]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/pci/ctxfi/cthw20k1.c
ASoC: rockchip: add bindings for rk3368 i2s
[mirror_ubuntu-bionic-kernel.git] / sound / pci / ctxfi / cthw20k1.c
1 /**
2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3 *
4 * This source file is released under GPL v2 license (no other versions).
5 * See the COPYING file included in the main directory of this source
6 * distribution for the license terms and conditions.
7 *
8 * @File cthw20k1.c
9 *
10 * @Brief
11 * This file contains the implementation of hardware access methord for 20k1.
12 *
13 * @Author Liu Chun
14 * @Date Jun 24 2008
15 *
16 */
17
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/spinlock.h>
24 #include <linux/kernel.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include "cthw20k1.h"
28 #include "ct20k1reg.h"
29
30 struct hw20k1 {
31 struct hw hw;
32 spinlock_t reg_20k1_lock;
33 spinlock_t reg_pci_lock;
34 };
35
36 static u32 hw_read_20kx(struct hw *hw, u32 reg);
37 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
38 static u32 hw_read_pci(struct hw *hw, u32 reg);
39 static void hw_write_pci(struct hw *hw, u32 reg, u32 data);
40
41 /*
42 * Type definition block.
43 * The layout of control structures can be directly applied on 20k2 chip.
44 */
45
46 /*
47 * SRC control block definitions.
48 */
49
50 /* SRC resource control block */
51 #define SRCCTL_STATE 0x00000007
52 #define SRCCTL_BM 0x00000008
53 #define SRCCTL_RSR 0x00000030
54 #define SRCCTL_SF 0x000001C0
55 #define SRCCTL_WR 0x00000200
56 #define SRCCTL_PM 0x00000400
57 #define SRCCTL_ROM 0x00001800
58 #define SRCCTL_VO 0x00002000
59 #define SRCCTL_ST 0x00004000
60 #define SRCCTL_IE 0x00008000
61 #define SRCCTL_ILSZ 0x000F0000
62 #define SRCCTL_BP 0x00100000
63
64 #define SRCCCR_CISZ 0x000007FF
65 #define SRCCCR_CWA 0x001FF800
66 #define SRCCCR_D 0x00200000
67 #define SRCCCR_RS 0x01C00000
68 #define SRCCCR_NAL 0x3E000000
69 #define SRCCCR_RA 0xC0000000
70
71 #define SRCCA_CA 0x03FFFFFF
72 #define SRCCA_RS 0x1C000000
73 #define SRCCA_NAL 0xE0000000
74
75 #define SRCSA_SA 0x03FFFFFF
76
77 #define SRCLA_LA 0x03FFFFFF
78
79 /* Mixer Parameter Ring ram Low and Hight register.
80 * Fixed-point value in 8.24 format for parameter channel */
81 #define MPRLH_PITCH 0xFFFFFFFF
82
83 /* SRC resource register dirty flags */
84 union src_dirty {
85 struct {
86 u16 ctl:1;
87 u16 ccr:1;
88 u16 sa:1;
89 u16 la:1;
90 u16 ca:1;
91 u16 mpr:1;
92 u16 czbfs:1; /* Clear Z-Buffers */
93 u16 rsv:9;
94 } bf;
95 u16 data;
96 };
97
98 struct src_rsc_ctrl_blk {
99 unsigned int ctl;
100 unsigned int ccr;
101 unsigned int ca;
102 unsigned int sa;
103 unsigned int la;
104 unsigned int mpr;
105 union src_dirty dirty;
106 };
107
108 /* SRC manager control block */
109 union src_mgr_dirty {
110 struct {
111 u16 enb0:1;
112 u16 enb1:1;
113 u16 enb2:1;
114 u16 enb3:1;
115 u16 enb4:1;
116 u16 enb5:1;
117 u16 enb6:1;
118 u16 enb7:1;
119 u16 enbsa:1;
120 u16 rsv:7;
121 } bf;
122 u16 data;
123 };
124
125 struct src_mgr_ctrl_blk {
126 unsigned int enbsa;
127 unsigned int enb[8];
128 union src_mgr_dirty dirty;
129 };
130
131 /* SRCIMP manager control block */
132 #define SRCAIM_ARC 0x00000FFF
133 #define SRCAIM_NXT 0x00FF0000
134 #define SRCAIM_SRC 0xFF000000
135
136 struct srcimap {
137 unsigned int srcaim;
138 unsigned int idx;
139 };
140
141 /* SRCIMP manager register dirty flags */
142 union srcimp_mgr_dirty {
143 struct {
144 u16 srcimap:1;
145 u16 rsv:15;
146 } bf;
147 u16 data;
148 };
149
150 struct srcimp_mgr_ctrl_blk {
151 struct srcimap srcimap;
152 union srcimp_mgr_dirty dirty;
153 };
154
155 /*
156 * Function implementation block.
157 */
158
159 static int src_get_rsc_ctrl_blk(void **rblk)
160 {
161 struct src_rsc_ctrl_blk *blk;
162
163 *rblk = NULL;
164 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
165 if (!blk)
166 return -ENOMEM;
167
168 *rblk = blk;
169
170 return 0;
171 }
172
173 static int src_put_rsc_ctrl_blk(void *blk)
174 {
175 kfree((struct src_rsc_ctrl_blk *)blk);
176
177 return 0;
178 }
179
180 static int src_set_state(void *blk, unsigned int state)
181 {
182 struct src_rsc_ctrl_blk *ctl = blk;
183
184 set_field(&ctl->ctl, SRCCTL_STATE, state);
185 ctl->dirty.bf.ctl = 1;
186 return 0;
187 }
188
189 static int src_set_bm(void *blk, unsigned int bm)
190 {
191 struct src_rsc_ctrl_blk *ctl = blk;
192
193 set_field(&ctl->ctl, SRCCTL_BM, bm);
194 ctl->dirty.bf.ctl = 1;
195 return 0;
196 }
197
198 static int src_set_rsr(void *blk, unsigned int rsr)
199 {
200 struct src_rsc_ctrl_blk *ctl = blk;
201
202 set_field(&ctl->ctl, SRCCTL_RSR, rsr);
203 ctl->dirty.bf.ctl = 1;
204 return 0;
205 }
206
207 static int src_set_sf(void *blk, unsigned int sf)
208 {
209 struct src_rsc_ctrl_blk *ctl = blk;
210
211 set_field(&ctl->ctl, SRCCTL_SF, sf);
212 ctl->dirty.bf.ctl = 1;
213 return 0;
214 }
215
216 static int src_set_wr(void *blk, unsigned int wr)
217 {
218 struct src_rsc_ctrl_blk *ctl = blk;
219
220 set_field(&ctl->ctl, SRCCTL_WR, wr);
221 ctl->dirty.bf.ctl = 1;
222 return 0;
223 }
224
225 static int src_set_pm(void *blk, unsigned int pm)
226 {
227 struct src_rsc_ctrl_blk *ctl = blk;
228
229 set_field(&ctl->ctl, SRCCTL_PM, pm);
230 ctl->dirty.bf.ctl = 1;
231 return 0;
232 }
233
234 static int src_set_rom(void *blk, unsigned int rom)
235 {
236 struct src_rsc_ctrl_blk *ctl = blk;
237
238 set_field(&ctl->ctl, SRCCTL_ROM, rom);
239 ctl->dirty.bf.ctl = 1;
240 return 0;
241 }
242
243 static int src_set_vo(void *blk, unsigned int vo)
244 {
245 struct src_rsc_ctrl_blk *ctl = blk;
246
247 set_field(&ctl->ctl, SRCCTL_VO, vo);
248 ctl->dirty.bf.ctl = 1;
249 return 0;
250 }
251
252 static int src_set_st(void *blk, unsigned int st)
253 {
254 struct src_rsc_ctrl_blk *ctl = blk;
255
256 set_field(&ctl->ctl, SRCCTL_ST, st);
257 ctl->dirty.bf.ctl = 1;
258 return 0;
259 }
260
261 static int src_set_ie(void *blk, unsigned int ie)
262 {
263 struct src_rsc_ctrl_blk *ctl = blk;
264
265 set_field(&ctl->ctl, SRCCTL_IE, ie);
266 ctl->dirty.bf.ctl = 1;
267 return 0;
268 }
269
270 static int src_set_ilsz(void *blk, unsigned int ilsz)
271 {
272 struct src_rsc_ctrl_blk *ctl = blk;
273
274 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
275 ctl->dirty.bf.ctl = 1;
276 return 0;
277 }
278
279 static int src_set_bp(void *blk, unsigned int bp)
280 {
281 struct src_rsc_ctrl_blk *ctl = blk;
282
283 set_field(&ctl->ctl, SRCCTL_BP, bp);
284 ctl->dirty.bf.ctl = 1;
285 return 0;
286 }
287
288 static int src_set_cisz(void *blk, unsigned int cisz)
289 {
290 struct src_rsc_ctrl_blk *ctl = blk;
291
292 set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
293 ctl->dirty.bf.ccr = 1;
294 return 0;
295 }
296
297 static int src_set_ca(void *blk, unsigned int ca)
298 {
299 struct src_rsc_ctrl_blk *ctl = blk;
300
301 set_field(&ctl->ca, SRCCA_CA, ca);
