]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - sound/parisc/harmony.c
Merge tag 'gvt-next-2020-05-12' of https://github.com/intel/gvt-linux into drm-intel...
[mirror_ubuntu-hirsute-kernel.git] / sound / parisc / harmony.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Hewlett-Packard Harmony audio driver
3 *
4 * This is a driver for the Harmony audio chipset found
5 * on the LASI ASIC of various early HP PA-RISC workstations.
6 *
7 * Copyright (C) 2004, Kyle McMartin <kyle@{debian.org,parisc-linux.org}>
8 *
9 * Based on the previous Harmony incarnations by,
10 * Copyright 2000 (c) Linuxcare Canada, Alex deVries
11 * Copyright 2000-2003 (c) Helge Deller
12 * Copyright 2001 (c) Matthieu Delahaye
13 * Copyright 2001 (c) Jean-Christophe Vaugeois
14 * Copyright 2003 (c) Laurent Canet
15 * Copyright 2004 (c) Stuart Brady
16 *
17 * Notes:
18 * - graveyard and silence buffers last for lifetime of
19 * the driver. playback and capture buffers are allocated
20 * per _open()/_close().
21 *
22 * TODO:
23 */
24
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/time.h>
28 #include <linux/wait.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/io.h>
35
36 #include <sound/core.h>
37 #include <sound/pcm.h>
38 #include <sound/control.h>
39 #include <sound/rawmidi.h>
40 #include <sound/initval.h>
41 #include <sound/info.h>
42
43 #include <asm/hardware.h>
44 #include <asm/parisc-device.h>
45
46 #include "harmony.h"
47
48 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
49 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
50 module_param(index, int, 0444);
51 MODULE_PARM_DESC(index, "Index value for Harmony driver.");
52 module_param(id, charp, 0444);
53 MODULE_PARM_DESC(id, "ID string for Harmony driver.");
54
55
56 static const struct parisc_device_id snd_harmony_devtable[] __initconst = {
57 /* bushmaster / flounder */
58 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A },
59 /* 712 / 715 */
60 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B },
61 /* pace */
62 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E },
63 /* outfield / coral II */
64 { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F },
65 { 0, }
66 };
67
68 MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable);
69
70 #define NAME "harmony"
71 #define PFX NAME ": "
72
73 static const unsigned int snd_harmony_rates[] = {
74 5512, 6615, 8000, 9600,
75 11025, 16000, 18900, 22050,
76 27428, 32000, 33075, 37800,
77 44100, 48000
78 };
79
80 static const unsigned int rate_bits[14] = {
81 HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ,
82 HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ,
83 HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ,
84 HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ,
85 HARMONY_SR_44KHZ, HARMONY_SR_48KHZ
86 };
87
88 static const struct snd_pcm_hw_constraint_list hw_constraint_rates = {
89 .count = ARRAY_SIZE(snd_harmony_rates),
90 .list = snd_harmony_rates,
91 .mask = 0,
92 };
93
94 static inline unsigned long
95 harmony_read(struct snd_harmony *h, unsigned r)
96 {
97 return __raw_readl(h->iobase + r);
98 }
99
100 static inline void
101 harmony_write(struct snd_harmony *h, unsigned r, unsigned long v)
102 {
103 __raw_writel(v, h->iobase + r);
104 }
105
106 static inline void
107 harmony_wait_for_control(struct snd_harmony *h)
