]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - sound/pci/hda/hda_codec.c
77fbcd4a69b71f828df7d51b8a3ef8c31a4b6c15
[mirror_ubuntu-focal-kernel.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/mutex.h>
27 #include <sound/core.h>
28 #include "hda_codec.h"
29 #include <sound/asoundef.h>
30 #include <sound/tlv.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33 #include <sound/hda_hwdep.h>
34 #include "hda_patch.h" /* codec presets */
35
36 #ifdef CONFIG_SND_HDA_POWER_SAVE
37 /* define this option here to hide as static */
38 static int power_save = CONFIG_SND_HDA_POWER_SAVE_DEFAULT;
39 module_param(power_save, int, 0644);
40 MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
41 "(in second, 0 = disable).");
42 #endif
43
44 /*
45 * vendor / preset table
46 */
47
48 struct hda_vendor_id {
49 unsigned int id;
50 const char *name;
51 };
52
53 /* codec vendor labels */
54 static struct hda_vendor_id hda_vendor_ids[] = {
55 { 0x1002, "ATI" },
56 { 0x1057, "Motorola" },
57 { 0x1095, "Silicon Image" },
58 { 0x10ec, "Realtek" },
59 { 0x1106, "VIA" },
60 { 0x111d, "IDT" },
61 { 0x11c1, "LSI" },
62 { 0x11d4, "Analog Devices" },
63 { 0x13f6, "C-Media" },
64 { 0x14f1, "Conexant" },
65 { 0x17e8, "Chrontel" },
66 { 0x1854, "LG" },
67 { 0x434d, "C-Media" },
68 { 0x8384, "SigmaTel" },
69 {} /* terminator */
70 };
71
72 static const struct hda_codec_preset *hda_preset_tables[] = {
73 #ifdef CONFIG_SND_HDA_CODEC_REALTEK
74 snd_hda_preset_realtek,
75 #endif
76 #ifdef CONFIG_SND_HDA_CODEC_CMEDIA
77 snd_hda_preset_cmedia,
78 #endif
79 #ifdef CONFIG_SND_HDA_CODEC_ANALOG
80 snd_hda_preset_analog,
81 #endif
82 #ifdef CONFIG_SND_HDA_CODEC_SIGMATEL
83 snd_hda_preset_sigmatel,
84 #endif
85 #ifdef CONFIG_SND_HDA_CODEC_SI3054
86 snd_hda_preset_si3054,
87 #endif
88 #ifdef CONFIG_SND_HDA_CODEC_ATIHDMI
89 snd_hda_preset_atihdmi,
90 #endif
91 #ifdef CONFIG_SND_HDA_CODEC_CONEXANT
92 snd_hda_preset_conexant,
93 #endif
94 #ifdef CONFIG_SND_HDA_CODEC_VIA
95 snd_hda_preset_via,
96 #endif
97 NULL
98 };
99
100 #ifdef CONFIG_SND_HDA_POWER_SAVE
101 static void hda_power_work(struct work_struct *work);
102 static void hda_keep_power_on(struct hda_codec *codec);
103 #else
104 static inline void hda_keep_power_on(struct hda_codec *codec) {}
105 #endif
106
107 /**
108 * snd_hda_codec_read - send a command and get the response
109 * @codec: the HDA codec
110 * @nid: NID to send the command
111 * @direct: direct flag
112 * @verb: the verb to send
113 * @parm: the parameter for the verb
114 *
115 * Send a single command and read the corresponding response.
116 *
117 * Returns the obtained response value, or -1 for an error.
118 */
119 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
120 int direct,
121 unsigned int verb, unsigned int parm)
122 {
123 unsigned int res;
124 snd_hda_power_up(codec);
125 mutex_lock(&codec->bus->cmd_mutex);
126 if (!codec->bus->ops.command(codec, nid, direct, verb, parm))
127 res = codec->bus->ops.get_response(codec);
128 else
129 res = (unsigned int)-1;
130 mutex_unlock(&codec->bus->cmd_mutex);
131 snd_hda_power_down(codec);
132 return res;
133 }
134
135 /**
136 * snd_hda_codec_write - send a single command without waiting for response
137 * @codec: the HDA codec
138 * @nid: NID to send the command
139 * @direct: direct flag
140 * @verb: the verb to send
141 * @parm: the parameter for the verb
142 *
143 * Send a single command without waiting for response.
144 *
145 * Returns 0 if successful, or a negative error code.
146 */
147 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
148 unsigned int verb, unsigned int parm)
149 {
150 int err;
151 snd_hda_power_up(codec);
152 mutex_lock(&codec->bus->cmd_mutex);
153 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
154 mutex_unlock(&codec->bus->cmd_mutex);
155 snd_hda_power_down(codec);
156 return err;
157 }
158
159 /**
160 * snd_hda_sequence_write - sequence writes
161 * @codec: the HDA codec
162 * @seq: VERB array to send
163 *
164 * Send the commands sequentially from the given array.
165 * The array must be terminated with NID=0.
166 */
167 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
168 {
169 for (; seq->nid; seq++)
170 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
171 }
172
173 /**
174 * snd_hda_get_sub_nodes - get the range of sub nodes
175 * @codec: the HDA codec
176 * @nid: NID to parse
177 * @start_id: the pointer to store the start NID
178 *
179 * Parse the NID and store the start NID of its sub-nodes.
180 * Returns the number of sub-nodes.
181 */
182 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid,
183 hda_nid_t *start_id)
184 {
185 unsigned int parm;
186
187 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
188 if (parm == -1)
189 return 0;
190 *start_id = (parm >> 16) & 0x7fff;
191 return (int)(parm & 0x7fff);
192 }
193
194 /**
195 * snd_hda_get_connections - get connection list
196 * @codec: the HDA codec
197 * @nid: NID to parse
198 * @conn_list: connection list array
199 * @max_conns: max. number of connections to store
200 *
201 * Parses the connection list of the given widget and stores the list
202 * of NIDs.
203 *
204 * Returns the number of connections, or a negative error code.
205 */
206 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
207 hda_nid_t *conn_list, int max_conns)
208 {
209 unsigned int parm;
210 int i, conn_len, conns;
211 unsigned int shift, num_elems, mask;
212 hda_nid_t prev_nid;
213
214 if (snd_BUG_ON(!conn_list || max_conns <= 0))
215 return -EINVAL;
216
217 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
218 if (parm & AC_CLIST_LONG) {
219 /* long form */
220 shift = 16;
221 num_elems = 2;
222 } else {
223 /* short form */
224 shift = 8;
225 num_elems = 4;
226 }
227 conn_len = parm & AC_CLIST_LENGTH;
228 mask = (1 << (shift-1)) - 1;
229
230 if (!conn_len)
231 return 0; /* no connection */
232
233 if (conn_len == 1) {
234 /* single connection */
235 parm = snd_hda_codec_read(codec, nid, 0,
236 AC_VERB_GET_CONNECT_LIST, 0);
237 conn_list[0] = parm & mask;
238 return 1;
239 }
240
241 /* multi connection */
242 conns = 0;
243 prev_nid = 0;
244 for (i = 0; i < conn_len; i++) {
245 int range_val;
246 hda_nid_t val, n;
247
248 if (i % num_elems == 0)
249 parm = snd_hda_codec_read(codec, nid, 0,
250 AC_VERB_GET_CONNECT_LIST, i);
251 range_val = !!(parm & (1 << (shift-1))); /* ranges */
252 val = parm & mask;
253 parm >>= shift;
254 if (range_val) {
255 /* ranges between the previous and this one */
256 if (!prev_nid || prev_nid >= val) {
257 snd_printk(KERN_WARNING "hda_codec: "
258 "invalid dep_range_val %x:%x\n",
259 prev_nid, val);
260 continue;
261 }
262 for (n = prev_nid + 1; n <= val; n++) {
263 if (conns >= max_conns) {
264 snd_printk(KERN_ERR
265 "Too many connections\n");
266 return -EINVAL;
267 }
268 conn_list[conns++] = n;
269 }
270 } else {
271 if (conns >= max_conns) {
272 snd_printk(KERN_ERR "Too many connections\n");
273 return -EINVAL;
274 }
275 conn_list[conns++] = val;
276 }
277 prev_nid = val;
278 }
279 return conns;
280 }
281
282
283 /**
284 * snd_hda_queue_unsol_event - add an unsolicited event to queue
285 * @bus: the BUS
286 * @res: unsolicited event (lower 32bit of RIRB entry)
287 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
288 *
289 * Adds the given event to the queue. The events are processed in
290 * the workqueue asynchronously. Call this function in the interrupt
291 * hanlder when RIRB receives an unsolicited event.
292 *
293 * Returns 0 if successful, or a negative error code.
294 */
295 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
296 {
297 struct hda_bus_unsolicited *unsol;
298 unsigned int wp;
299
300 unsol = bus->unsol;
301 if (!unsol)
302 return 0;
303
304 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
305 unsol->wp = wp;
306
307 wp <<= 1;
308 unsol->queue[wp] = res;
309 unsol->queue[wp + 1] = res_ex;
310
311 schedule_work(&unsol->work);
312
313 return 0;
314 }
315
316 /*
317 * process queueud unsolicited events
318 */
319 static void process_unsol_events(struct work_struct *work)
320 {
321 struct hda_bus_unsolicited *unsol =
322 container_of(work, struct hda_bus_unsolicited, work);
323 struct hda_bus *bus = unsol->bus;
324 struct hda_codec *codec;
325 unsigned int rp, caddr, res;
326
327 while (unsol->rp != unsol->wp) {
328 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
329 unsol->rp = rp;
330 rp <<= 1;
331 res = unsol->queue[rp];
332 caddr = unsol->queue[rp + 1];
333 if (!(caddr & (1 << 4))) /* no unsolicited event? */
334 continue;
335 codec = bus->caddr_tbl[caddr & 0x0f];
336 if (codec && codec->patch_ops.unsol_event)
337 codec->patch_ops.unsol_event(codec, res);
338 }
339 }
340
341 /*
342 * initialize unsolicited queue
343 */
344 static int __devinit init_unsol_queue(struct hda_bus *bus)
345 {
346 struct hda_bus_unsolicited *unsol;
347
348 if (bus->unsol) /* already initialized */
349 return 0;
350
351 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
352 if (!unsol) {
353 snd_printk(KERN_ERR "hda_codec: "
354 "can't allocate unsolicited queue\n");
355 return -ENOMEM;
356 }
357 INIT_WORK(&unsol->work, process_unsol_events);
358 unsol->bus = bus;
359 bus->unsol = unsol;
360 return 0;
361 }
362
363 /*
364 * destructor
365 */
366 static void snd_hda_codec_free(struct hda_codec *codec);
367
368 static int snd_hda_bus_free(struct hda_bus *bus)
369 {
370 struct hda_codec *codec, *n;
371
372 if (!bus)
373 return 0;
374 if (bus->unsol) {
375 flush_scheduled_work();
376 kfree(bus->unsol);
377 }
378 list_for_each_entry_safe(codec, n, &bus->codec_list, list) {
379 snd_hda_codec_free(codec);
380 }
381 if (bus->ops.private_free)
382 bus->ops.private_free(bus);
383 kfree(bus);
384 return 0;
385 }
386
387 static int snd_hda_bus_dev_free(struct snd_device *device)
388 {
389 struct hda_bus *bus = device->device_data;
390 return snd_hda_bus_free(bus);
391 }
392
393 /**
394 * snd_hda_bus_new - create a HDA bus
395 * @card: the card entry
396 * @temp: the template for hda_bus information
397 * @busp: the pointer to store the created bus instance
398 *
399 * Returns 0 if successful, or a negative error code.