302 ctl->dirty.bf.ca = 1;
303 return 0;
304 }
305
306 static int src_set_sa(void *blk, unsigned int sa)
307 {
308 struct src_rsc_ctrl_blk *ctl = blk;
309
310 set_field(&ctl->sa, SRCSA_SA, sa);
311 ctl->dirty.bf.sa = 1;
312 return 0;
313 }
314
315 static int src_set_la(void *blk, unsigned int la)
316 {
317 struct src_rsc_ctrl_blk *ctl = blk;
318
319 set_field(&ctl->la, SRCLA_LA, la);
320 ctl->dirty.bf.la = 1;
321 return 0;
322 }
323
324 static int src_set_pitch(void *blk, unsigned int pitch)
325 {
326 struct src_rsc_ctrl_blk *ctl = blk;
327
328 set_field(&ctl->mpr, MPRLH_PITCH, pitch);
329 ctl->dirty.bf.mpr = 1;
330 return 0;
331 }
332
333 static int src_set_clear_zbufs(void *blk, unsigned int clear)
334 {
335 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
336 return 0;
337 }
338
339 static int src_set_dirty(void *blk, unsigned int flags)
340 {
341 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
342 return 0;
343 }
344
345 static int src_set_dirty_all(void *blk)
346 {
347 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
348 return 0;
349 }
350
351 #define AR_SLOT_SIZE 4096
352 #define AR_SLOT_BLOCK_SIZE 16
353 #define AR_PTS_PITCH 6
354 #define AR_PARAM_SRC_OFFSET 0x60
355
356 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
357 {
358 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
359 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
360
361 }
362
363 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
364 {
365 struct src_rsc_ctrl_blk *ctl = blk;
366 int i;
367
368 if (ctl->dirty.bf.czbfs) {
369 /* Clear Z-Buffer registers */
370 for (i = 0; i < 8; i++)
371 hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0);
372
373 for (i = 0; i < 4; i++)
374 hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0);
375
376 for (i = 0; i < 8; i++)
377 hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0);
378
379 ctl->dirty.bf.czbfs = 0;
380 }
381 if (ctl->dirty.bf.mpr) {
382 /* Take the parameter mixer resource in the same group as that
383 * the idx src is in for simplicity. Unlike src, all conjugate
384 * parameter mixer resources must be programmed for
385 * corresponding conjugate src resources. */
386 unsigned int pm_idx = src_param_pitch_mixer(idx);
387 hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr);
388 hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3);
389 hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0);
390 ctl->dirty.bf.mpr = 0;
391 }
392 if (ctl->dirty.bf.sa) {
393 hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa);
394 ctl->dirty.bf.sa = 0;
395 }
396 if (ctl->dirty.bf.la) {
397 hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la);
398 ctl->dirty.bf.la = 0;
399 }
400 if (ctl->dirty.bf.ca) {
401 hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca);
402 ctl->dirty.bf.ca = 0;
403 }
404
405 /* Write srccf register */
406 hw_write_20kx(hw, SRCCF+idx*0x100, 0x0);
407
408 if (ctl->dirty.bf.ccr) {
409 hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr);
410 ctl->dirty.bf.ccr = 0;
411 }
412 if (ctl->dirty.bf.ctl) {
413 hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl);
414 ctl->dirty.bf.ctl = 0;
415 }
416
417 return 0;
418 }
419
420 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
421 {
422 struct src_rsc_ctrl_blk *ctl = blk;
423
424 ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100);
425 ctl->dirty.bf.ca = 0;
426
427 return get_field(ctl->ca, SRCCA_CA);
428 }
429
430 static unsigned int src_get_dirty(void *blk)
431 {
432 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
433 }
434
435 static unsigned int src_dirty_conj_mask(void)
436 {
437 return 0x20;
438 }
439
440 static int src_mgr_enbs_src(void *blk, unsigned int idx)
441 {
442 ((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0);
443 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
444 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
445 return 0;
446 }
447
448 static int src_mgr_enb_src(void *blk, unsigned int idx)
449 {
450 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
452 return 0;
453 }
454
455 static int src_mgr_dsb_src(void *blk, unsigned int idx)
456 {
457 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
458 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
459 return 0;
460 }
461
462 static int src_mgr_commit_write(struct hw *hw, void *blk)
463 {
464 struct src_mgr_ctrl_blk *ctl = blk;
465 int i;
466 unsigned int ret;
467
468 if (ctl->dirty.bf.enbsa) {
469 do {
470 ret = hw_read_20kx(hw, SRCENBSTAT);
471 } while (ret & 0x1);
472 hw_write_20kx(hw, SRCENBS, ctl->enbsa);
473 ctl->dirty.bf.enbsa = 0;
474 }
475 for (i = 0; i < 8; i++) {
476 if ((ctl->dirty.data & (0x1 << i))) {
477 hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]);
478 ctl->dirty.data &= ~(0x1 << i);
479 }
480 }
481
482 return 0;
483 }
484
485 static int src_mgr_get_ctrl_blk(void **rblk)
486 {
487 struct src_mgr_ctrl_blk *blk;
488
489 *rblk = NULL;
490 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
491 if (!blk)
492 return -ENOMEM;
493
494 *rblk = blk;
495
496 return 0;
497 }
498
499 static int src_mgr_put_ctrl_blk(void *blk)
500 {
501 kfree((struct src_mgr_ctrl_blk *)blk);
502
503 return 0;
504 }
505
506 static int srcimp_mgr_get_ctrl_blk(void **rblk)
507 {
508 struct srcimp_mgr_ctrl_blk *blk;
509
510 *rblk = NULL;
511 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
512 if (!blk)
513 return -ENOMEM;
514
515 *rblk = blk;
516
517 return 0;
518 }
519
520 static int srcimp_mgr_put_ctrl_blk(void *blk)
521 {
522 kfree((struct srcimp_mgr_ctrl_blk *)blk);
523
524 return 0;
525 }
526
527 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
528 {
529 struct srcimp_mgr_ctrl_blk *ctl = blk;
530
531 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
532 ctl->dirty.bf.srcimap = 1;
533 return 0;
534 }
535
536 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
537 {
538 struct srcimp_mgr_ctrl_blk *ctl = blk;
539
540 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
541 ctl->dirty.bf.srcimap = 1;
542 return 0;
543 }
544
545 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
546 {
547 struct srcimp_mgr_ctrl_blk *ctl = blk;
548
549 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
550 ctl->dirty.bf.srcimap = 1;
551 return 0;
552 }
553
554 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
555 {
556 struct srcimp_mgr_ctrl_blk *ctl = blk;
557
558 ctl->srcimap.idx = addr;
559 ctl->dirty.bf.srcimap = 1;
560 return 0;
561 }
562
563 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
564 {
565 struct srcimp_mgr_ctrl_blk *ctl = blk;
566
567 if (ctl->dirty.bf.srcimap) {
568 hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100,
569 ctl->srcimap.srcaim);
570 ctl->dirty.bf.srcimap = 0;
571 }
572
573 return 0;
574 }
575
576 /*
577 * AMIXER control block definitions.
