]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/pci/rme32.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / sound / pci / rme32.c
1 /*
2 * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
3 *
4 * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
5 * Pilo Chambert <pilo.c@wanadoo.fr>
6 *
7 * Thanks to : Anders Torger <torger@ludd.luth.se>,
8 * Henk Hesselink <henk@anda.nl>
9 * for writing the digi96-driver
10 * and RME for all informations.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * ****************************************************************************
28 *
29 * Note #1 "Sek'd models" ................................... martin 2002-12-07
30 *
31 * Identical soundcards by Sek'd were labeled:
32 * RME Digi 32 = Sek'd Prodif 32
33 * RME Digi 32 Pro = Sek'd Prodif 96
34 * RME Digi 32/8 = Sek'd Prodif Gold
35 *
36 * ****************************************************************************
37 *
38 * Note #2 "full duplex mode" ............................... martin 2002-12-07
39 *
40 * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
41 * in this mode. Rec data and play data are using the same buffer therefore. At
42 * first you have got the playing bits in the buffer and then (after playing
43 * them) they were overwitten by the captured sound of the CS8412/14. Both
44 * modes (play/record) are running harmonically hand in hand in the same buffer
45 * and you have only one start bit plus one interrupt bit to control this
46 * paired action.
47 * This is opposite to the latter rme96 where playing and capturing is totally
48 * separated and so their full duplex mode is supported by alsa (using two
49 * start bits and two interrupts for two different buffers).
50 * But due to the wrong sequence of playing and capturing ALSA shows no solved
51 * full duplex support for the rme32 at the moment. That's bad, but I'm not
52 * able to solve it. Are you motivated enough to solve this problem now? Your
53 * patch would be welcome!
54 *
55 * ****************************************************************************
56 *
57 * "The story after the long seeking" -- tiwai
58 *
59 * Ok, the situation regarding the full duplex is now improved a bit.
60 * In the fullduplex mode (given by the module parameter), the hardware buffer
61 * is split to halves for read and write directions at the DMA pointer.
62 * That is, the half above the current DMA pointer is used for write, and
63 * the half below is used for read. To mangle this strange behavior, an
64 * software intermediate buffer is introduced. This is, of course, not good
65 * from the viewpoint of the data transfer efficiency. However, this allows
66 * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
67 *
68 * ****************************************************************************
69 */
70
71
72 #include <linux/delay.h>
73 #include <linux/gfp.h>
74 #include <linux/init.h>
75 #include <linux/interrupt.h>
76 #include <linux/pci.h>
77 #include <linux/module.h>
78 #include <linux/io.h>
79
80 #include <sound/core.h>
81 #include <sound/info.h>
82 #include <sound/control.h>
83 #include <sound/pcm.h>
84 #include <sound/pcm_params.h>
85 #include <sound/pcm-indirect.h>
86 #include <sound/asoundef.h>
87 #include <sound/initval.h>
88
89 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
90 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
91 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
92 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
93
94 module_param_array(index, int, NULL, 0444);
95 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
96 module_param_array(id, charp, NULL, 0444);
97 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
98 module_param_array(enable, bool, NULL, 0444);
99 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
100 module_param_array(fullduplex, bool, NULL, 0444);
101 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
102 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
103 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
104 MODULE_LICENSE("GPL");
105 MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}");
106
107 /* Defines for RME Digi32 series */
108 #define RME32_SPDIF_NCHANNELS 2
109
110 /* Playback and capture buffer size */
111 #define RME32_BUFFER_SIZE 0x20000
112
113 /* IO area size */
114 #define RME32_IO_SIZE 0x30000
115
116 /* IO area offsets */
117 #define RME32_IO_DATA_BUFFER 0x0
118 #define RME32_IO_CONTROL_REGISTER 0x20000
119 #define RME32_IO_GET_POS 0x20000
120 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
121 #define RME32_IO_RESET_POS 0x20100
122
123 /* Write control register bits */
124 #define RME32_WCR_START (1 << 0) /* startbit */
125 #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
126 Setting the whole card to mono
127 doesn't seem to be very useful.
128 A software-solution can handle
129 full-duplex with one direction in
130 stereo and the other way in mono.