400 */
401 int __devinit snd_hda_bus_new(struct snd_card *card,
402 const struct hda_bus_template *temp,
403 struct hda_bus **busp)
404 {
405 struct hda_bus *bus;
406 int err;
407 static struct snd_device_ops dev_ops = {
408 .dev_free = snd_hda_bus_dev_free,
409 };
410
411 if (snd_BUG_ON(!temp))
412 return -EINVAL;
413 if (snd_BUG_ON(!temp->ops.command || !temp->ops.get_response))
414 return -EINVAL;
415
416 if (busp)
417 *busp = NULL;
418
419 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
420 if (bus == NULL) {
421 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
422 return -ENOMEM;
423 }
424
425 bus->card = card;
426 bus->private_data = temp->private_data;
427 bus->pci = temp->pci;
428 bus->modelname = temp->modelname;
429 bus->ops = temp->ops;
430
431 mutex_init(&bus->cmd_mutex);
432 INIT_LIST_HEAD(&bus->codec_list);
433
434 err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
435 if (err < 0) {
436 snd_hda_bus_free(bus);
437 return err;
438 }
439 if (busp)
440 *busp = bus;
441 return 0;
442 }
443
444 #ifdef CONFIG_SND_HDA_GENERIC
445 #define is_generic_config(codec) \
446 (codec->bus->modelname && !strcmp(codec->bus->modelname, "generic"))
447 #else
448 #define is_generic_config(codec) 0
449 #endif
450
451 /*
452 * find a matching codec preset
453 */
454 static const struct hda_codec_preset __devinit *
455 find_codec_preset(struct hda_codec *codec)
456 {
457 const struct hda_codec_preset **tbl, *preset;
458
459 if (is_generic_config(codec))
460 return NULL; /* use the generic parser */
461
462 for (tbl = hda_preset_tables; *tbl; tbl++) {
463 for (preset = *tbl; preset->id; preset++) {
464 u32 mask = preset->mask;
465 if (preset->afg && preset->afg != codec->afg)
466 continue;
467 if (preset->mfg && preset->mfg != codec->mfg)
468 continue;
469 if (!mask)
470 mask = ~0;
471 if (preset->id == (codec->vendor_id & mask) &&
472 (!preset->rev ||
473 preset->rev == codec->revision_id))
474 return preset;
475 }
476 }
477 return NULL;
478 }
479
480 /*
481 * snd_hda_get_codec_name - store the codec name
482 */
483 void snd_hda_get_codec_name(struct hda_codec *codec,
484 char *name, int namelen)
485 {
486 const struct hda_vendor_id *c;
487 const char *vendor = NULL;
488 u16 vendor_id = codec->vendor_id >> 16;
489 char tmp[16];
490
491 for (c = hda_vendor_ids; c->id; c++) {
492 if (c->id == vendor_id) {
493 vendor = c->name;
494 break;
495 }
496 }
497 if (!vendor) {
498 sprintf(tmp, "Generic %04x", vendor_id);
499 vendor = tmp;
500 }
501 if (codec->preset && codec->preset->name)
502 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
503 else
504 snprintf(name, namelen, "%s ID %x", vendor,
505 codec->vendor_id & 0xffff);
506 }
507
508 /*
509 * look for an AFG and MFG nodes
510 */
511 static void __devinit setup_fg_nodes(struct hda_codec *codec)
512 {
513 int i, total_nodes;
514 hda_nid_t nid;
515
516 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
517 for (i = 0; i < total_nodes; i++, nid++) {
518 unsigned int func;
519 func = snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE);
520 switch (func & 0xff) {
521 case AC_GRP_AUDIO_FUNCTION:
522 codec->afg = nid;
523 break;
524 case AC_GRP_MODEM_FUNCTION:
525 codec->mfg = nid;
526 break;
527 default:
528 break;
529 }
530 }
531 }
532
533 /*
534 * read widget caps for each widget and store in cache
535 */
536 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
537 {
538 int i;
539 hda_nid_t nid;
540
541 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
542 &codec->start_nid);
543 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
544 if (!codec->wcaps)
545 return -ENOMEM;
546 nid = codec->start_nid;
547 for (i = 0; i < codec->num_nodes; i++, nid++)
548 codec->wcaps[i] = snd_hda_param_read(codec, nid,
549 AC_PAR_AUDIO_WIDGET_CAP);
550 return 0;
551 }
552
553
554 static void init_hda_cache(struct hda_cache_rec *cache,
555 unsigned int record_size);
556 static void free_hda_cache(struct hda_cache_rec *cache);
557
558 /*
559 * codec destructor
560 */
561 static void snd_hda_codec_free(struct hda_codec *codec)
562 {
563 if (!codec)
564 return;
565 #ifdef CONFIG_SND_HDA_POWER_SAVE
566 cancel_delayed_work(&codec->power_work);
567 flush_scheduled_work();
568 #endif
569 list_del(&codec->list);
570 codec->bus->caddr_tbl[codec->addr] = NULL;
571 if (codec->patch_ops.free)
572 codec->patch_ops.free(codec);
573 free_hda_cache(&codec->amp_cache);
574 free_hda_cache(&codec->cmd_cache);
575 kfree(codec->wcaps);
576 kfree(codec);
577 }
578
579 /**
580 * snd_hda_codec_new - create a HDA codec
581 * @bus: the bus to assign
582 * @codec_addr: the codec address
583 * @codecp: the pointer to store the generated codec
584 *
585 * Returns 0 if successful, or a negative error code.
586 */
587 int __devinit snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
588 struct hda_codec **codecp)
589 {
590 struct hda_codec *codec;
591 char component[13];
592 int err;
593
594 if (snd_BUG_ON(!bus))
595 return -EINVAL;
596 if (snd_BUG_ON(codec_addr > HDA_MAX_CODEC_ADDRESS))
597 return -EINVAL;
598
599 if (bus->caddr_tbl[codec_addr]) {
600 snd_printk(KERN_ERR "hda_codec: "
601 "address 0x%x is already occupied\n", codec_addr);
602 return -EBUSY;
603 }
604
605 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
606 if (codec == NULL) {
607 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
608 return -ENOMEM;
609 }
610
611 codec->bus = bus;
612 codec->addr = codec_addr;
613 mutex_init(&codec->spdif_mutex);
614 init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
615 init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
616
617 #ifdef CONFIG_SND_HDA_POWER_SAVE
618 INIT_DELAYED_WORK(&codec->power_work, hda_power_work);
619 /* snd_hda_codec_new() marks the codec as power-up, and leave it as is.
620 * the caller has to power down appropriatley after initialization
621 * phase.
622 */
623 hda_keep_power_on(codec);
624 #endif
625
626 list_add_tail(&codec->list, &bus->codec_list);
627 bus->caddr_tbl[codec_addr] = codec;
628
629 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
630 AC_PAR_VENDOR_ID);
631 if (codec->vendor_id == -1)
632 /* read again, hopefully the access method was corrected
633 * in the last read...
634 */
635 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
636 AC_PAR_VENDOR_ID);
637 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT,
638 AC_PAR_SUBSYSTEM_ID);
639 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT,
640 AC_PAR_REV_ID);
641
642 setup_fg_nodes(codec);
643 if (!codec->afg && !codec->mfg) {
644 snd_printdd("hda_codec: no AFG or MFG node found\n");
645 snd_hda_codec_free(codec);
646 return -ENODEV;
647 }
648
649 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
650 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
651 snd_hda_codec_free(codec);
652 return -ENOMEM;
653 }
654
655 if (!codec->subsystem_id) {
656 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
657 codec->subsystem_id =
658 snd_hda_codec_read(codec, nid, 0,
659 AC_VERB_GET_SUBSYSTEM_ID, 0);
660 }
661
662 codec->preset = find_codec_preset(codec);
663 /* audio codec should override the mixer name */
664 if (codec->afg || !*bus->card->mixername)
665 snd_hda_get_codec_name(codec, bus->card->mixername,
666 sizeof(bus->card->mixername));
667
668 if (is_generic_config(codec)) {
669 err = snd_hda_parse_generic_codec(codec);
670 goto patched;
671 }
672 if (codec->preset && codec->preset->patch) {
673 err = codec->preset->patch(codec);
674 goto patched;
675 }
676
677 /* call the default parser */
678 err = snd_hda_parse_generic_codec(codec);
679 if (err < 0)
680 printk(KERN_ERR "hda-codec: No codec parser is available\n");
681
682 patched:
683 if (err < 0) {
684 snd_hda_codec_free(codec);
685 return err;
686 }
687
688 if (codec->patch_ops.unsol_event)
689 init_unsol_queue(bus);
690
691 snd_hda_codec_proc_new(codec);
692 #ifdef CONFIG_SND_HDA_HWDEP
693 snd_hda_create_hwdep(codec);
694 #endif
695
696 sprintf(component, "HDA:%08x", codec->vendor_id);
697 snd_component_add(codec->bus->card, component);
698
699 if (codecp)
700 *codecp = codec;
701 return 0;
702 }
703
704 /**
705 * snd_hda_codec_setup_stream - set up the codec for streaming
706 * @codec: the CODEC to set up
707 * @nid: the NID to set up
708 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
709 * @channel_id: channel id to pass, zero based.
710 * @format: stream format.
711 */
712 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
713 u32 stream_tag,
714 int channel_id, int format)
715 {
716 if (!nid)
717 return;
718
719 snd_printdd("hda_codec_setup_stream: "
720 "NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
721 nid, stream_tag, channel_id, format);
722 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
723 (stream_tag << 4) | channel_id);
724 msleep(1);
725 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
726 }
727
728 void snd_hda_codec_cleanup_stream(struct hda_codec *codec, hda_nid_t nid)
729 {
730 if (!nid)
731 return;
732
733 snd_printdd("hda_codec_cleanup_stream: NID=0x%x\n", nid);
734 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID, 0);
735 #if 0 /* keep the format */
736 msleep(1);
737 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, 0);
738 #endif
739 }
740
741 /*
742 * amp access functions
743 */
744
745 /* FIXME: more better hash key? */
746 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
747 #define INFO_AMP_CAPS (1<<0)
748 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
749
750 /* initialize the hash table */
751 static void __devinit init_hda_cache(struct hda_cache_rec *cache,
752 unsigned int record_size)
753 {
754 memset(cache, 0, sizeof(*cache));
755 memset(cache->hash, 0xff, sizeof(cache->hash));
756 cache->record_size = record_size;
757 }
758
759 static void free_hda_cache(struct hda_cache_rec *cache)
760 {
761 kfree(cache->buffer);
762 }
763
764 /* query the hash. allocate an entry if not found. */
765 static struct hda_cache_head *get_alloc_hash(struct hda_cache_rec *cache,
766 u32 key)
767 {
768 u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
769 u16 cur = cache->hash[idx];
770 struct hda_cache_head *info;
771
772 while (cur != 0xffff) {
773 info = (struct hda_cache_head *)(cache->buffer +
774 cur * cache->record_size);
775 if (info->key == key)
776 return info;
777 cur = info->next;
778 }
779
780 /* add a new hash entry */
781 if (cache->num_entries >= cache->size) {
782 /* reallocate the array */
783 unsigned int new_size = cache->size + 64;
784 void *new_buffer;
785 new_buffer = kcalloc(new_size, cache->record_size, GFP_KERNEL);
786 if (!new_buffer) {
787 snd_printk(KERN_ERR "hda_codec: "
788 "can't malloc amp_info\n");
789 return NULL;
790 }
791 if (cache->buffer) {
792 memcpy(new_buffer, cache->buffer,
793 cache->size * cache->record_size);
794 kfree(cache->buffer);
795 }
796 cache->size = new_size;
797 cache->buffer = new_buffer;
798 }
799 cur = cache->num_entries++;
800 info = (struct hda_cache_head *)(cache->buffer +
801 cur * cache->record_size);
802 info->key = key;
803 info->val = 0;
804 info->next = cache->hash[idx];
805 cache->hash[idx] = cur;
806
807 return info;
808 }
809
810 /* query and allocate an amp hash entry */
811 static inline struct hda_amp_info *
812 get_alloc_amp_hash(struct hda_codec *codec, u32 key)
813 {
814 return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
815 }
816
817 /*
818 * query AMP capabilities for the given widget and direction
819 */
820 u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
821 {
822 struct hda_amp_info *info;
823
824 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
825 if (!info)
826 return 0;
827 if (!(info->head.val & INFO_AMP_CAPS)) {
828 if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
829 nid = codec->afg;
830 info->amp_caps = snd_hda_param_read(codec, nid,
831 direction == HDA_OUTPUT ?
832 AC_PAR_AMP_OUT_CAP :
833 AC_PAR_AMP_IN_CAP);
834 if (info->amp_caps)
835 info->head.val |= INFO_AMP_CAPS;
836 }
837 return info->amp_caps;
838 }
839
840 int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
841 unsigned int caps)
842 {
843 struct hda_amp_info *info;
844
845 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, dir, 0));
846 if (!info)
847 return -EINVAL;
848 info->amp_caps = caps;
849 info->head.val |= INFO_AMP_CAPS;
850 return 0;
851 }
852
853 /*
854 * read the current volume to info
855 * if the cache exists, read the cache value.
