]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/pci/hda/hda_codec.c
[ALSA] hda-codec - Add the support of ALC262,ALC883,ALC885,ALC861
[mirror_ubuntu-bionic-kernel.git] / sound / pci / hda / hda_codec.c
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41 * vendor / preset table
42 */
43
44 struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x11d4, "Analog Devices" },
53 { 0x13f6, "C-Media" },
54 { 0x434d, "C-Media" },
55 { 0x8384, "SigmaTel" },
56 {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64 * snd_hda_codec_read - send a command and get the response
65 * @codec: the HDA codec
66 * @nid: NID to send the command
67 * @direct: direct flag
68 * @verb: the verb to send
69 * @parm: the parameter for the verb
70 *
71 * Send a single command and read the corresponding response.
72 *
73 * Returns the obtained response value, or -1 for an error.
74 */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76 unsigned int verb, unsigned int parm)
77 {
78 unsigned int res;
79 down(&codec->bus->cmd_mutex);
80 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81 res = codec->bus->ops.get_response(codec);
82 else
83 res = (unsigned int)-1;
84 up(&codec->bus->cmd_mutex);
85 return res;
86 }
87
88 /**
89 * snd_hda_codec_write - send a single command without waiting for response
90 * @codec: the HDA codec
91 * @nid: NID to send the command
92 * @direct: direct flag
93 * @verb: the verb to send
94 * @parm: the parameter for the verb
95 *
96 * Send a single command without waiting for response.
97 *
98 * Returns 0 if successful, or a negative error code.
99 */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101 unsigned int verb, unsigned int parm)
102 {
103 int err;
104 down(&codec->bus->cmd_mutex);
105 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106 up(&codec->bus->cmd_mutex);
107 return err;
108 }
109
110 /**
111 * snd_hda_sequence_write - sequence writes
112 * @codec: the HDA codec
113 * @seq: VERB array to send
114 *
115 * Send the commands sequentially from the given array.
116 * The array must be terminated with NID=0.
117 */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120 for (; seq->nid; seq++)
121 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125 * snd_hda_get_sub_nodes - get the range of sub nodes
126 * @codec: the HDA codec
127 * @nid: NID to parse
128 * @start_id: the pointer to store the start NID
129 *
130 * Parse the NID and store the start NID of its sub-nodes.
131 * Returns the number of sub-nodes.
132 */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135 unsigned int parm;
136
137 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138 *start_id = (parm >> 16) & 0x7fff;
139 return (int)(parm & 0x7fff);
140 }
141
142 /**
143 * snd_hda_get_connections - get connection list
144 * @codec: the HDA codec
145 * @nid: NID to parse
146 * @conn_list: connection list array
147 * @max_conns: max. number of connections to store
148 *
149 * Parses the connection list of the given widget and stores the list
150 * of NIDs.
151 *
152 * Returns the number of connections, or a negative error code.
153 */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155 hda_nid_t *conn_list, int max_conns)
156 {
157 unsigned int parm;
158 int i, conn_len, conns;
159 unsigned int shift, num_elems, mask;
160 hda_nid_t prev_nid;
161
162 snd_assert(conn_list && max_conns > 0, return -EINVAL);
163
164 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
165 if (parm & AC_CLIST_LONG) {
166 /* long form */
167 shift = 16;
168 num_elems = 2;
169 } else {
170 /* short form */
171 shift = 8;
172 num_elems = 4;
173 }
174 conn_len = parm & AC_CLIST_LENGTH;
175 mask = (1 << (shift-1)) - 1;
176
177 if (! conn_len)
178 return 0; /* no connection */
179
180 if (conn_len == 1) {
181 /* single connection */
182 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183 conn_list[0] = parm & mask;
184 return 1;
185 }
186
187 /* multi connection */
188 conns = 0;
189 prev_nid = 0;
190 for (i = 0; i < conn_len; i++) {
191 int range_val;
192 hda_nid_t val, n;
193
194 if (i % num_elems == 0)
195 parm = snd_hda_codec_read(codec, nid, 0,
196 AC_VERB_GET_CONNECT_LIST, i);
197 range_val = !! (parm & (1 << (shift-1))); /* ranges */
198 val = parm & mask;
199 parm >>= shift;
200 if (range_val) {
201 /* ranges between the previous and this one */
202 if (! prev_nid || prev_nid >= val) {
203 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
204 continue;
205 }
206 for (n = prev_nid + 1; n <= val; n++) {
207 if (conns >= max_conns) {
208 snd_printk(KERN_ERR "Too many connections\n");
209 return -EINVAL;
210 }
211 conn_list[conns++] = n;
212 }
213 } else {
214 if (conns >= max_conns) {
215 snd_printk(KERN_ERR "Too many connections\n");
216 return -EINVAL;
217 }
218 conn_list[conns++] = val;
219 }
220 prev_nid = val;
221 }
222 return conns;
223 }
224
225
226 /**
227 * snd_hda_queue_unsol_event - add an unsolicited event to queue
228 * @bus: the BUS
229 * @res: unsolicited event (lower 32bit of RIRB entry)
230 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
231 *
232 * Adds the given event to the queue. The events are processed in
233 * the workqueue asynchronously. Call this function in the interrupt
234 * hanlder when RIRB receives an unsolicited event.
235 *
236 * Returns 0 if successful, or a negative error code.
237 */
238 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
239 {
240 struct hda_bus_unsolicited *unsol;
241 unsigned int wp;
242
243 if ((unsol = bus->unsol) == NULL)
244 return 0;
245
246 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
247 unsol->wp = wp;
248
249 wp <<= 1;
250 unsol->queue[wp] = res;
251 unsol->queue[wp + 1] = res_ex;
252
253 queue_work(unsol->workq, &unsol->work);
254
255 return 0;
256 }
257
258 /*
259 * process queueud unsolicited events
260 */
261 static void process_unsol_events(void *data)
262 {
263 struct hda_bus *bus = data;
264 struct hda_bus_unsolicited *unsol = bus->unsol;
265 struct hda_codec *codec;
266 unsigned int rp, caddr, res;
267
268 while (unsol->rp != unsol->wp) {
269 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
270 unsol->rp = rp;
271 rp <<= 1;
272 res = unsol->queue[rp];
273 caddr = unsol->queue[rp + 1];
274 if (! (caddr & (1 << 4))) /* no unsolicited event? */
275 continue;
276 codec = bus->caddr_tbl[caddr & 0x0f];
277 if (codec && codec->patch_ops.unsol_event)
278 codec->patch_ops.unsol_event(codec, res);
279 }
280 }
281
282 /*
283 * initialize unsolicited queue
284 */
285 static int init_unsol_queue(struct hda_bus *bus)
286 {
287 struct hda_bus_unsolicited *unsol;
288
289 if (bus->unsol) /* already initialized */
290 return 0;
291
292 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
293 if (! unsol) {
294 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
295 return -ENOMEM;
296 }
297 unsol->workq = create_workqueue("hda_codec");
298 if (! unsol->workq) {
299 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
300 kfree(unsol);
301 return -ENOMEM;
302 }
303 INIT_WORK(&unsol->work, process_unsol_events, bus);
304 bus->unsol = unsol;
305 return 0;
306 }
307
308 /*
309 * destructor
310 */
311 static void snd_hda_codec_free(struct hda_codec *codec);
312
313 static int snd_hda_bus_free(struct hda_bus *bus)
314 {
315 struct list_head *p, *n;
316
317 if (! bus)
318 return 0;
319 if (bus->unsol) {
320 destroy_workqueue(bus->unsol->workq);
321 kfree(bus->unsol);
322 }
323 list_for_each_safe(p, n, &bus->codec_list) {
324 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
325 snd_hda_codec_free(codec);
326 }
327 if (bus->ops.private_free)
328 bus->ops.private_free(bus);
329 kfree(bus);
330 return 0;
331 }
332
333 static int snd_hda_bus_dev_free(struct snd_device *device)
334 {
335 struct hda_bus *bus = device->device_data;
336 return snd_hda_bus_free(bus);
337 }
338
339 /**
340 * snd_hda_bus_new - create a HDA bus
341 * @card: the card entry
342 * @temp: the template for hda_bus information
343 * @busp: the pointer to store the created bus instance
344 *
345 * Returns 0 if successful, or a negative error code.
