]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/mips/hal2.c
Merge tag 'topic/designware-baytrail-2017-03-02' of git://anongit.freedesktop.org...
[mirror_ubuntu-bionic-kernel.git] / sound / mips / hal2.c
1 /*
2 * Driver for A2 audio system used in SGI machines
3 * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4 *
5 * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6 * was based on code from Ulf Carlsson
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30
31 #include <asm/sgi/hpc3.h>
32 #include <asm/sgi/ip22.h>
33
34 #include <sound/core.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm-indirect.h>
38 #include <sound/initval.h>
39
40 #include "hal2.h"
41
42 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
43 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
44
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
49 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
50 MODULE_AUTHOR("Thomas Bogendoerfer");
51 MODULE_LICENSE("GPL");
52
53
54 #define H2_BLOCK_SIZE 1024
55 #define H2_BUF_SIZE 16384
56
57 struct hal2_pbus {
58 struct hpc3_pbus_dmacregs *pbus;
59 int pbusnr;
60 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
61 };
62
63 struct hal2_desc {
64 struct hpc_dma_desc desc;
65 u32 pad; /* padding */
66 };
67
68 struct hal2_codec {
69 struct snd_pcm_indirect pcm_indirect;
70 struct snd_pcm_substream *substream;
71
72 unsigned char *buffer;
73 dma_addr_t buffer_dma;
74 struct hal2_desc *desc;
75 dma_addr_t desc_dma;
76 int desc_count;
77 struct hal2_pbus pbus;
78 int voices; /* mono/stereo */
79 unsigned int sample_rate;
80 unsigned int master; /* Master frequency */
81 unsigned short mod; /* MOD value */
82 unsigned short inc; /* INC value */
83 };
84
85 #define H2_MIX_OUTPUT_ATT 0
86 #define H2_MIX_INPUT_GAIN 1
87
88 struct snd_hal2 {
89 struct snd_card *card;
90
91 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
92 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
93 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
94 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
95
96 struct hal2_codec dac;
97 struct hal2_codec adc;
98 };
99
100 #define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
101
102 #define H2_READ_ADDR(addr) (addr | (1<<7))
103 #define H2_WRITE_ADDR(addr) (addr)
104
105 static inline u32 hal2_read(u32 *reg)
106 {
107 return __raw_readl(reg);
108 }
109
110 static inline void hal2_write(u32 val, u32 *reg)
111 {
112 __raw_writel(val, reg);
113 }
114
115
116 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
117 {
118 u32 ret;
119 struct hal2_ctl_regs *regs = hal2->ctl_regs;
120
121 hal2_write(H2_READ_ADDR(addr), &regs->iar);
122 H2_INDIRECT_WAIT(regs);
123 ret = hal2_read(&regs->idr0) & 0xffff;
124 hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
125 H2_INDIRECT_WAIT(regs);
126 ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
127 return ret;
128 }
129
130 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
131 {
132 struct hal2_ctl_regs *regs = hal2->ctl_regs;
133
134 hal2_write(val, &regs->idr0);
135 hal2_write(0, &regs->idr1);
136 hal2_write(0, &regs->idr2);
137 hal2_write(0, &regs->idr3);
138 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
139 H2_INDIRECT_WAIT(regs);
140 }
141
142 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
143 {
144 struct hal2_ctl_regs *regs = hal2->ctl_regs;
145
146 hal2_write(val & 0xffff, &regs->idr0);
147 hal2_write(val >> 16, &regs->idr1);
148 hal2_write(0, &regs->idr2);
149 hal2_write(0, &regs->idr3);
150 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
151 H2_INDIRECT_WAIT(regs);
152 }
153
154 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
155 {
156 struct hal2_ctl_regs *regs = hal2->ctl_regs;
157
158 hal2_write(H2_READ_ADDR(addr), &regs->iar);
159 H2_INDIRECT_WAIT(regs);
160 hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
161 hal2_write(0, &regs->idr1);
162 hal2_write(0, &regs->idr2);
163 hal2_write(0, &regs->idr3);
164 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
165 H2_INDIRECT_WAIT(regs);
166 }
167
168 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
169 {
170 struct hal2_ctl_regs *regs = hal2->ctl_regs;
171
172 hal2_write(H2_READ_ADDR(addr), &regs->iar);
173 H2_INDIRECT_WAIT(regs);
174 hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
175 hal2_write(0, &regs->idr1);
176 hal2_write(0, &regs->idr2);
177 hal2_write(0, &regs->idr3);
178 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
179 H2_INDIRECT_WAIT(regs);
180 }
181
182 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
183 struct snd_ctl_elem_info *uinfo)
184 {