856 */
857 static unsigned int get_vol_mute(struct hda_codec *codec,
858 struct hda_amp_info *info, hda_nid_t nid,
859 int ch, int direction, int index)
860 {
861 u32 val, parm;
862
863 if (info->head.val & INFO_AMP_VOL(ch))
864 return info->vol[ch];
865
866 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
867 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
868 parm |= index;
869 val = snd_hda_codec_read(codec, nid, 0,
870 AC_VERB_GET_AMP_GAIN_MUTE, parm);
871 info->vol[ch] = val & 0xff;
872 info->head.val |= INFO_AMP_VOL(ch);
873 return info->vol[ch];
874 }
875
876 /*
877 * write the current volume in info to the h/w and update the cache
878 */
879 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
880 hda_nid_t nid, int ch, int direction, int index,
881 int val)
882 {
883 u32 parm;
884
885 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
886 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
887 parm |= index << AC_AMP_SET_INDEX_SHIFT;
888 parm |= val;
889 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
890 info->vol[ch] = val;
891 }
892
893 /*
894 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
895 */
896 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
897 int direction, int index)
898 {
899 struct hda_amp_info *info;
900 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
901 if (!info)
902 return 0;
903 return get_vol_mute(codec, info, nid, ch, direction, index);
904 }
905
906 /*
907 * update the AMP value, mask = bit mask to set, val = the value
908 */
909 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
910 int direction, int idx, int mask, int val)
911 {
912 struct hda_amp_info *info;
913
914 info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
915 if (!info)
916 return 0;
917 val &= mask;
918 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
919 if (info->vol[ch] == val)
920 return 0;
921 put_vol_mute(codec, info, nid, ch, direction, idx, val);
922 return 1;
923 }
924
925 /*
926 * update the AMP stereo with the same mask and value
927 */
928 int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
929 int direction, int idx, int mask, int val)
930 {
931 int ch, ret = 0;
932 for (ch = 0; ch < 2; ch++)
933 ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
934 idx, mask, val);
935 return ret;
936 }
937
938 #ifdef SND_HDA_NEEDS_RESUME
939 /* resume the all amp commands from the cache */
940 void snd_hda_codec_resume_amp(struct hda_codec *codec)
941 {
942 struct hda_amp_info *buffer = codec->amp_cache.buffer;
943 int i;
944
945 for (i = 0; i < codec->amp_cache.size; i++, buffer++) {
946 u32 key = buffer->head.key;
947 hda_nid_t nid;
948 unsigned int idx, dir, ch;
949 if (!key)
950 continue;
951 nid = key & 0xff;
952 idx = (key >> 16) & 0xff;
953 dir = (key >> 24) & 0xff;
954 for (ch = 0; ch < 2; ch++) {
955 if (!(buffer->head.val & INFO_AMP_VOL(ch)))
956 continue;
957 put_vol_mute(codec, buffer, nid, ch, dir, idx,
958 buffer->vol[ch]);
959 }
960 }
961 }
962 #endif /* SND_HDA_NEEDS_RESUME */
963
964 /*
965 * AMP control callbacks
966 */
967 /* retrieve parameters from private_value */
968 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
969 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
970 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
971 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
972
973 /* volume */
974 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
975 struct snd_ctl_elem_info *uinfo)
976 {
977 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
978 u16 nid = get_amp_nid(kcontrol);
979 u8 chs = get_amp_channels(kcontrol);
980 int dir = get_amp_direction(kcontrol);
981 u32 caps;
982
983 caps = query_amp_caps(codec, nid, dir);
984 /* num steps */
985 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
986 if (!caps) {
987 printk(KERN_WARNING "hda_codec: "
988 "num_steps = 0 for NID=0x%x (ctl = %s)\n", nid,
989 kcontrol->id.name);
990 return -EINVAL;
991 }
992 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
993 uinfo->count = chs == 3 ? 2 : 1;
994 uinfo->value.integer.min = 0;
995 uinfo->value.integer.max = caps;
996 return 0;
997 }
998
999 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
1000 struct snd_ctl_elem_value *ucontrol)
1001 {
1002 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1003 hda_nid_t nid = get_amp_nid(kcontrol);
1004 int chs = get_amp_channels(kcontrol);
1005 int dir = get_amp_direction(kcontrol);
1006 int idx = get_amp_index(kcontrol);
1007 long *valp = ucontrol->value.integer.value;
1008
1009 if (chs & 1)
1010 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx)
1011 & HDA_AMP_VOLMASK;
1012 if (chs & 2)
1013 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx)
1014 & HDA_AMP_VOLMASK;
1015 return 0;
1016 }
1017
1018 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
1019 struct snd_ctl_elem_value *ucontrol)
1020 {
1021 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1022 hda_nid_t nid = get_amp_nid(kcontrol);
1023 int chs = get_amp_channels(kcontrol);
1024 int dir = get_amp_direction(kcontrol);
1025 int idx = get_amp_index(kcontrol);
1026 long *valp = ucontrol->value.integer.value;
1027 int change = 0;
1028
1029 snd_hda_power_up(codec);
1030 if (chs & 1) {
1031 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1032 0x7f, *valp);
1033 valp++;
1034 }
1035 if (chs & 2)
1036 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1037 0x7f, *valp);
1038 snd_hda_power_down(codec);
1039 return change;
1040 }
1041
1042 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1043 unsigned int size, unsigned int __user *_tlv)
1044 {
1045 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1046 hda_nid_t nid = get_amp_nid(kcontrol);
1047 int dir = get_amp_direction(kcontrol);
1048 u32 caps, val1, val2;
1049
1050 if (size < 4 * sizeof(unsigned int))
1051 return -ENOMEM;
1052 caps = query_amp_caps(codec, nid, dir);
1053 val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1054 val2 = (val2 + 1) * 25;
1055 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
1056 val1 = ((int)val1) * ((int)val2);
1057 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
1058 return -EFAULT;
1059 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
1060 return -EFAULT;
1061 if (put_user(val1, _tlv + 2))
1062 return -EFAULT;
1063 if (put_user(val2, _tlv + 3))
1064 return -EFAULT;
1065 return 0;
1066 }
1067
1068 /*
1069 * set (static) TLV for virtual master volume; recalculated as max 0dB
1070 */
1071 void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir,
1072 unsigned int *tlv)
1073 {
1074 u32 caps;
1075 int nums, step;
1076
1077 caps = query_amp_caps(codec, nid, dir);
1078 nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
1079 step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
1080 step = (step + 1) * 25;
1081 tlv[0] = SNDRV_CTL_TLVT_DB_SCALE;
1082 tlv[1] = 2 * sizeof(unsigned int);
1083 tlv[2] = -nums * step;
1084 tlv[3] = step;
1085 }
1086
1087 /* find a mixer control element with the given name */
1088 static struct snd_kcontrol *
1089 _snd_hda_find_mixer_ctl(struct hda_codec *codec,
1090 const char *name, int idx)
1091 {
1092 struct snd_ctl_elem_id id;
1093 memset(&id, 0, sizeof(id));
1094 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
1095 id.index = idx;
1096 strcpy(id.name, name);
1097 return snd_ctl_find_id(codec->bus->card, &id);
1098 }
1099
1100 struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec,
1101 const char *name)
1102 {
1103 return _snd_hda_find_mixer_ctl(codec, name, 0);
1104 }
1105
1106 /* create a virtual master control and add slaves */
1107 int snd_hda_add_vmaster(struct hda_codec *codec, char *name,
1108 unsigned int *tlv, const char **slaves)
1109 {
1110 struct snd_kcontrol *kctl;
1111 const char **s;
1112 int err;
1113
1114 for (s = slaves; *s && !snd_hda_find_mixer_ctl(codec, *s); s++)
1115 ;
1116 if (!*s) {
1117 snd_printdd("No slave found for %s\n", name);
1118 return 0;
1119 }
1120 kctl = snd_ctl_make_virtual_master(name, tlv);
1121 if (!kctl)
1122 return -ENOMEM;
1123 err = snd_ctl_add(codec->bus->card, kctl);
1124 if (err < 0)
1125 return err;
1126
1127 for (s = slaves; *s; s++) {
1128 struct snd_kcontrol *sctl;
1129
1130 sctl = snd_hda_find_mixer_ctl(codec, *s);
1131 if (!sctl) {
1132 snd_printdd("Cannot find slave %s, skipped\n", *s);
1133 continue;
1134 }
1135 err = snd_ctl_add_slave(kctl, sctl);
1136 if (err < 0)
1137 return err;
1138 }
1139 return 0;
1140 }
1141
1142 /* switch */
1143 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
1144 struct snd_ctl_elem_info *uinfo)
1145 {
1146 int chs = get_amp_channels(kcontrol);
1147
1148 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1149 uinfo->count = chs == 3 ? 2 : 1;
1150 uinfo->value.integer.min = 0;
1151 uinfo->value.integer.max = 1;
1152 return 0;
1153 }
1154
1155 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
1156 struct snd_ctl_elem_value *ucontrol)
1157 {
1158 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1159 hda_nid_t nid = get_amp_nid(kcontrol);
1160 int chs = get_amp_channels(kcontrol);
1161 int dir = get_amp_direction(kcontrol);
1162 int idx = get_amp_index(kcontrol);
1163 long *valp = ucontrol->value.integer.value;
1164
1165 if (chs & 1)
1166 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
1167 HDA_AMP_MUTE) ? 0 : 1;
1168 if (chs & 2)
1169 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
1170 HDA_AMP_MUTE) ? 0 : 1;
1171 return 0;
1172 }
1173
1174 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
1175 struct snd_ctl_elem_value *ucontrol)
1176 {
1177 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1178 hda_nid_t nid = get_amp_nid(kcontrol);
1179 int chs = get_amp_channels(kcontrol);
1180 int dir = get_amp_direction(kcontrol);
1181 int idx = get_amp_index(kcontrol);
1182 long *valp = ucontrol->value.integer.value;
1183 int change = 0;
1184
1185 snd_hda_power_up(codec);
1186 if (chs & 1) {
1187 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
1188 HDA_AMP_MUTE,
1189 *valp ? 0 : HDA_AMP_MUTE);
1190 valp++;
1191 }
1192 if (chs & 2)
1193 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
1194 HDA_AMP_MUTE,
1195 *valp ? 0 : HDA_AMP_MUTE);
1196 #ifdef CONFIG_SND_HDA_POWER_SAVE
1197 if (codec->patch_ops.check_power_status)
1198 codec->patch_ops.check_power_status(codec, nid);
1199 #endif
1200 snd_hda_power_down(codec);
1201 return change;
1202 }
1203
1204 /*
1205 * bound volume controls
1206 *
1207 * bind multiple volumes (# indices, from 0)
1208 */
1209
1210 #define AMP_VAL_IDX_SHIFT 19
1211 #define AMP_VAL_IDX_MASK (0x0f<<19)
1212
1213 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
1214 struct snd_ctl_elem_value *ucontrol)
1215 {
1216 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1217 unsigned long pval;
1218 int err;
1219
1220 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1221 pval = kcontrol->private_value;
1222 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
1223 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
1224 kcontrol->private_value = pval;
1225 mutex_unlock(&codec->spdif_mutex);
1226 return err;
1227 }
1228
1229 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
1230 struct snd_ctl_elem_value *ucontrol)
1231 {
1232 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1233 unsigned long pval;
1234 int i, indices, err = 0, change = 0;
1235
1236 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1237 pval = kcontrol->private_value;
1238 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
1239 for (i = 0; i < indices; i++) {
1240 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
1241 (i << AMP_VAL_IDX_SHIFT);
1242 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
1243 if (err < 0)
1244 break;
1245 change |= err;
1246 }
1247 kcontrol->private_value = pval;
1248 mutex_unlock(&codec->spdif_mutex);
1249 return err < 0 ? err : change;
1250 }
1251
1252 /*
1253 * generic bound volume/swtich controls
1254 */
1255 int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
1256 struct snd_ctl_elem_info *uinfo)
1257 {
1258 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1259 struct hda_bind_ctls *c;
1260 int err;
1261
1262 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1263 c = (struct hda_bind_ctls *)kcontrol->private_value;
1264 kcontrol->private_value = *c->values;
1265 err = c->ops->info(kcontrol, uinfo);
1266 kcontrol->private_value = (long)c;
1267 mutex_unlock(&codec->spdif_mutex);
1268 return err;
1269 }
1270
1271 int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
1272 struct snd_ctl_elem_value *ucontrol)
1273 {
1274 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1275 struct hda_bind_ctls *c;
1276 int err;
1277
1278 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1279 c = (struct hda_bind_ctls *)kcontrol->private_value;
1280 kcontrol->private_value = *c->values;
1281 err = c->ops->get(kcontrol, ucontrol);
1282 kcontrol->private_value = (long)c;
1283 mutex_unlock(&codec->spdif_mutex);
1284 return err;
1285 }
1286
1287 int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