346 */
347 int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
348 struct hda_bus **busp)
349 {
350 struct hda_bus *bus;
351 int err;
352 static struct snd_device_ops dev_ops = {
353 .dev_free = snd_hda_bus_dev_free,
354 };
355
356 snd_assert(temp, return -EINVAL);
357 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
358
359 if (busp)
360 *busp = NULL;
361
362 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
363 if (bus == NULL) {
364 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
365 return -ENOMEM;
366 }
367
368 bus->card = card;
369 bus->private_data = temp->private_data;
370 bus->pci = temp->pci;
371 bus->modelname = temp->modelname;
372 bus->ops = temp->ops;
373
374 init_MUTEX(&bus->cmd_mutex);
375 INIT_LIST_HEAD(&bus->codec_list);
376
377 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
378 snd_hda_bus_free(bus);
379 return err;
380 }
381 if (busp)
382 *busp = bus;
383 return 0;
384 }
385
386
387 /*
388 * find a matching codec preset
389 */
390 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
391 {
392 const struct hda_codec_preset **tbl, *preset;
393
394 for (tbl = hda_preset_tables; *tbl; tbl++) {
395 for (preset = *tbl; preset->id; preset++) {
396 u32 mask = preset->mask;
397 if (! mask)
398 mask = ~0;
399 if (preset->id == (codec->vendor_id & mask))
400 return preset;
401 }
402 }
403 return NULL;
404 }
405
406 /*
407 * snd_hda_get_codec_name - store the codec name
408 */
409 void snd_hda_get_codec_name(struct hda_codec *codec,
410 char *name, int namelen)
411 {
412 const struct hda_vendor_id *c;
413 const char *vendor = NULL;
414 u16 vendor_id = codec->vendor_id >> 16;
415 char tmp[16];
416
417 for (c = hda_vendor_ids; c->id; c++) {
418 if (c->id == vendor_id) {
419 vendor = c->name;
420 break;
421 }
422 }
423 if (! vendor) {
424 sprintf(tmp, "Generic %04x", vendor_id);
425 vendor = tmp;
426 }
427 if (codec->preset && codec->preset->name)
428 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
429 else
430 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
431 }
432
433 /*
434 * look for an AFG and MFG nodes
435 */
436 static void setup_fg_nodes(struct hda_codec *codec)
437 {
438 int i, total_nodes;
439 hda_nid_t nid;
440
441 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
442 for (i = 0; i < total_nodes; i++, nid++) {
443 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
444 case AC_GRP_AUDIO_FUNCTION:
445 codec->afg = nid;
446 break;
447 case AC_GRP_MODEM_FUNCTION:
448 codec->mfg = nid;
449 break;
450 default:
451 break;
452 }
453 }
454 }
455
456 /*
457 * read widget caps for each widget and store in cache
458 */
459 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
460 {
461 int i;
462 hda_nid_t nid;
463
464 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
465 &codec->start_nid);
466 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
467 if (! codec->wcaps)
468 return -ENOMEM;
469 nid = codec->start_nid;
470 for (i = 0; i < codec->num_nodes; i++, nid++)
471 codec->wcaps[i] = snd_hda_param_read(codec, nid,
472 AC_PAR_AUDIO_WIDGET_CAP);
473 return 0;
474 }
475
476
477 /*
478 * codec destructor
479 */
480 static void snd_hda_codec_free(struct hda_codec *codec)
481 {
482 if (! codec)
483 return;
484 list_del(&codec->list);
485 codec->bus->caddr_tbl[codec->addr] = NULL;
486 if (codec->patch_ops.free)
487 codec->patch_ops.free(codec);
488 kfree(codec->amp_info);
489 kfree(codec->wcaps);
490 kfree(codec);
491 }
492
493 static void init_amp_hash(struct hda_codec *codec);
494
495 /**
496 * snd_hda_codec_new - create a HDA codec
497 * @bus: the bus to assign
498 * @codec_addr: the codec address
499 * @codecp: the pointer to store the generated codec
500 *
501 * Returns 0 if successful, or a negative error code.
502 */
503 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
504 struct hda_codec **codecp)
505 {
506 struct hda_codec *codec;
507 char component[13];
508 int err;
509
510 snd_assert(bus, return -EINVAL);
511 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
512
513 if (bus->caddr_tbl[codec_addr]) {
514 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
515 return -EBUSY;
516 }
517
518 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
519 if (codec == NULL) {
520 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
521 return -ENOMEM;
522 }
523
524 codec->bus = bus;
525 codec->addr = codec_addr;
526 init_MUTEX(&codec->spdif_mutex);
527 init_amp_hash(codec);
528
529 list_add_tail(&codec->list, &bus->codec_list);
530 bus->caddr_tbl[codec_addr] = codec;
531
532 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
533 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
534 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
535
536 setup_fg_nodes(codec);
537 if (! codec->afg && ! codec->mfg) {
538 snd_printdd("hda_codec: no AFG or MFG node found\n");
539 snd_hda_codec_free(codec);
540 return -ENODEV;
541 }
542
543 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
544 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
545 snd_hda_codec_free(codec);
546 return -ENOMEM;
547 }
548
549 if (! codec->subsystem_id) {
550 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
551 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
552 AC_VERB_GET_SUBSYSTEM_ID,
553 0);
554 }
555
556 codec->preset = find_codec_preset(codec);
557 if (! *bus->card->mixername)
558 snd_hda_get_codec_name(codec, bus->card->mixername,
559 sizeof(bus->card->mixername));
560
561 if (codec->preset && codec->preset->patch)
562 err = codec->preset->patch(codec);
563 else
564 err = snd_hda_parse_generic_codec(codec);
565 if (err < 0) {
566 snd_hda_codec_free(codec);
567 return err;
568 }
569
570 if (codec->patch_ops.unsol_event)
571 init_unsol_queue(bus);
572
573 snd_hda_codec_proc_new(codec);
574
575 sprintf(component, "HDA:%08x", codec->vendor_id);
576 snd_component_add(codec->bus->card, component);
577
578 if (codecp)
579 *codecp = codec;
580 return 0;
581 }
582
583 /**
584 * snd_hda_codec_setup_stream - set up the codec for streaming
585 * @codec: the CODEC to set up
586 * @nid: the NID to set up
587 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
588 * @channel_id: channel id to pass, zero based.