108 {
109 while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ;
110 }
111
112 static inline void
113 harmony_reset(struct snd_harmony *h)
114 {
115 harmony_write(h, HARMONY_RESET, 1);
116 mdelay(50);
117 harmony_write(h, HARMONY_RESET, 0);
118 }
119
120 static void
121 harmony_disable_interrupts(struct snd_harmony *h)
122 {
123 u32 dstatus;
124 harmony_wait_for_control(h);
125 dstatus = harmony_read(h, HARMONY_DSTATUS);
126 dstatus &= ~HARMONY_DSTATUS_IE;
127 harmony_write(h, HARMONY_DSTATUS, dstatus);
128 }
129
130 static void
131 harmony_enable_interrupts(struct snd_harmony *h)
132 {
133 u32 dstatus;
134 harmony_wait_for_control(h);
135 dstatus = harmony_read(h, HARMONY_DSTATUS);
136 dstatus |= HARMONY_DSTATUS_IE;
137 harmony_write(h, HARMONY_DSTATUS, dstatus);
138 }
139
140 static void
141 harmony_mute(struct snd_harmony *h)
142 {
143 unsigned long flags;
144
145 spin_lock_irqsave(&h->mixer_lock, flags);
146 harmony_wait_for_control(h);
147 harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE);
148 spin_unlock_irqrestore(&h->mixer_lock, flags);
149 }
150
151 static void
152 harmony_unmute(struct snd_harmony *h)
153 {
154 unsigned long flags;
155
156 spin_lock_irqsave(&h->mixer_lock, flags);
157 harmony_wait_for_control(h);
158 harmony_write(h, HARMONY_GAINCTL, h->st.gain);
159 spin_unlock_irqrestore(&h->mixer_lock, flags);
160 }
161
162 static void
163 harmony_set_control(struct snd_harmony *h)
164 {
165 u32 ctrl;
166 unsigned long flags;
167
168 spin_lock_irqsave(&h->lock, flags);
169
170 ctrl = (HARMONY_CNTL_C |
171 (h->st.format << 6) |
172 (h->st.stereo << 5) |
173 (h->st.rate));
174
175 harmony_wait_for_control(h);
176 harmony_write(h, HARMONY_CNTL, ctrl);
177
178 spin_unlock_irqrestore(&h->lock, flags);
179 }
180
181 static irqreturn_t
182 snd_harmony_interrupt(int irq, void *dev)
183 {
184 u32 dstatus;
185 struct snd_harmony *h = dev;
186
187 spin_lock(&h->lock);
188 harmony_disable_interrupts(h);
189 harmony_wait_for_control(h);
190 dstatus = harmony_read(h, HARMONY_DSTATUS);
191 spin_unlock(&h->lock);
192
193 if (dstatus & HARMONY_DSTATUS_PN) {
194 if (h->psubs && h->st.playing) {
195 spin_lock(&h->lock);
196 h->pbuf.buf += h->pbuf.count; /* PAGE_SIZE */
197 h->pbuf.buf %= h->pbuf.size; /* MAX_BUFS*PAGE_SIZE */
198
199 harmony_write(h, HARMONY_PNXTADD,
200 h->pbuf.addr + h->pbuf.buf);
201 h->stats.play_intr++;
202 spin_unlock(&h->lock);
203 snd_pcm_period_elapsed(h->psubs);
204 } else {
205 spin_lock(&h->lock);
206 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
207 h->stats.silence_intr++;
208 spin_unlock(&h->lock);
209 }
210 }
211
212 if (dstatus & HARMONY_DSTATUS_RN) {
213 if (h->csubs && h->st.capturing) {
214 spin_lock(&h->lock);
215 h->cbuf.buf += h->cbuf.count;
216 h->cbuf.buf %= h->cbuf.size;
217
218 harmony_write(h, HARMONY_RNXTADD,
219 h->cbuf.addr + h->cbuf.buf);
220 h->stats.rec_intr++;
221 spin_unlock(&h->lock);
222 snd_pcm_period_elapsed(h->csubs);
223 } else {
224 spin_lock(&h->lock);
225 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
226 h->stats.graveyard_intr++;
227 spin_unlock(&h->lock);
228 }
229 }
230
231 spin_lock(&h->lock);
232 harmony_enable_interrupts(h);
233 spin_unlock(&h->lock);
234
235 return IRQ_HANDLED;
236 }
237
238 static unsigned int
239 snd_harmony_rate_bits(int rate)