1288 struct snd_ctl_elem_value *ucontrol)
1289 {
1290 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1291 struct hda_bind_ctls *c;
1292 unsigned long *vals;
1293 int err = 0, change = 0;
1294
1295 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1296 c = (struct hda_bind_ctls *)kcontrol->private_value;
1297 for (vals = c->values; *vals; vals++) {
1298 kcontrol->private_value = *vals;
1299 err = c->ops->put(kcontrol, ucontrol);
1300 if (err < 0)
1301 break;
1302 change |= err;
1303 }
1304 kcontrol->private_value = (long)c;
1305 mutex_unlock(&codec->spdif_mutex);
1306 return err < 0 ? err : change;
1307 }
1308
1309 int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1310 unsigned int size, unsigned int __user *tlv)
1311 {
1312 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1313 struct hda_bind_ctls *c;
1314 int err;
1315
1316 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
1317 c = (struct hda_bind_ctls *)kcontrol->private_value;
1318 kcontrol->private_value = *c->values;
1319 err = c->ops->tlv(kcontrol, op_flag, size, tlv);
1320 kcontrol->private_value = (long)c;
1321 mutex_unlock(&codec->spdif_mutex);
1322 return err;
1323 }
1324
1325 struct hda_ctl_ops snd_hda_bind_vol = {
1326 .info = snd_hda_mixer_amp_volume_info,
1327 .get = snd_hda_mixer_amp_volume_get,
1328 .put = snd_hda_mixer_amp_volume_put,
1329 .tlv = snd_hda_mixer_amp_tlv
1330 };
1331
1332 struct hda_ctl_ops snd_hda_bind_sw = {
1333 .info = snd_hda_mixer_amp_switch_info,
1334 .get = snd_hda_mixer_amp_switch_get,
1335 .put = snd_hda_mixer_amp_switch_put,
1336 .tlv = snd_hda_mixer_amp_tlv
1337 };
1338
1339 /*
1340 * SPDIF out controls
1341 */
1342
1343 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
1344 struct snd_ctl_elem_info *uinfo)
1345 {
1346 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1347 uinfo->count = 1;
1348 return 0;
1349 }
1350
1351 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
1352 struct snd_ctl_elem_value *ucontrol)
1353 {
1354 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1355 IEC958_AES0_NONAUDIO |
1356 IEC958_AES0_CON_EMPHASIS_5015 |
1357 IEC958_AES0_CON_NOT_COPYRIGHT;
1358 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
1359 IEC958_AES1_CON_ORIGINAL;
1360 return 0;
1361 }
1362
1363 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
1364 struct snd_ctl_elem_value *ucontrol)
1365 {
1366 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
1367 IEC958_AES0_NONAUDIO |
1368 IEC958_AES0_PRO_EMPHASIS_5015;
1369 return 0;
1370 }
1371
1372 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
1373 struct snd_ctl_elem_value *ucontrol)
1374 {
1375 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1376
1377 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
1378 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1379 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1380 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1381
1382 return 0;
1383 }
1384
1385 /* convert from SPDIF status bits to HDA SPDIF bits
1386 * bit 0 (DigEn) is always set zero (to be filled later)
1387 */
1388 static unsigned short convert_from_spdif_status(unsigned int sbits)
1389 {
1390 unsigned short val = 0;
1391
1392 if (sbits & IEC958_AES0_PROFESSIONAL)
1393 val |= AC_DIG1_PROFESSIONAL;
1394 if (sbits & IEC958_AES0_NONAUDIO)
1395 val |= AC_DIG1_NONAUDIO;
1396 if (sbits & IEC958_AES0_PROFESSIONAL) {
1397 if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
1398 IEC958_AES0_PRO_EMPHASIS_5015)
1399 val |= AC_DIG1_EMPHASIS;
1400 } else {
1401 if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
1402 IEC958_AES0_CON_EMPHASIS_5015)
1403 val |= AC_DIG1_EMPHASIS;
1404 if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1405 val |= AC_DIG1_COPYRIGHT;
1406 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1407 val |= AC_DIG1_LEVEL;
1408 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1409 }
1410 return val;
1411 }
1412
1413 /* convert to SPDIF status bits from HDA SPDIF bits
1414 */
1415 static unsigned int convert_to_spdif_status(unsigned short val)
1416 {
1417 unsigned int sbits = 0;
1418
1419 if (val & AC_DIG1_NONAUDIO)
1420 sbits |= IEC958_AES0_NONAUDIO;
1421 if (val & AC_DIG1_PROFESSIONAL)
1422 sbits |= IEC958_AES0_PROFESSIONAL;
1423 if (sbits & IEC958_AES0_PROFESSIONAL) {
1424 if (sbits & AC_DIG1_EMPHASIS)
1425 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1426 } else {
1427 if (val & AC_DIG1_EMPHASIS)
1428 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1429 if (!(val & AC_DIG1_COPYRIGHT))
1430 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1431 if (val & AC_DIG1_LEVEL)
1432 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1433 sbits |= val & (0x7f << 8);
1434 }
1435 return sbits;
1436 }
1437
1438 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
1439 struct snd_ctl_elem_value *ucontrol)
1440 {
1441 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1442 hda_nid_t nid = kcontrol->private_value;
1443 unsigned short val;
1444 int change;
1445
1446 mutex_lock(&codec->spdif_mutex);
1447 codec->spdif_status = ucontrol->value.iec958.status[0] |
1448 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1449 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1450 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1451 val = convert_from_spdif_status(codec->spdif_status);
1452 val |= codec->spdif_ctls & 1;
1453 change = codec->spdif_ctls != val;
1454 codec->spdif_ctls = val;
1455
1456 if (change) {
1457 snd_hda_codec_write_cache(codec, nid, 0,
1458 AC_VERB_SET_DIGI_CONVERT_1,
1459 val & 0xff);
1460 snd_hda_codec_write_cache(codec, nid, 0,
1461 AC_VERB_SET_DIGI_CONVERT_2,
1462 val >> 8);
1463 }
1464
1465 mutex_unlock(&codec->spdif_mutex);
1466 return change;
1467 }
1468
1469 #define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info
1470
1471 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
1472 struct snd_ctl_elem_value *ucontrol)
1473 {
1474 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1475
1476 ucontrol->value.integer.value[0] = codec->spdif_ctls & AC_DIG1_ENABLE;
1477 return 0;
1478 }
1479
1480 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
1481 struct snd_ctl_elem_value *ucontrol)
1482 {
1483 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1484 hda_nid_t nid = kcontrol->private_value;
1485 unsigned short val;
1486 int change;
1487
1488 mutex_lock(&codec->spdif_mutex);
1489 val = codec->spdif_ctls & ~AC_DIG1_ENABLE;
1490 if (ucontrol->value.integer.value[0])
1491 val |= AC_DIG1_ENABLE;
1492 change = codec->spdif_ctls != val;
1493 if (change) {
1494 codec->spdif_ctls = val;
1495 snd_hda_codec_write_cache(codec, nid, 0,
1496 AC_VERB_SET_DIGI_CONVERT_1,
1497 val & 0xff);
1498 /* unmute amp switch (if any) */
1499 if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
1500 (val & AC_DIG1_ENABLE))
1501 snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
1502 HDA_AMP_MUTE, 0);
1503 }
1504 mutex_unlock(&codec->spdif_mutex);
1505 return change;
1506 }
1507
1508 static struct snd_kcontrol_new dig_mixes[] = {
1509 {
1510 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1511 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1512 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1513 .info = snd_hda_spdif_mask_info,
1514 .get = snd_hda_spdif_cmask_get,
1515 },
1516 {
1517 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1518 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1519 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1520 .info = snd_hda_spdif_mask_info,
1521 .get = snd_hda_spdif_pmask_get,
1522 },
1523 {
1524 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1525 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1526 .info = snd_hda_spdif_mask_info,
1527 .get = snd_hda_spdif_default_get,
1528 .put = snd_hda_spdif_default_put,
1529 },
1530 {
1531 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1532 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1533 .info = snd_hda_spdif_out_switch_info,
1534 .get = snd_hda_spdif_out_switch_get,
1535 .put = snd_hda_spdif_out_switch_put,
1536 },
1537 { } /* end */
1538 };
1539
1540 #define SPDIF_MAX_IDX 4 /* 4 instances should be enough to probe */
1541
1542 /**
1543 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1544 * @codec: the HDA codec
1545 * @nid: audio out widget NID
1546 *
1547 * Creates controls related with the SPDIF output.
1548 * Called from each patch supporting the SPDIF out.
1549 *
1550 * Returns 0 if successful, or a negative error code.
1551 */
1552 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1553 {
1554 int err;
1555 struct snd_kcontrol *kctl;
1556 struct snd_kcontrol_new *dig_mix;
1557 int idx;
1558
1559 for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
1560 if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Playback Switch",
1561 idx))
1562 break;
1563 }
1564 if (idx >= SPDIF_MAX_IDX) {
1565 printk(KERN_ERR "hda_codec: too many IEC958 outputs\n");
1566 return -EBUSY;
1567 }
1568 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1569 kctl = snd_ctl_new1(dig_mix, codec);
1570 kctl->id.index = idx;
1571 kctl->private_value = nid;
1572 err = snd_ctl_add(codec->bus->card, kctl);
1573 if (err < 0)
1574 return err;
1575 }
1576 codec->spdif_ctls =
1577 snd_hda_codec_read(codec, nid, 0,
1578 AC_VERB_GET_DIGI_CONVERT_1, 0);
1579 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1580 return 0;
1581 }
1582
1583 /*
1584 * SPDIF sharing with analog output
1585 */
1586 static int spdif_share_sw_get(struct snd_kcontrol *kcontrol,
1587 struct snd_ctl_elem_value *ucontrol)
1588 {
1589 struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
1590 ucontrol->value.integer.value[0] = mout->share_spdif;
1591 return 0;
1592 }
1593
1594 static int spdif_share_sw_put(struct snd_kcontrol *kcontrol,
1595 struct snd_ctl_elem_value *ucontrol)
1596 {
1597 struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
1598 mout->share_spdif = !!ucontrol->value.integer.value[0];
1599 return 0;
1600 }
1601
1602 static struct snd_kcontrol_new spdif_share_sw = {
1603 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1604 .name = "IEC958 Default PCM Playback Switch",
1605 .info = snd_ctl_boolean_mono_info,
1606 .get = spdif_share_sw_get,
1607 .put = spdif_share_sw_put,
1608 };
1609
1610 int snd_hda_create_spdif_share_sw(struct hda_codec *codec,
1611 struct hda_multi_out *mout)
1612 {
1613 if (!mout->dig_out_nid)
1614 return 0;
1615 /* ATTENTION: here mout is passed as private_data, instead of codec */
1616 return snd_ctl_add(codec->bus->card,
1617 snd_ctl_new1(&spdif_share_sw, mout));
1618 }
1619
1620 /*
1621 * SPDIF input
1622 */
1623
1624 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1625
1626 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
1627 struct snd_ctl_elem_value *ucontrol)
1628 {
1629 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1630
1631 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1632 return 0;
1633 }
1634
1635 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
1636 struct snd_ctl_elem_value *ucontrol)
1637 {
1638 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1639 hda_nid_t nid = kcontrol->private_value;
1640 unsigned int val = !!ucontrol->value.integer.value[0];
1641 int change;
1642
1643 mutex_lock(&codec->spdif_mutex);
1644 change = codec->spdif_in_enable != val;
1645 if (change) {
1646 codec->spdif_in_enable = val;
1647 snd_hda_codec_write_cache(codec, nid, 0,
1648 AC_VERB_SET_DIGI_CONVERT_1, val);
1649 }
1650 mutex_unlock(&codec->spdif_mutex);
1651 return change;
1652 }
1653
1654 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
1655 struct snd_ctl_elem_value *ucontrol)
1656 {
1657 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1658 hda_nid_t nid = kcontrol->private_value;
1659 unsigned short val;
1660 unsigned int sbits;
1661
1662 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0);
1663 sbits = convert_to_spdif_status(val);
1664 ucontrol->value.iec958.status[0] = sbits;
1665 ucontrol->value.iec958.status[1] = sbits >> 8;
1666 ucontrol->value.iec958.status[2] = sbits >> 16;
1667 ucontrol->value.iec958.status[3] = sbits >> 24;
1668 return 0;
1669 }
1670
1671 static struct snd_kcontrol_new dig_in_ctls[] = {
1672 {
1673 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1674 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1675 .info = snd_hda_spdif_in_switch_info,
1676 .get = snd_hda_spdif_in_switch_get,
1677 .put = snd_hda_spdif_in_switch_put,
1678 },
1679 {
1680 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1681 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1682 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1683 .info = snd_hda_spdif_mask_info,
1684 .get = snd_hda_spdif_in_status_get,
1685 },
1686 { } /* end */
1687 };
1688
1689 /**
1690 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1691 * @codec: the HDA codec
1692 * @nid: audio in widget NID
1693 *
1694 * Creates controls related with the SPDIF input.