185 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
186 uinfo->count = 2;
187 uinfo->value.integer.min = 0;
188 switch ((int)kcontrol->private_value) {
189 case H2_MIX_OUTPUT_ATT:
190 uinfo->value.integer.max = 31;
191 break;
192 case H2_MIX_INPUT_GAIN:
193 uinfo->value.integer.max = 15;
194 break;
195 }
196 return 0;
197 }
198
199 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
200 struct snd_ctl_elem_value *ucontrol)
201 {
202 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
203 u32 tmp;
204 int l, r;
205
206 switch ((int)kcontrol->private_value) {
207 case H2_MIX_OUTPUT_ATT:
208 tmp = hal2_i_read32(hal2, H2I_DAC_C2);
209 if (tmp & H2I_C2_MUTE) {
210 l = 0;
211 r = 0;
212 } else {
213 l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
214 r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
215 }
216 break;
217 case H2_MIX_INPUT_GAIN:
218 tmp = hal2_i_read32(hal2, H2I_ADC_C2);
219 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
220 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
221 break;
222 default:
223 return -EINVAL;
224 }
225 ucontrol->value.integer.value[0] = l;
226 ucontrol->value.integer.value[1] = r;
227
228 return 0;
229 }
230
231 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
232 struct snd_ctl_elem_value *ucontrol)
233 {
234 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
235 u32 old, new;
236 int l, r;
237
238 l = ucontrol->value.integer.value[0];
239 r = ucontrol->value.integer.value[1];
240
241 switch ((int)kcontrol->private_value) {
242 case H2_MIX_OUTPUT_ATT:
243 old = hal2_i_read32(hal2, H2I_DAC_C2);
244 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
245 if (l | r) {
246 l = 31 - l;
247 r = 31 - r;
248 new |= (l << H2I_C2_L_ATT_SHIFT);
249 new |= (r << H2I_C2_R_ATT_SHIFT);
250 } else
251 new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
252 hal2_i_write32(hal2, H2I_DAC_C2, new);
253 break;
254 case H2_MIX_INPUT_GAIN:
255 old = hal2_i_read32(hal2, H2I_ADC_C2);
256 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
257 new |= (l << H2I_C2_L_GAIN_SHIFT);
258 new |= (r << H2I_C2_R_GAIN_SHIFT);
259 hal2_i_write32(hal2, H2I_ADC_C2, new);
260 break;
261 default:
262 return -EINVAL;
263 }
264 return old != new;
265 }
266
267 static struct snd_kcontrol_new hal2_ctrl_headphone = {
268 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
269 .name = "Headphone Playback Volume",
270 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
271 .private_value = H2_MIX_OUTPUT_ATT,
272 .info = hal2_gain_info,
273 .get = hal2_gain_get,
274 .put = hal2_gain_put,
275 };
276
277 static struct snd_kcontrol_new hal2_ctrl_mic = {
278 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
279 .name = "Mic Capture Volume",
280 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
281 .private_value = H2_MIX_INPUT_GAIN,
282 .info = hal2_gain_info,
283 .get = hal2_gain_get,
284 .put = hal2_gain_put,
285 };
286
287 static int hal2_mixer_create(struct snd_hal2 *hal2)
288 {
289 int err;
290
291 /* mute DAC */
292 hal2_i_write32(hal2, H2I_DAC_C2,
293 H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
294 /* mute ADC */
295 hal2_i_write32(hal2, H2I_ADC_C2, 0);
296
297 err = snd_ctl_add(hal2->card,
298 snd_ctl_new1(&hal2_ctrl_headphone, hal2));
299 if (err < 0)
300 return err;
301
302 err = snd_ctl_add(hal2->card,
303 snd_ctl_new1(&hal2_ctrl_mic, hal2));
304 if (err < 0)
305 return err;
306
307 return 0;
308 }
309
310 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
311 {
312 struct snd_hal2 *hal2 = dev_id;
313 irqreturn_t ret = IRQ_NONE;
314
315 /* decide what caused this interrupt */
316 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
317 snd_pcm_period_elapsed(hal2->dac.substream);
318 ret = IRQ_HANDLED;
319 }
320 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
321 snd_pcm_period_elapsed(hal2->adc.substream);
322 ret = IRQ_HANDLED;
323 }
324 return ret;
325 }
326
327 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
328 {
329 unsigned short mod;
330
331 if (44100 % rate < 48000 % rate) {
332 mod = 4 * 44100 / rate;
333 codec->master = 44100;
334 } else {
335 mod = 4 * 48000 / rate;
336 codec->master = 48000;
337 }
338
339 codec->inc = 4;
340 codec->mod = mod;
341 rate = 4 * codec->master / mod;
342
343 return rate;
344 }
345
346 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
347 {
348 unsigned int master = hal2->dac.master;
349 int inc = hal2->dac.inc;
350 int mod = hal2->dac.mod;
351
352 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
353 hal2_i_write32(hal2, H2I_BRES1_C2,
354 ((0xffff & (inc - mod - 1)) << 16) | inc);
355 }
356
357 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