240 {
241 unsigned int i;
242
243 for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++)
244 if (snd_harmony_rates[i] == rate)
245 return rate_bits[i];
246
247 return HARMONY_SR_44KHZ;
248 }
249
250 static const struct snd_pcm_hardware snd_harmony_playback =
251 {
252 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
253 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
254 SNDRV_PCM_INFO_BLOCK_TRANSFER),
255 .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
256 SNDRV_PCM_FMTBIT_A_LAW),
257 .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
258 SNDRV_PCM_RATE_KNOT),
259 .rate_min = 5512,
260 .rate_max = 48000,
261 .channels_min = 1,
262 .channels_max = 2,
263 .buffer_bytes_max = MAX_BUF_SIZE,
264 .period_bytes_min = BUF_SIZE,
265 .period_bytes_max = BUF_SIZE,
266 .periods_min = 1,
267 .periods_max = MAX_BUFS,
268 .fifo_size = 0,
269 };
270
271 static const struct snd_pcm_hardware snd_harmony_capture =
272 {
273 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
274 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
275 SNDRV_PCM_INFO_BLOCK_TRANSFER),
276 .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
277 SNDRV_PCM_FMTBIT_A_LAW),
278 .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
279 SNDRV_PCM_RATE_KNOT),
280 .rate_min = 5512,
281 .rate_max = 48000,
282 .channels_min = 1,
283 .channels_max = 2,
284 .buffer_bytes_max = MAX_BUF_SIZE,
285 .period_bytes_min = BUF_SIZE,
286 .period_bytes_max = BUF_SIZE,
287 .periods_min = 1,
288 .periods_max = MAX_BUFS,
289 .fifo_size = 0,
290 };
291
292 static int
293 snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd)
294 {
295 struct snd_harmony *h = snd_pcm_substream_chip(ss);
296
297 if (h->st.capturing)
298 return -EBUSY;
299
300 spin_lock(&h->lock);
301 switch (cmd) {
302 case SNDRV_PCM_TRIGGER_START:
303 h->st.playing = 1;
304 harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr);
305 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
306 harmony_unmute(h);
307 harmony_enable_interrupts(h);
308 break;
309 case SNDRV_PCM_TRIGGER_STOP:
310 h->st.playing = 0;
311 harmony_mute(h);
312 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
313 harmony_disable_interrupts(h);
314 break;
315 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
316 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
317 case SNDRV_PCM_TRIGGER_SUSPEND:
318 default:
319 spin_unlock(&h->lock);
320 snd_BUG();
321 return -EINVAL;
322 }
323 spin_unlock(&h->lock);
324
325 return 0;
326 }
327
328 static int
329 snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd)
330 {
331 struct snd_harmony *h = snd_pcm_substream_chip(ss);
332
333 if (h->st.playing)
334 return -EBUSY;
335
336 spin_lock(&h->lock);
337 switch (cmd) {
338 case SNDRV_PCM_TRIGGER_START:
339 h->st.capturing = 1;
340 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
341 harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr);
342 harmony_unmute(h);
343 harmony_enable_interrupts(h);
344 break;
345 case SNDRV_PCM_TRIGGER_STOP:
346 h->st.capturing = 0;
347 harmony_mute(h);
348 harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
349 harmony_disable_interrupts(h);
350 break;
351 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
352 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