1695 * Called from each patch supporting the SPDIF in.
1696 *
1697 * Returns 0 if successful, or a negative error code.
1698 */
1699 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1700 {
1701 int err;
1702 struct snd_kcontrol *kctl;
1703 struct snd_kcontrol_new *dig_mix;
1704 int idx;
1705
1706 for (idx = 0; idx < SPDIF_MAX_IDX; idx++) {
1707 if (!_snd_hda_find_mixer_ctl(codec, "IEC958 Capture Switch",
1708 idx))
1709 break;
1710 }
1711 if (idx >= SPDIF_MAX_IDX) {
1712 printk(KERN_ERR "hda_codec: too many IEC958 inputs\n");
1713 return -EBUSY;
1714 }
1715 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1716 kctl = snd_ctl_new1(dig_mix, codec);
1717 kctl->private_value = nid;
1718 err = snd_ctl_add(codec->bus->card, kctl);
1719 if (err < 0)
1720 return err;
1721 }
1722 codec->spdif_in_enable =
1723 snd_hda_codec_read(codec, nid, 0,
1724 AC_VERB_GET_DIGI_CONVERT_1, 0) &
1725 AC_DIG1_ENABLE;
1726 return 0;
1727 }
1728
1729 #ifdef SND_HDA_NEEDS_RESUME
1730 /*
1731 * command cache
1732 */
1733
1734 /* build a 32bit cache key with the widget id and the command parameter */
1735 #define build_cmd_cache_key(nid, verb) ((verb << 8) | nid)
1736 #define get_cmd_cache_nid(key) ((key) & 0xff)
1737 #define get_cmd_cache_cmd(key) (((key) >> 8) & 0xffff)
1738
1739 /**
1740 * snd_hda_codec_write_cache - send a single command with caching
1741 * @codec: the HDA codec
1742 * @nid: NID to send the command
1743 * @direct: direct flag
1744 * @verb: the verb to send
1745 * @parm: the parameter for the verb
1746 *
1747 * Send a single command without waiting for response.
1748 *
1749 * Returns 0 if successful, or a negative error code.
1750 */
1751 int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
1752 int direct, unsigned int verb, unsigned int parm)
1753 {
1754 int err;
1755 snd_hda_power_up(codec);
1756 mutex_lock(&codec->bus->cmd_mutex);
1757 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
1758 if (!err) {
1759 struct hda_cache_head *c;
1760 u32 key = build_cmd_cache_key(nid, verb);
1761 c = get_alloc_hash(&codec->cmd_cache, key);
1762 if (c)
1763 c->val = parm;
1764 }
1765 mutex_unlock(&codec->bus->cmd_mutex);
1766 snd_hda_power_down(codec);
1767 return err;
1768 }
1769
1770 /* resume the all commands from the cache */
1771 void snd_hda_codec_resume_cache(struct hda_codec *codec)
1772 {
1773 struct hda_cache_head *buffer = codec->cmd_cache.buffer;
1774 int i;
1775
1776 for (i = 0; i < codec->cmd_cache.size; i++, buffer++) {
1777 u32 key = buffer->key;
1778 if (!key)
1779 continue;
1780 snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
1781 get_cmd_cache_cmd(key), buffer->val);
1782 }
1783 }
1784
1785 /**
1786 * snd_hda_sequence_write_cache - sequence writes with caching
1787 * @codec: the HDA codec
1788 * @seq: VERB array to send
1789 *
1790 * Send the commands sequentially from the given array.
1791 * Thte commands are recorded on cache for power-save and resume.
1792 * The array must be terminated with NID=0.
1793 */
1794 void snd_hda_sequence_write_cache(struct hda_codec *codec,
1795 const struct hda_verb *seq)
1796 {
1797 for (; seq->nid; seq++)
1798 snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
1799 seq->param);
1800 }
1801 #endif /* SND_HDA_NEEDS_RESUME */
1802
1803 /*
1804 * set power state of the codec
1805 */
1806 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1807 unsigned int power_state)
1808 {
1809 hda_nid_t nid;
1810 int i;
1811
1812 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1813 power_state);
1814 msleep(10); /* partial workaround for "azx_get_response timeout" */
1815
1816 nid = codec->start_nid;
1817 for (i = 0; i < codec->num_nodes; i++, nid++) {
1818 unsigned int wcaps = get_wcaps(codec, nid);
1819 if (wcaps & AC_WCAP_POWER) {
1820 unsigned int wid_type = (wcaps & AC_WCAP_TYPE) >>
1821 AC_WCAP_TYPE_SHIFT;
1822 if (wid_type == AC_WID_PIN) {
1823 unsigned int pincap;
1824 /*
1825 * don't power down the widget if it controls
1826 * eapd and EAPD_BTLENABLE is set.
1827 */
1828 pincap = snd_hda_param_read(codec, nid,
1829 AC_PAR_PIN_CAP);
1830 if (pincap & AC_PINCAP_EAPD) {
1831 int eapd = snd_hda_codec_read(codec,
1832 nid, 0,
1833 AC_VERB_GET_EAPD_BTLENABLE, 0);
1834 eapd &= 0x02;
1835 if (power_state == AC_PWRST_D3 && eapd)
1836 continue;
1837 }
1838 }
1839 snd_hda_codec_write(codec, nid, 0,
1840 AC_VERB_SET_POWER_STATE,
1841 power_state);
1842 }
1843 }
1844
1845 if (power_state == AC_PWRST_D0) {
1846 unsigned long end_time;
1847 int state;
1848 msleep(10);
1849 /* wait until the codec reachs to D0 */
1850 end_time = jiffies + msecs_to_jiffies(500);
1851 do {
1852 state = snd_hda_codec_read(codec, fg, 0,
1853 AC_VERB_GET_POWER_STATE, 0);
1854 if (state == power_state)
1855 break;
1856 msleep(1);
1857 } while (time_after_eq(end_time, jiffies));
1858 }
1859 }
1860
1861 #ifdef SND_HDA_NEEDS_RESUME
1862 /*
1863 * call suspend and power-down; used both from PM and power-save
1864 */
1865 static void hda_call_codec_suspend(struct hda_codec *codec)
1866 {
1867 if (codec->patch_ops.suspend)
1868 codec->patch_ops.suspend(codec, PMSG_SUSPEND);
1869 hda_set_power_state(codec,
1870 codec->afg ? codec->afg : codec->mfg,
1871 AC_PWRST_D3);
1872 #ifdef CONFIG_SND_HDA_POWER_SAVE
1873 cancel_delayed_work(&codec->power_work);
1874 codec->power_on = 0;
1875 codec->power_transition = 0;
1876 #endif
1877 }
1878
1879 /*
1880 * kick up codec; used both from PM and power-save
1881 */
1882 static void hda_call_codec_resume(struct hda_codec *codec)
1883 {
1884 hda_set_power_state(codec,
1885 codec->afg ? codec->afg : codec->mfg,
1886 AC_PWRST_D0);
1887 if (codec->patch_ops.resume)
1888 codec->patch_ops.resume(codec);
1889 else {
1890 if (codec->patch_ops.init)
1891 codec->patch_ops.init(codec);
1892 snd_hda_codec_resume_amp(codec);
1893 snd_hda_codec_resume_cache(codec);
1894 }
1895 }
1896 #endif /* SND_HDA_NEEDS_RESUME */
1897
1898
1899 /**
1900 * snd_hda_build_controls - build mixer controls
1901 * @bus: the BUS
1902 *
1903 * Creates mixer controls for each codec included in the bus.
1904 *
1905 * Returns 0 if successful, otherwise a negative error code.
1906 */
1907 int __devinit snd_hda_build_controls(struct hda_bus *bus)
1908 {
1909 struct hda_codec *codec;
1910
1911 list_for_each_entry(codec, &bus->codec_list, list) {
1912 int err = 0;
1913 /* fake as if already powered-on */
1914 hda_keep_power_on(codec);
1915 /* then fire up */
1916 hda_set_power_state(codec,
1917 codec->afg ? codec->afg : codec->mfg,
1918 AC_PWRST_D0);
1919 /* continue to initialize... */
1920 if (codec->patch_ops.init)
1921 err = codec->patch_ops.init(codec);
1922 if (!err && codec->patch_ops.build_controls)
1923 err = codec->patch_ops.build_controls(codec);
1924 snd_hda_power_down(codec);
1925 if (err < 0)
1926 return err;
1927 }
1928
1929 return 0;
1930 }
1931
1932 /*
1933 * stream formats
1934 */
1935 struct hda_rate_tbl {
1936 unsigned int hz;
1937 unsigned int alsa_bits;
1938 unsigned int hda_fmt;
1939 };
1940
1941 static struct hda_rate_tbl rate_bits[] = {
1942 /* rate in Hz, ALSA rate bitmask, HDA format value */
1943
1944 /* autodetected value used in snd_hda_query_supported_pcm */
1945 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1946 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1947 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1948 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1949 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1950 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1951 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1952 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1953 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1954 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1955 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1956 #define AC_PAR_PCM_RATE_BITS 11
1957 /* up to bits 10, 384kHZ isn't supported properly */
1958
1959 /* not autodetected value */
1960 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1961
1962 { 0 } /* terminator */
1963 };
1964
1965 /**
1966 * snd_hda_calc_stream_format - calculate format bitset
1967 * @rate: the sample rate
1968 * @channels: the number of channels
1969 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1970 * @maxbps: the max. bps
1971 *
1972 * Calculate the format bitset from the given rate, channels and th PCM format.
1973 *
1974 * Return zero if invalid.
1975 */
1976 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1977 unsigned int channels,
1978 unsigned int format,
1979 unsigned int maxbps)
1980 {
1981 int i;
1982 unsigned int val = 0;
1983
1984 for (i = 0; rate_bits[i].hz; i++)
1985 if (rate_bits[i].hz == rate) {
1986 val = rate_bits[i].hda_fmt;
1987 break;
1988 }
1989 if (!rate_bits[i].hz) {
1990 snd_printdd("invalid rate %d\n", rate);
1991 return 0;
1992 }
1993
1994 if (channels == 0 || channels > 8) {
1995 snd_printdd("invalid channels %d\n", channels);
1996 return 0;
1997 }
1998 val |= channels - 1;
1999
2000 switch (snd_pcm_format_width(format)) {
2001 case 8: val |= 0x00; break;
2002 case 16: val |= 0x10; break;
2003 case 20:
2004 case 24:
2005 case 32:
2006 if (maxbps >= 32)
2007 val |= 0x40;
2008 else if (maxbps >= 24)
2009 val |= 0x30;
2010 else
2011 val |= 0x20;
2012 break;
2013 default:
2014 snd_printdd("invalid format width %d\n",
2015 snd_pcm_format_width(format));
2016 return 0;
2017 }
2018
2019 return val;
2020 }
2021
2022 /**
2023 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
2024 * @codec: the HDA codec
2025 * @nid: NID to query
2026 * @ratesp: the pointer to store the detected rate bitflags
2027 * @formatsp: the pointer to store the detected formats
2028 * @bpsp: the pointer to store the detected format widths
2029 *
2030 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
2031 * or @bsps argument is ignored.
2032 *
2033 * Returns 0 if successful, otherwise a negative error code.