358 {
359 unsigned int master = hal2->adc.master;
360 int inc = hal2->adc.inc;
361 int mod = hal2->adc.mod;
362
363 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
364 hal2_i_write32(hal2, H2I_BRES2_C2,
365 ((0xffff & (inc - mod - 1)) << 16) | inc);
366 }
367
368 static void hal2_setup_dac(struct snd_hal2 *hal2)
369 {
370 unsigned int fifobeg, fifoend, highwater, sample_size;
371 struct hal2_pbus *pbus = &hal2->dac.pbus;
372
373 /* Now we set up some PBUS information. The PBUS needs information about
374 * what portion of the fifo it will use. If it's receiving or
375 * transmitting, and finally whether the stream is little endian or big
376 * endian. The information is written later, on the start call.
377 */
378 sample_size = 2 * hal2->dac.voices;
379 /* Fifo should be set to hold exactly four samples. Highwater mark
380 * should be set to two samples. */
381 highwater = (sample_size * 2) >> 1; /* halfwords */
382 fifobeg = 0; /* playback is first */
383 fifoend = (sample_size * 4) >> 3; /* doublewords */
384 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
385 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
386 /* We disable everything before we do anything at all */
387 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
388 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
389 /* Setup the HAL2 for playback */
390 hal2_set_dac_rate(hal2);
391 /* Set endianess */
392 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
393 /* Set DMA bus */
394 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
395 /* We are using 1st Bresenham clock generator for playback */
396 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
397 | (1 << H2I_C1_CLKID_SHIFT)
398 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
399 }
400
401 static void hal2_setup_adc(struct snd_hal2 *hal2)
402 {
403 unsigned int fifobeg, fifoend, highwater, sample_size;
404 struct hal2_pbus *pbus = &hal2->adc.pbus;
405
406 sample_size = 2 * hal2->adc.voices;
407 highwater = (sample_size * 2) >> 1; /* halfwords */
408 fifobeg = (4 * 4) >> 3; /* record is second */
409 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
410 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
411 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
412 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
413 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
414 /* Setup the HAL2 for record */
415 hal2_set_adc_rate(hal2);
416 /* Set endianess */
417 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
418 /* Set DMA bus */
419 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
420 /* We are using 2nd Bresenham clock generator for record */
421 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
422 | (2 << H2I_C1_CLKID_SHIFT)
423 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
424 }
425
426 static void hal2_start_dac(struct snd_hal2 *hal2)
427 {
428 struct hal2_pbus *pbus = &hal2->dac.pbus;
429
430 pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
431 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
432 /* enable DAC */
433 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
434 }
435
436 static void hal2_start_adc(struct snd_hal2 *hal2)
437 {
438 struct hal2_pbus *pbus = &hal2->adc.pbus;
439
440 pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
441 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
442 /* enable ADC */
443 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
444 }
445
446 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
447 {
448 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
449 /* The HAL2 itself may remain enabled safely */
450 }
451
452 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
453 {
454 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
455 }
456
457 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
458 {
459 struct hal2_desc *desc;
460 dma_addr_t desc_dma, buffer_dma;
461 int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
462 int i;
463
464 codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
465 &buffer_dma, GFP_KERNEL);
466 if (!codec->buffer)
467 return -ENOMEM;
468 desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
469 &desc_dma, GFP_KERNEL);
470 if (!desc) {
471 dma_free_noncoherent(NULL, H2_BUF_SIZE,
472 codec->buffer, buffer_dma);
473 return -ENOMEM;
474 }
475 codec->buffer_dma = buffer_dma;
476 codec->desc_dma = desc_dma;
477 codec->desc = desc;
478 for (i = 0; i < count; i++) {
479 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
480 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
481 desc->desc.pnext = (i == count - 1) ?