589 * @format: stream format.
590 */
591 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
592 int channel_id, int format)
593 {
594 if (! nid)
595 return;
596
597 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
598 nid, stream_tag, channel_id, format);
599 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
600 (stream_tag << 4) | channel_id);
601 msleep(1);
602 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
603 }
604
605
606 /*
607 * amp access functions
608 */
609
610 /* FIXME: more better hash key? */
611 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
612 #define INFO_AMP_CAPS (1<<0)
613 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
614
615 /* initialize the hash table */
616 static void init_amp_hash(struct hda_codec *codec)
617 {
618 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
619 codec->num_amp_entries = 0;
620 codec->amp_info_size = 0;
621 codec->amp_info = NULL;
622 }
623
624 /* query the hash. allocate an entry if not found. */
625 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
626 {
627 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
628 u16 cur = codec->amp_hash[idx];
629 struct hda_amp_info *info;
630
631 while (cur != 0xffff) {
632 info = &codec->amp_info[cur];
633 if (info->key == key)
634 return info;
635 cur = info->next;
636 }
637
638 /* add a new hash entry */
639 if (codec->num_amp_entries >= codec->amp_info_size) {
640 /* reallocate the array */
641 int new_size = codec->amp_info_size + 64;
642 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
643 GFP_KERNEL);
644 if (! new_info) {
645 snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
646 return NULL;
647 }
648 if (codec->amp_info) {
649 memcpy(new_info, codec->amp_info,
650 codec->amp_info_size * sizeof(struct hda_amp_info));
651 kfree(codec->amp_info);
652 }
653 codec->amp_info_size = new_size;
654 codec->amp_info = new_info;
655 }
656 cur = codec->num_amp_entries++;
657 info = &codec->amp_info[cur];
658 info->key = key;
659 info->status = 0; /* not initialized yet */
660 info->next = codec->amp_hash[idx];
661 codec->amp_hash[idx] = cur;
662
663 return info;
664 }
665
666 /*
667 * query AMP capabilities for the given widget and direction
668 */
669 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
670 {
671 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
672
673 if (! info)
674 return 0;
675 if (! (info->status & INFO_AMP_CAPS)) {
676 if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
677 nid = codec->afg;
678 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
679 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
680 info->status |= INFO_AMP_CAPS;
681 }
682 return info->amp_caps;
683 }
684
685 /*
686 * read the current volume to info
687 * if the cache exists, read the cache value.
688 */
689 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
690 hda_nid_t nid, int ch, int direction, int index)
691 {
692 u32 val, parm;
693
694 if (info->status & INFO_AMP_VOL(ch))
695 return info->vol[ch];
696
697 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
698 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
699 parm |= index;
700 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
701 info->vol[ch] = val & 0xff;
702 info->status |= INFO_AMP_VOL(ch);
703 return info->vol[ch];
704 }
705
706 /*
707 * write the current volume in info to the h/w and update the cache
708 */
709 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
710 hda_nid_t nid, int ch, int direction, int index, int val)
711 {
712 u32 parm;
713
714 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
715 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
716 parm |= index << AC_AMP_SET_INDEX_SHIFT;
717 parm |= val;
718 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
719 info->vol[ch] = val;
720 }
721
722 /*
723 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
724 */
725 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
726 {
727 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
728 if (! info)
729 return 0;
730 return get_vol_mute(codec, info, nid, ch, direction, index);
731 }
732
733 /*
734 * update the AMP value, mask = bit mask to set, val = the value
735 */
736 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
737 {
738 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
739
740 if (! info)
741 return 0;
742 val &= mask;
743 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
744 if (info->vol[ch] == val && ! codec->in_resume)
745 return 0;
746 put_vol_mute(codec, info, nid, ch, direction, idx, val);
747 return 1;
748 }
749
750
751 /*
752 * AMP control callbacks
753 */
754 /* retrieve parameters from private_value */
755 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
756 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
757 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
758 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
759
760 /* volume */
761 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
762 {
763 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
764 u16 nid = get_amp_nid(kcontrol);
765 u8 chs = get_amp_channels(kcontrol);
766 int dir = get_amp_direction(kcontrol);
767 u32 caps;
768
769 caps = query_amp_caps(codec, nid, dir);
770 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
771 if (! caps) {
772 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
773 return -EINVAL;
774 }
775 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
776 uinfo->count = chs == 3 ? 2 : 1;
777 uinfo->value.integer.min = 0;
778 uinfo->value.integer.max = caps;
779 return 0;
780 }
781
782 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
783 {
784 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
785 hda_nid_t nid = get_amp_nid(kcontrol);
786 int chs = get_amp_channels(kcontrol);
787 int dir = get_amp_direction(kcontrol);
788 int idx = get_amp_index(kcontrol);
789 long *valp = ucontrol->value.integer.value;
790
791 if (chs & 1)
792 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
793 if (chs & 2)
794 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
795 return 0;
796 }
797
798 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
799 {
800 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
801 hda_nid_t nid = get_amp_nid(kcontrol);
802 int chs = get_amp_channels(kcontrol);
803 int dir = get_amp_direction(kcontrol);
804 int idx = get_amp_index(kcontrol);
805 long *valp = ucontrol->value.integer.value;
806 int change = 0;
807
808 if (chs & 1) {
809 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
810 0x7f, *valp);
811 valp++;
812 }
813 if (chs & 2)
814 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
815 0x7f, *valp);
816 return change;
817 }
818
819 /* switch */
820 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
821 {
822 int chs = get_amp_channels(kcontrol);
823
824 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
825 uinfo->count = chs == 3 ? 2 : 1;
826 uinfo->value.integer.min = 0;
827 uinfo->value.integer.max = 1;
828 return 0;
829 }
830
831 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
832 {
833 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
834 hda_nid_t nid = get_amp_nid(kcontrol);
835 int chs = get_amp_channels(kcontrol);
836 int dir = get_amp_direction(kcontrol);
837 int idx = get_amp_index(kcontrol);
838 long *valp = ucontrol->value.integer.value;
839
840 if (chs & 1)
841 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
842 if (chs & 2)
843 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
844 return 0;
845 }
846
847 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
848 {
849 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
850 hda_nid_t nid = get_amp_nid(kcontrol);
851 int chs = get_amp_channels(kcontrol);
852 int dir = get_amp_direction(kcontrol);
853 int idx = get_amp_index(kcontrol);
854 long *valp = ucontrol->value.integer.value;
855 int change = 0;
856
857 if (chs & 1) {
858 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
859 0x80, *valp ? 0 : 0x80);
860 valp++;
861 }
862 if (chs & 2)
863 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
864 0x80, *valp ? 0 : 0x80);
865
866 return change;
867 }
868
869 /*
870 * bound volume controls
871 *
872 * bind multiple volumes (# indices, from 0)
873 */
874
875 #define AMP_VAL_IDX_SHIFT 19
876 #define AMP_VAL_IDX_MASK (0x0f<<19)
877
878 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 {
880 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
881 unsigned long pval;
882 int err;
883
884 down(&codec->spdif_mutex); /* reuse spdif_mutex */
885 pval = kcontrol->private_value;
886 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
887 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
888 kcontrol->private_value = pval;
889 up(&codec->spdif_mutex);
890 return err;
891 }
892
893 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
894 {
895 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
896 unsigned long pval;
897 int i, indices, err = 0, change = 0;
898
899 down(&codec->spdif_mutex); /* reuse spdif_mutex */
900 pval = kcontrol->private_value;
901 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
902 for (i = 0; i < indices; i++) {
903 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
