256 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
257 {
258 unsigned int multiplier = 1;
259
260 if (s->flags & CIP_JUMBO_PAYLOAD)
261 multiplier = 5;
262
263 return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
264 }
265 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
266
267 static void write_pcm_s16(struct amdtp_stream *s,
268 struct snd_pcm_substream *pcm,
269 __be32 *buffer, unsigned int frames);
270 static void write_pcm_s32(struct amdtp_stream *s,
271 struct snd_pcm_substream *pcm,
272 __be32 *buffer, unsigned int frames);
273 static void read_pcm_s32(struct amdtp_stream *s,
274 struct snd_pcm_substream *pcm,
275 __be32 *buffer, unsigned int frames);
276
277 /**
278 * amdtp_stream_set_pcm_format - set the PCM format
279 * @s: the AMDTP stream to configure
280 * @format: the format of the ALSA PCM device
281 *
282 * The sample format must be set after the other parameters (rate/PCM channels/
283 * MIDI) and before the stream is started, and must not be changed while the
284 * stream is running.
285 */
286 void amdtp_stream_set_pcm_format(struct amdtp_stream *s,
287 snd_pcm_format_t format)
288 {
289 if (WARN_ON(amdtp_stream_pcm_running(s)))
290 return;
291
292 switch (format) {
293 default:
294 WARN_ON(1);
295 /* fall through */
296 case SNDRV_PCM_FORMAT_S16:
297 if (s->direction == AMDTP_OUT_STREAM) {
298 s->transfer_samples = write_pcm_s16;
299 break;
300 }
301 WARN_ON(1);
302 /* fall through */
303 case SNDRV_PCM_FORMAT_S32:
304 if (s->direction == AMDTP_OUT_STREAM)
305 s->transfer_samples = write_pcm_s32;
306 else
307 s->transfer_samples = read_pcm_s32;
308 break;
309 }
310 }
311 EXPORT_SYMBOL(amdtp_stream_set_pcm_format);
312
313 /**
314 * amdtp_stream_pcm_prepare - prepare PCM device for running
315 * @s: the AMDTP stream
316 *
317 * This function should be called from the PCM device's .prepare callback.
318 */
319 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
320 {
321 tasklet_kill(&s->period_tasklet);
322 s->pcm_buffer_pointer = 0;
323 s->pcm_period_pointer = 0;
324 s->pointer_flush = true;
325 }
326 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
327
328 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
329 unsigned int syt)
330 {
331 unsigned int phase, data_blocks;
332
333 /* Blocking mode. */
334 if (s->flags & CIP_BLOCKING) {
335 /* This module generate empty packet for 'no data'. */
336 if (syt == CIP_SYT_NO_INFO)
337 data_blocks = 0;
338 else
339 data_blocks = s->syt_interval;
340 /* Non-blocking mode. */
341 } else {
342 if (!cip_sfc_is_base_44100(s->sfc)) {
343 /* Sample_rate / 8000 is an integer, and precomputed. */
344 data_blocks = s->data_block_state;
345 } else {
346 phase = s->data_block_state;
347
348 /*
349 * This calculates the number of data blocks per packet so that
350 * 1) the overall rate is correct and exactly synchronized to
351 * the bus clock, and
352 * 2) packets with a rounded-up number of blocks occur as early
353 * as possible in the sequence (to prevent underruns of the
354 * device's buffer).
355 */
356 if (s->sfc == CIP_SFC_44100)
357 /* 6 6 5 6 5 6 5 ... */
358 data_blocks = 5 + ((phase & 1) ^
359 (phase == 0 || phase >= 40));
360 else
361 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
362 data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
363 if (++phase >= (80 >> (s->sfc >> 1)))
364 phase = 0;
365 s->data_block_state = phase;
366 }
367 }
368
369 return data_blocks;
370 }
371
372 static unsigned int calculate_syt(struct amdtp_stream *s,
373 unsigned int cycle)
374 {
375 unsigned int syt_offset, phase, index, syt;
376
377 if (s->last_syt_offset < TICKS_PER_CYCLE) {
378 if (!cip_sfc_is_base_44100(s->sfc))
379 syt_offset = s->last_syt_offset + s->syt_offset_state;
380 else {
381 /*
382 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
383 * n * SYT_INTERVAL * 24576000 / sample_rate
384 * Modulo TICKS_PER_CYCLE, the difference between successive
385 * elements is about 1386.23. Rounding the results of this
386 * formula to the SYT precision results in a sequence of
387 * differences that begins with:
388 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
389 * This code generates _exactly_ the same sequence.
