]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/firewire/fireface/ff-transaction.c
Merge tag 'nfs-for-4.15-2' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / sound / firewire / fireface / ff-transaction.c
1 /*
2 * ff-transaction.c - a part of driver for RME Fireface series
3 *
4 * Copyright (c) 2015-2017 Takashi Sakamoto
5 *
6 * Licensed under the terms of the GNU General Public License, version 2.
7 */
8
9 #include "ff.h"
10
11 static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port,
12 int rcode)
13 {
14 struct snd_rawmidi_substream *substream =
15 READ_ONCE(ff->rx_midi_substreams[port]);
16
17 if (rcode_is_permanent_error(rcode)) {
18 ff->rx_midi_error[port] = true;
19 return;
20 }
21
22 if (rcode != RCODE_COMPLETE) {
23 /* Transfer the message again, immediately. */
24 ff->next_ktime[port] = 0;
25 schedule_work(&ff->rx_midi_work[port]);
26 return;
27 }
28
29 snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]);
30 ff->rx_bytes[port] = 0;
31
32 if (!snd_rawmidi_transmit_empty(substream))
33 schedule_work(&ff->rx_midi_work[port]);
34 }
35
36 static void finish_transmit_midi0_msg(struct fw_card *card, int rcode,
37 void *data, size_t length,
38 void *callback_data)
39 {
40 struct snd_ff *ff =
41 container_of(callback_data, struct snd_ff, transactions[0]);
42 finish_transmit_midi_msg(ff, 0, rcode);
43 }
44
45 static void finish_transmit_midi1_msg(struct fw_card *card, int rcode,
46 void *data, size_t length,
47 void *callback_data)
48 {
49 struct snd_ff *ff =
50 container_of(callback_data, struct snd_ff, transactions[1]);
51 finish_transmit_midi_msg(ff, 1, rcode);
52 }
53
54 static inline void fill_midi_buf(struct snd_ff *ff, unsigned int port,
55 unsigned int index, u8 byte)
56 {
57 ff->msg_buf[port][index] = cpu_to_le32(byte);
58 }
59
60 static void transmit_midi_msg(struct snd_ff *ff, unsigned int port)
61 {
62 struct snd_rawmidi_substream *substream =
63 READ_ONCE(ff->rx_midi_substreams[port]);
64 u8 *buf = (u8 *)ff->msg_buf[port];
65 int i, len;
66
67 struct fw_device *fw_dev = fw_parent_device(ff->unit);
68 unsigned long long addr;
69 int generation;
70 fw_transaction_callback_t callback;
71
72 if (substream == NULL || snd_rawmidi_transmit_empty(substream))
73 return;
74
75 if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port])
76 return;
77
78 /* Do it in next chance. */
79 if (ktime_after(ff->next_ktime[port], ktime_get())) {
80 schedule_work(&ff->rx_midi_work[port]);
81 return;
82 }
83
84 len = snd_rawmidi_transmit_peek(substream, buf,
85 SND_FF_MAXIMIM_MIDI_QUADS);
86 if (len <= 0)
87 return;
88
89 for (i = len - 1; i >= 0; i--)
90 fill_midi_buf(ff, port, i, buf[i]);
91
92 if (port == 0) {
93 addr = ff->spec->protocol->midi_rx_port_0_reg;
94 callback = finish_transmit_midi0_msg;
95 } else {
96 addr = ff->spec->protocol->midi_rx_port_1_reg;
97 callback = finish_transmit_midi1_msg;
98 }
99
100 /* Set interval to next transaction. */
101 ff->next_ktime[port] = ktime_add_ns(ktime_get(),
102 len * 8 * NSEC_PER_SEC / 31250);
103 ff->rx_bytes[port] = len;
104
105 /*
106 * In Linux FireWire core, when generation is updated with memory
107 * barrier, node id has already been updated. In this module, After
108 * this smp_rmb(), load/store instructions to memory are completed.
109 * Thus, both of generation and node id are available with recent
110 * values. This is a light-serialization solution to handle bus reset
111 * events on IEEE 1394 bus.
112 */
113 generation = fw_dev->generation;
114 smp_rmb();
115 fw_send_request(fw_dev->card, &ff->transactions[port],
116 TCODE_WRITE_BLOCK_REQUEST,
117 fw_dev->node_id, generation, fw_dev->max_speed,
118 addr, &ff->msg_buf[port], len * 4,
119 callback, &ff->transactions[port]);
120 }
121
122 static void transmit_midi0_msg(struct work_struct *work)
123 {
124 struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]);
125
126 transmit_midi_msg(ff, 0);
127 }
128
129 static void transmit_midi1_msg(struct work_struct *work)
130 {
131 struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]);
132
133 transmit_midi_msg(ff, 1);
134 }
135
136 static void handle_midi_msg(struct fw_card *card, struct fw_request *request,
137 int tcode, int destination, int source,
138 int generation, unsigned long long offset,
139 void *data, size_t length, void *callback_data)
140 {
141 struct snd_ff *ff = callback_data;
142 __le32 *buf = data;
143 u32 quad;
144 u8 byte;
145 unsigned int index;
146 struct snd_rawmidi_substream *substream;
147 int i;
148
149 fw_send_response(card, request, RCODE_COMPLETE);
150
151 for (i = 0; i < length / 4; i++) {
152 quad = le32_to_cpu(buf[i]);
153
154 /* Message in first port. */
155 /*
156 * This value may represent the index of this unit when the same
157 * units are on the same IEEE 1394 bus. This driver doesn't use
158 * it.