131 So, the hardware should work all
132 the time in stereo! */
133 #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
134 #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
135 #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
136 #define RME32_WCR_FREQ_1 (1 << 5)
137 #define RME32_WCR_INP_0 (1 << 6) /* input switch */
138 #define RME32_WCR_INP_1 (1 << 7)
139 #define RME32_WCR_RESET (1 << 8) /* Reset address */
140 #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
141 #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
142 #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
143 #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
144 #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
145 #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
146 #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
147
148 #define RME32_WCR_BITPOS_FREQ_0 4
149 #define RME32_WCR_BITPOS_FREQ_1 5
150 #define RME32_WCR_BITPOS_INP_0 6
151 #define RME32_WCR_BITPOS_INP_1 7
152
153 /* Read control register bits */
154 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
155 #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
156 #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
157 #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
158 #define RME32_RCR_FREQ_1 (1 << 28)
159 #define RME32_RCR_FREQ_2 (1 << 29)
160 #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
161 #define RME32_RCR_IRQ (1 << 31) /* interrupt */
162
163 #define RME32_RCR_BITPOS_F0 27
164 #define RME32_RCR_BITPOS_F1 28
165 #define RME32_RCR_BITPOS_F2 29
166
167 /* Input types */
168 #define RME32_INPUT_OPTICAL 0
169 #define RME32_INPUT_COAXIAL 1
170 #define RME32_INPUT_INTERNAL 2
171 #define RME32_INPUT_XLR 3
172
173 /* Clock modes */
174 #define RME32_CLOCKMODE_SLAVE 0
175 #define RME32_CLOCKMODE_MASTER_32 1
176 #define RME32_CLOCKMODE_MASTER_44 2
177 #define RME32_CLOCKMODE_MASTER_48 3
178
179 /* Block sizes in bytes */
180 #define RME32_BLOCK_SIZE 8192
181
182 /* Software intermediate buffer (max) size */
183 #define RME32_MID_BUFFER_SIZE (1024*1024)
184
185 /* Hardware revisions */
186 #define RME32_32_REVISION 192
187 #define RME32_328_REVISION_OLD 100
188 #define RME32_328_REVISION_NEW 101
189 #define RME32_PRO_REVISION_WITH_8412 192
190 #define RME32_PRO_REVISION_WITH_8414 150
191
192
193 struct rme32 {
194 spinlock_t lock;
195 int irq;
196 unsigned long port;
197 void __iomem *iobase;
198
199 u32 wcreg; /* cached write control register value */
200 u32 wcreg_spdif; /* S/PDIF setup */
201 u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
202 u32 rcreg; /* cached read control register value */
203
204 u8 rev; /* card revision number */
205
206 struct snd_pcm_substream *playback_substream;
207 struct snd_pcm_substream *capture_substream;
208
209 int playback_frlog; /* log2 of framesize */
210 int capture_frlog;
211
212 size_t playback_periodsize; /* in bytes, zero if not used */
213 size_t capture_periodsize; /* in bytes, zero if not used */
214
215 unsigned int fullduplex_mode;
216 int running;
217
218 struct snd_pcm_indirect playback_pcm;
219 struct snd_pcm_indirect capture_pcm;
220
221 struct snd_card *card;
222 struct snd_pcm *spdif_pcm;
223 struct snd_pcm *adat_pcm;
224 struct pci_dev *pci;
225 struct snd_kcontrol *spdif_ctl;
226 };
227
228 static const struct pci_device_id snd_rme32_ids[] = {
229 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
230 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
231 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
232 {0,}
233 };
234
235 MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
236
237 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
238 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
239
240 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
241
242 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
243
244 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
245
246 static void snd_rme32_proc_init(struct rme32 * rme32);
247
248 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
249
250 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
251 {