578 */
579
580 #define AMOPLO_M 0x00000003
581 #define AMOPLO_X 0x0003FFF0
582 #define AMOPLO_Y 0xFFFC0000
583
584 #define AMOPHI_SADR 0x000000FF
585 #define AMOPHI_SE 0x80000000
586
587 /* AMIXER resource register dirty flags */
588 union amixer_dirty {
589 struct {
590 u16 amoplo:1;
591 u16 amophi:1;
592 u16 rsv:14;
593 } bf;
594 u16 data;
595 };
596
597 /* AMIXER resource control block */
598 struct amixer_rsc_ctrl_blk {
599 unsigned int amoplo;
600 unsigned int amophi;
601 union amixer_dirty dirty;
602 };
603
604 static int amixer_set_mode(void *blk, unsigned int mode)
605 {
606 struct amixer_rsc_ctrl_blk *ctl = blk;
607
608 set_field(&ctl->amoplo, AMOPLO_M, mode);
609 ctl->dirty.bf.amoplo = 1;
610 return 0;
611 }
612
613 static int amixer_set_iv(void *blk, unsigned int iv)
614 {
615 /* 20k1 amixer does not have this field */
616 return 0;
617 }
618
619 static int amixer_set_x(void *blk, unsigned int x)
620 {
621 struct amixer_rsc_ctrl_blk *ctl = blk;
622
623 set_field(&ctl->amoplo, AMOPLO_X, x);
624 ctl->dirty.bf.amoplo = 1;
625 return 0;
626 }
627
628 static int amixer_set_y(void *blk, unsigned int y)
629 {
630 struct amixer_rsc_ctrl_blk *ctl = blk;
631
632 set_field(&ctl->amoplo, AMOPLO_Y, y);
633 ctl->dirty.bf.amoplo = 1;
634 return 0;
635 }
636
637 static int amixer_set_sadr(void *blk, unsigned int sadr)
638 {
639 struct amixer_rsc_ctrl_blk *ctl = blk;
640
641 set_field(&ctl->amophi, AMOPHI_SADR, sadr);
642 ctl->dirty.bf.amophi = 1;
643 return 0;
644 }
645
646 static int amixer_set_se(void *blk, unsigned int se)
647 {
648 struct amixer_rsc_ctrl_blk *ctl = blk;
649
650 set_field(&ctl->amophi, AMOPHI_SE, se);
651 ctl->dirty.bf.amophi = 1;
652 return 0;
653 }
654
655 static int amixer_set_dirty(void *blk, unsigned int flags)
656 {
657 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
658 return 0;
659 }
660
661 static int amixer_set_dirty_all(void *blk)
662 {
663 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
664 return 0;
665 }
666
667 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
668 {
669 struct amixer_rsc_ctrl_blk *ctl = blk;
670
671 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
672 hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo);
673 ctl->dirty.bf.amoplo = 0;
674 hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi);
675 ctl->dirty.bf.amophi = 0;
676 }
677
678 return 0;
679 }
680
681 static int amixer_get_y(void *blk)
682 {
683 struct amixer_rsc_ctrl_blk *ctl = blk;
684
685 return get_field(ctl->amoplo, AMOPLO_Y);
686 }
687
688 static unsigned int amixer_get_dirty(void *blk)
689 {
690 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
691 }
692
693 static int amixer_rsc_get_ctrl_blk(void **rblk)
694 {
695 struct amixer_rsc_ctrl_blk *blk;
696
697 *rblk = NULL;
698 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
699 if (!blk)
700 return -ENOMEM;
701
702 *rblk = blk;
703
704 return 0;
705 }
706
707 static int amixer_rsc_put_ctrl_blk(void *blk)
708 {
709 kfree((struct amixer_rsc_ctrl_blk *)blk);
710
711 return 0;
712 }
713
714 static int amixer_mgr_get_ctrl_blk(void **rblk)
715 {
716 /*amixer_mgr_ctrl_blk_t *blk;*/
717
718 *rblk = NULL;
719 /*blk = kzalloc(sizeof(*blk), GFP_KERNEL);
720 if (!blk)
721 return -ENOMEM;
722
723 *rblk = blk;*/
724
725 return 0;
726 }
727
728 static int amixer_mgr_put_ctrl_blk(void *blk)
729 {
730 /*kfree((amixer_mgr_ctrl_blk_t *)blk);*/
731
732 return 0;
733 }
734
735 /*
736 * DAIO control block definitions.
737 */
738
739 /* Receiver Sample Rate Tracker Control register */
740 #define SRTCTL_SRCR 0x000000FF
741 #define SRTCTL_SRCL 0x0000FF00
742 #define SRTCTL_RSR 0x00030000
743 #define SRTCTL_DRAT 0x000C0000
744 #define SRTCTL_RLE 0x10000000
745 #define SRTCTL_RLP 0x20000000
746 #define SRTCTL_EC 0x40000000
747 #define SRTCTL_ET 0x80000000
748
749 /* DAIO Receiver register dirty flags */
750 union dai_dirty {
751 struct {
752 u16 srtctl:1;
753 u16 rsv:15;
754 } bf;
755 u16 data;
756 };
757
758 /* DAIO Receiver control block */
759 struct dai_ctrl_blk {
760 unsigned int srtctl;
761 union dai_dirty dirty;
762 };
763
764 /* S/PDIF Transmitter register dirty flags */
765 union dao_dirty {
766 struct {
767 u16 spos:1;
768 u16 rsv:15;
769 } bf;
770 u16 data;
771 };
772
773 /* S/PDIF Transmitter control block */
774 struct dao_ctrl_blk {
775 unsigned int spos; /* S/PDIF Output Channel Status Register */
776 union dao_dirty dirty;
777 };
778
779 /* Audio Input Mapper RAM */
780 #define AIM_ARC 0x00000FFF
781 #define AIM_NXT 0x007F0000
782
783 struct daoimap {
784 unsigned int aim;
785 unsigned int idx;
786 };
787
788 /* I2S Transmitter/Receiver Control register */
789 #define I2SCTL_EA 0x00000004
790 #define I2SCTL_EI 0x00000010
791
792 /* S/PDIF Transmitter Control register */
793 #define SPOCTL_OE 0x00000001
794 #define SPOCTL_OS 0x0000000E
795 #define SPOCTL_RIV 0x00000010
796 #define SPOCTL_LIV 0x00000020
797 #define SPOCTL_SR 0x000000C0
798
799 /* S/PDIF Receiver Control register */
800 #define SPICTL_EN 0x00000001
801 #define SPICTL_I24 0x00000002
802 #define SPICTL_IB 0x00000004
803 #define SPICTL_SM 0x00000008
804 #define SPICTL_VM 0x00000010
805
806 /* DAIO manager register dirty flags */
807 union daio_mgr_dirty {
808 struct {
809 u32 i2soctl:4;
810 u32 i2sictl:4;
811 u32 spoctl:4;
812 u32 spictl:4;
813 u32 daoimap:1;
814 u32 rsv:15;
815 } bf;
816 u32 data;
817 };
818
819 /* DAIO manager control block */
820 struct daio_mgr_ctrl_blk {
821 unsigned int i2sctl;
822 unsigned int spoctl;
823 unsigned int spictl;
824 struct daoimap daoimap;
825 union daio_mgr_dirty dirty;
826 };
827
828 static int dai_srt_set_srcr(void *blk, unsigned int src)
829 {
830 struct dai_ctrl_blk *ctl = blk;
831
832 set_field(&ctl->srtctl, SRTCTL_SRCR, src);
833 ctl->dirty.bf.srtctl = 1;
834 return 0;
835 }
836
837 static int dai_srt_set_srcl(void *blk, unsigned int src)
838 {
839 struct dai_ctrl_blk *ctl = blk;
840
841 set_field(&ctl->srtctl, SRTCTL_SRCL, src);
842 ctl->dirty.bf.srtctl = 1;
843 return 0;
844 }
845
846 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
847 {
848 struct dai_ctrl_blk *ctl = blk;
849
850 set_field(&ctl->srtctl, SRTCTL_RSR, rsr);
851 ctl->dirty.bf.srtctl = 1;
852 return 0;
853 }
854
855 static int dai_srt_set_drat(void *blk, unsigned int drat)
856 {
857 struct dai_ctrl_blk *ctl = blk;
858
859 set_field(&ctl->srtctl, SRTCTL_DRAT, drat);
860 ctl->dirty.bf.srtctl = 1;
861 return 0;
862 }
863
864 static int dai_srt_set_ec(void *blk, unsigned int ec)
865 {
866 struct dai_ctrl_blk *ctl = blk;
867
868 set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0);
869 ctl->dirty.bf.srtctl = 1;
870 return 0;
871 }
872
873 static int dai_srt_set_et(void *blk, unsigned int et)
874 {
875 struct dai_ctrl_blk *ctl = blk;
876
877 set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0);
878 ctl->dirty.bf.srtctl = 1;
879 return 0;
880 }
881
882 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
883 {
884 struct dai_ctrl_blk *ctl = blk;
885
886 if (ctl->dirty.bf.srtctl) {
887 if (idx < 4) {
888 /* S/PDIF SRTs */
889 hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl);
890 } else {
891 /* I2S SRT */
892 hw_write_20kx(hw, SRTICTL, ctl->srtctl);
893 }
894 ctl->dirty.bf.srtctl = 0;
895 }
896
897 return 0;
898 }
899
900 static int dai_get_ctrl_blk(void **rblk)
901 {
902 struct dai_ctrl_blk *blk;
903
904 *rblk = NULL;