2034 */
2035 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
2036 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
2037 {
2038 int i;
2039 unsigned int val, streams;
2040
2041 val = 0;
2042 if (nid != codec->afg &&
2043 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
2044 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
2045 if (val == -1)
2046 return -EIO;
2047 }
2048 if (!val)
2049 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
2050
2051 if (ratesp) {
2052 u32 rates = 0;
2053 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
2054 if (val & (1 << i))
2055 rates |= rate_bits[i].alsa_bits;
2056 }
2057 *ratesp = rates;
2058 }
2059
2060 if (formatsp || bpsp) {
2061 u64 formats = 0;
2062 unsigned int bps;
2063 unsigned int wcaps;
2064
2065 wcaps = get_wcaps(codec, nid);
2066 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
2067 if (streams == -1)
2068 return -EIO;
2069 if (!streams) {
2070 streams = snd_hda_param_read(codec, codec->afg,
2071 AC_PAR_STREAM);
2072 if (streams == -1)
2073 return -EIO;
2074 }
2075
2076 bps = 0;
2077 if (streams & AC_SUPFMT_PCM) {
2078 if (val & AC_SUPPCM_BITS_8) {
2079 formats |= SNDRV_PCM_FMTBIT_U8;
2080 bps = 8;
2081 }
2082 if (val & AC_SUPPCM_BITS_16) {
2083 formats |= SNDRV_PCM_FMTBIT_S16_LE;
2084 bps = 16;
2085 }
2086 if (wcaps & AC_WCAP_DIGITAL) {
2087 if (val & AC_SUPPCM_BITS_32)
2088 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
2089 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
2090 formats |= SNDRV_PCM_FMTBIT_S32_LE;
2091 if (val & AC_SUPPCM_BITS_24)
2092 bps = 24;
2093 else if (val & AC_SUPPCM_BITS_20)
2094 bps = 20;
2095 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
2096 AC_SUPPCM_BITS_32)) {
2097 formats |= SNDRV_PCM_FMTBIT_S32_LE;
2098 if (val & AC_SUPPCM_BITS_32)
2099 bps = 32;
2100 else if (val & AC_SUPPCM_BITS_24)
2101 bps = 24;
2102 else if (val & AC_SUPPCM_BITS_20)
2103 bps = 20;
2104 }
2105 }
2106 else if (streams == AC_SUPFMT_FLOAT32) {
2107 /* should be exclusive */
2108 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
2109 bps = 32;
2110 } else if (streams == AC_SUPFMT_AC3) {
2111 /* should be exclusive */
2112 /* temporary hack: we have still no proper support
2113 * for the direct AC3 stream...
2114 */
2115 formats |= SNDRV_PCM_FMTBIT_U8;
2116 bps = 8;
2117 }
2118 if (formatsp)
2119 *formatsp = formats;
2120 if (bpsp)
2121 *bpsp = bps;
2122 }
2123
2124 return 0;
2125 }
2126
2127 /**
2128 * snd_hda_is_supported_format - check whether the given node supports
2129 * the format val
2130 *
2131 * Returns 1 if supported, 0 if not.
2132 */
2133 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
2134 unsigned int format)
2135 {
2136 int i;
2137 unsigned int val = 0, rate, stream;
2138
2139 if (nid != codec->afg &&
2140 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
2141 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
2142 if (val == -1)
2143 return 0;
2144 }
2145 if (!val) {
2146 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
2147 if (val == -1)
2148 return 0;
2149 }
2150
2151 rate = format & 0xff00;
2152 for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
2153 if (rate_bits[i].hda_fmt == rate) {
2154 if (val & (1 << i))
2155 break;
2156 return 0;
2157 }
2158 if (i >= AC_PAR_PCM_RATE_BITS)
2159 return 0;
2160
2161 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
2162 if (stream == -1)
2163 return 0;
2164 if (!stream && nid != codec->afg)
2165 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
2166 if (!stream || stream == -1)
2167 return 0;
2168
2169 if (stream & AC_SUPFMT_PCM) {
2170 switch (format & 0xf0) {
2171 case 0x00:
2172 if (!(val & AC_SUPPCM_BITS_8))
2173 return 0;
2174 break;
2175 case 0x10:
2176 if (!(val & AC_SUPPCM_BITS_16))
2177 return 0;
2178 break;
2179 case 0x20:
2180 if (!(val & AC_SUPPCM_BITS_20))
2181 return 0;
2182 break;
2183 case 0x30:
2184 if (!(val & AC_SUPPCM_BITS_24))
2185 return 0;
2186 break;
2187 case 0x40:
2188 if (!(val & AC_SUPPCM_BITS_32))
2189 return 0;
2190 break;
2191 default:
2192 return 0;
2193 }
2194 } else {
2195 /* FIXME: check for float32 and AC3? */
2196 }
2197
2198 return 1;
2199 }
2200
2201 /*
2202 * PCM stuff
2203 */
2204 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
2205 struct hda_codec *codec,
2206 struct snd_pcm_substream *substream)
2207 {
2208 return 0;
2209 }
2210
2211 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
2212 struct hda_codec *codec,
2213 unsigned int stream_tag,
2214 unsigned int format,
2215 struct snd_pcm_substream *substream)
2216 {
2217 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
2218 return 0;
2219 }
2220
2221 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
2222 struct hda_codec *codec,
2223 struct snd_pcm_substream *substream)
2224 {
2225 snd_hda_codec_cleanup_stream(codec, hinfo->nid);
2226 return 0;
2227 }
2228
2229 static int __devinit set_pcm_default_values(struct hda_codec *codec,
2230 struct hda_pcm_stream *info)
2231 {
2232 /* query support PCM information from the given NID */
2233 if (info->nid && (!info->rates || !info->formats)) {
2234 snd_hda_query_supported_pcm(codec, info->nid,
2235 info->rates ? NULL : &info->rates,
2236 info->formats ? NULL : &info->formats,
2237 info->maxbps ? NULL : &info->maxbps);
2238 }
2239 if (info->ops.open == NULL)
2240 info->ops.open = hda_pcm_default_open_close;
2241 if (info->ops.close == NULL)
2242 info->ops.close = hda_pcm_default_open_close;
2243 if (info->ops.prepare == NULL) {
2244 if (snd_BUG_ON(!info->nid))
2245 return -EINVAL;
2246 info->ops.prepare = hda_pcm_default_prepare;
2247 }
2248 if (info->ops.cleanup == NULL) {
2249 if (snd_BUG_ON(!info->nid))
2250 return -EINVAL;
2251 info->ops.cleanup = hda_pcm_default_cleanup;
2252 }
2253 return 0;
2254 }
2255
2256 /**
2257 * snd_hda_build_pcms - build PCM information
2258 * @bus: the BUS
2259 *
2260 * Create PCM information for each codec included in the bus.
2261 *
2262 * The build_pcms codec patch is requested to set up codec->num_pcms and
2263 * codec->pcm_info properly. The array is referred by the top-level driver
2264 * to create its PCM instances.
2265 * The allocated codec->pcm_info should be released in codec->patch_ops.free
2266 * callback.
2267 *
2268 * At least, substreams, channels_min and channels_max must be filled for
2269 * each stream. substreams = 0 indicates that the stream doesn't exist.
2270 * When rates and/or formats are zero, the supported values are queried
2271 * from the given nid. The nid is used also by the default ops.prepare
2272 * and ops.cleanup callbacks.
2273 *
2274 * The driver needs to call ops.open in its open callback. Similarly,
2275 * ops.close is supposed to be called in the close callback.
2276 * ops.prepare should be called in the prepare or hw_params callback
2277 * with the proper parameters for set up.
2278 * ops.cleanup should be called in hw_free for clean up of streams.
2279 *
2280 * This function returns 0 if successfull, or a negative error code.
2281 */
2282 int __devinit snd_hda_build_pcms(struct hda_bus *bus)
2283 {
2284 struct hda_codec *codec;
2285
2286 list_for_each_entry(codec, &bus->codec_list, list) {
2287 unsigned int pcm, s;
2288 int err;
2289 if (!codec->patch_ops.build_pcms)
2290 continue;
2291 err = codec->patch_ops.build_pcms(codec);
2292 if (err < 0)
2293 return err;
2294 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
2295 for (s = 0; s < 2; s++) {
2296 struct hda_pcm_stream *info;
2297 info = &codec->pcm_info[pcm].stream[s];
2298 if (!info->substreams)
2299 continue;
2300 err = set_pcm_default_values(codec, info);
2301 if (err < 0)
2302 return err;
2303 }
2304 }
2305 }
2306 return 0;
2307 }
2308
2309 /**
2310 * snd_hda_check_board_config - compare the current codec with the config table
2311 * @codec: the HDA codec
2312 * @num_configs: number of config enums
2313 * @models: array of model name strings
2314 * @tbl: configuration table, terminated by null entries
2315 *
2316 * Compares the modelname or PCI subsystem id of the current codec with the
2317 * given configuration table. If a matching entry is found, returns its
2318 * config value (supposed to be 0 or positive).
2319 *
2320 * If no entries are matching, the function returns a negative value.
2321 */
2322 int snd_hda_check_board_config(struct hda_codec *codec,
2323 int num_configs, const char **models,
2324 const struct snd_pci_quirk *tbl)
2325 {
2326 if (codec->bus->modelname && models) {
2327 int i;
2328 for (i = 0; i < num_configs; i++) {
2329 if (models[i] &&
2330 !strcmp(codec->bus->modelname, models[i])) {
2331 snd_printd(KERN_INFO "hda_codec: model '%s' is "
2332 "selected\n", models[i]);
2333 return i;
2334 }
2335 }
2336 }
2337
2338 if (!codec->bus->pci || !tbl)
2339 return -1;
2340
2341 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
2342 if (!tbl)
2343 return -1;
2344 if (tbl->value >= 0 && tbl->value < num_configs) {
2345 #ifdef CONFIG_SND_DEBUG_VERBOSE
2346 char tmp[10];
2347 const char *model = NULL;
2348 if (models)
2349 model = models[tbl->value];
2350 if (!model) {
2351 sprintf(tmp, "#%d", tbl->value);
2352 model = tmp;
2353 }
2354 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
2355 "for config %x:%x (%s)\n",
2356 model, tbl->subvendor, tbl->subdevice,
2357 (tbl->name ? tbl->name : "Unknown device"));
2358 #endif
2359 return tbl->value;
2360 }
2361 return -1;
2362 }
2363
2364 /**
2365 * snd_hda_add_new_ctls - create controls from the array
2366 * @codec: the HDA codec
2367 * @knew: the array of struct snd_kcontrol_new
2368 *
2369 * This helper function creates and add new controls in the given array.
2370 * The array must be terminated with an empty entry as terminator.
2371 *
2372 * Returns 0 if successful, or a negative error code.