390 */
391 phase = s->syt_offset_state;
392 index = phase % 13;
393 syt_offset = s->last_syt_offset;
394 syt_offset += 1386 + ((index && !(index & 3)) ||
395 phase == 146);
396 if (++phase >= 147)
397 phase = 0;
398 s->syt_offset_state = phase;
399 }
400 } else
401 syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
402 s->last_syt_offset = syt_offset;
403
404 if (syt_offset < TICKS_PER_CYCLE) {
405 syt_offset += s->transfer_delay;
406 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
407 syt += syt_offset % TICKS_PER_CYCLE;
408
409 return syt & CIP_SYT_MASK;
410 } else {
411 return CIP_SYT_NO_INFO;
412 }
413 }
414
415 static void write_pcm_s32(struct amdtp_stream *s,
416 struct snd_pcm_substream *pcm,
417 __be32 *buffer, unsigned int frames)
418 {
419 struct snd_pcm_runtime *runtime = pcm->runtime;
420 unsigned int channels, remaining_frames, i, c;
421 const u32 *src;
422
423 channels = s->pcm_channels;
424 src = (void *)runtime->dma_area +
425 frames_to_bytes(runtime, s->pcm_buffer_pointer);
426 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
427
428 for (i = 0; i < frames; ++i) {
429 for (c = 0; c < channels; ++c) {
430 buffer[s->pcm_positions[c]] =
431 cpu_to_be32((*src >> 8) | 0x40000000);
432 src++;
433 }
434 buffer += s->data_block_quadlets;
435 if (--remaining_frames == 0)
436 src = (void *)runtime->dma_area;
437 }
438 }
439
440 static void write_pcm_s16(struct amdtp_stream *s,
441 struct snd_pcm_substream *pcm,
442 __be32 *buffer, unsigned int frames)
443 {
444 struct snd_pcm_runtime *runtime = pcm->runtime;
445 unsigned int channels, remaining_frames, i, c;
446 const u16 *src;
447
448 channels = s->pcm_channels;
449 src = (void *)runtime->dma_area +
450 frames_to_bytes(runtime, s->pcm_buffer_pointer);
451 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
452
453 for (i = 0; i < frames; ++i) {
454 for (c = 0; c < channels; ++c) {
455 buffer[s->pcm_positions[c]] =
456 cpu_to_be32((*src << 8) | 0x42000000);
457 src++;
458 }
459 buffer += s->data_block_quadlets;
460 if (--remaining_frames == 0)
461 src = (void *)runtime->dma_area;
462 }
463 }
464
465 static void read_pcm_s32(struct amdtp_stream *s,
466 struct snd_pcm_substream *pcm,
467 __be32 *buffer, unsigned int frames)
468 {
469 struct snd_pcm_runtime *runtime = pcm->runtime;
470 unsigned int channels, remaining_frames, i, c;
471 u32 *dst;
472
473 channels = s->pcm_channels;
474 dst = (void *)runtime->dma_area +
475 frames_to_bytes(runtime, s->pcm_buffer_pointer);
476 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
477
478 for (i = 0; i < frames; ++i) {
479 for (c = 0; c < channels; ++c) {
480 *dst = be32_to_cpu(buffer[s->pcm_positions[c]]) << 8;
481 dst++;
482 }
483 buffer += s->data_block_quadlets;
484 if (--remaining_frames == 0)
485 dst = (void *)runtime->dma_area;
486 }
487 }
488
489 static void write_pcm_silence(struct amdtp_stream *s,
490 __be32 *buffer, unsigned int frames)
491 {
492 unsigned int i, c;
493
494 for (i = 0; i < frames; ++i) {
495 for (c = 0; c < s->pcm_channels; ++c)
496 buffer[s->pcm_positions[c]] = cpu_to_be32(0x40000000);
497 buffer += s->data_block_quadlets;
498 }
499 }
500
501 /*
502 * To avoid sending MIDI bytes at too high a rate, assume that the receiving
503 * device has a FIFO, and track how much it is filled. This values increases
504 * by one whenever we send one byte in a packet, but the FIFO empties at
505 * a constant rate independent of our packet rate. One packet has syt_interval
506 * samples, so the number of bytes that empty out of the FIFO, per packet(!),
507 * is MIDI_BYTES_PER_SECOND * syt_interval / sample_rate. To avoid storing
508 * fractional values, the values in midi_fifo_used[] are measured in bytes
509 * multiplied by the sample rate.