904 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
905 if (err < 0)
906 break;
907 change |= err;
908 }
909 kcontrol->private_value = pval;
910 up(&codec->spdif_mutex);
911 return err < 0 ? err : change;
912 }
913
914 /*
915 * SPDIF out controls
916 */
917
918 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
919 {
920 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
921 uinfo->count = 1;
922 return 0;
923 }
924
925 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
926 {
927 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
928 IEC958_AES0_NONAUDIO |
929 IEC958_AES0_CON_EMPHASIS_5015 |
930 IEC958_AES0_CON_NOT_COPYRIGHT;
931 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
932 IEC958_AES1_CON_ORIGINAL;
933 return 0;
934 }
935
936 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
937 {
938 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
939 IEC958_AES0_NONAUDIO |
940 IEC958_AES0_PRO_EMPHASIS_5015;
941 return 0;
942 }
943
944 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
945 {
946 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
947
948 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
949 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
950 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
951 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
952
953 return 0;
954 }
955
956 /* convert from SPDIF status bits to HDA SPDIF bits
957 * bit 0 (DigEn) is always set zero (to be filled later)
958 */
959 static unsigned short convert_from_spdif_status(unsigned int sbits)
960 {
961 unsigned short val = 0;
962
963 if (sbits & IEC958_AES0_PROFESSIONAL)
964 val |= 1 << 6;
965 if (sbits & IEC958_AES0_NONAUDIO)
966 val |= 1 << 5;
967 if (sbits & IEC958_AES0_PROFESSIONAL) {
968 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
969 val |= 1 << 3;
970 } else {
971 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
972 val |= 1 << 3;
973 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
974 val |= 1 << 4;
975 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
976 val |= 1 << 7;
977 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
978 }
979 return val;
980 }
981
982 /* convert to SPDIF status bits from HDA SPDIF bits
983 */
984 static unsigned int convert_to_spdif_status(unsigned short val)
985 {
986 unsigned int sbits = 0;
987
988 if (val & (1 << 5))
989 sbits |= IEC958_AES0_NONAUDIO;
990 if (val & (1 << 6))
991 sbits |= IEC958_AES0_PROFESSIONAL;
992 if (sbits & IEC958_AES0_PROFESSIONAL) {
993 if (sbits & (1 << 3))
994 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
995 } else {
996 if (val & (1 << 3))
997 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
998 if (! (val & (1 << 4)))
999 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1000 if (val & (1 << 7))
1001 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1002 sbits |= val & (0x7f << 8);
1003 }
1004 return sbits;
1005 }
1006
1007 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1008 {
1009 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1010 hda_nid_t nid = kcontrol->private_value;
1011 unsigned short val;
1012 int change;
1013
1014 down(&codec->spdif_mutex);
1015 codec->spdif_status = ucontrol->value.iec958.status[0] |
1016 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1017 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1018 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1019 val = convert_from_spdif_status(codec->spdif_status);
1020 val |= codec->spdif_ctls & 1;
1021 change = codec->spdif_ctls != val;
1022 codec->spdif_ctls = val;
1023
1024 if (change || codec->in_resume) {
1025 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1026 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1027 }
1028
1029 up(&codec->spdif_mutex);
1030 return change;
1031 }
1032
1033 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1034 {
1035 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1036 uinfo->count = 1;
1037 uinfo->value.integer.min = 0;
1038 uinfo->value.integer.max = 1;
1039 return 0;
1040 }
1041
1042 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1043 {
1044 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1045
1046 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1047 return 0;
1048 }
1049
1050 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1051 {
1052 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1053 hda_nid_t nid = kcontrol->private_value;
1054 unsigned short val;
1055 int change;
1056
1057 down(&codec->spdif_mutex);
1058 val = codec->spdif_ctls & ~1;
1059 if (ucontrol->value.integer.value[0])
1060 val |= 1;
1061 change = codec->spdif_ctls != val;
1062 if (change || codec->in_resume) {
1063 codec->spdif_ctls = val;
1064 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1065 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1066 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1067 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1068 }
1069 up(&codec->spdif_mutex);
1070 return change;
1071 }
1072
1073 static struct snd_kcontrol_new dig_mixes[] = {
1074 {
1075 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1076 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1077 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1078 .info = snd_hda_spdif_mask_info,
1079 .get = snd_hda_spdif_cmask_get,
1080 },
1081 {
1082 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1083 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1084 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1085 .info = snd_hda_spdif_mask_info,
1086 .get = snd_hda_spdif_pmask_get,
1087 },
1088 {
1089 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1090 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1091 .info = snd_hda_spdif_mask_info,
1092 .get = snd_hda_spdif_default_get,
1093 .put = snd_hda_spdif_default_put,
1094 },
1095 {
1096 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1097 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1098 .info = snd_hda_spdif_out_switch_info,
1099 .get = snd_hda_spdif_out_switch_get,
1100 .put = snd_hda_spdif_out_switch_put,
1101 },
1102 { } /* end */
1103 };
1104
1105 /**
1106 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1107 * @codec: the HDA codec
1108 * @nid: audio out widget NID
1109 *
1110 * Creates controls related with the SPDIF output.
1111 * Called from each patch supporting the SPDIF out.
1112 *
1113 * Returns 0 if successful, or a negative error code.
1114 */
1115 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1116 {
1117 int err;
1118 struct snd_kcontrol *kctl;
1119 struct snd_kcontrol_new *dig_mix;
1120
1121 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1122 kctl = snd_ctl_new1(dig_mix, codec);
1123 kctl->private_value = nid;
1124 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1125 return err;
1126 }
1127 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1128 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1129 return 0;
1130 }
1131
1132 /*
1133 * SPDIF input
1134 */
1135
1136 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1137
1138 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1139 {
1140 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1141
1142 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1143 return 0;
1144 }
1145
1146 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1147 {
1148 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1149 hda_nid_t nid = kcontrol->private_value;
1150 unsigned int val = !!ucontrol->value.integer.value[0];
1151 int change;
1152
1153 down(&codec->spdif_mutex);
1154 change = codec->spdif_in_enable != val;
1155 if (change || codec->in_resume) {
1156 codec->spdif_in_enable = val;
1157 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1158 }
1159 up(&codec->spdif_mutex);
1160 return change;
1161 }
1162
1163 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1164 {
1165 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1166 hda_nid_t nid = kcontrol->private_value;
1167 unsigned short val;
1168 unsigned int sbits;
1169
1170 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1171 sbits = convert_to_spdif_status(val);
1172 ucontrol->value.iec958.status[0] = sbits;
1173 ucontrol->value.iec958.status[1] = sbits >> 8;
1174 ucontrol->value.iec958.status[2] = sbits >> 16;
1175 ucontrol->value.iec958.status[3] = sbits >> 24;
1176 return 0;
1177 }
1178
1179 static struct snd_kcontrol_new dig_in_ctls[] = {
1180 {
1181 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1182 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1183 .info = snd_hda_spdif_in_switch_info,
1184 .get = snd_hda_spdif_in_switch_get,
1185 .put = snd_hda_spdif_in_switch_put,
1186 },
1187 {
1188 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1189 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1190 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1191 .info = snd_hda_spdif_mask_info,
1192 .get = snd_hda_spdif_in_status_get,
1193 },
1194 { } /* end */
1195 };
1196
1197 /**
1198 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1199 * @codec: the HDA codec
1200 * @nid: audio in widget NID
1201 *
1202 * Creates controls related with the SPDIF input.