2373 */
2374 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2375 {
2376 int err;
2377
2378 for (; knew->name; knew++) {
2379 struct snd_kcontrol *kctl;
2380 kctl = snd_ctl_new1(knew, codec);
2381 if (!kctl)
2382 return -ENOMEM;
2383 err = snd_ctl_add(codec->bus->card, kctl);
2384 if (err < 0) {
2385 if (!codec->addr)
2386 return err;
2387 kctl = snd_ctl_new1(knew, codec);
2388 if (!kctl)
2389 return -ENOMEM;
2390 kctl->id.device = codec->addr;
2391 err = snd_ctl_add(codec->bus->card, kctl);
2392 if (err < 0)
2393 return err;
2394 }
2395 }
2396 return 0;
2397 }
2398
2399 #ifdef CONFIG_SND_HDA_POWER_SAVE
2400 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
2401 unsigned int power_state);
2402
2403 static void hda_power_work(struct work_struct *work)
2404 {
2405 struct hda_codec *codec =
2406 container_of(work, struct hda_codec, power_work.work);
2407
2408 if (!codec->power_on || codec->power_count) {
2409 codec->power_transition = 0;
2410 return;
2411 }
2412
2413 hda_call_codec_suspend(codec);
2414 if (codec->bus->ops.pm_notify)
2415 codec->bus->ops.pm_notify(codec);
2416 }
2417
2418 static void hda_keep_power_on(struct hda_codec *codec)
2419 {
2420 codec->power_count++;
2421 codec->power_on = 1;
2422 }
2423
2424 void snd_hda_power_up(struct hda_codec *codec)
2425 {
2426 codec->power_count++;
2427 if (codec->power_on || codec->power_transition)
2428 return;
2429
2430 codec->power_on = 1;
2431 if (codec->bus->ops.pm_notify)
2432 codec->bus->ops.pm_notify(codec);
2433 hda_call_codec_resume(codec);
2434 cancel_delayed_work(&codec->power_work);
2435 codec->power_transition = 0;
2436 }
2437
2438 void snd_hda_power_down(struct hda_codec *codec)
2439 {
2440 --codec->power_count;
2441 if (!codec->power_on || codec->power_count || codec->power_transition)
2442 return;
2443 if (power_save) {
2444 codec->power_transition = 1; /* avoid reentrance */
2445 schedule_delayed_work(&codec->power_work,
2446 msecs_to_jiffies(power_save * 1000));
2447 }
2448 }
2449
2450 int snd_hda_check_amp_list_power(struct hda_codec *codec,
2451 struct hda_loopback_check *check,
2452 hda_nid_t nid)
2453 {
2454 struct hda_amp_list *p;
2455 int ch, v;
2456
2457 if (!check->amplist)
2458 return 0;
2459 for (p = check->amplist; p->nid; p++) {
2460 if (p->nid == nid)
2461 break;
2462 }
2463 if (!p->nid)
2464 return 0; /* nothing changed */
2465
2466 for (p = check->amplist; p->nid; p++) {
2467 for (ch = 0; ch < 2; ch++) {
2468 v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
2469 p->idx);
2470 if (!(v & HDA_AMP_MUTE) && v > 0) {
2471 if (!check->power_on) {
2472 check->power_on = 1;
2473 snd_hda_power_up(codec);
2474 }
2475 return 1;
2476 }
2477 }
2478 }
2479 if (check->power_on) {
2480 check->power_on = 0;
2481 snd_hda_power_down(codec);
2482 }
2483 return 0;
2484 }
2485 #endif
2486
2487 /*
2488 * Channel mode helper
2489 */
2490 int snd_hda_ch_mode_info(struct hda_codec *codec,
2491 struct snd_ctl_elem_info *uinfo,
2492 const struct hda_channel_mode *chmode,
2493 int num_chmodes)
2494 {
2495 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2496 uinfo->count = 1;
2497 uinfo->value.enumerated.items = num_chmodes;
2498 if (uinfo->value.enumerated.item >= num_chmodes)
2499 uinfo->value.enumerated.item = num_chmodes - 1;
2500 sprintf(uinfo->value.enumerated.name, "%dch",
2501 chmode[uinfo->value.enumerated.item].channels);
2502 return 0;
2503 }
2504
2505 int snd_hda_ch_mode_get(struct hda_codec *codec,
2506 struct snd_ctl_elem_value *ucontrol,
2507 const struct hda_channel_mode *chmode,
2508 int num_chmodes,
2509 int max_channels)
2510 {
2511 int i;
2512
2513 for (i = 0; i < num_chmodes; i++) {
2514 if (max_channels == chmode[i].channels) {
2515 ucontrol->value.enumerated.item[0] = i;
2516 break;
2517 }
2518 }
2519 return 0;
2520 }
2521
2522 int snd_hda_ch_mode_put(struct hda_codec *codec,
2523 struct snd_ctl_elem_value *ucontrol,
2524 const struct hda_channel_mode *chmode,
2525 int num_chmodes,
2526 int *max_channelsp)
2527 {
2528 unsigned int mode;
2529
2530 mode = ucontrol->value.enumerated.item[0];
2531 if (mode >= num_chmodes)
2532 return -EINVAL;
2533 if (*max_channelsp == chmode[mode].channels)
2534 return 0;
2535 /* change the current channel setting */
2536 *max_channelsp = chmode[mode].channels;
2537 if (chmode[mode].sequence)
2538 snd_hda_sequence_write_cache(codec, chmode[mode].sequence);
2539 return 1;
2540 }
2541
2542 /*
2543 * input MUX helper
2544 */
2545 int snd_hda_input_mux_info(const struct hda_input_mux *imux,
2546 struct snd_ctl_elem_info *uinfo)
2547 {
2548 unsigned int index;
2549
2550 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2551 uinfo->count = 1;
2552 uinfo->value.enumerated.items = imux->num_items;
2553 if (!imux->num_items)
2554 return 0;
2555 index = uinfo->value.enumerated.item;
2556 if (index >= imux->num_items)
2557 index = imux->num_items - 1;
2558 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
2559 return 0;
2560 }
2561
2562 int snd_hda_input_mux_put(struct hda_codec *codec,
2563 const struct hda_input_mux *imux,
2564 struct snd_ctl_elem_value *ucontrol,
2565 hda_nid_t nid,
2566 unsigned int *cur_val)
2567 {
2568 unsigned int idx;
2569
2570 if (!imux->num_items)
2571 return 0;
2572 idx = ucontrol->value.enumerated.item[0];
2573 if (idx >= imux->num_items)
2574 idx = imux->num_items - 1;
2575 if (*cur_val == idx)
2576 return 0;
2577 snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
2578 imux->items[idx].index);
2579 *cur_val = idx;
2580 return 1;
2581 }
2582
2583
2584 /*
2585 * Multi-channel / digital-out PCM helper functions
2586 */
2587
2588 /* setup SPDIF output stream */
2589 static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
2590 unsigned int stream_tag, unsigned int format)
2591 {
2592 /* turn off SPDIF once; otherwise the IEC958 bits won't be updated */
2593 if (codec->spdif_ctls & AC_DIG1_ENABLE)
2594 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2595 codec->spdif_ctls & ~AC_DIG1_ENABLE & 0xff);
2596 snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
2597 /* turn on again (if needed) */
2598 if (codec->spdif_ctls & AC_DIG1_ENABLE)
2599 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1,
2600 codec->spdif_ctls & 0xff);
2601 }
2602
2603 /*
2604 * open the digital out in the exclusive mode
2605 */
2606 int snd_hda_multi_out_dig_open(struct hda_codec *codec,
2607 struct hda_multi_out *mout)
2608 {
2609 mutex_lock(&codec->spdif_mutex);
2610 if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
2611 /* already opened as analog dup; reset it once */
2612 snd_hda_codec_cleanup_stream(codec, mout->dig_out_nid);
2613 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
2614 mutex_unlock(&codec->spdif_mutex);
2615 return 0;
2616 }
2617
2618 int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
2619 struct hda_multi_out *mout,
2620 unsigned int stream_tag,
2621 unsigned int format,
2622 struct snd_pcm_substream *substream)
2623 {
2624 mutex_lock(&codec->spdif_mutex);
2625 setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
2626 mutex_unlock(&codec->spdif_mutex);
2627 return 0;
2628 }
2629
2630 /*
2631 * release the digital out
2632 */
2633 int snd_hda_multi_out_dig_close(struct hda_codec *codec,
2634 struct hda_multi_out *mout)
2635 {
2636 mutex_lock(&codec->spdif_mutex);
2637 mout->dig_out_used = 0;
2638 mutex_unlock(&codec->spdif_mutex);
2639 return 0;
2640 }
2641
2642 /*
2643 * set up more restrictions for analog out
2644 */
2645 int snd_hda_multi_out_analog_open(struct hda_codec *codec,
2646 struct hda_multi_out *mout,
2647 struct snd_pcm_substream *substream,
2648 struct hda_pcm_stream *hinfo)
2649 {
2650 struct snd_pcm_runtime *runtime = substream->runtime;
2651 runtime->hw.channels_max = mout->max_channels;
2652 if (mout->dig_out_nid) {
2653 if (!mout->analog_rates) {
2654 mout->analog_rates = hinfo->rates;
2655 mout->analog_formats = hinfo->formats;
2656 mout->analog_maxbps = hinfo->maxbps;
2657 } else {
2658 runtime->hw.rates = mout->analog_rates;
2659 runtime->hw.formats = mout->analog_formats;
2660 hinfo->maxbps = mout->analog_maxbps;
2661 }
2662 if (!mout->spdif_rates) {
2663 snd_hda_query_supported_pcm(codec, mout->dig_out_nid,
2664 &mout->spdif_rates,
2665 &mout->spdif_formats,
2666 &mout->spdif_maxbps);
2667 }
2668 mutex_lock(&codec->spdif_mutex);
2669 if (mout->share_spdif) {
2670 runtime->hw.rates &= mout->spdif_rates;
2671 runtime->hw.formats &= mout->spdif_formats;
2672 if (mout->spdif_maxbps < hinfo->maxbps)
2673 hinfo->maxbps = mout->spdif_maxbps;
2674 }
2675 mutex_unlock(&codec->spdif_mutex);
2676 }
2677 return snd_pcm_hw_constraint_step(substream->runtime, 0,
2678 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
2679 }
2680
2681 /*
2682 * set up the i/o for analog out
2683 * when the digital out is available, copy the front out to digital out, too.
2684 */
2685 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
2686 struct hda_multi_out *mout,
2687 unsigned int stream_tag,
2688 unsigned int format,
2689 struct snd_pcm_substream *substream)
2690 {
2691 hda_nid_t *nids = mout->dac_nids;
2692 int chs = substream->runtime->channels;
2693 int i;
2694
2695 mutex_lock(&codec->spdif_mutex);
2696 if (mout->dig_out_nid && mout->share_spdif &&
2697 mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
2698 if (chs == 2 &&
2699 snd_hda_is_supported_format(codec, mout->dig_out_nid,
2700 format) &&
2701 !(codec->spdif_status & IEC958_AES0_NONAUDIO)) {
2702 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
2703 setup_dig_out_stream(codec, mout->dig_out_nid,
2704 stream_tag, format);
2705 } else {
2706 mout->dig_out_used = 0;
2707 snd_hda_codec_cleanup_stream(codec, mout->dig_out_nid);
2708 }
2709 }
2710 mutex_unlock(&codec->spdif_mutex);
2711
2712 /* front */
2713 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
2714 0, format);
2715 if (!mout->no_share_stream &&
2716 mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
2717 /* headphone out will just decode front left/right (stereo) */
2718 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
2719 0, format);
2720 /* extra outputs copied from front */
2721 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2722 if (!mout->no_share_stream && mout->extra_out_nid[i])
2723 snd_hda_codec_setup_stream(codec,
2724 mout->extra_out_nid[i],
2725 stream_tag, 0, format);
2726
2727 /* surrounds */
2728 for (i = 1; i < mout->num_dacs; i++) {
2729 if (chs >= (i + 1) * 2) /* independent out */
2730 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2731 i * 2, format);
2732 else if (!mout->no_share_stream) /* copy front */
2733 snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
2734 0, format);
2735 }
2736 return 0;
2737 }
2738
2739 /*
2740 * clean up the setting for analog out
2741 */
2742 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
2743 struct hda_multi_out *mout)
2744 {
2745 hda_nid_t *nids = mout->dac_nids;
2746 int i;
2747
2748 for (i = 0; i < mout->num_dacs; i++)
2749 snd_hda_codec_cleanup_stream(codec, nids[i]);
2750 if (mout->hp_nid)
2751 snd_hda_codec_cleanup_stream(codec, mout->hp_nid);
2752 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
2753 if (mout->extra_out_nid[i])
2754 snd_hda_codec_cleanup_stream(codec,
2755 mout->extra_out_nid[i]);
2756 mutex_lock(&codec->spdif_mutex);
2757 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
2758 snd_hda_codec_cleanup_stream(codec, mout->dig_out_nid);
2759 mout->dig_out_used = 0;
2760 }
2761 mutex_unlock(&codec->spdif_mutex);
2762 return 0;
2763 }
2764
2765 /*
2766 * Helper for automatic ping configuration
2767 */
2768
2769 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2770 {
2771 for (; *list; list++)
2772 if (*list == nid)
2773 return 1;
2774 return 0;
2775 }
2776
2777
2778 /*
2779 * Sort an associated group of pins according to their sequence numbers.
2780 */
2781 static void sort_pins_by_sequence(hda_nid_t * pins, short * sequences,
2782 int num_pins)
2783 {
2784 int i, j;
2785 short seq;
2786 hda_nid_t nid;
2787
2788 for (i = 0; i < num_pins; i++) {
2789 for (j = i + 1; j < num_pins; j++) {
2790 if (sequences[i] > sequences[j]) {
2791 seq = sequences[i];
2792 sequences[i] = sequences[j];
2793 sequences[j] = seq;
2794 nid = pins[i];
2795 pins[i] = pins[j];
2796 pins[j] = nid;
2797 }
2798 }
2799 }
2800 }
2801
2802
2803 /*
2804 * Parse all pin widgets and store the useful pin nids to cfg
2805 *
2806 * The number of line-outs or any primary output is stored in line_outs,
2807 * and the corresponding output pins are assigned to line_out_pins[],
2808 * in the order of front, rear, CLFE, side, ...