510 */
511 static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
512 {
513 int used;
514
515 used = s->midi_fifo_used[port];
516 if (used == 0) /* common shortcut */
517 return true;
518
519 used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
520 used = max(used, 0);
521 s->midi_fifo_used[port] = used;
522
523 return used < s->midi_fifo_limit;
524 }
525
526 static void midi_rate_use_one_byte(struct amdtp_stream *s, unsigned int port)
527 {
528 s->midi_fifo_used[port] += amdtp_rate_table[s->sfc];
529 }
530
531 static void write_midi_messages(struct amdtp_stream *s,
532 __be32 *buffer, unsigned int frames)
533 {
534 unsigned int f, port;
535 u8 *b;
536
537 for (f = 0; f < frames; f++) {
538 b = (u8 *)&buffer[s->midi_position];
539
540 port = (s->data_block_counter + f) % 8;
541 if (f < MAX_MIDI_RX_BLOCKS &&
542 midi_ratelimit_per_packet(s, port) &&
543 s->midi[port] != NULL &&
544 snd_rawmidi_transmit(s->midi[port], &b[1], 1) == 1) {
545 midi_rate_use_one_byte(s, port);
546 b[0] = 0x81;
547 } else {
548 b[0] = 0x80;
549 b[1] = 0;
550 }
551 b[2] = 0;
552 b[3] = 0;
553
554 buffer += s->data_block_quadlets;
555 }
556 }
557
558 static void read_midi_messages(struct amdtp_stream *s,
559 __be32 *buffer, unsigned int frames)
560 {
561 unsigned int f, port;
562 int len;
563 u8 *b;
564
565 for (f = 0; f < frames; f++) {
566 port = (s->data_block_counter + f) % 8;
567 b = (u8 *)&buffer[s->midi_position];
568
569 len = b[0] - 0x80;
570 if ((1 <= len) && (len <= 3) && (s->midi[port]))
571 snd_rawmidi_receive(s->midi[port], b + 1, len);
572
573 buffer += s->data_block_quadlets;
574 }
575 }
576
577 static void update_pcm_pointers(struct amdtp_stream *s,
578 struct snd_pcm_substream *pcm,
579 unsigned int frames)
580 {
581 unsigned int ptr;
582
583 /*
584 * In IEC 61883-6, one data block represents one event. In ALSA, one
585 * event equals to one PCM frame. But Dice has a quirk to transfer
586 * two PCM frames in one data block.