1203 * Called from each patch supporting the SPDIF in.
1204 *
1205 * Returns 0 if successful, or a negative error code.
1206 */
1207 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1208 {
1209 int err;
1210 struct snd_kcontrol *kctl;
1211 struct snd_kcontrol_new *dig_mix;
1212
1213 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1214 kctl = snd_ctl_new1(dig_mix, codec);
1215 kctl->private_value = nid;
1216 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1217 return err;
1218 }
1219 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1220 return 0;
1221 }
1222
1223
1224 /*
1225 * set power state of the codec
1226 */
1227 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1228 unsigned int power_state)
1229 {
1230 hda_nid_t nid, nid_start;
1231 int nodes;
1232
1233 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1234 power_state);
1235
1236 nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1237 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1238 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1239 snd_hda_codec_write(codec, nid, 0,
1240 AC_VERB_SET_POWER_STATE,
1241 power_state);
1242 }
1243
1244 if (power_state == AC_PWRST_D0)
1245 msleep(10);
1246 }
1247
1248
1249 /**
1250 * snd_hda_build_controls - build mixer controls
1251 * @bus: the BUS
1252 *
1253 * Creates mixer controls for each codec included in the bus.
1254 *
1255 * Returns 0 if successful, otherwise a negative error code.
1256 */
1257 int snd_hda_build_controls(struct hda_bus *bus)
1258 {
1259 struct list_head *p;
1260
1261 /* build controls */
1262 list_for_each(p, &bus->codec_list) {
1263 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1264 int err;
1265 if (! codec->patch_ops.build_controls)
1266 continue;
1267 err = codec->patch_ops.build_controls(codec);
1268 if (err < 0)
1269 return err;
1270 }
1271
1272 /* initialize */
1273 list_for_each(p, &bus->codec_list) {
1274 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1275 int err;
1276 hda_set_power_state(codec,
1277 codec->afg ? codec->afg : codec->mfg,
1278 AC_PWRST_D0);
1279 if (! codec->patch_ops.init)
1280 continue;
1281 err = codec->patch_ops.init(codec);
1282 if (err < 0)
1283 return err;
1284 }
1285 return 0;
1286 }
1287
1288
1289 /*
1290 * stream formats
1291 */
1292 struct hda_rate_tbl {
1293 unsigned int hz;
1294 unsigned int alsa_bits;
1295 unsigned int hda_fmt;
1296 };
1297
1298 static struct hda_rate_tbl rate_bits[] = {
1299 /* rate in Hz, ALSA rate bitmask, HDA format value */
1300
1301 /* autodetected value used in snd_hda_query_supported_pcm */
1302 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1303 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1304 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1305 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1306 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1307 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1308 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1309 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1310 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1311 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1312 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1313
1314 /* not autodetected value */
1315 { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1316
1317 { 0 } /* terminator */
1318 };
1319
1320 /**
1321 * snd_hda_calc_stream_format - calculate format bitset
1322 * @rate: the sample rate
1323 * @channels: the number of channels
1324 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1325 * @maxbps: the max. bps
1326 *
1327 * Calculate the format bitset from the given rate, channels and th PCM format.
1328 *
1329 * Return zero if invalid.
1330 */
1331 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1332 unsigned int channels,
1333 unsigned int format,
1334 unsigned int maxbps)
1335 {
1336 int i;
1337 unsigned int val = 0;
1338
1339 for (i = 0; rate_bits[i].hz; i++)
1340 if (rate_bits[i].hz == rate) {
1341 val = rate_bits[i].hda_fmt;
1342 break;
1343 }
1344 if (! rate_bits[i].hz) {
1345 snd_printdd("invalid rate %d\n", rate);
1346 return 0;
1347 }
1348
1349 if (channels == 0 || channels > 8) {
1350 snd_printdd("invalid channels %d\n", channels);
1351 return 0;
1352 }
1353 val |= channels - 1;
1354
1355 switch (snd_pcm_format_width(format)) {
1356 case 8: val |= 0x00; break;
1357 case 16: val |= 0x10; break;
1358 case 20:
1359 case 24:
1360 case 32:
1361 if (maxbps >= 32)
1362 val |= 0x40;
1363 else if (maxbps >= 24)
1364 val |= 0x30;
1365 else
1366 val |= 0x20;
1367 break;
1368 default:
1369 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1370 return 0;
1371 }
1372
1373 return val;
1374 }
1375
1376 /**
1377 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1378 * @codec: the HDA codec
1379 * @nid: NID to query
1380 * @ratesp: the pointer to store the detected rate bitflags
1381 * @formatsp: the pointer to store the detected formats
1382 * @bpsp: the pointer to store the detected format widths
1383 *
1384 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1385 * or @bsps argument is ignored.
1386 *
1387 * Returns 0 if successful, otherwise a negative error code.
1388 */
1389 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1390 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1391 {
1392 int i;
1393 unsigned int val, streams;
1394
1395 val = 0;
1396 if (nid != codec->afg &&
1397 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1398 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1399 if (val == -1)
1400 return -EIO;
1401 }
1402 if (! val)
1403 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1404
1405 if (ratesp) {
1406 u32 rates = 0;
1407 for (i = 0; rate_bits[i].hz; i++) {
1408 if (val & (1 << i))
1409 rates |= rate_bits[i].alsa_bits;
1410 }
1411 *ratesp = rates;
1412 }
1413
1414 if (formatsp || bpsp) {
1415 u64 formats = 0;
1416 unsigned int bps;
1417 unsigned int wcaps;
1418
1419 wcaps = get_wcaps(codec, nid);
1420 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1421 if (streams == -1)
1422 return -EIO;
1423 if (! streams) {
1424 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1425 if (streams == -1)
1426 return -EIO;
1427 }
1428
1429 bps = 0;
1430 if (streams & AC_SUPFMT_PCM) {
1431 if (val & AC_SUPPCM_BITS_8) {
1432 formats |= SNDRV_PCM_FMTBIT_U8;
1433 bps = 8;
1434 }
1435 if (val & AC_SUPPCM_BITS_16) {
1436 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1437 bps = 16;
1438 }
1439 if (wcaps & AC_WCAP_DIGITAL) {
1440 if (val & AC_SUPPCM_BITS_32)
1441 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1442 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1443 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1444 if (val & AC_SUPPCM_BITS_24)
1445 bps = 24;
1446 else if (val & AC_SUPPCM_BITS_20)
1447 bps = 20;
1448 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1449 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1450 if (val & AC_SUPPCM_BITS_32)
1451 bps = 32;
1452 else if (val & AC_SUPPCM_BITS_20)
1453 bps = 20;
1454 else if (val & AC_SUPPCM_BITS_24)
1455 bps = 24;
1456 }
1457 }
1458 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1459 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1460 bps = 32;
1461 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1462 /* temporary hack: we have still no proper support
1463 * for the direct AC3 stream...