905 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
906 if (!blk)
907 return -ENOMEM;
908
909 *rblk = blk;
910
911 return 0;
912 }
913
914 static int dai_put_ctrl_blk(void *blk)
915 {
916 kfree((struct dai_ctrl_blk *)blk);
917
918 return 0;
919 }
920
921 static int dao_set_spos(void *blk, unsigned int spos)
922 {
923 ((struct dao_ctrl_blk *)blk)->spos = spos;
924 ((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1;
925 return 0;
926 }
927
928 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
929 {
930 struct dao_ctrl_blk *ctl = blk;
931
932 if (ctl->dirty.bf.spos) {
933 if (idx < 4) {
934 /* S/PDIF SPOSx */
935 hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos);
936 }
937 ctl->dirty.bf.spos = 0;
938 }
939
940 return 0;
941 }
942
943 static int dao_get_spos(void *blk, unsigned int *spos)
944 {
945 *spos = ((struct dao_ctrl_blk *)blk)->spos;
946 return 0;
947 }
948
949 static int dao_get_ctrl_blk(void **rblk)
950 {
951 struct dao_ctrl_blk *blk;
952
953 *rblk = NULL;
954 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
955 if (!blk)
956 return -ENOMEM;
957
958 *rblk = blk;
959
960 return 0;
961 }
962
963 static int dao_put_ctrl_blk(void *blk)
964 {
965 kfree((struct dao_ctrl_blk *)blk);
966
967 return 0;
968 }
969
970 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
971 {
972 struct daio_mgr_ctrl_blk *ctl = blk;
973
974 if (idx < 4) {
975 /* S/PDIF input */
976 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1);
977 ctl->dirty.bf.spictl |= (0x1 << idx);
978 } else {
979 /* I2S input */
980 idx %= 4;
981 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1);
982 ctl->dirty.bf.i2sictl |= (0x1 << idx);
983 }
984 return 0;
985 }
986
987 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
988 {
989 struct daio_mgr_ctrl_blk *ctl = blk;
990
991 if (idx < 4) {
992 /* S/PDIF input */
993 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0);
994 ctl->dirty.bf.spictl |= (0x1 << idx);
995 } else {
996 /* I2S input */
997 idx %= 4;
998 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0);
999 ctl->dirty.bf.i2sictl |= (0x1 << idx);
1000 }
1001 return 0;
1002 }
1003
1004 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
1005 {
1006 struct daio_mgr_ctrl_blk *ctl = blk;
1007
1008 if (idx < 4) {
1009 /* S/PDIF output */
1010 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1);
1011 ctl->dirty.bf.spoctl |= (0x1 << idx);
1012 } else {
1013 /* I2S output */
1014 idx %= 4;
1015 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1);
1016 ctl->dirty.bf.i2soctl |= (0x1 << idx);
1017 }
1018 return 0;
1019 }
1020
1021 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
1022 {
1023 struct daio_mgr_ctrl_blk *ctl = blk;
1024
1025 if (idx < 4) {
1026 /* S/PDIF output */
1027 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0);
1028 ctl->dirty.bf.spoctl |= (0x1 << idx);
1029 } else {
1030 /* I2S output */
1031 idx %= 4;
1032 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0);
1033 ctl->dirty.bf.i2soctl |= (0x1 << idx);
1034 }
1035 return 0;
1036 }
1037
1038 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
1039 {
1040 struct daio_mgr_ctrl_blk *ctl = blk;
1041
1042 if (idx < 4) {
1043 /* S/PDIF output */
1044 switch ((conf & 0x7)) {
1045 case 0:
1046 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3);
1047 break; /* CDIF */
1048 case 1:
1049 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0);
1050 break;
1051 case 2:
1052 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1);
1053 break;
1054 case 4:
1055 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2);
1056 break;
1057 default:
1058 break;
1059 }
1060 set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8),
1061 (conf >> 4) & 0x1); /* Non-audio */
1062 set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8),
1063 (conf >> 4) & 0x1); /* Non-audio */
1064 set_field(&ctl->spoctl, SPOCTL_OS << (idx*8),
1065 ((conf >> 3) & 0x1) ? 2 : 2); /* Raw */
1066
1067 ctl->dirty.bf.spoctl |= (0x1 << idx);
1068 } else {
1069 /* I2S output */
1070 /*idx %= 4; */
1071 }
1072 return 0;
1073 }
1074
1075 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1076 {
1077 struct daio_mgr_ctrl_blk *ctl = blk;
1078
1079 set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1080 ctl->dirty.bf.daoimap = 1;
1081 return 0;
1082 }
1083
1084 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1085 {
1086 struct daio_mgr_ctrl_blk *ctl = blk;
1087
1088 set_field(&ctl->daoimap.aim, AIM_NXT, next);
1089 ctl->dirty.bf.daoimap = 1;
1090 return 0;
1091 }
1092
1093 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1094 {
1095 struct daio_mgr_ctrl_blk *ctl = blk;
1096
1097 ctl->daoimap.idx = addr;
1098 ctl->dirty.bf.daoimap = 1;
1099 return 0;
1100 }
1101
1102 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1103 {
1104 struct daio_mgr_ctrl_blk *ctl = blk;
1105 int i;
1106
1107 if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) {
1108 for (i = 0; i < 4; i++) {
1109 if ((ctl->dirty.bf.i2sictl & (0x1 << i)))
1110 ctl->dirty.bf.i2sictl &= ~(0x1 << i);
1111
1112 if ((ctl->dirty.bf.i2soctl & (0x1 << i)))
1113 ctl->dirty.bf.i2soctl &= ~(0x1 << i);
1114 }
1115 hw_write_20kx(hw, I2SCTL, ctl->i2sctl);
1116 mdelay(1);
1117 }
1118 if (ctl->dirty.bf.spoctl) {
1119 for (i = 0; i < 4; i++) {
1120 if ((ctl->dirty.bf.spoctl & (0x1 << i)))
1121 ctl->dirty.bf.spoctl &= ~(0x1 << i);
1122 }
1123 hw_write_20kx(hw, SPOCTL, ctl->spoctl);
1124 mdelay(1);
1125 }
1126 if (ctl->dirty.bf.spictl) {
1127 for (i = 0; i < 4; i++) {
1128 if ((ctl->dirty.bf.spictl & (0x1 << i)))
1129 ctl->dirty.bf.spictl &= ~(0x1 << i);
1130 }
1131 hw_write_20kx(hw, SPICTL, ctl->spictl);
1132 mdelay(1);
1133 }
1134 if (ctl->dirty.bf.daoimap) {
1135 hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4,
1136 ctl->daoimap.aim);
1137 ctl->dirty.bf.daoimap = 0;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1144 {
1145 struct daio_mgr_ctrl_blk *blk;
1146
1147 *rblk = NULL;
1148 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1149 if (!blk)
1150 return -ENOMEM;
1151
1152 blk->i2sctl = hw_read_20kx(hw, I2SCTL);
1153 blk->spoctl = hw_read_20kx(hw, SPOCTL);
1154 blk->spictl = hw_read_20kx(hw, SPICTL);
1155
1156 *rblk = blk;
1157
1158 return 0;
1159 }
1160
1161 static int daio_mgr_put_ctrl_blk(void *blk)
1162 {
1163 kfree((struct daio_mgr_ctrl_blk *)blk);
1164
1165 return 0;
1166 }
1167
1168 /* Timer interrupt */
1169 static int set_timer_irq(struct hw *hw, int enable)
1170 {
1171 hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1172 return 0;
1173 }
1174
1175 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1176 {
1177 if (ticks)
1178 ticks |= TIMR_IE | TIMR_IP;
1179 hw_write_20kx(hw, TIMR, ticks);
1180 return 0;
1181 }
1182
1183 static unsigned int get_wc(struct hw *hw)
1184 {
1185 return hw_read_20kx(hw, WC);
1186 }
1187
1188 /* Card hardware initialization block */
1189 struct dac_conf {
1190 unsigned int msr; /* master sample rate in rsrs */
1191 };
1192
1193 struct adc_conf {
1194 unsigned int msr; /* master sample rate in rsrs */
1195 unsigned char input; /* the input source of ADC */
1196 unsigned char mic20db; /* boost mic by 20db if input is microphone */
1197 };
1198
1199 struct daio_conf {
1200 unsigned int msr; /* master sample rate in rsrs */
1201 };
1202
1203 struct trn_conf {
1204 unsigned long vm_pgt_phys;
1205 };
1206
1207 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1208 {