353 case SNDRV_PCM_TRIGGER_SUSPEND:
354 default:
355 spin_unlock(&h->lock);
356 snd_BUG();
357 return -EINVAL;
358 }
359 spin_unlock(&h->lock);
360
361 return 0;
362 }
363
364 static int
365 snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force)
366 {
367 int o = h->st.format;
368 int n;
369
370 switch(fmt) {
371 case SNDRV_PCM_FORMAT_S16_BE:
372 n = HARMONY_DF_16BIT_LINEAR;
373 break;
374 case SNDRV_PCM_FORMAT_A_LAW:
375 n = HARMONY_DF_8BIT_ALAW;
376 break;
377 case SNDRV_PCM_FORMAT_MU_LAW:
378 n = HARMONY_DF_8BIT_ULAW;
379 break;
380 default:
381 n = HARMONY_DF_16BIT_LINEAR;
382 break;
383 }
384
385 if (force || o != n) {
386 snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ /
387 (snd_pcm_format_physical_width(fmt)
388 / 8));
389 }
390
391 return n;
392 }
393
394 static int
395 snd_harmony_playback_prepare(struct snd_pcm_substream *ss)
396 {
397 struct snd_harmony *h = snd_pcm_substream_chip(ss);
398 struct snd_pcm_runtime *rt = ss->runtime;
399
400 if (h->st.capturing)
401 return -EBUSY;
402
403 h->pbuf.size = snd_pcm_lib_buffer_bytes(ss);
404 h->pbuf.count = snd_pcm_lib_period_bytes(ss);
405 if (h->pbuf.buf >= h->pbuf.size)
406 h->pbuf.buf = 0;
407 h->st.playing = 0;
408
409 h->st.rate = snd_harmony_rate_bits(rt->rate);
410 h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
411
412 if (rt->channels == 2)
413 h->st.stereo = HARMONY_SS_STEREO;
414 else
415 h->st.stereo = HARMONY_SS_MONO;
416
417 harmony_set_control(h);
418
419 h->pbuf.addr = rt->dma_addr;
420
421 return 0;
422 }
423
424 static int
425 snd_harmony_capture_prepare(struct snd_pcm_substream *ss)
426 {
427 struct snd_harmony *h = snd_pcm_substream_chip(ss);
428 struct snd_pcm_runtime *rt = ss->runtime;
429
430 if (h->st.playing)
431 return -EBUSY;
432
433 h->cbuf.size = snd_pcm_lib_buffer_bytes(ss);
434 h->cbuf.count = snd_pcm_lib_period_bytes(ss);
435 if (h->cbuf.buf >= h->cbuf.size)
436 h->cbuf.buf = 0;
437 h->st.capturing = 0;
438
439 h->st.rate = snd_harmony_rate_bits(rt->rate);
440 h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
441
442 if (rt->channels == 2)
443 h->st.stereo = HARMONY_SS_STEREO;
444 else
445 h->st.stereo = HARMONY_SS_MONO;
446
447 harmony_set_control(h);
448
449 h->cbuf.addr = rt->dma_addr;
450
451 return 0;
452 }
453
454 static snd_pcm_uframes_t
455 snd_harmony_playback_pointer(struct snd_pcm_substream *ss)
456 {
457 struct snd_pcm_runtime *rt = ss->runtime;
458 struct snd_harmony *h = snd_pcm_substream_chip(ss);
459 unsigned long pcuradd;
460 unsigned long played;
461
462 if (!(h->st.playing) || (h->psubs == NULL))
463 return 0;
464
465 if ((h->pbuf.addr == 0) || (h->pbuf.size == 0))
466 return 0;
467
468 pcuradd = harmony_read(h, HARMONY_PCURADD);
469 played = pcuradd - h->pbuf.addr;
470
471 #ifdef HARMONY_DEBUG
472 printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n",
473 pcuradd, h->pbuf.addr, played);
474 #endif
475
476 if (pcuradd > h->pbuf.addr + h->pbuf.size) {
477 return 0;
478 }
479
480 return bytes_to_frames(rt, played);
481 }
482
483 static snd_pcm_uframes_t
484 snd_harmony_capture_pointer(struct snd_pcm_substream *ss)
485 {
486 struct snd_pcm_runtime *rt = ss->runtime;
487 struct snd_harmony *h = snd_pcm_substream_chip(ss);
488 unsigned long rcuradd;
489 unsigned long caught;
490
491 if (!(h->st.capturing) || (h->csubs == NULL))