1464 */
1465 formats |= SNDRV_PCM_FMTBIT_U8;
1466 bps = 8;
1467 }
1468 if (formatsp)
1469 *formatsp = formats;
1470 if (bpsp)
1471 *bpsp = bps;
1472 }
1473
1474 return 0;
1475 }
1476
1477 /**
1478 * snd_hda_is_supported_format - check whether the given node supports the format val
1479 *
1480 * Returns 1 if supported, 0 if not.
1481 */
1482 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1483 unsigned int format)
1484 {
1485 int i;
1486 unsigned int val = 0, rate, stream;
1487
1488 if (nid != codec->afg &&
1489 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1490 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1491 if (val == -1)
1492 return 0;
1493 }
1494 if (! val) {
1495 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1496 if (val == -1)
1497 return 0;
1498 }
1499
1500 rate = format & 0xff00;
1501 for (i = 0; rate_bits[i].hz; i++)
1502 if (rate_bits[i].hda_fmt == rate) {
1503 if (val & (1 << i))
1504 break;
1505 return 0;
1506 }
1507 if (! rate_bits[i].hz)
1508 return 0;
1509
1510 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1511 if (stream == -1)
1512 return 0;
1513 if (! stream && nid != codec->afg)
1514 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1515 if (! stream || stream == -1)
1516 return 0;
1517
1518 if (stream & AC_SUPFMT_PCM) {
1519 switch (format & 0xf0) {
1520 case 0x00:
1521 if (! (val & AC_SUPPCM_BITS_8))
1522 return 0;
1523 break;
1524 case 0x10:
1525 if (! (val & AC_SUPPCM_BITS_16))
1526 return 0;
1527 break;
1528 case 0x20:
1529 if (! (val & AC_SUPPCM_BITS_20))
1530 return 0;
1531 break;
1532 case 0x30:
1533 if (! (val & AC_SUPPCM_BITS_24))
1534 return 0;
1535 break;
1536 case 0x40:
1537 if (! (val & AC_SUPPCM_BITS_32))
1538 return 0;
1539 break;
1540 default:
1541 return 0;
1542 }
1543 } else {
1544 /* FIXME: check for float32 and AC3? */
1545 }
1546
1547 return 1;
1548 }
1549
1550 /*
1551 * PCM stuff
1552 */
1553 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1554 struct hda_codec *codec,
1555 struct snd_pcm_substream *substream)
1556 {
1557 return 0;
1558 }
1559
1560 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1561 struct hda_codec *codec,
1562 unsigned int stream_tag,
1563 unsigned int format,
1564 struct snd_pcm_substream *substream)
1565 {
1566 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1567 return 0;
1568 }
1569
1570 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1571 struct hda_codec *codec,
1572 struct snd_pcm_substream *substream)
1573 {
1574 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1575 return 0;
1576 }
1577
1578 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1579 {
1580 if (info->nid) {
1581 /* query support PCM information from the given NID */
1582 if (! info->rates || ! info->formats)
1583 snd_hda_query_supported_pcm(codec, info->nid,
1584 info->rates ? NULL : &info->rates,
1585 info->formats ? NULL : &info->formats,
1586 info->maxbps ? NULL : &info->maxbps);
1587 }
1588 if (info->ops.open == NULL)
1589 info->ops.open = hda_pcm_default_open_close;
1590 if (info->ops.close == NULL)
1591 info->ops.close = hda_pcm_default_open_close;
1592 if (info->ops.prepare == NULL) {
1593 snd_assert(info->nid, return -EINVAL);
1594 info->ops.prepare = hda_pcm_default_prepare;
1595 }
1596 if (info->ops.cleanup == NULL) {
1597 snd_assert(info->nid, return -EINVAL);
1598 info->ops.cleanup = hda_pcm_default_cleanup;
1599 }
1600 return 0;
1601 }
1602
1603 /**
1604 * snd_hda_build_pcms - build PCM information
1605 * @bus: the BUS
1606 *
1607 * Create PCM information for each codec included in the bus.
1608 *
1609 * The build_pcms codec patch is requested to set up codec->num_pcms and
1610 * codec->pcm_info properly. The array is referred by the top-level driver
1611 * to create its PCM instances.
1612 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1613 * callback.
1614 *
1615 * At least, substreams, channels_min and channels_max must be filled for
1616 * each stream. substreams = 0 indicates that the stream doesn't exist.
1617 * When rates and/or formats are zero, the supported values are queried
1618 * from the given nid. The nid is used also by the default ops.prepare
1619 * and ops.cleanup callbacks.
1620 *
1621 * The driver needs to call ops.open in its open callback. Similarly,
1622 * ops.close is supposed to be called in the close callback.
1623 * ops.prepare should be called in the prepare or hw_params callback
1624 * with the proper parameters for set up.
1625 * ops.cleanup should be called in hw_free for clean up of streams.
1626 *
1627 * This function returns 0 if successfull, or a negative error code.
1628 */
1629 int snd_hda_build_pcms(struct hda_bus *bus)
1630 {
1631 struct list_head *p;
1632
1633 list_for_each(p, &bus->codec_list) {
1634 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1635 unsigned int pcm, s;
1636 int err;
1637 if (! codec->patch_ops.build_pcms)
1638 continue;
1639 err = codec->patch_ops.build_pcms(codec);
1640 if (err < 0)
1641 return err;
1642 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1643 for (s = 0; s < 2; s++) {
1644 struct hda_pcm_stream *info;
1645 info = &codec->pcm_info[pcm].stream[s];
1646 if (! info->substreams)
1647 continue;
1648 err = set_pcm_default_values(codec, info);
1649 if (err < 0)
1650 return err;
1651 }
1652 }
1653 }
1654 return 0;
1655 }
1656
1657
1658 /**
1659 * snd_hda_check_board_config - compare the current codec with the config table
1660 * @codec: the HDA codec
1661 * @tbl: configuration table, terminated by null entries
1662 *
1663 * Compares the modelname or PCI subsystem id of the current codec with the
1664 * given configuration table. If a matching entry is found, returns its
1665 * config value (supposed to be 0 or positive).
1666 *
1667 * If no entries are matching, the function returns a negative value.
1668 */
1669 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1670 {
1671 const struct hda_board_config *c;
1672
1673 if (codec->bus->modelname) {
1674 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1675 if (c->modelname &&
1676 ! strcmp(codec->bus->modelname, c->modelname)) {
1677 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1678 return c->config;
1679 }
1680 }
1681 }
1682
1683 if (codec->bus->pci) {
1684 u16 subsystem_vendor, subsystem_device;
1685 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1686 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1687 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1688 if (c->pci_subvendor == subsystem_vendor &&
1689 (! c->pci_subdevice /* all match */||
1690 (c->pci_subdevice == subsystem_device))) {
1691 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1692 subsystem_vendor, subsystem_device, c->config);
1693 return c->config;
1694 }
1695 }
1696 }
1697 return -1;
1698 }
1699
1700 /**
1701 * snd_hda_add_new_ctls - create controls from the array
1702 * @codec: the HDA codec
1703 * @knew: the array of struct snd_kcontrol_new
1704 *
1705 * This helper function creates and add new controls in the given array.
1706 * The array must be terminated with an empty entry as terminator.