587 */
588 if (s->double_pcm_frames)
589 frames *= 2;
590
591 ptr = s->pcm_buffer_pointer + frames;
592 if (ptr >= pcm->runtime->buffer_size)
593 ptr -= pcm->runtime->buffer_size;
594 ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
595
596 s->pcm_period_pointer += frames;
597 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
598 s->pcm_period_pointer -= pcm->runtime->period_size;
599 s->pointer_flush = false;
600 tasklet_hi_schedule(&s->period_tasklet);
601 }
602 }
603
604 static void pcm_period_tasklet(unsigned long data)
605 {
606 struct amdtp_stream *s = (void *)data;
607 struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
608
609 if (pcm)
610 snd_pcm_period_elapsed(pcm);
611 }
612
613 static int queue_packet(struct amdtp_stream *s,
614 unsigned int header_length,
615 unsigned int payload_length, bool skip)
616 {
617 struct fw_iso_packet p = {0};
618 int err = 0;
619
620 if (IS_ERR(s->context))
621 goto end;
622
623 p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
624 p.tag = TAG_CIP;
625 p.header_length = header_length;
626 p.payload_length = (!skip) ? payload_length : 0;
627 p.skip = skip;
628 err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
629 s->buffer.packets[s->packet_index].offset);
630 if (err < 0) {
631 dev_err(&s->unit->device, "queueing error: %d\n", err);
632 goto end;
633 }
634
635 if (++s->packet_index >= QUEUE_LENGTH)
636 s->packet_index = 0;
637 end:
638 return err;
639 }
640
641 static inline int queue_out_packet(struct amdtp_stream *s,
642 unsigned int payload_length, bool skip)
643 {
644 return queue_packet(s, OUT_PACKET_HEADER_SIZE,
645 payload_length, skip);
646 }
647
648 static inline int queue_in_packet(struct amdtp_stream *s)
649 {
650 return queue_packet(s, IN_PACKET_HEADER_SIZE,
651 amdtp_stream_get_max_payload(s), false);
652 }
653
654 static int handle_out_packet(struct amdtp_stream *s, unsigned int data_blocks,
655 unsigned int syt)
656 {
657 __be32 *buffer;
658 unsigned int payload_length;
659 struct snd_pcm_substream *pcm;
660
661 buffer = s->buffer.packets[s->packet_index].buffer;
662 buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
663 (s->data_block_quadlets << CIP_DBS_SHIFT) |
664 s->data_block_counter);
665 buffer[1] = cpu_to_be32(CIP_EOH | CIP_FMT_AM | AMDTP_FDF_AM824 |
666 (s->sfc << CIP_FDF_SHIFT) | syt);
667 buffer += 2;
668
669 pcm = ACCESS_ONCE(s->pcm);
670 if (pcm)
671 s->transfer_samples(s, pcm, buffer, data_blocks);
672 else
673 write_pcm_silence(s, buffer, data_blocks);
674 if (s->midi_ports)
675 write_midi_messages(s, buffer, data_blocks);
676
677 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
678
679 payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
680 if (queue_out_packet(s, payload_length, false) < 0)
681 return -EIO;
682
683 if (pcm)
684 update_pcm_pointers(s, pcm, data_blocks);
685
686 /* No need to return the number of handled data blocks. */
687 return 0;
688 }
689
690 static int handle_in_packet(struct amdtp_stream *s,
691 unsigned int payload_quadlets, __be32 *buffer,
692 unsigned int *data_blocks)
693 {
694 u32 cip_header[2];
695 unsigned int data_block_quadlets, data_block_counter, dbc_interval;
696 struct snd_pcm_substream *pcm = NULL;
697 bool lost;
698
699 cip_header[0] = be32_to_cpu(buffer[0]);
700 cip_header[1] = be32_to_cpu(buffer[1]);
701
702 /*
703 * This module supports 'Two-quadlet CIP header with SYT field'.
704 * For convenience, also check FMT field is AM824 or not.
705 */
706 if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
707 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH) ||
708 ((cip_header[1] & CIP_FMT_MASK) != CIP_FMT_AM)) {
709 dev_info_ratelimited(&s->unit->device,
710 "Invalid CIP header for AMDTP: %08X:%08X\n",