482 desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
483 desc++;
484 }
485 dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
486 DMA_TO_DEVICE);
487 codec->desc_count = count;
488 return 0;
489 }
490
491 static void hal2_free_dmabuf(struct hal2_codec *codec)
492 {
493 dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
494 codec->desc, codec->desc_dma);
495 dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
496 codec->buffer_dma);
497 }
498
499 static struct snd_pcm_hardware hal2_pcm_hw = {
500 .info = (SNDRV_PCM_INFO_MMAP |
501 SNDRV_PCM_INFO_MMAP_VALID |
502 SNDRV_PCM_INFO_INTERLEAVED |
503 SNDRV_PCM_INFO_BLOCK_TRANSFER),
504 .formats = SNDRV_PCM_FMTBIT_S16_BE,
505 .rates = SNDRV_PCM_RATE_8000_48000,
506 .rate_min = 8000,
507 .rate_max = 48000,
508 .channels_min = 2,
509 .channels_max = 2,
510 .buffer_bytes_max = 65536,
511 .period_bytes_min = 1024,
512 .period_bytes_max = 65536,
513 .periods_min = 2,
514 .periods_max = 1024,
515 };
516
517 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
518 struct snd_pcm_hw_params *params)
519 {
520 int err;
521
522 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
523 if (err < 0)
524 return err;
525
526 return 0;
527 }
528
529 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
530 {
531 return snd_pcm_lib_free_pages(substream);
532 }
533
534 static int hal2_playback_open(struct snd_pcm_substream *substream)
535 {
536 struct snd_pcm_runtime *runtime = substream->runtime;
537 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
538 int err;
539
540 runtime->hw = hal2_pcm_hw;
541
542 err = hal2_alloc_dmabuf(&hal2->dac);
543 if (err)
544 return err;
545 return 0;
546 }
547
548 static int hal2_playback_close(struct snd_pcm_substream *substream)
549 {
550 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
551
552 hal2_free_dmabuf(&hal2->dac);
553 return 0;
554 }
555
556 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
557 {
558 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
559 struct snd_pcm_runtime *runtime = substream->runtime;
560 struct hal2_codec *dac = &hal2->dac;
561
562 dac->voices = runtime->channels;
563 dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
564 memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
565 dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
566 dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
567 dac->substream = substream;
568 hal2_setup_dac(hal2);
569 return 0;
570 }
571
572 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
573 {
574 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
575
576 switch (cmd) {
577 case SNDRV_PCM_TRIGGER_START:
578 hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
579 hal2->dac.pcm_indirect.hw_data = 0;
580 substream->ops->ack(substream);
581 hal2_start_dac(hal2);
582 break;
583 case SNDRV_PCM_TRIGGER_STOP:
584 hal2_stop_dac(hal2);
585 break;
586 default:
587 return -EINVAL;
588 }
589 return 0;
590 }
591
592 static snd_pcm_uframes_t
593 hal2_playback_pointer(struct snd_pcm_substream *substream)
594 {
595 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
596 struct hal2_codec *dac = &hal2->dac;
597
598 return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
599 dac->pbus.pbus->pbdma_bptr);
600 }
601
602 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
603 struct snd_pcm_indirect *rec, size_t bytes)
604 {
605 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
606 unsigned char *buf = hal2->dac.buffer + rec->hw_data;
607
608 memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
609 dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
610
611 }
612
613 static int hal2_playback_ack(struct snd_pcm_substream *substream)
614 {
615 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
616 struct hal2_codec *dac = &hal2->dac;
617
618 dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
619 snd_pcm_indirect_playback_transfer(substream,
620 &dac->pcm_indirect,
621 hal2_playback_transfer);
622 return 0;
623 }
624
625 static int hal2_capture_open(struct snd_pcm_substream *substream)
626 {
627 struct snd_pcm_runtime *runtime = substream->runtime;
628 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
629 struct hal2_codec *adc = &hal2->adc;