1209 u32 i2sorg;
1210 u32 spdorg;
1211
1212 /* Read I2S CTL. Keep original value. */
1213 /*i2sorg = hw_read_20kx(hw, I2SCTL);*/
1214 i2sorg = 0x94040404; /* enable all audio out and I2S-D input */
1215 /* Program I2S with proper master sample rate and enable
1216 * the correct I2S channel. */
1217 i2sorg &= 0xfffffffc;
1218
1219 /* Enable S/PDIF-out-A in fixed 24-bit data
1220 * format and default to 48kHz. */
1221 /* Disable all before doing any changes. */
1222 hw_write_20kx(hw, SPOCTL, 0x0);
1223 spdorg = 0x05;
1224
1225 switch (info->msr) {
1226 case 1:
1227 i2sorg |= 1;
1228 spdorg |= (0x0 << 6);
1229 break;
1230 case 2:
1231 i2sorg |= 2;
1232 spdorg |= (0x1 << 6);
1233 break;
1234 case 4:
1235 i2sorg |= 3;
1236 spdorg |= (0x2 << 6);
1237 break;
1238 default:
1239 i2sorg |= 1;
1240 break;
1241 }
1242
1243 hw_write_20kx(hw, I2SCTL, i2sorg);
1244 hw_write_20kx(hw, SPOCTL, spdorg);
1245
1246 /* Enable S/PDIF-in-A in fixed 24-bit data format. */
1247 /* Disable all before doing any changes. */
1248 hw_write_20kx(hw, SPICTL, 0x0);
1249 mdelay(1);
1250 spdorg = 0x0a0a0a0a;
1251 hw_write_20kx(hw, SPICTL, spdorg);
1252 mdelay(1);
1253
1254 return 0;
1255 }
1256
1257 /* TRANSPORT operations */
1258 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1259 {
1260 u32 trnctl;
1261 u32 ptp_phys_low, ptp_phys_high;
1262
1263 /* Set up device page table */
1264 if ((~0UL) == info->vm_pgt_phys) {
1265 dev_err(hw->card->dev,
1266 "Wrong device page table page address!\n");
1267 return -1;
1268 }
1269
1270 trnctl = 0x13; /* 32-bit, 4k-size page */
1271 ptp_phys_low = (u32)info->vm_pgt_phys;
1272 ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1273 if (sizeof(void *) == 8) /* 64bit address */
1274 trnctl |= (1 << 2);
1275 #if 0 /* Only 4k h/w pages for simplicitiy */
1276 #if PAGE_SIZE == 8192
1277 trnctl |= (1<<5);
1278 #endif
1279 #endif
1280 hw_write_20kx(hw, PTPALX, ptp_phys_low);
1281 hw_write_20kx(hw, PTPAHX, ptp_phys_high);
1282 hw_write_20kx(hw, TRNCTL, trnctl);
1283 hw_write_20kx(hw, TRNIS, 0x200c01); /* really needed? */
1284
1285 return 0;
1286 }
1287
1288 /* Card initialization */
1289 #define GCTL_EAC 0x00000001
1290 #define GCTL_EAI 0x00000002
1291 #define GCTL_BEP 0x00000004
1292 #define GCTL_BES 0x00000008
1293 #define GCTL_DSP 0x00000010
1294 #define GCTL_DBP 0x00000020
1295 #define GCTL_ABP 0x00000040
1296 #define GCTL_TBP 0x00000080
1297 #define GCTL_SBP 0x00000100
1298 #define GCTL_FBP 0x00000200
1299 #define GCTL_XA 0x00000400
1300 #define GCTL_ET 0x00000800
1301 #define GCTL_PR 0x00001000
1302 #define GCTL_MRL 0x00002000
1303 #define GCTL_SDE 0x00004000
1304 #define GCTL_SDI 0x00008000
1305 #define GCTL_SM 0x00010000
1306 #define GCTL_SR 0x00020000
1307 #define GCTL_SD 0x00040000
1308 #define GCTL_SE 0x00080000
1309 #define GCTL_AID 0x00100000
1310
1311 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1312 {
1313 unsigned int pllctl;
1314 int i;
1315
1316 pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731;
1317 for (i = 0; i < 3; i++) {
1318 if (hw_read_20kx(hw, PLLCTL) == pllctl)
1319 break;
1320
1321 hw_write_20kx(hw, PLLCTL, pllctl);
1322 mdelay(40);
1323 }
1324 if (i >= 3) {
1325 dev_alert(hw->card->dev, "PLL initialization failed!!!\n");
1326 return -EBUSY;
1327 }
1328
1329 return 0;
1330 }
1331
1332 static int hw_auto_init(struct hw *hw)
1333 {
1334 unsigned int gctl;
1335 int i;
1336
1337 gctl = hw_read_20kx(hw, GCTL);
1338 set_field(&gctl, GCTL_EAI, 0);
1339 hw_write_20kx(hw, GCTL, gctl);
1340 set_field(&gctl, GCTL_EAI, 1);
1341 hw_write_20kx(hw, GCTL, gctl);
1342 mdelay(10);
1343 for (i = 0; i < 400000; i++) {
1344 gctl = hw_read_20kx(hw, GCTL);
1345 if (get_field(gctl, GCTL_AID))
1346 break;
1347 }
1348 if (!get_field(gctl, GCTL_AID)) {
1349 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
1350 return -EBUSY;
1351 }
1352
1353 return 0;
1354 }
1355
1356 static int i2c_unlock(struct hw *hw)
1357 {
1358 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1359 return 0;
1360
1361 hw_write_pci(hw, 0xcc, 0x8c);
1362 hw_write_pci(hw, 0xcc, 0x0e);
1363 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1364 return 0;
1365
1366 hw_write_pci(hw, 0xcc, 0xee);
1367 hw_write_pci(hw, 0xcc, 0xaa);
1368 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1369 return 0;
1370
1371 return -1;
1372 }
1373
1374 static void i2c_lock(struct hw *hw)
1375 {
1376 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
1377 hw_write_pci(hw, 0xcc, 0x00);
1378 }
1379
1380 static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data)
1381 {
1382 unsigned int ret;
1383
1384 do {
1385 ret = hw_read_pci(hw, 0xEC);
1386 } while (!(ret & 0x800000));
1387 hw_write_pci(hw, 0xE0, device);
1388 hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff));
1389 }
1390
1391 /* DAC operations */
1392
1393 static int hw_reset_dac(struct hw *hw)
1394 {
1395 u32 i;
1396 u16 gpioorg;
1397 unsigned int ret;
1398
1399 if (i2c_unlock(hw))
1400 return -1;
1401
1402 do {
1403 ret = hw_read_pci(hw, 0xEC);
1404 } while (!(ret & 0x800000));
1405 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
1406
1407 /* To be effective, need to reset the DAC twice. */
1408 for (i = 0; i < 2; i++) {
1409 /* set gpio */
1410 mdelay(100);
1411 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1412 gpioorg &= 0xfffd;
1413 hw_write_20kx(hw, GPIO, gpioorg);
1414 mdelay(1);
1415 hw_write_20kx(hw, GPIO, gpioorg | 0x2);
1416 }
1417
1418 i2c_write(hw, 0x00180080, 0x01, 0x80);
1419 i2c_write(hw, 0x00180080, 0x02, 0x10);
1420
1421 i2c_lock(hw);
1422
1423 return 0;
1424 }
1425
1426 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1427 {
1428 u32 data;
1429 u16 gpioorg;
1430 unsigned int ret;
1431
1432 if (hw->model == CTSB055X) {
1433 /* SB055x, unmute outputs */
1434 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1435 gpioorg &= 0xffbf; /* set GPIO6 to low */
1436 gpioorg |= 2; /* set GPIO1 to high */
1437 hw_write_20kx(hw, GPIO, gpioorg);
1438 return 0;
1439 }
1440
1441 /* mute outputs */
1442 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1443 gpioorg &= 0xffbf;
1444 hw_write_20kx(hw, GPIO, gpioorg);
1445
1446 hw_reset_dac(hw);
1447
1448 if (i2c_unlock(hw))
1449 return -1;
1450
1451 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
1452 do {
1453 ret = hw_read_pci(hw, 0xEC);
1454 } while (!(ret & 0x800000));
1455
1456 switch (info->msr) {
1457 case 1:
1458 data = 0x24;
1459 break;
1460 case 2:
1461 data = 0x25;
1462 break;
1463 case 4:
1464 data = 0x26;
1465 break;
1466 default:
1467 data = 0x24;
1468 break;
1469 }
1470
1471 i2c_write(hw, 0x00180080, 0x06, data);
1472 i2c_write(hw, 0x00180080, 0x09, data);
1473 i2c_write(hw, 0x00180080, 0x0c, data);
1474 i2c_write(hw, 0x00180080, 0x0f, data);
1475
1476 i2c_lock(hw);
1477
1478 /* unmute outputs */
1479 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1480 gpioorg = gpioorg | 0x40;
1481 hw_write_20kx(hw, GPIO, gpioorg);
1482
1483 return 0;
1484 }
1485
1486 /* ADC operations */
1487
1488 static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type)
1489 {
1490 return 0;
1491 }
1492
1493 static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type)
1494 {
1495 u32 data;
1496
1497 data = hw_read_20kx(hw, GPIO);
1498 switch (type) {
1499 case ADC_MICIN:
1500 data = ((data & (0x1<<7)) && (data & (0x1<<8)));
1501 break;
1502 case ADC_LINEIN:
1503 data = (!(data & (0x1<<7)) && (data & (0x1<<8)));
1504 break;
1505 case ADC_NONE: /* Digital I/O */
1506 data = (!(data & (0x1<<8)));
1507 break;
1508 default:
1509 data = 0;
1510 }
1511 return data;
1512 }
1513
1514 static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type)
1515 {
1516 u32 data;
1517
1518 data = hw_read_20kx(hw, GPIO);
1519 switch (type) {
1520 case ADC_MICIN:
1521 data = (data & (0x1 << 7)) ? 1 : 0;
1522 break;
1523 case ADC_LINEIN:
1524 data = (data & (0x1 << 7)) ? 0 : 1;
1525 break;
1526 default:
1527 data = 0;
1528 }
1529 return data;
1530 }
1531
1532 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1533 {
1534 switch (hw->model) {
1535 case CTSB055X:
1536 return is_adc_input_selected_SB055x(hw, type);
1537 case CTSB073X:
1538 return is_adc_input_selected_hendrix(hw, type);
1539 case CTUAA:
1540 return is_adc_input_selected_hendrix(hw, type);
1541 default:
1542 return is_adc_input_selected_SBx(hw, type);
1543 }
1544 }
1545
1546 static int
1547 adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost)
1548 {
1549 u32 data;
1550
1551 /*
1552 * check and set the following GPIO bits accordingly
1553 * ADC_Gain = GPIO2
1554 * DRM_off = GPIO3
1555 * Mic_Pwr_on = GPIO7
1556 * Digital_IO_Sel = GPIO8
1557 * Mic_Sw = GPIO9
1558 * Aux/MicLine_Sw = GPIO12
1559 */
1560 data = hw_read_20kx(hw, GPIO);
1561 data &= 0xec73;
1562 switch (type) {
1563 case ADC_MICIN:
1564 data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ;
1565 data |= boost ? (0x1<<2) : 0;
1566 break;
1567 case ADC_LINEIN:
1568 data |= (0x1<<8);
1569 break;
1570 case ADC_AUX:
1571 data |= (0x1<<8) | (0x1<<12);
1572 break;
1573 case ADC_NONE:
1574 data |= (0x1<<12); /* set to digital */
1575 break;
1576 default:
1577 return -1;
1578 }
1579
1580 hw_write_20kx(hw, GPIO, data);
1581
1582 return 0;
1583 }
1584
1585
1586 static int
1587 adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost)
1588 {
1589 u32 data;
1590 u32 i2c_data;
1591 unsigned int ret;
1592
1593 if (i2c_unlock(hw))
1594 return -1;
1595
1596 do {
1597 ret = hw_read_pci(hw, 0xEC);
1598 } while (!(ret & 0x800000)); /* i2c ready poll */
1599 /* set i2c access mode as Direct Control */
1600 hw_write_pci(hw, 0xEC, 0x05);
1601
1602 data = hw_read_20kx(hw, GPIO);
1603 switch (type) {
1604 case ADC_MICIN:
1605 data |= ((0x1 << 7) | (0x1 << 8));
1606 i2c_data = 0x1; /* Mic-in */
1607 break;
1608 case ADC_LINEIN:
1609 data &= ~(0x1 << 7);
1610 data |= (0x1 << 8);
1611 i2c_data = 0x2; /* Line-in */
1612 break;
1613 case ADC_NONE:
1614 data &= ~(0x1 << 8);
1615 i2c_data = 0x0; /* set to Digital */
1616 break;
1617 default:
1618 i2c_lock(hw);
1619 return -1;
1620 }
1621 hw_write_20kx(hw, GPIO, data);
1622 i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
1623 if (boost) {
1624 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
1625 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
1626 } else {
1627 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
1628 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
1629 }
1630
1631 i2c_lock(hw);
1632
1633 return 0;
1634 }
1635
1636 static int
1637 adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost)
1638 {
1639 u32 data;
1640 u32 i2c_data;
1641 unsigned int ret;
1642
1643 if (i2c_unlock(hw))
1644 return -1;
1645
1646 do {
1647 ret = hw_read_pci(hw, 0xEC);
1648 } while (!(ret & 0x800000)); /* i2c ready poll */
1649 /* set i2c access mode as Direct Control */
1650 hw_write_pci(hw, 0xEC, 0x05);
1651
1652 data = hw_read_20kx(hw, GPIO);
1653 switch (type) {
1654 case ADC_MICIN:
1655 data |= (0x1 << 7);
1656 i2c_data = 0x1; /* Mic-in */
1657 break;
1658 case ADC_LINEIN:
1659 data &= ~(0x1 << 7);
1660 i2c_data = 0x2; /* Line-in */
1661 break;
1662 default:
1663 i2c_lock(hw);
1664 return -1;
1665 }
1666 hw_write_20kx(hw, GPIO, data);
1667 i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
1668 if (boost) {
1669 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
1670 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
1671 } else {
1672 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
1673 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
1674 }
1675
1676 i2c_lock(hw);
1677
1678 return 0;
1679 }
1680
1681 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1682 {
1683 int state = type == ADC_MICIN;
1684
1685 switch (hw->model) {
1686 case CTSB055X:
1687 return adc_input_select_SB055x(hw, type, state);
1688 case CTSB073X:
1689 return adc_input_select_hendrix(hw, type, state);
1690 case CTUAA:
1691 return adc_input_select_hendrix(hw, type, state);
1692 default:
1693 return adc_input_select_SBx(hw, type, state);
1694 }
1695 }
1696
1697 static int adc_init_SB055x(struct hw *hw, int input, int mic20db)
1698 {
1699 return adc_input_select_SB055x(hw, input, mic20db);
1700 }
1701
1702 static int adc_init_SBx(struct hw *hw, int input, int mic20db)
1703 {
1704 u16 gpioorg;
1705 u16 input_source;
1706 u32 adcdata;
1707 unsigned int ret;
1708
1709 input_source = 0x100; /* default to analog */
1710 switch (input) {
1711 case ADC_MICIN:
1712 adcdata = 0x1;
1713 input_source = 0x180; /* set GPIO7 to select Mic */
1714 break;
1715 case ADC_LINEIN:
1716 adcdata = 0x2;
1717 break;
1718 case ADC_VIDEO:
1719 adcdata = 0x4;
1720 break;
1721 case ADC_AUX:
1722 adcdata = 0x8;
1723 break;
1724 case ADC_NONE:
1725 adcdata = 0x0;
1726 input_source = 0x0; /* set to Digital */
1727 break;
1728 default:
1729 adcdata = 0x0;
1730 break;
1731 }
1732
1733 if (i2c_unlock(hw))
1734 return -1;
1735
1736 do {
1737 ret = hw_read_pci(hw, 0xEC);
1738 } while (!(ret & 0x800000)); /* i2c ready poll */
1739 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
1740
1741 i2c_write(hw, 0x001a0080, 0x0e, 0x08);
1742 i2c_write(hw, 0x001a0080, 0x18, 0x0a);
1743 i2c_write(hw, 0x001a0080, 0x28, 0x86);
1744 i2c_write(hw, 0x001a0080, 0x2a, adcdata);
1745
1746 if (mic20db) {
1747 i2c_write(hw, 0x001a0080, 0x1c, 0xf7);
1748 i2c_write(hw, 0x001a0080, 0x1e, 0xf7);
1749 } else {
1750 i2c_write(hw, 0x001a0080, 0x1c, 0xcf);
1751 i2c_write(hw, 0x001a0080, 0x1e, 0xcf);
1752 }
1753
1754 if (!(hw_read_20kx(hw, ID0) & 0x100))
1755 i2c_write(hw, 0x001a0080, 0x16, 0x26);
1756
1757 i2c_lock(hw);
1758
1759 gpioorg = (u16)hw_read_20kx(hw, GPIO);
1760 gpioorg &= 0xfe7f;
1761 gpioorg |= input_source;
1762 hw_write_20kx(hw, GPIO, gpioorg);
1763
1764 return 0;
1765 }
1766
1767 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1768 {
1769 if (hw->model == CTSB055X)
1770 return adc_init_SB055x(hw, info->input, info->mic20db);
1771 else
1772 return adc_init_SBx(hw, info->input, info->mic20db);
1773 }
1774
1775 static struct capabilities hw_capabilities(struct hw *hw)
1776 {
1777 struct capabilities cap;
1778
1779 /* SB073x and Vista compatible cards have no digit IO switch */
1780 cap.digit_io_switch = !(hw->model == CTSB073X || hw->model == CTUAA);
1781 cap.dedicated_mic = 0;
1782 cap.output_switch = 0;
1783 cap.mic_source_switch = 0;
1784
1785 return cap;
1786 }
1787
1788 #define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
1789
1790 #define UAA_CFG_PWRSTATUS 0x44
1791 #define UAA_CFG_SPACE_FLAG 0xA0
1792 #define UAA_CORE_CHANGE 0x3FFC
1793 static int uaa_to_xfi(struct pci_dev *pci)
1794 {
1795 unsigned int bar0, bar1, bar2, bar3, bar4, bar5;
1796 unsigned int cmd, irq, cl_size, l_timer, pwr;
1797 unsigned int is_uaa;
1798 unsigned int data[4] = {0};