711 cip_header[0], cip_header[1]);
712 *data_blocks = 0;
713 goto end;
714 }
715
716 /* Calculate data blocks */
717 if (payload_quadlets < 3 ||
718 ((cip_header[1] & CIP_FDF_MASK) ==
719 (AMDTP_FDF_NO_DATA << CIP_FDF_SHIFT))) {
720 *data_blocks = 0;
721 } else {
722 data_block_quadlets =
723 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
724 /* avoid division by zero */
725 if (data_block_quadlets == 0) {
726 dev_err(&s->unit->device,
727 "Detect invalid value in dbs field: %08X\n",
728 cip_header[0]);
729 return -EPROTO;
730 }
731 if (s->flags & CIP_WRONG_DBS)
732 data_block_quadlets = s->data_block_quadlets;
733
734 *data_blocks = (payload_quadlets - 2) / data_block_quadlets;
735 }
736
737 /* Check data block counter continuity */
738 data_block_counter = cip_header[0] & CIP_DBC_MASK;
739 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
740 s->data_block_counter != UINT_MAX)
741 data_block_counter = s->data_block_counter;
742
743 if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && data_block_counter == 0) ||
744 (s->data_block_counter == UINT_MAX)) {
745 lost = false;
746 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
747 lost = data_block_counter != s->data_block_counter;
748 } else {
749 if ((*data_blocks > 0) && (s->tx_dbc_interval > 0))
750 dbc_interval = s->tx_dbc_interval;
751 else
752 dbc_interval = *data_blocks;
753
754 lost = data_block_counter !=
755 ((s->data_block_counter + dbc_interval) & 0xff);
756 }
757
758 if (lost) {
759 dev_err(&s->unit->device,
760 "Detect discontinuity of CIP: %02X %02X\n",
761 s->data_block_counter, data_block_counter);
762 return -EIO;
763 }
764
765 if (*data_blocks > 0) {
766 buffer += 2;
767
768 pcm = ACCESS_ONCE(s->pcm);
769 if (pcm)
770 s->transfer_samples(s, pcm, buffer, *data_blocks);
771
772 if (s->midi_ports)
773 read_midi_messages(s, buffer, *data_blocks);
774 }
775
776 if (s->flags & CIP_DBC_IS_END_EVENT)
777 s->data_block_counter = data_block_counter;
778 else
779 s->data_block_counter =
780 (data_block_counter + *data_blocks) & 0xff;
781 end:
782 if (queue_in_packet(s) < 0)
783 return -EIO;
784
785 if (pcm)
786 update_pcm_pointers(s, pcm, *data_blocks);
787
788 return 0;
789 }
790
791 static void out_stream_callback(struct fw_iso_context *context, u32 cycle,
792 size_t header_length, void *header,
793 void *private_data)
794 {
795 struct amdtp_stream *s = private_data;
796 unsigned int i, syt, packets = header_length / 4;
797 unsigned int data_blocks;
798
799 if (s->packet_index < 0)
800 return;
801
802 /*
803 * Compute the cycle of the last queued packet.
804 * (We need only the four lowest bits for the SYT, so we can ignore
805 * that bits 0-11 must wrap around at 3072.)
806 */
807 cycle += QUEUE_LENGTH - packets;
808
809 for (i = 0; i < packets; ++i) {
810 syt = calculate_syt(s, ++cycle);
811 data_blocks = calculate_data_blocks(s, syt);
812
813 if (handle_out_packet(s, data_blocks, syt) < 0) {
814 s->packet_index = -1;
815 amdtp_stream_pcm_abort(s);
816 return;
817 }
818 }
819
820 fw_iso_context_queue_flush(s->context);
821 }
822
823 static void in_stream_callback(struct fw_iso_context *context, u32 cycle,
824 size_t header_length, void *header,
825 void *private_data)
826 {
827 struct amdtp_stream *s = private_data;
828 unsigned int p, syt, packets;
829 unsigned int payload_quadlets, max_payload_quadlets;
830 unsigned int data_blocks;
831 __be32 *buffer, *headers = header;
832
833 if (s->packet_index < 0)
834 return;
835
836 /* The number of packets in buffer */
837 packets = header_length / IN_PACKET_HEADER_SIZE;
838
839 /* For buffer-over-run prevention. */
840 max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;
841
842 for (p = 0; p < packets; p++) {
843 buffer = s->buffer.packets[s->packet_index].buffer;