630 int err;
631
632 runtime->hw = hal2_pcm_hw;
633
634 err = hal2_alloc_dmabuf(adc);
635 if (err)
636 return err;
637 return 0;
638 }
639
640 static int hal2_capture_close(struct snd_pcm_substream *substream)
641 {
642 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
643
644 hal2_free_dmabuf(&hal2->adc);
645 return 0;
646 }
647
648 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
649 {
650 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
651 struct snd_pcm_runtime *runtime = substream->runtime;
652 struct hal2_codec *adc = &hal2->adc;
653
654 adc->voices = runtime->channels;
655 adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
656 memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
657 adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
658 adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
659 adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
660 adc->substream = substream;
661 hal2_setup_adc(hal2);
662 return 0;
663 }
664
665 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
666 {
667 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
668
669 switch (cmd) {
670 case SNDRV_PCM_TRIGGER_START:
671 hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
672 hal2->adc.pcm_indirect.hw_data = 0;
673 printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
674 hal2_start_adc(hal2);
675 break;
676 case SNDRV_PCM_TRIGGER_STOP:
677 hal2_stop_adc(hal2);
678 break;
679 default:
680 return -EINVAL;
681 }
682 return 0;
683 }
684
685 static snd_pcm_uframes_t
686 hal2_capture_pointer(struct snd_pcm_substream *substream)
687 {
688 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
689 struct hal2_codec *adc = &hal2->adc;
690
691 return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
692 adc->pbus.pbus->pbdma_bptr);
693 }
694
695 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
696 struct snd_pcm_indirect *rec, size_t bytes)
697 {
698 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
699 unsigned char *buf = hal2->adc.buffer + rec->hw_data;
700
701 dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
702 memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
703 }
704
705 static int hal2_capture_ack(struct snd_pcm_substream *substream)
706 {
707 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
708 struct hal2_codec *adc = &hal2->adc;
709
710 snd_pcm_indirect_capture_transfer(substream,
711 &adc->pcm_indirect,
712 hal2_capture_transfer);
713 return 0;
714 }
715
716 static struct snd_pcm_ops hal2_playback_ops = {
717 .open = hal2_playback_open,
718 .close = hal2_playback_close,
719 .ioctl = snd_pcm_lib_ioctl,
720 .hw_params = hal2_pcm_hw_params,
721 .hw_free = hal2_pcm_hw_free,
722 .prepare = hal2_playback_prepare,
723 .trigger = hal2_playback_trigger,
724 .pointer = hal2_playback_pointer,
725 .ack = hal2_playback_ack,
726 };
727
728 static struct snd_pcm_ops hal2_capture_ops = {
729 .open = hal2_capture_open,
730 .close = hal2_capture_close,
731 .ioctl = snd_pcm_lib_ioctl,
732 .hw_params = hal2_pcm_hw_params,
733 .hw_free = hal2_pcm_hw_free,
734 .prepare = hal2_capture_prepare,
735 .trigger = hal2_capture_trigger,
736 .pointer = hal2_capture_pointer,
737 .ack = hal2_capture_ack,
738 };
739
740 static int hal2_pcm_create(struct snd_hal2 *hal2)
741 {
742 struct snd_pcm *pcm;
743 int err;
744
745 /* create first pcm device with one outputs and one input */
746 err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
747 if (err < 0)
748 return err;
749
750 pcm->private_data = hal2;
751 strcpy(pcm->name, "SGI HAL2");
752
753 /* set operators */
754 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
755 &hal2_playback_ops);
756 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
757 &hal2_capture_ops);
758 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
759 snd_dma_continuous_data(GFP_KERNEL),
760 0, 1024 * 1024);
761
762 return 0;
763 }
764
765 static int hal2_dev_free(struct snd_device *device)
766 {
767 struct snd_hal2 *hal2 = device->device_data;
768
769 free_irq(SGI_HPCDMA_IRQ, hal2);
770 kfree(hal2);
771 return 0;
772 }
773
774 static struct snd_device_ops hal2_ops = {
775 .dev_free = hal2_dev_free,
776 };
777
778 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