1707 *
1708 * Returns 0 if successful, or a negative error code.
1709 */
1710 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1711 {
1712 int err;
1713
1714 for (; knew->name; knew++) {
1715 struct snd_kcontrol *kctl;
1716 kctl = snd_ctl_new1(knew, codec);
1717 if (! kctl)
1718 return -ENOMEM;
1719 err = snd_ctl_add(codec->bus->card, kctl);
1720 if (err < 0) {
1721 if (! codec->addr)
1722 return err;
1723 kctl = snd_ctl_new1(knew, codec);
1724 if (! kctl)
1725 return -ENOMEM;
1726 kctl->id.device = codec->addr;
1727 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1728 return err;
1729 }
1730 }
1731 return 0;
1732 }
1733
1734
1735 /*
1736 * Channel mode helper
1737 */
1738 int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
1739 const struct hda_channel_mode *chmode, int num_chmodes)
1740 {
1741 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1742 uinfo->count = 1;
1743 uinfo->value.enumerated.items = num_chmodes;
1744 if (uinfo->value.enumerated.item >= num_chmodes)
1745 uinfo->value.enumerated.item = num_chmodes - 1;
1746 sprintf(uinfo->value.enumerated.name, "%dch",
1747 chmode[uinfo->value.enumerated.item].channels);
1748 return 0;
1749 }
1750
1751 int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1752 const struct hda_channel_mode *chmode, int num_chmodes,
1753 int max_channels)
1754 {
1755 int i;
1756
1757 for (i = 0; i < num_chmodes; i++) {
1758 if (max_channels == chmode[i].channels) {
1759 ucontrol->value.enumerated.item[0] = i;
1760 break;
1761 }
1762 }
1763 return 0;
1764 }
1765
1766 int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1767 const struct hda_channel_mode *chmode, int num_chmodes,
1768 int *max_channelsp)
1769 {
1770 unsigned int mode;
1771
1772 mode = ucontrol->value.enumerated.item[0];
1773 snd_assert(mode < num_chmodes, return -EINVAL);
1774 if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
1775 return 0;
1776 /* change the current channel setting */
1777 *max_channelsp = chmode[mode].channels;
1778 if (chmode[mode].sequence)
1779 snd_hda_sequence_write(codec, chmode[mode].sequence);
1780 return 1;
1781 }
1782
1783 /*
1784 * input MUX helper
1785 */
1786 int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1787 {
1788 unsigned int index;
1789
1790 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1791 uinfo->count = 1;
1792 uinfo->value.enumerated.items = imux->num_items;
1793 index = uinfo->value.enumerated.item;
1794 if (index >= imux->num_items)
1795 index = imux->num_items - 1;
1796 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1797 return 0;
1798 }
1799
1800 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1801 struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1802 unsigned int *cur_val)
1803 {
1804 unsigned int idx;
1805
1806 idx = ucontrol->value.enumerated.item[0];
1807 if (idx >= imux->num_items)
1808 idx = imux->num_items - 1;
1809 if (*cur_val == idx && ! codec->in_resume)
1810 return 0;
1811 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1812 imux->items[idx].index);
1813 *cur_val = idx;
1814 return 1;
1815 }
1816
1817
1818 /*
1819 * Multi-channel / digital-out PCM helper functions
1820 */
1821
1822 /*
1823 * open the digital out in the exclusive mode
1824 */
1825 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1826 {
1827 down(&codec->spdif_mutex);
1828 if (mout->dig_out_used) {
1829 up(&codec->spdif_mutex);
1830 return -EBUSY; /* already being used */
1831 }
1832 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1833 up(&codec->spdif_mutex);
1834 return 0;
1835 }
1836
1837 /*
1838 * release the digital out
1839 */
1840 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1841 {
1842 down(&codec->spdif_mutex);
1843 mout->dig_out_used = 0;
1844 up(&codec->spdif_mutex);
1845 return 0;
1846 }
1847
1848 /*
1849 * set up more restrictions for analog out
1850 */
1851 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1852 struct snd_pcm_substream *substream)
1853 {
1854 substream->runtime->hw.channels_max = mout->max_channels;
1855 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1856 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1857 }
1858
1859 /*
1860 * set up the i/o for analog out
1861 * when the digital out is available, copy the front out to digital out, too.
1862 */
1863 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1864 unsigned int stream_tag,
1865 unsigned int format,
1866 struct snd_pcm_substream *substream)
1867 {
1868 hda_nid_t *nids = mout->dac_nids;
1869 int chs = substream->runtime->channels;
1870 int i;
1871
1872 down(&codec->spdif_mutex);
1873 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1874 if (chs == 2 &&
1875 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1876 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1877 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1878 /* setup digital receiver */
1879 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1880 stream_tag, 0, format);
1881 } else {
1882 mout->dig_out_used = 0;
1883 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1884 }
1885 }
1886 up(&codec->spdif_mutex);
1887
1888 /* front */
1889 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1890 if (mout->hp_nid)
1891 /* headphone out will just decode front left/right (stereo) */
1892 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1893 /* surrounds */
1894 for (i = 1; i < mout->num_dacs; i++) {
1895 if (chs >= (i + 1) * 2) /* independent out */
1896 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1897 format);
1898 else /* copy front */
1899 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1900 format);
1901 }
1902 return 0;
1903 }
1904
1905 /*
1906 * clean up the setting for analog out
1907 */
1908 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1909 {
1910 hda_nid_t *nids = mout->dac_nids;
1911 int i;
1912
1913 for (i = 0; i < mout->num_dacs; i++)
1914 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1915 if (mout->hp_nid)
1916 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1917 down(&codec->spdif_mutex);
1918 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1919 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1920 mout->dig_out_used = 0;
1921 }
1922 up(&codec->spdif_mutex);
1923 return 0;
1924 }
1925
1926 /*
1927 * Helper for automatic ping configuration
1928 */
1929
1930 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
1931 {
1932 for (; *list; list++)
1933 if (*list == nid)
1934 return 1;
1935 return 0;
1936 }
1937
1938 /* parse all pin widgets and store the useful pin nids to cfg */
1939 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
1940 hda_nid_t *ignore_nids)
1941 {
1942 hda_nid_t nid, nid_start;
1943 int i, j, nodes;
1944 short seq, sequences[4], assoc_line_out;
1945
1946 memset(cfg, 0, sizeof(*cfg));
1947
1948 memset(sequences, 0, sizeof(sequences));
1949 assoc_line_out = 0;
1950