844
845 /* The number of quadlets in this packet */
846 payload_quadlets =
847 (be32_to_cpu(headers[p]) >> ISO_DATA_LENGTH_SHIFT) / 4;
848 if (payload_quadlets > max_payload_quadlets) {
849 dev_err(&s->unit->device,
850 "Detect jumbo payload: %02x %02x\n",
851 payload_quadlets, max_payload_quadlets);
852 s->packet_index = -1;
853 break;
854 }
855
856 if (handle_in_packet(s, payload_quadlets, buffer,
857 &data_blocks) < 0) {
858 s->packet_index = -1;
859 break;
860 }
861
862 /* Process sync slave stream */
863 if (s->sync_slave && s->sync_slave->callbacked) {
864 syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
865 if (handle_out_packet(s->sync_slave,
866 data_blocks, syt) < 0) {
867 s->packet_index = -1;
868 break;
869 }
870 }
871 }
872
873 /* Queueing error or detecting discontinuity */
874 if (s->packet_index < 0) {
875 amdtp_stream_pcm_abort(s);
876
877 /* Abort sync slave. */
878 if (s->sync_slave) {
879 s->sync_slave->packet_index = -1;
880 amdtp_stream_pcm_abort(s->sync_slave);
881 }
882 return;
883 }
884
885 /* when sync to device, flush the packets for slave stream */
886 if (s->sync_slave && s->sync_slave->callbacked)
887 fw_iso_context_queue_flush(s->sync_slave->context);
888
889 fw_iso_context_queue_flush(s->context);
890 }
891
892 /* processing is done by master callback */
893 static void slave_stream_callback(struct fw_iso_context *context, u32 cycle,
894 size_t header_length, void *header,
895 void *private_data)
896 {
897 return;
898 }
899
900 /* this is executed one time */
901 static void amdtp_stream_first_callback(struct fw_iso_context *context,
902 u32 cycle, size_t header_length,
903 void *header, void *private_data)
904 {
905 struct amdtp_stream *s = private_data;
906
907 /*
908 * For in-stream, first packet has come.
909 * For out-stream, prepared to transmit first packet
910 */
911 s->callbacked = true;
912 wake_up(&s->callback_wait);
913
914 if (s->direction == AMDTP_IN_STREAM)
915 context->callback.sc = in_stream_callback;
916 else if (s->flags & CIP_SYNC_TO_DEVICE)
917 context->callback.sc = slave_stream_callback;
918 else
919 context->callback.sc = out_stream_callback;
920
921 context->callback.sc(context, cycle, header_length, header, s);
922 }
923
924 /**
925 * amdtp_stream_start - start transferring packets
926 * @s: the AMDTP stream to start
927 * @channel: the isochronous channel on the bus
928 * @speed: firewire speed code
929 *
930 * The stream cannot be started until it has been configured with
931 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
932 * device can be started.
933 */
934 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
935 {
936 static const struct {
937 unsigned int data_block;
938 unsigned int syt_offset;
939 } initial_state[] = {
940 [CIP_SFC_32000] = { 4, 3072 },
941 [CIP_SFC_48000] = { 6, 1024 },
942 [CIP_SFC_96000] = { 12, 1024 },
943 [CIP_SFC_192000] = { 24, 1024 },
944 [CIP_SFC_44100] = { 0, 67 },
945 [CIP_SFC_88200] = { 0, 67 },
946 [CIP_SFC_176400] = { 0, 67 },
947 };
948 unsigned int header_size;
949 enum dma_data_direction dir;
950 int type, tag, err;
951
952 mutex_lock(&s->mutex);
953
954 if (WARN_ON(amdtp_stream_running(s) ||
955 (s->data_block_quadlets < 1))) {
956 err = -EBADFD;
957 goto err_unlock;
958 }
959
960 if (s->direction == AMDTP_IN_STREAM &&
961 s->flags & CIP_SKIP_INIT_DBC_CHECK)
962 s->data_block_counter = UINT_MAX;
963 else
964 s->data_block_counter = 0;
965 s->data_block_state = initial_state[s->sfc].data_block;
966 s->syt_offset_state = initial_state[s->sfc].syt_offset;
967 s->last_syt_offset = TICKS_PER_CYCLE;
968
969 /* initialize packet buffer */
970 if (s->direction == AMDTP_IN_STREAM) {
971 dir = DMA_FROM_DEVICE;
972 type = FW_ISO_CONTEXT_RECEIVE;