2809 *
2810 * If more extra outputs (speaker and headphone) are found, the pins are
2811 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
2812 * is detected, one of speaker of HP pins is assigned as the primary
2813 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2814 * if any analog output exists.
2815 *
2816 * The analog input pins are assigned to input_pins array.
2817 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2818 * respectively.
2819 */
2820 int snd_hda_parse_pin_def_config(struct hda_codec *codec,
2821 struct auto_pin_cfg *cfg,
2822 hda_nid_t *ignore_nids)
2823 {
2824 hda_nid_t nid, end_nid;
2825 short seq, assoc_line_out, assoc_speaker;
2826 short sequences_line_out[ARRAY_SIZE(cfg->line_out_pins)];
2827 short sequences_speaker[ARRAY_SIZE(cfg->speaker_pins)];
2828 short sequences_hp[ARRAY_SIZE(cfg->hp_pins)];
2829
2830 memset(cfg, 0, sizeof(*cfg));
2831
2832 memset(sequences_line_out, 0, sizeof(sequences_line_out));
2833 memset(sequences_speaker, 0, sizeof(sequences_speaker));
2834 memset(sequences_hp, 0, sizeof(sequences_hp));
2835 assoc_line_out = assoc_speaker = 0;
2836
2837 end_nid = codec->start_nid + codec->num_nodes;
2838 for (nid = codec->start_nid; nid < end_nid; nid++) {
2839 unsigned int wid_caps = get_wcaps(codec, nid);
2840 unsigned int wid_type =
2841 (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2842 unsigned int def_conf;
2843 short assoc, loc;
2844
2845 /* read all default configuration for pin complex */
2846 if (wid_type != AC_WID_PIN)
2847 continue;
2848 /* ignore the given nids (e.g. pc-beep returns error) */
2849 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2850 continue;
2851
2852 def_conf = snd_hda_codec_read(codec, nid, 0,
2853 AC_VERB_GET_CONFIG_DEFAULT, 0);
2854 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2855 continue;
2856 loc = get_defcfg_location(def_conf);
2857 switch (get_defcfg_device(def_conf)) {
2858 case AC_JACK_LINE_OUT:
2859 seq = get_defcfg_sequence(def_conf);
2860 assoc = get_defcfg_association(def_conf);
2861
2862 if (!(wid_caps & AC_WCAP_STEREO))
2863 if (!cfg->mono_out_pin)
2864 cfg->mono_out_pin = nid;
2865 if (!assoc)
2866 continue;
2867 if (!assoc_line_out)
2868 assoc_line_out = assoc;
2869 else if (assoc_line_out != assoc)
2870 continue;
2871 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2872 continue;
2873 cfg->line_out_pins[cfg->line_outs] = nid;
2874 sequences_line_out[cfg->line_outs] = seq;
2875 cfg->line_outs++;
2876 break;
2877 case AC_JACK_SPEAKER:
2878 seq = get_defcfg_sequence(def_conf);
2879 assoc = get_defcfg_association(def_conf);
2880 if (! assoc)
2881 continue;
2882 if (! assoc_speaker)
2883 assoc_speaker = assoc;
2884 else if (assoc_speaker != assoc)
2885 continue;
2886 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2887 continue;
2888 cfg->speaker_pins[cfg->speaker_outs] = nid;
2889 sequences_speaker[cfg->speaker_outs] = seq;
2890 cfg->speaker_outs++;
2891 break;
2892 case AC_JACK_HP_OUT:
2893 seq = get_defcfg_sequence(def_conf);
2894 assoc = get_defcfg_association(def_conf);
2895 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2896 continue;
2897 cfg->hp_pins[cfg->hp_outs] = nid;
2898 sequences_hp[cfg->hp_outs] = (assoc << 4) | seq;
2899 cfg->hp_outs++;
2900 break;
2901 case AC_JACK_MIC_IN: {
2902 int preferred, alt;
2903 if (loc == AC_JACK_LOC_FRONT) {
2904 preferred = AUTO_PIN_FRONT_MIC;
2905 alt = AUTO_PIN_MIC;
2906 } else {
2907 preferred = AUTO_PIN_MIC;
2908 alt = AUTO_PIN_FRONT_MIC;
2909 }
2910 if (!cfg->input_pins[preferred])
2911 cfg->input_pins[preferred] = nid;
2912 else if (!cfg->input_pins[alt])
2913 cfg->input_pins[alt] = nid;
2914 break;
2915 }
2916 case AC_JACK_LINE_IN:
2917 if (loc == AC_JACK_LOC_FRONT)
2918 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2919 else
2920 cfg->input_pins[AUTO_PIN_LINE] = nid;
2921 break;
2922 case AC_JACK_CD:
2923 cfg->input_pins[AUTO_PIN_CD] = nid;
2924 break;
2925 case AC_JACK_AUX:
2926 cfg->input_pins[AUTO_PIN_AUX] = nid;
2927 break;
2928 case AC_JACK_SPDIF_OUT:
2929 cfg->dig_out_pin = nid;
2930 break;
2931 case AC_JACK_SPDIF_IN:
2932 cfg->dig_in_pin = nid;
2933 break;
2934 }
2935 }
2936
2937 /* FIX-UP:
2938 * If no line-out is defined but multiple HPs are found,
2939 * some of them might be the real line-outs.
2940 */
2941 if (!cfg->line_outs && cfg->hp_outs > 1) {
2942 int i = 0;
2943 while (i < cfg->hp_outs) {
2944 /* The real HPs should have the sequence 0x0f */
2945 if ((sequences_hp[i] & 0x0f) == 0x0f) {
2946 i++;
2947 continue;
2948 }
2949 /* Move it to the line-out table */
2950 cfg->line_out_pins[cfg->line_outs] = cfg->hp_pins[i];
2951 sequences_line_out[cfg->line_outs] = sequences_hp[i];
2952 cfg->line_outs++;
2953 cfg->hp_outs--;
2954 memmove(cfg->hp_pins + i, cfg->hp_pins + i + 1,
2955 sizeof(cfg->hp_pins[0]) * (cfg->hp_outs - i));
2956 memmove(sequences_hp + i - 1, sequences_hp + i,
2957 sizeof(sequences_hp[0]) * (cfg->hp_outs - i));
2958 }
2959 }
2960
2961 /* sort by sequence */
2962 sort_pins_by_sequence(cfg->line_out_pins, sequences_line_out,
2963 cfg->line_outs);
2964 sort_pins_by_sequence(cfg->speaker_pins, sequences_speaker,
2965 cfg->speaker_outs);
2966 sort_pins_by_sequence(cfg->hp_pins, sequences_hp,
2967 cfg->hp_outs);
2968
2969 /* if we have only one mic, make it AUTO_PIN_MIC */
2970 if (!cfg->input_pins[AUTO_PIN_MIC] &&
2971 cfg->input_pins[AUTO_PIN_FRONT_MIC]) {
2972 cfg->input_pins[AUTO_PIN_MIC] =
2973 cfg->input_pins[AUTO_PIN_FRONT_MIC];
2974 cfg->input_pins[AUTO_PIN_FRONT_MIC] = 0;
2975 }
2976 /* ditto for line-in */
2977 if (!cfg->input_pins[AUTO_PIN_LINE] &&
2978 cfg->input_pins[AUTO_PIN_FRONT_LINE]) {
2979 cfg->input_pins[AUTO_PIN_LINE] =
2980 cfg->input_pins[AUTO_PIN_FRONT_LINE];
2981 cfg->input_pins[AUTO_PIN_FRONT_LINE] = 0;
2982 }
2983
2984 /*
2985 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2986 * as a primary output
2987 */
2988 if (!cfg->line_outs) {
2989 if (cfg->speaker_outs) {
2990 cfg->line_outs = cfg->speaker_outs;
2991 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2992 sizeof(cfg->speaker_pins));
2993 cfg->speaker_outs = 0;
2994 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2995 cfg->line_out_type = AUTO_PIN_SPEAKER_OUT;
2996 } else if (cfg->hp_outs) {
2997 cfg->line_outs = cfg->hp_outs;
2998 memcpy(cfg->line_out_pins, cfg->hp_pins,
2999 sizeof(cfg->hp_pins));
3000 cfg->hp_outs = 0;
3001 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
3002 cfg->line_out_type = AUTO_PIN_HP_OUT;
3003 }
3004 }
3005
3006 /* Reorder the surround channels
3007 * ALSA sequence is front/surr/clfe/side
3008 * HDA sequence is:
3009 * 4-ch: front/surr => OK as it is
3010 * 6-ch: front/clfe/surr
3011 * 8-ch: front/clfe/rear/side|fc
3012 */
3013 switch (cfg->line_outs) {
3014 case 3:
3015 case 4:
3016 nid = cfg->line_out_pins[1];
3017 cfg->line_out_pins[1] = cfg->line_out_pins[2];
3018 cfg->line_out_pins[2] = nid;
3019 break;
3020 }
3021
3022 /*
3023 * debug prints of the parsed results
3024 */
3025 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
3026 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
3027 cfg->line_out_pins[2], cfg->line_out_pins[3],
3028 cfg->line_out_pins[4]);
3029 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
3030 cfg->speaker_outs, cfg->speaker_pins[0],
3031 cfg->speaker_pins[1], cfg->speaker_pins[2],
3032 cfg->speaker_pins[3], cfg->speaker_pins[4]);
3033 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
3034 cfg->hp_outs, cfg->hp_pins[0],
3035 cfg->hp_pins[1], cfg->hp_pins[2],
3036 cfg->hp_pins[3], cfg->hp_pins[4]);
3037 snd_printd(" mono: mono_out=0x%x\n", cfg->mono_out_pin);
3038 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
3039 " cd=0x%x, aux=0x%x\n",
3040 cfg->input_pins[AUTO_PIN_MIC],
3041 cfg->input_pins[AUTO_PIN_FRONT_MIC],
3042 cfg->input_pins[AUTO_PIN_LINE],
3043 cfg->input_pins[AUTO_PIN_FRONT_LINE],
3044 cfg->input_pins[AUTO_PIN_CD],
3045 cfg->input_pins[AUTO_PIN_AUX]);
3046
3047 return 0;
3048 }
3049
3050 /* labels for input pins */
3051 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
3052 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
3053 };
3054
3055
3056 #ifdef CONFIG_PM
3057 /*
3058 * power management
3059 */
3060
3061 /**
3062 * snd_hda_suspend - suspend the codecs
3063 * @bus: the HDA bus
3064 * @state: suspsend state
3065 *
3066 * Returns 0 if successful.
3067 */
3068 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
3069 {
3070 struct hda_codec *codec;
3071
3072 list_for_each_entry(codec, &bus->codec_list, list) {
3073 #ifdef CONFIG_SND_HDA_POWER_SAVE
3074 if (!codec->power_on)
3075 continue;
3076 #endif
3077 hda_call_codec_suspend(codec);
3078 }
3079 return 0;
3080 }
3081
3082 /**
3083 * snd_hda_resume - resume the codecs
3084 * @bus: the HDA bus
3085 * @state: resume state
3086 *
3087 * Returns 0 if successful.
3088 *
3089 * This fucntion is defined only when POWER_SAVE isn't set.
3090 * In the power-save mode, the codec is resumed dynamically.
3091 */
3092 int snd_hda_resume(struct hda_bus *bus)
3093 {
3094 struct hda_codec *codec;
3095
3096 list_for_each_entry(codec, &bus->codec_list, list) {
3097 if (snd_hda_codec_needs_resume(codec))
3098 hda_call_codec_resume(codec);
3099 }
3100 return 0;
3101 }
3102 #ifdef CONFIG_SND_HDA_POWER_SAVE
3103 int snd_hda_codecs_inuse(struct hda_bus *bus)
3104 {
3105 struct hda_codec *codec;
3106
3107 list_for_each_entry(codec, &bus->codec_list, list) {
3108 if (snd_hda_codec_needs_resume(codec))
3109 return 1;
3110 }
3111 return 0;
3112 }
3113 #endif
3114 #endif