1951 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1952 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1953 unsigned int wid_caps = get_wcaps(codec, nid);
1954 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1955 unsigned int def_conf;
1956 short assoc, loc;
1957
1958 /* read all default configuration for pin complex */
1959 if (wid_type != AC_WID_PIN)
1960 continue;
1961 /* ignore the given nids (e.g. pc-beep returns error) */
1962 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
1963 continue;
1964
1965 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1966 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1967 continue;
1968 loc = get_defcfg_location(def_conf);
1969 switch (get_defcfg_device(def_conf)) {
1970 case AC_JACK_LINE_OUT:
1971 seq = get_defcfg_sequence(def_conf);
1972 assoc = get_defcfg_association(def_conf);
1973 if (! assoc)
1974 continue;
1975 if (! assoc_line_out)
1976 assoc_line_out = assoc;
1977 else if (assoc_line_out != assoc)
1978 continue;
1979 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1980 continue;
1981 cfg->line_out_pins[cfg->line_outs] = nid;
1982 sequences[cfg->line_outs] = seq;
1983 cfg->line_outs++;
1984 break;
1985 case AC_JACK_SPEAKER:
1986 cfg->speaker_pin = nid;
1987 break;
1988 case AC_JACK_HP_OUT:
1989 cfg->hp_pin = nid;
1990 break;
1991 case AC_JACK_MIC_IN:
1992 if (loc == AC_JACK_LOC_FRONT)
1993 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1994 else
1995 cfg->input_pins[AUTO_PIN_MIC] = nid;
1996 break;
1997 case AC_JACK_LINE_IN:
1998 if (loc == AC_JACK_LOC_FRONT)
1999 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2000 else
2001 cfg->input_pins[AUTO_PIN_LINE] = nid;
2002 break;
2003 case AC_JACK_CD:
2004 cfg->input_pins[AUTO_PIN_CD] = nid;
2005 break;
2006 case AC_JACK_AUX:
2007 cfg->input_pins[AUTO_PIN_AUX] = nid;
2008 break;
2009 case AC_JACK_SPDIF_OUT:
2010 cfg->dig_out_pin = nid;
2011 break;
2012 case AC_JACK_SPDIF_IN:
2013 cfg->dig_in_pin = nid;
2014 break;
2015 }
2016 }
2017
2018 /* sort by sequence */
2019 for (i = 0; i < cfg->line_outs; i++)
2020 for (j = i + 1; j < cfg->line_outs; j++)
2021 if (sequences[i] > sequences[j]) {
2022 seq = sequences[i];
2023 sequences[i] = sequences[j];
2024 sequences[j] = seq;
2025 nid = cfg->line_out_pins[i];
2026 cfg->line_out_pins[i] = cfg->line_out_pins[j];
2027 cfg->line_out_pins[j] = nid;
2028 }
2029
2030 /* Reorder the surround channels
2031 * ALSA sequence is front/surr/clfe/side
2032 * HDA sequence is:
2033 * 4-ch: front/surr => OK as it is
2034 * 6-ch: front/clfe/surr
2035 * 8-ch: front/clfe/side/surr
2036 */
2037 switch (cfg->line_outs) {
2038 case 3:
2039 nid = cfg->line_out_pins[1];
2040 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2041 cfg->line_out_pins[2] = nid;
2042 break;
2043 case 4:
2044 nid = cfg->line_out_pins[1];
2045 cfg->line_out_pins[1] = cfg->line_out_pins[3];
2046 cfg->line_out_pins[3] = cfg->line_out_pins[2];
2047 cfg->line_out_pins[2] = nid;
2048 break;
2049 }
2050
2051 return 0;
2052 }
2053
2054 #ifdef CONFIG_PM
2055 /*
2056 * power management
2057 */
2058
2059 /**
2060 * snd_hda_suspend - suspend the codecs
2061 * @bus: the HDA bus
2062 * @state: suspsend state
2063 *
2064 * Returns 0 if successful.
2065 */
2066 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2067 {
2068 struct list_head *p;
2069
2070 /* FIXME: should handle power widget capabilities */
2071 list_for_each(p, &bus->codec_list) {
2072 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2073 if (codec->patch_ops.suspend)
2074 codec->patch_ops.suspend(codec, state);
2075 hda_set_power_state(codec,
2076 codec->afg ? codec->afg : codec->mfg,
2077 AC_PWRST_D3);
2078 }
2079 return 0;
2080 }
2081
2082 /**
2083 * snd_hda_resume - resume the codecs
2084 * @bus: the HDA bus
2085 * @state: resume state
2086 *
2087 * Returns 0 if successful.
2088 */
2089 int snd_hda_resume(struct hda_bus *bus)
2090 {
2091 struct list_head *p;
2092
2093 list_for_each(p, &bus->codec_list) {
2094 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2095 hda_set_power_state(codec,
2096 codec->afg ? codec->afg : codec->mfg,
2097 AC_PWRST_D0);
2098 if (codec->patch_ops.resume)
2099 codec->patch_ops.resume(codec);
2100 }
2101 return 0;
2102 }
2103
2104 /**
2105 * snd_hda_resume_ctls - resume controls in the new control list
2106 * @codec: the HDA codec
2107 * @knew: the array of struct snd_kcontrol_new
2108 *
2109 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2110 * originally for snd_hda_add_new_ctls().
2111 * The array must be terminated with an empty entry as terminator.
2112 */
2113 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2114 {
2115 struct snd_ctl_elem_value *val;
2116
2117 val = kmalloc(sizeof(*val), GFP_KERNEL);
2118 if (! val)
2119 return -ENOMEM;
2120 codec->in_resume = 1;
2121 for (; knew->name; knew++) {
2122 int i, count;
2123 count = knew->count ? knew->count : 1;
2124 for (i = 0; i < count; i++) {
2125 memset(val, 0, sizeof(*val));
2126 val->id.iface = knew->iface;
2127 val->id.device = knew->device;
2128 val->id.subdevice = knew->subdevice;
2129 strcpy(val->id.name, knew->name);
2130 val->id.index = knew->index ? knew->index : i;
2131 /* Assume that get callback reads only from cache,
2132 * not accessing to the real hardware
2133 */
2134 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2135 continue;
2136 snd_ctl_elem_write(codec->bus->card, NULL, val);
2137 }
2138 }
2139 codec->in_resume = 0;
2140 kfree(val);
2141 return 0;
2142 }
2143
2144 /**
2145 * snd_hda_resume_spdif_out - resume the digital out
2146 * @codec: the HDA codec
2147 */
2148 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2149 {
2150 return snd_hda_resume_ctls(codec, dig_mixes);
2151 }
2152
2153 /**
2154 * snd_hda_resume_spdif_in - resume the digital in
2155 * @codec: the HDA codec
2156 */
2157 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2158 {
2159 return snd_hda_resume_ctls(codec, dig_in_ctls);
2160 }
2161 #endif
2162
2163 /*
2164 * symbols exported for controller modules
2165 */
2166 EXPORT_SYMBOL(snd_hda_codec_read);
2167 EXPORT_SYMBOL(snd_hda_codec_write);
2168 EXPORT_SYMBOL(snd_hda_sequence_write);
2169 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
2170 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
2171 EXPORT_SYMBOL(snd_hda_bus_new);
2172 EXPORT_SYMBOL(snd_hda_codec_new);
2173 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
2174 EXPORT_SYMBOL(snd_hda_calc_stream_format);
2175 EXPORT_SYMBOL(snd_hda_build_pcms);
2176 EXPORT_SYMBOL(snd_hda_build_controls);
2177 #ifdef CONFIG_PM
2178 EXPORT_SYMBOL(snd_hda_suspend);
2179 EXPORT_SYMBOL(snd_hda_resume);
2180 #endif
2181
2182 /*
2183 * INIT part
2184 */
2185
2186 static int __init alsa_hda_init(void)
2187 {
2188 return 0;
2189 }
2190
2191 static void __exit alsa_hda_exit(void)
2192 {
2193 }
2194
2195 module_init(alsa_hda_init)
2196 module_exit(alsa_hda_exit)