492 return 0;
493
494 if ((h->cbuf.addr == 0) || (h->cbuf.size == 0))
495 return 0;
496
497 rcuradd = harmony_read(h, HARMONY_RCURADD);
498 caught = rcuradd - h->cbuf.addr;
499
500 #ifdef HARMONY_DEBUG
501 printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n",
502 rcuradd, h->cbuf.addr, caught);
503 #endif
504
505 if (rcuradd > h->cbuf.addr + h->cbuf.size) {
506 return 0;
507 }
508
509 return bytes_to_frames(rt, caught);
510 }
511
512 static int
513 snd_harmony_playback_open(struct snd_pcm_substream *ss)
514 {
515 struct snd_harmony *h = snd_pcm_substream_chip(ss);
516 struct snd_pcm_runtime *rt = ss->runtime;
517 int err;
518
519 h->psubs = ss;
520 rt->hw = snd_harmony_playback;
521 snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
522 &hw_constraint_rates);
523
524 err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
525 if (err < 0)
526 return err;
527
528 return 0;
529 }
530
531 static int
532 snd_harmony_capture_open(struct snd_pcm_substream *ss)
533 {
534 struct snd_harmony *h = snd_pcm_substream_chip(ss);
535 struct snd_pcm_runtime *rt = ss->runtime;
536 int err;
537
538 h->csubs = ss;
539 rt->hw = snd_harmony_capture;
540 snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
541 &hw_constraint_rates);
542
543 err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
544 if (err < 0)
545 return err;
546
547 return 0;
548 }
549
550 static int
551 snd_harmony_playback_close(struct snd_pcm_substream *ss)
552 {
553 struct snd_harmony *h = snd_pcm_substream_chip(ss);
554 h->psubs = NULL;
555 return 0;
556 }
557
558 static int
559 snd_harmony_capture_close(struct snd_pcm_substream *ss)
560 {
561 struct snd_harmony *h = snd_pcm_substream_chip(ss);
562 h->csubs = NULL;
563 return 0;
564 }
565
566 static int
567 snd_harmony_hw_params(struct snd_pcm_substream *ss,
568 struct snd_pcm_hw_params *hw)
569 {
570 struct snd_harmony *h = snd_pcm_substream_chip(ss);
571
572 if (h->dma.type == SNDRV_DMA_TYPE_CONTINUOUS)
573 ss->runtime->dma_addr = __pa(ss->runtime->dma_area);
574
575 return 0;
576 }
577
578 static const struct snd_pcm_ops snd_harmony_playback_ops = {
579 .open = snd_harmony_playback_open,
580 .close = snd_harmony_playback_close,
581 .hw_params = snd_harmony_hw_params,
582 .prepare = snd_harmony_playback_prepare,
583 .trigger = snd_harmony_playback_trigger,
584 .pointer = snd_harmony_playback_pointer,
585 };
586
587 static const struct snd_pcm_ops snd_harmony_capture_ops = {
588 .open = snd_harmony_capture_open,
589 .close = snd_harmony_capture_close,
590 .hw_params = snd_harmony_hw_params,
591 .prepare = snd_harmony_capture_prepare,
592 .trigger = snd_harmony_capture_trigger,
593 .pointer = snd_harmony_capture_pointer,
594 };
595
596 static int
597 snd_harmony_pcm_init(struct snd_harmony *h)
598 {
599 struct snd_pcm *pcm;
600 int err;
601
602 if (snd_BUG_ON(!h))
603 return -EINVAL;
604
605 harmony_disable_interrupts(h);
606
607 err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm);
608 if (err < 0)
609 return err;
610
611 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
612 &snd_harmony_playback_ops);
613 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
614 &snd_harmony_capture_ops);
615
616 pcm->private_data = h;
617 pcm->info_flags = 0;
618 strcpy(pcm->name, "harmony");
619 h->pcm = pcm;
620
621 h->psubs = NULL;