779 int index)
780 {
781 codec->pbus.pbusnr = index;
782 codec->pbus.pbus = &hpc3->pbdma[index];
783 }
784
785 static int hal2_detect(struct snd_hal2 *hal2)
786 {
787 unsigned short board, major, minor;
788 unsigned short rev;
789
790 /* reset HAL2 */
791 hal2_write(0, &hal2->ctl_regs->isr);
792
793 /* release reset */
794 hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
795 &hal2->ctl_regs->isr);
796
797
798 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
799 rev = hal2_read(&hal2->ctl_regs->rev);
800 if (rev & H2_REV_AUDIO_PRESENT)
801 return -ENODEV;
802
803 board = (rev & H2_REV_BOARD_M) >> 12;
804 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
805 minor = (rev & H2_REV_MINOR_CHIP_M);
806
807 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
808 board, major, minor);
809
810 return 0;
811 }
812
813 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
814 {
815 struct snd_hal2 *hal2;
816 struct hpc3_regs *hpc3 = hpc3c0;
817 int err;
818
819 hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
820 if (!hal2)
821 return -ENOMEM;
822
823 hal2->card = card;
824
825 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
826 "SGI HAL2", hal2)) {
827 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
828 kfree(hal2);
829 return -EAGAIN;
830 }
831
832 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
833 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
834 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
835 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
836
837 if (hal2_detect(hal2) < 0) {
838 kfree(hal2);
839 return -ENODEV;
840 }
841
842 hal2_init_codec(&hal2->dac, hpc3, 0);
843 hal2_init_codec(&hal2->adc, hpc3, 1);
844
845 /*
846 * All DMA channel interfaces in HAL2 are designed to operate with
847 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
848 * in D5. HAL2 is a 16-bit device which can accept both big and little
849 * endian format. It assumes that even address bytes are on high
850 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
851 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
852 */
853 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
854 (2 << HPC3_DMACFG_D4R_SHIFT) | \
855 (2 << HPC3_DMACFG_D5R_SHIFT) | \
856 (0 << HPC3_DMACFG_D3W_SHIFT) | \
857 (2 << HPC3_DMACFG_D4W_SHIFT) | \
858 (2 << HPC3_DMACFG_D5W_SHIFT) | \
859 HPC3_DMACFG_DS16 | \
860 HPC3_DMACFG_EVENHI | \
861 HPC3_DMACFG_RTIME | \
862 (8 << HPC3_DMACFG_BURST_SHIFT) | \
863 HPC3_DMACFG_DRQLIVE)
864 /*
865 * Ignore what's mentioned in the specification and write value which
866 * works in The Real World (TM)
867 */
868 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
869 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
870
871 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
872 if (err < 0) {
873 free_irq(SGI_HPCDMA_IRQ, hal2);
874 kfree(hal2);
875 return err;
876 }
877 *rchip = hal2;
878 return 0;
879 }
880
881 static int hal2_probe(struct platform_device *pdev)
882 {
883 struct snd_card *card;
884 struct snd_hal2 *chip;
885 int err;
886
887 err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
888 if (err < 0)
889 return err;
890
891 err = hal2_create(card, &chip);
892 if (err < 0) {
893 snd_card_free(card);
894 return err;
895 }
896
897 err = hal2_pcm_create(chip);
898 if (err < 0) {
899 snd_card_free(card);
900 return err;
901 }
902 err = hal2_mixer_create(chip);
903 if (err < 0) {
904 snd_card_free(card);
905 return err;
906 }
907
908 strcpy(card->driver, "SGI HAL2 Audio");
909 strcpy(card->shortname, "SGI HAL2 Audio");
910 sprintf(card->longname, "%s irq %i",
911 card->shortname,
912 SGI_HPCDMA_IRQ);
913
914 err = snd_card_register(card);
915 if (err < 0) {
916 snd_card_free(card);
917 return err;
918 }
919 platform_set_drvdata(pdev, card);
920 return 0;
921 }
922
923 static int hal2_remove(struct platform_device *pdev)
924 {
925 struct snd_card *card = platform_get_drvdata(pdev);
926
927 snd_card_free(card);
928 return 0;
929 }
930
931 static struct platform_driver hal2_driver = {
932 .probe = hal2_probe,
933 .remove = hal2_remove,
934 .driver = {
935 .name = "sgihal2",
936 }
937 };
938
939 module_platform_driver(hal2_driver);