1799 unsigned int io_base;
1800 void __iomem *mem_base;
1801 int i;
1802 const u32 CTLX = CTLBITS('C', 'T', 'L', 'X');
1803 const u32 CTL_ = CTLBITS('C', 'T', 'L', '-');
1804 const u32 CTLF = CTLBITS('C', 'T', 'L', 'F');
1805 const u32 CTLi = CTLBITS('C', 'T', 'L', 'i');
1806 const u32 CTLA = CTLBITS('C', 'T', 'L', 'A');
1807 const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z');
1808 const u32 CTLL = CTLBITS('C', 'T', 'L', 'L');
1809
1810 /* By default, Hendrix card UAA Bar0 should be using memory... */
1811 io_base = pci_resource_start(pci, 0);
1812 mem_base = ioremap(io_base, pci_resource_len(pci, 0));
1813 if (!mem_base)
1814 return -ENOENT;
1815
1816 /* Read current mode from Mode Change Register */
1817 for (i = 0; i < 4; i++)
1818 data[i] = readl(mem_base + UAA_CORE_CHANGE);
1819
1820 /* Determine current mode... */
1821 if (data[0] == CTLA) {
1822 is_uaa = ((data[1] == CTLZ && data[2] == CTLL
1823 && data[3] == CTLA) || (data[1] == CTLA
1824 && data[2] == CTLZ && data[3] == CTLL));
1825 } else if (data[0] == CTLZ) {
1826 is_uaa = (data[1] == CTLL
1827 && data[2] == CTLA && data[3] == CTLA);
1828 } else if (data[0] == CTLL) {
1829 is_uaa = (data[1] == CTLA
1830 && data[2] == CTLA && data[3] == CTLZ);
1831 } else {
1832 is_uaa = 0;
1833 }
1834
1835 if (!is_uaa) {
1836 /* Not in UAA mode currently. Return directly. */
1837 iounmap(mem_base);
1838 return 0;
1839 }
1840
1841 pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0);
1842 pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1);
1843 pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2);
1844 pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3);
1845 pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4);
1846 pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5);
1847 pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq);
1848 pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size);
1849 pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer);
1850 pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr);
1851 pci_read_config_dword(pci, PCI_COMMAND, &cmd);
1852
1853 /* Set up X-Fi core PCI configuration space. */
1854 /* Switch to X-Fi config space with BAR0 exposed. */
1855 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321);
1856 /* Copy UAA's BAR5 into X-Fi BAR0 */
1857 pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5);
1858 /* Switch to X-Fi config space without BAR0 exposed. */
1859 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678);
1860 pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1);
1861 pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2);
1862 pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3);
1863 pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4);
1864 pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq);
1865 pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size);
1866 pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer);
1867 pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr);
1868 pci_write_config_dword(pci, PCI_COMMAND, cmd);
1869
1870 /* Switch to X-Fi mode */
1871 writel(CTLX, (mem_base + UAA_CORE_CHANGE));
1872 writel(CTL_, (mem_base + UAA_CORE_CHANGE));
1873 writel(CTLF, (mem_base + UAA_CORE_CHANGE));
1874 writel(CTLi, (mem_base + UAA_CORE_CHANGE));
1875
1876 iounmap(mem_base);
1877
1878 return 0;
1879 }
1880
1881 static irqreturn_t ct_20k1_interrupt(int irq, void *dev_id)
1882 {
1883 struct hw *hw = dev_id;
1884 unsigned int status;
1885
1886 status = hw_read_20kx(hw, GIP);
1887 if (!status)
1888 return IRQ_NONE;
1889
1890 if (hw->irq_callback)
1891 hw->irq_callback(hw->irq_callback_data, status);
1892
1893 hw_write_20kx(hw, GIP, status);
1894 return IRQ_HANDLED;
1895 }
1896
1897 static int hw_card_start(struct hw *hw)
1898 {
1899 int err;
1900 struct pci_dev *pci = hw->pci;
1901 const unsigned int dma_bits = BITS_PER_LONG;
1902
1903 err = pci_enable_device(pci);
1904 if (err < 0)
1905 return err;
1906
1907 /* Set DMA transfer mask */
1908 if (dma_set_mask(&pci->dev, DMA_BIT_MASK(dma_bits))) {
1909 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(dma_bits));
1910 } else {
1911 dma_set_mask(&pci->dev, DMA_BIT_MASK(32));
1912 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32));
1913 }
1914
1915 if (!hw->io_base) {
1916 err = pci_request_regions(pci, "XFi");
1917 if (err < 0)
1918 goto error1;
1919
1920 if (hw->model == CTUAA)
1921 hw->io_base = pci_resource_start(pci, 5);
1922 else
1923 hw->io_base = pci_resource_start(pci, 0);
1924
1925 }
1926
1927 /* Switch to X-Fi mode from UAA mode if neeeded */
1928 if (hw->model == CTUAA) {
1929 err = uaa_to_xfi(pci);
1930 if (err)
1931 goto error2;
1932
1933 }
1934
1935 if (hw->irq < 0) {
1936 err = request_irq(pci->irq, ct_20k1_interrupt, IRQF_SHARED,
1937 KBUILD_MODNAME, hw);
1938 if (err < 0) {
1939 dev_err(hw->card->dev,
1940 "XFi: Cannot get irq %d\n", pci->irq);
1941 goto error2;
1942 }
1943 hw->irq = pci->irq;
1944 }
1945
1946 pci_set_master(pci);
1947
1948 return 0;
1949
1950 error2:
1951 pci_release_regions(pci);
1952 hw->io_base = 0;
1953 error1:
1954 pci_disable_device(pci);
1955 return err;
1956 }
1957
1958 static int hw_card_stop(struct hw *hw)
1959 {
1960 unsigned int data;
1961
1962 /* disable transport bus master and queueing of request */
1963 hw_write_20kx(hw, TRNCTL, 0x00);
1964
1965 /* disable pll */
1966 data = hw_read_20kx(hw, PLLCTL);
1967 hw_write_20kx(hw, PLLCTL, (data & (~(0x0F<<12))));
1968
1969 /* TODO: Disable interrupt and so on... */
1970 if (hw->irq >= 0)
1971 synchronize_irq(hw->irq);
1972 return 0;
1973 }
1974
1975 static int hw_card_shutdown(struct hw *hw)
1976 {
1977 if (hw->irq >= 0)
1978 free_irq(hw->irq, hw);
1979
1980 hw->irq = -1;
1981 iounmap(hw->mem_base);
1982 hw->mem_base = NULL;
1983
1984 if (hw->io_base)
1985 pci_release_regions(hw->pci);
1986
1987 hw->io_base = 0;
1988
1989 pci_disable_device(hw->pci);
1990
1991 return 0;
1992 }
1993
1994 static int hw_card_init(struct hw *hw, struct card_conf *info)
1995 {
1996 int err;
1997 unsigned int gctl;
1998 u32 data;
1999 struct dac_conf dac_info = {0};
2000 struct adc_conf adc_info = {0};
2001 struct daio_conf daio_info = {0};
2002 struct trn_conf trn_info = {0};
2003
2004 /* Get PCI io port base address and do Hendrix switch if needed. */
2005 err = hw_card_start(hw);
2006 if (err)
2007 return err;
2008
2009 /* PLL init */
2010 err = hw_pll_init(hw, info->rsr);
2011 if (err < 0)
2012 return err;
2013
2014 /* kick off auto-init */
2015 err = hw_auto_init(hw);
2016 if (err < 0)
2017 return err;
2018
2019 /* Enable audio ring */
2020 gctl = hw_read_20kx(hw, GCTL);
2021 set_field(&gctl, GCTL_EAC, 1);
2022 set_field(&gctl, GCTL_DBP, 1);
2023 set_field(&gctl, GCTL_TBP, 1);
2024 set_field(&gctl, GCTL_FBP, 1);
2025 set_field(&gctl, GCTL_ET, 1);
2026 hw_write_20kx(hw, GCTL, gctl);
2027 mdelay(10);
2028
2029 /* Reset all global pending interrupts */
2030 hw_write_20kx(hw, GIE, 0);
2031 /* Reset all SRC pending interrupts */
2032 hw_write_20kx(hw, SRCIP, 0);
2033 mdelay(30);
2034
2035 /* Detect the card ID and configure GPIO accordingly. */
2036 switch (hw->model) {
2037 case CTSB055X:
2038 hw_write_20kx(hw, GPIOCTL, 0x13fe);
2039 break;
2040 case CTSB073X:
2041 hw_write_20kx(hw, GPIOCTL, 0x00e6);
2042 break;
2043 case CTUAA:
2044 hw_write_20kx(hw, GPIOCTL, 0x00c2);
2045 break;
2046 default:
2047 hw_write_20kx(hw, GPIOCTL, 0x01e6);
2048 break;
2049 }
2050
2051 trn_info.vm_pgt_phys = info->vm_pgt_phys;
2052 err = hw_trn_init(hw, &trn_info);
2053 if (err < 0)
2054 return err;
2055
2056 daio_info.msr = info->msr;
2057 err = hw_daio_init(hw, &daio_info);
2058 if (err < 0)
2059 return err;
2060
2061 dac_info.msr = info->msr;
2062 err = hw_dac_init(hw, &dac_info);
2063 if (err < 0)
2064 return err;
2065
2066 adc_info.msr = info->msr;
2067 adc_info.input = ADC_LINEIN;
2068 adc_info.mic20db = 0;
2069 err = hw_adc_init(hw, &adc_info);
2070 if (err < 0)
2071 return err;
2072
2073 data = hw_read_20kx(hw, SRCMCTL);
2074 data |= 0x1; /* Enables input from the audio ring */
2075 hw_write_20kx(hw, SRCMCTL, data);
2076
2077 return 0;
2078 }
2079
2080 #ifdef CONFIG_PM_SLEEP
2081 static int hw_suspend(struct hw *hw)
2082 {
2083 struct pci_dev *pci = hw->pci;
2084
2085 hw_card_stop(hw);
2086
2087 if (hw->model == CTUAA) {
2088 /* Switch to UAA config space. */
2089 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x0);
2090 }
2091
2092 return 0;
2093 }
2094
2095 static int hw_resume(struct hw *hw, struct card_conf *info)
2096 {
2097 /* Re-initialize card hardware. */
2098 return hw_card_init(hw, info);
2099 }
2100 #endif
2101
2102 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2103 {
2104 u32 value;
2105 unsigned long flags;
2106
2107 spin_lock_irqsave(
2108 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2109 outl(reg, hw->io_base + 0x0);
2110 value = inl(hw->io_base + 0x4);
2111 spin_unlock_irqrestore(
2112 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2113
2114 return value;
2115 }
2116
2117 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2118 {
2119 unsigned long flags;
2120
2121 spin_lock_irqsave(
2122 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2123 outl(reg, hw->io_base + 0x0);
2124 outl(data, hw->io_base + 0x4);
2125 spin_unlock_irqrestore(
2126 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
2127
2128 }
2129
2130 static u32 hw_read_pci(struct hw *hw, u32 reg)
2131 {
2132 u32 value;
2133 unsigned long flags;
2134
2135 spin_lock_irqsave(
2136 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2137 outl(reg, hw->io_base + 0x10);
2138 value = inl(hw->io_base + 0x14);
2139 spin_unlock_irqrestore(
2140 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2141
2142 return value;
2143 }
2144
2145 static void hw_write_pci(struct hw *hw, u32 reg, u32 data)
2146 {
2147 unsigned long flags;
2148
2149 spin_lock_irqsave(
2150 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2151 outl(reg, hw->io_base + 0x10);
2152 outl(data, hw->io_base + 0x14);
2153 spin_unlock_irqrestore(
2154 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
2155 }
2156
2157 static struct hw ct20k1_preset = {
2158 .irq = -1,
2159
2160 .card_init = hw_card_init,
2161 .card_stop = hw_card_stop,
2162 .pll_init = hw_pll_init,
2163 .is_adc_source_selected = hw_is_adc_input_selected,
2164 .select_adc_source = hw_adc_input_select,
2165 .capabilities = hw_capabilities,
2166 #ifdef CONFIG_PM_SLEEP
2167 .suspend = hw_suspend,
2168 .resume = hw_resume,
2169 #endif
2170
2171 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2172 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2173 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2174 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2175 .src_set_state = src_set_state,
2176 .src_set_bm = src_set_bm,
2177 .src_set_rsr = src_set_rsr,
2178 .src_set_sf = src_set_sf,
2179 .src_set_wr = src_set_wr,
2180 .src_set_pm = src_set_pm,
2181 .src_set_rom = src_set_rom,
2182 .src_set_vo = src_set_vo,
2183 .src_set_st = src_set_st,
2184 .src_set_ie = src_set_ie,
2185 .src_set_ilsz = src_set_ilsz,
2186 .src_set_bp = src_set_bp,
2187 .src_set_cisz = src_set_cisz,
2188 .src_set_ca = src_set_ca,
2189 .src_set_sa = src_set_sa,
2190 .src_set_la = src_set_la,
2191 .src_set_pitch = src_set_pitch,
2192 .src_set_dirty = src_set_dirty,
2193 .src_set_clear_zbufs = src_set_clear_zbufs,
2194 .src_set_dirty_all = src_set_dirty_all,
2195 .src_commit_write = src_commit_write,
2196 .src_get_ca = src_get_ca,
2197 .src_get_dirty = src_get_dirty,
2198 .src_dirty_conj_mask = src_dirty_conj_mask,
2199 .src_mgr_enbs_src = src_mgr_enbs_src,
2200 .src_mgr_enb_src = src_mgr_enb_src,
2201 .src_mgr_dsb_src = src_mgr_dsb_src,
2202 .src_mgr_commit_write = src_mgr_commit_write,
2203
2204 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2205 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2206 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2207 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2208 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2209 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2210 .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2211
2212 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2213 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2214 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2215 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2216 .amixer_set_mode = amixer_set_mode,
2217 .amixer_set_iv = amixer_set_iv,
2218 .amixer_set_x = amixer_set_x,
2219 .amixer_set_y = amixer_set_y,
2220 .amixer_set_sadr = amixer_set_sadr,
2221 .amixer_set_se = amixer_set_se,
2222 .amixer_set_dirty = amixer_set_dirty,
2223 .amixer_set_dirty_all = amixer_set_dirty_all,
2224 .amixer_commit_write = amixer_commit_write,
2225 .amixer_get_y = amixer_get_y,
2226 .amixer_get_dirty = amixer_get_dirty,
2227
2228 .dai_get_ctrl_blk = dai_get_ctrl_blk,
2229 .dai_put_ctrl_blk = dai_put_ctrl_blk,
2230 .dai_srt_set_srco = dai_srt_set_srcr,
2231 .dai_srt_set_srcm = dai_srt_set_srcl,
2232 .dai_srt_set_rsr = dai_srt_set_rsr,
2233 .dai_srt_set_drat = dai_srt_set_drat,
2234 .dai_srt_set_ec = dai_srt_set_ec,
2235 .dai_srt_set_et = dai_srt_set_et,
2236 .dai_commit_write = dai_commit_write,
2237
2238 .dao_get_ctrl_blk = dao_get_ctrl_blk,
2239 .dao_put_ctrl_blk = dao_put_ctrl_blk,
2240 .dao_set_spos = dao_set_spos,
2241 .dao_commit_write = dao_commit_write,
2242 .dao_get_spos = dao_get_spos,
2243
2244 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2245 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2246 .daio_mgr_enb_dai = daio_mgr_enb_dai,
2247 .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2248 .daio_mgr_enb_dao = daio_mgr_enb_dao,
2249 .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2250 .daio_mgr_dao_init = daio_mgr_dao_init,
2251 .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2252 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2253 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2254 .daio_mgr_commit_write = daio_mgr_commit_write,
2255
2256 .set_timer_irq = set_timer_irq,
2257 .set_timer_tick = set_timer_tick,
2258 .get_wc = get_wc,
2259 };
2260
2261 int create_20k1_hw_obj(struct hw **rhw)
2262 {
2263 struct hw20k1 *hw20k1;
2264
2265 *rhw = NULL;
2266 hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL);
2267 if (!hw20k1)
2268 return -ENOMEM;
2269
2270 spin_lock_init(&hw20k1->reg_20k1_lock);
2271 spin_lock_init(&hw20k1->reg_pci_lock);
2272
2273 hw20k1->hw = ct20k1_preset;
2274
2275 *rhw = &hw20k1->hw;
2276
2277 return 0;
2278 }
2279
2280 int destroy_20k1_hw_obj(struct hw *hw)
2281 {
2282 if (hw->io_base)
2283 hw_card_shutdown(hw);
2284
2285 kfree(container_of(hw, struct hw20k1, hw));
2286 return 0;
2287 }