622 h->csubs = NULL;
623
624 /* initialize graveyard buffer */
625 h->dma.type = SNDRV_DMA_TYPE_DEV;
626 h->dma.dev = &h->dev->dev;
627 err = snd_dma_alloc_pages(h->dma.type,
628 h->dma.dev,
629 BUF_SIZE*GRAVEYARD_BUFS,
630 &h->gdma);
631 if (err < 0) {
632 printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n");
633 return err;
634 }
635
636 /* initialize silence buffers */
637 err = snd_dma_alloc_pages(h->dma.type,
638 h->dma.dev,
639 BUF_SIZE*SILENCE_BUFS,
640 &h->sdma);
641 if (err < 0) {
642 printk(KERN_ERR PFX "cannot allocate silence buffer!\n");
643 return err;
644 }
645
646 /* pre-allocate space for DMA */
647 snd_pcm_set_managed_buffer_all(pcm, h->dma.type, h->dma.dev,
648 MAX_BUF_SIZE, MAX_BUF_SIZE);
649
650 h->st.format = snd_harmony_set_data_format(h,
651 SNDRV_PCM_FORMAT_S16_BE, 1);
652
653 return 0;
654 }
655
656 static void
657 snd_harmony_set_new_gain(struct snd_harmony *h)
658 {
659 harmony_wait_for_control(h);
660 harmony_write(h, HARMONY_GAINCTL, h->st.gain);
661 }
662
663 static int
664 snd_harmony_mixercontrol_info(struct snd_kcontrol *kc,
665 struct snd_ctl_elem_info *uinfo)
666 {
667 int mask = (kc->private_value >> 16) & 0xff;
668 int left_shift = (kc->private_value) & 0xff;
669 int right_shift = (kc->private_value >> 8) & 0xff;
670
671 uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN :
672 SNDRV_CTL_ELEM_TYPE_INTEGER;
673 uinfo->count = left_shift == right_shift ? 1 : 2;
674 uinfo->value.integer.min = 0;
675 uinfo->value.integer.max = mask;
676
677 return 0;
678 }
679
680 static int
681 snd_harmony_volume_get(struct snd_kcontrol *kc,
682 struct snd_ctl_elem_value *ucontrol)
683 {
684 struct snd_harmony *h = snd_kcontrol_chip(kc);
685 int shift_left = (kc->private_value) & 0xff;
686 int shift_right = (kc->private_value >> 8) & 0xff;
687 int mask = (kc->private_value >> 16) & 0xff;
688 int invert = (kc->private_value >> 24) & 0xff;
689 int left, right;
690
691 spin_lock_irq(&h->mixer_lock);
692
693 left = (h->st.gain >> shift_left) & mask;
694 right = (h->st.gain >> shift_right) & mask;
695 if (invert) {
696 left = mask - left;
697 right = mask - right;
698 }
699
700 ucontrol->value.integer.value[0] = left;
701 if (shift_left != shift_right)
702 ucontrol->value.integer.value[1] = right;
703
704 spin_unlock_irq(&h->mixer_lock);
705
706 return 0;
707 }
708
709 static int
710 snd_harmony_volume_put(struct snd_kcontrol *kc,
711 struct snd_ctl_elem_value *ucontrol)
712 {
713 struct snd_harmony *h = snd_kcontrol_chip(kc);
714 int shift_left = (kc->private_value) & 0xff;
715 int shift_right = (kc->private_value >> 8) & 0xff;
716 int mask = (kc->private_value >> 16) & 0xff;
717 int invert = (kc->private_value >> 24) & 0xff;
718 int left, right;
719 int old_gain = h->st.gain;
720
721 spin_lock_irq(&h->mixer_lock);
722
723 left = ucontrol->value.integer.value[0] & mask;
724 if (invert)
725 left = mask - left;
726 h->st.gain &= ~( (mask << shift_left ) );
727 h->st.gain |= (left << shift_left);
728
729 if (shift_left != shift_right) {
730 right = ucontrol->value.integer.value[1] & mask;
731 if (invert)
732 right = mask - right;
733 h->st.gain &= ~( (mask << shift_right) );
734 h->st.gain |= (right << shift_right);
735 }
736
737 snd_harmony_set_new_gain(h);
738
739 spin_unlock_irq(&h->mixer_lock);
740