159 */
160 index = (quad >> 8) & 0xff;
161 if (index > 0) {
162 substream = READ_ONCE(ff->tx_midi_substreams[0]);
163 if (substream != NULL) {
164 byte = quad & 0xff;
165 snd_rawmidi_receive(substream, &byte, 1);
166 }
167 }
168
169 /* Message in second port. */
170 index = (quad >> 24) & 0xff;
171 if (index > 0) {
172 substream = READ_ONCE(ff->tx_midi_substreams[1]);
173 if (substream != NULL) {
174 byte = (quad >> 16) & 0xff;
175 snd_rawmidi_receive(substream, &byte, 1);
176 }
177 }
178 }
179 }
180
181 static int allocate_own_address(struct snd_ff *ff, int i)
182 {
183 struct fw_address_region midi_msg_region;
184 int err;
185
186 ff->async_handler.length = SND_FF_MAXIMIM_MIDI_QUADS * 4;
187 ff->async_handler.address_callback = handle_midi_msg;
188 ff->async_handler.callback_data = ff;
189
190 midi_msg_region.start = 0x000100000000ull * i;
191 midi_msg_region.end = midi_msg_region.start + ff->async_handler.length;
192
193 err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region);
194 if (err >= 0) {
195 /* Controllers are allowed to register this region. */
196 if (ff->async_handler.offset & 0x0000ffffffff) {
197 fw_core_remove_address_handler(&ff->async_handler);
198 err = -EAGAIN;
199 }
200 }
201
202 return err;
203 }
204
205 /*
206 * The configuration to start asynchronous transactions for MIDI messages is in
207 * 0x'0000'8010'051c. This register includes the other options, thus this driver
208 * doesn't touch it and leaves the decision to userspace. The userspace MUST add
209 * 0x04000000 to write transactions to the register to receive any MIDI
210 * messages.
211 *
212 * Here, I just describe MIDI-related offsets of the register, in little-endian
213 * order.
214 *
215 * Controllers are allowed to register higher 4 bytes of address to receive
216 * the transactions. The register is 0x'0000'8010'03f4. On the other hand, the
217 * controllers are not allowed to register lower 4 bytes of the address. They
218 * are forced to select from 4 options by writing corresponding bits to
219 * 0x'0000'8010'051c.
220 *
221 * The 3rd-6th bits in MSB of this register are used to indicate lower 4 bytes
222 * of address to which the device transferrs the transactions.
223 * - 6th: 0x'....'....'0000'0180
224 * - 5th: 0x'....'....'0000'0100
225 * - 4th: 0x'....'....'0000'0080
226 * - 3rd: 0x'....'....'0000'0000
227 *
228 * This driver configure 0x'....'....'0000'0000 for units to receive MIDI
229 * messages. 3rd bit of the register should be configured, however this driver
230 * deligates this task to user space applications due to a restriction that
231 * this register is write-only and the other bits have own effects.
232 *
233 * The 1st and 2nd bits in LSB of this register are used to cancel transferring
234 * asynchronous transactions. These two bits have the same effect.
235 * - 1st/2nd: cancel transferring
236 */
237 int snd_ff_transaction_reregister(struct snd_ff *ff)
238 {
239 struct fw_card *fw_card = fw_parent_device(ff->unit)->card;
240 u32 addr;
241 __le32 reg;
242
243 /*
244 * Controllers are allowed to register its node ID and upper 2 byte of
245 * local address to listen asynchronous transactions.
246 */
247 addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32);
248 reg = cpu_to_le32(addr);
249 return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
250 ff->spec->protocol->midi_high_addr_reg,
251 &reg, sizeof(reg), 0);
252 }
253
254 int snd_ff_transaction_register(struct snd_ff *ff)
255 {
256 int i, err;
257
258 /*
259 * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should
260 * be zero due to device specification.
261 */
262 for (i = 0; i < 0xffff; i++) {
263 err = allocate_own_address(ff, i);
264 if (err != -EBUSY && err != -EAGAIN)
265 break;
266 }
267 if (err < 0)
268 return err;
269
270 err = snd_ff_transaction_reregister(ff);
271 if (err < 0)
272 return err;
273
274 INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg);
275 INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg);
276
277 return 0;
278 }
279
280 void snd_ff_transaction_unregister(struct snd_ff *ff)
281 {
282 __le32 reg;
283
284 if (ff->async_handler.callback_data == NULL)
285 return;
286 ff->async_handler.callback_data = NULL;
287
288 /* Release higher 4 bytes of address. */
289 reg = cpu_to_le32(0x00000000);
290 snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
291 ff->spec->protocol->midi_high_addr_reg,
292 &reg, sizeof(reg), 0);
293
294 fw_core_remove_address_handler(&ff->async_handler);
295 }