973 header_size = IN_PACKET_HEADER_SIZE;
974 } else {
975 dir = DMA_TO_DEVICE;
976 type = FW_ISO_CONTEXT_TRANSMIT;
977 header_size = OUT_PACKET_HEADER_SIZE;
978 }
979 err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
980 amdtp_stream_get_max_payload(s), dir);
981 if (err < 0)
982 goto err_unlock;
983
984 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
985 type, channel, speed, header_size,
986 amdtp_stream_first_callback, s);
987 if (IS_ERR(s->context)) {
988 err = PTR_ERR(s->context);
989 if (err == -EBUSY)
990 dev_err(&s->unit->device,
991 "no free stream on this controller\n");
992 goto err_buffer;
993 }
994
995 amdtp_stream_update(s);
996
997 s->packet_index = 0;
998 do {
999 if (s->direction == AMDTP_IN_STREAM)
1000 err = queue_in_packet(s);
1001 else
1002 err = queue_out_packet(s, 0, true);
1003 if (err < 0)
1004 goto err_context;
1005 } while (s->packet_index > 0);
1006
1007 /* NOTE: TAG1 matches CIP. This just affects in stream. */
1008 tag = FW_ISO_CONTEXT_MATCH_TAG1;
1009 if (s->flags & CIP_EMPTY_WITH_TAG0)
1010 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1011
1012 s->callbacked = false;
1013 err = fw_iso_context_start(s->context, -1, 0, tag);
1014 if (err < 0)
1015 goto err_context;
1016
1017 mutex_unlock(&s->mutex);
1018
1019 return 0;
1020
1021 err_context:
1022 fw_iso_context_destroy(s->context);
1023 s->context = ERR_PTR(-1);
1024 err_buffer:
1025 iso_packets_buffer_destroy(&s->buffer, s->unit);
1026 err_unlock:
1027 mutex_unlock(&s->mutex);
1028
1029 return err;
1030 }
1031 EXPORT_SYMBOL(amdtp_stream_start);
1032
1033 /**
1034 * amdtp_stream_pcm_pointer - get the PCM buffer position
1035 * @s: the AMDTP stream that transports the PCM data
1036 *
1037 * Returns the current buffer position, in frames.
1038 */
1039 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
1040 {
1041 /* this optimization is allowed to be racy */
1042 if (s->pointer_flush && amdtp_stream_running(s))
1043 fw_iso_context_flush_completions(s->context);
1044 else
1045 s->pointer_flush = true;
1046
1047 return ACCESS_ONCE(s->pcm_buffer_pointer);
1048 }
1049 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1050
1051 /**
1052 * amdtp_stream_update - update the stream after a bus reset
1053 * @s: the AMDTP stream
1054 */
1055 void amdtp_stream_update(struct amdtp_stream *s)
1056 {
1057 /* Precomputing. */
1058 ACCESS_ONCE(s->source_node_id_field) =
1059 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) &
1060 CIP_SID_MASK;
1061 }
1062 EXPORT_SYMBOL(amdtp_stream_update);
1063
1064 /**
1065 * amdtp_stream_stop - stop sending packets
1066 * @s: the AMDTP stream to stop
1067 *
1068 * All PCM and MIDI devices of the stream must be stopped before the stream
1069 * itself can be stopped.
1070 */
1071 void amdtp_stream_stop(struct amdtp_stream *s)
1072 {
1073 mutex_lock(&s->mutex);
1074
1075 if (!amdtp_stream_running(s)) {
1076 mutex_unlock(&s->mutex);
1077 return;
1078 }
1079
1080 tasklet_kill(&s->period_tasklet);
1081 fw_iso_context_stop(s->context);
1082 fw_iso_context_destroy(s->context);
1083 s->context = ERR_PTR(-1);
1084 iso_packets_buffer_destroy(&s->buffer, s->unit);
1085
1086 s->callbacked = false;
1087
1088 mutex_unlock(&s->mutex);
1089 }
1090 EXPORT_SYMBOL(amdtp_stream_stop);
1091
1092 /**
1093 * amdtp_stream_pcm_abort - abort the running PCM device
1094 * @s: the AMDTP stream about to be stopped
1095 *
1096 * If the isochronous stream needs to be stopped asynchronously, call this
1097 * function first to stop the PCM device.
1098 */
1099 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1100 {
1101 struct snd_pcm_substream *pcm;
1102
1103 pcm = ACCESS_ONCE(s->pcm);
1104 if (pcm)
1105 snd_pcm_stop_xrun(pcm);
1106 }
1107 EXPORT_SYMBOL(amdtp_stream_pcm_abort);