741 return h->st.gain != old_gain;
742 }
743
744 static int
745 snd_harmony_captureroute_info(struct snd_kcontrol *kc,
746 struct snd_ctl_elem_info *uinfo)
747 {
748 static const char * const texts[2] = { "Line", "Mic" };
749
750 return snd_ctl_enum_info(uinfo, 1, 2, texts);
751 }
752
753 static int
754 snd_harmony_captureroute_get(struct snd_kcontrol *kc,
755 struct snd_ctl_elem_value *ucontrol)
756 {
757 struct snd_harmony *h = snd_kcontrol_chip(kc);
758 int value;
759
760 spin_lock_irq(&h->mixer_lock);
761
762 value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1;
763 ucontrol->value.enumerated.item[0] = value;
764
765 spin_unlock_irq(&h->mixer_lock);
766
767 return 0;
768 }
769
770 static int
771 snd_harmony_captureroute_put(struct snd_kcontrol *kc,
772 struct snd_ctl_elem_value *ucontrol)
773 {
774 struct snd_harmony *h = snd_kcontrol_chip(kc);
775 int value;
776 int old_gain = h->st.gain;
777
778 spin_lock_irq(&h->mixer_lock);
779
780 value = ucontrol->value.enumerated.item[0] & 1;
781 h->st.gain &= ~HARMONY_GAIN_IS_MASK;
782 h->st.gain |= value << HARMONY_GAIN_IS_SHIFT;
783
784 snd_harmony_set_new_gain(h);
785
786 spin_unlock_irq(&h->mixer_lock);
787
788 return h->st.gain != old_gain;
789 }
790
791 #define HARMONY_CONTROLS ARRAY_SIZE(snd_harmony_controls)
792
793 #define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \
794 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
795 .info = snd_harmony_mixercontrol_info, \
796 .get = snd_harmony_volume_get, .put = snd_harmony_volume_put, \
797 .private_value = ((left_shift) | ((right_shift) << 8) | \
798 ((mask) << 16) | ((invert) << 24)) }
799
800 static const struct snd_kcontrol_new snd_harmony_controls[] = {
801 HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT,
802 HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1),
803 HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT,
804 HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0),
805 HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT,
806 HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1),
807 {
808 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
809 .name = "Input Route",
810 .info = snd_harmony_captureroute_info,
811 .get = snd_harmony_captureroute_get,
812 .put = snd_harmony_captureroute_put
813 },
814 HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT,
815 HARMONY_GAIN_SE_SHIFT, 1, 0),
816 HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT,
817 HARMONY_GAIN_LE_SHIFT, 1, 0),
818 HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT,
819 HARMONY_GAIN_HE_SHIFT, 1, 0),
820 };
821
822 static void
823 snd_harmony_mixer_reset(struct snd_harmony *h)
824 {
825 harmony_mute(h);
826 harmony_reset(h);
827 h->st.gain = HARMONY_GAIN_DEFAULT;
828 harmony_unmute(h);
829 }
830
831 static int
832 snd_harmony_mixer_init(struct snd_harmony *h)
833 {
834 struct snd_card *card;
835 int idx, err;
836
837 if (snd_BUG_ON(!h))
838 return -EINVAL;
839 card = h->card;
840 strcpy(card->mixername, "Harmony Gain control interface");
841
842 for (idx = 0; idx < HARMONY_CONTROLS; idx++) {
843 err = snd_ctl_add(card,
844 snd_ctl_new1(&snd_harmony_controls[idx], h));
845 if (err < 0)
846 return err;
847 }
848
849 snd_harmony_mixer_reset(h);
850
851 return 0;
852 }
853
854 static int
855 snd_harmony_free(struct snd_harmony *h)
856 {
857 if (h->gdma.addr)
858 snd_dma_free_pages(&h->gdma);
859 if (h->sdma.addr)
860 snd_dma_free_pages(&h->sdma);
861
862 if (h->irq >= 0)
863 free_irq(h->irq, h);
864
865 iounmap(h->iobase);
866 kfree(h);
867 return 0;
868 }
869
870 static int
871 snd_harmony_dev_free(struct snd_device *dev)
872 {
873 struct snd_harmony *h = dev->device_data;
874 return snd_harmony_free(h);
875 }
876
877 static int
878 snd_harmony_create(struct snd_card *card,
879 struct parisc_device *padev,
880 struct snd_harmony **rchip)
881 {
882 int err;
883 struct snd_harmony *h;
884 static const struct snd_device_ops ops = {
885 .dev_free = snd_harmony_dev_free,
886 };
887
888 *rchip = NULL;
889
890 h = kzalloc(sizeof(*h), GFP_KERNEL);
891 if (h == NULL)
892 return -ENOMEM;
893
894 h->hpa = padev->hpa.start;
895 h->card = card;
896 h->dev = padev;
897 h->irq = -1;
898 h->iobase = ioremap(padev->hpa.start, HARMONY_SIZE);
899 if (h->iobase == NULL) {
900 printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n",
901 (unsigned long)padev->hpa.start);
902 err = -EBUSY;
903 goto free_and_ret;
904 }
905
906 err = request_irq(padev->irq, snd_harmony_interrupt, 0,
907 "harmony", h);
908 if (err) {
909 printk(KERN_ERR PFX "could not obtain interrupt %d",
910 padev->irq);
911 goto free_and_ret;
912 }
913 h->irq = padev->irq;
914
915 spin_lock_init(&h->mixer_lock);
916 spin_lock_init(&h->lock);
917
918 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
919 h, &ops)) < 0) {
920 goto free_and_ret;
921 }
922
923 *rchip = h;
924
925 return 0;
926
927 free_and_ret:
928 snd_harmony_free(h);
929 return err;
930 }
931
932 static int __init
933 snd_harmony_probe(struct parisc_device *padev)
934 {
935 int err;
936 struct snd_card *card;
937 struct snd_harmony *h;
938
939 err = snd_card_new(&padev->dev, index, id, THIS_MODULE, 0, &card);
940 if (err < 0)
941 return err;
942
943 err = snd_harmony_create(card, padev, &h);
944 if (err < 0)
945 goto free_and_ret;
946
947 err = snd_harmony_pcm_init(h);
948 if (err < 0)
949 goto free_and_ret;
950
951 err = snd_harmony_mixer_init(h);
952 if (err < 0)
953 goto free_and_ret;
954
955 strcpy(card->driver, "harmony");
956 strcpy(card->shortname, "Harmony");
957 sprintf(card->longname, "%s at 0x%lx, irq %i",
958 card->shortname, h->hpa, h->irq);
959
960 err = snd_card_register(card);
961 if (err < 0)
962 goto free_and_ret;
963
964 parisc_set_drvdata(padev, card);
965 return 0;
966
967 free_and_ret:
968 snd_card_free(card);
969 return err;
970 }
971
972 static int __exit
973 snd_harmony_remove(struct parisc_device *padev)
974 {
975 snd_card_free(parisc_get_drvdata(padev));
976 return 0;
977 }
978
979 static struct parisc_driver snd_harmony_driver __refdata = {
980 .name = "harmony",
981 .id_table = snd_harmony_devtable,
982 .probe = snd_harmony_probe,
983 .remove = __exit_p(snd_harmony_remove),
984 };
985
986 static int __init
987 alsa_harmony_init(void)
988 {
989 return register_parisc_driver(&snd_harmony_driver);
990 }
991
992 static void __exit
993 alsa_harmony_fini(void)
994 {
995 unregister_parisc_driver(&snd_harmony_driver);
996 }
997
998 MODULE_LICENSE("GPL");
999 MODULE_AUTHOR("Kyle McMartin <kyle@parisc-linux.org>");
1000 MODULE_DESCRIPTION("Harmony sound driver");
1001
1002 module_init(alsa_harmony_init);
1003 module_exit(alsa_harmony_fini);