252 return (readl(rme32->iobase + RME32_IO_GET_POS)
253 & RME32_RCR_AUDIO_ADDR_MASK);
254 }
255
256 /* silence callback for halfduplex mode */
257 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
258 int channel, unsigned long pos,
259 unsigned long count)
260 {
261 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
262
263 memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
264 return 0;
265 }
266
267 /* copy callback for halfduplex mode */
268 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
269 int channel, unsigned long pos,
270 void __user *src, unsigned long count)
271 {
272 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
273
274 if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
275 src, count))
276 return -EFAULT;
277 return 0;
278 }
279
280 static int snd_rme32_playback_copy_kernel(struct snd_pcm_substream *substream,
281 int channel, unsigned long pos,
282 void *src, unsigned long count)
283 {
284 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
285
286 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, src, count);
287 return 0;
288 }
289
290 /* copy callback for halfduplex mode */
291 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
292 int channel, unsigned long pos,
293 void __user *dst, unsigned long count)
294 {
295 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
296
297 if (copy_to_user_fromio(dst,
298 rme32->iobase + RME32_IO_DATA_BUFFER + pos,
299 count))
300 return -EFAULT;
301 return 0;
302 }
303
304 static int snd_rme32_capture_copy_kernel(struct snd_pcm_substream *substream,
305 int channel, unsigned long pos,
306 void *dst, unsigned long count)
307 {
308 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
309
310 memcpy_fromio(dst, rme32->iobase + RME32_IO_DATA_BUFFER + pos, count);
311 return 0;
312 }
313
314 /*
315 * SPDIF I/O capabilities (half-duplex mode)
316 */
317 static struct snd_pcm_hardware snd_rme32_spdif_info = {
318 .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
319 SNDRV_PCM_INFO_MMAP_VALID |
320 SNDRV_PCM_INFO_INTERLEAVED |
321 SNDRV_PCM_INFO_PAUSE |
322 SNDRV_PCM_INFO_SYNC_START),
323 .formats = (SNDRV_PCM_FMTBIT_S16_LE |
324 SNDRV_PCM_FMTBIT_S32_LE),
325 .rates = (SNDRV_PCM_RATE_32000 |
326 SNDRV_PCM_RATE_44100 |
327 SNDRV_PCM_RATE_48000),
328 .rate_min = 32000,
329 .rate_max = 48000,
330 .channels_min = 2,
331 .channels_max = 2,
332 .buffer_bytes_max = RME32_BUFFER_SIZE,
333 .period_bytes_min = RME32_BLOCK_SIZE,
334 .period_bytes_max = RME32_BLOCK_SIZE,
335 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
336 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
337 .fifo_size = 0,
338 };
339
340 /*
341 * ADAT I/O capabilities (half-duplex mode)
342 */
343 static struct snd_pcm_hardware snd_rme32_adat_info =
344 {
345 .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
346 SNDRV_PCM_INFO_MMAP_VALID |
347 SNDRV_PCM_INFO_INTERLEAVED |
348 SNDRV_PCM_INFO_PAUSE |
349 SNDRV_PCM_INFO_SYNC_START),
350 .formats= SNDRV_PCM_FMTBIT_S16_LE,
351 .rates = (SNDRV_PCM_RATE_44100 |
352 SNDRV_PCM_RATE_48000),
353 .rate_min = 44100,
354 .rate_max = 48000,
355 .channels_min = 8,
356 .channels_max = 8,
357 .buffer_bytes_max = RME32_BUFFER_SIZE,
358 .period_bytes_min = RME32_BLOCK_SIZE,
359 .period_bytes_max = RME32_BLOCK_SIZE,
360 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
361 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
362 .fifo_size = 0,
363 };
364
365 /*
366 * SPDIF I/O capabilities (full-duplex mode)
367 */
368 static struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
369 .info = (SNDRV_PCM_INFO_MMAP |
370 SNDRV_PCM_INFO_MMAP_VALID |
371 SNDRV_PCM_INFO_INTERLEAVED |
372 SNDRV_PCM_INFO_PAUSE |
373 SNDRV_PCM_INFO_SYNC_START),
374 .formats = (SNDRV_PCM_FMTBIT_S16_LE |
375 SNDRV_PCM_FMTBIT_S32_LE),
376 .rates = (SNDRV_PCM_RATE_32000 |
377 SNDRV_PCM_RATE_44100 |
378 SNDRV_PCM_RATE_48000),
379 .rate_min = 32000,
380 .rate_max = 48000,
381 .channels_min = 2,
382 .channels_max = 2,
383 .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
384 .period_bytes_min = RME32_BLOCK_SIZE,
385 .period_bytes_max = RME32_BLOCK_SIZE,
386 .periods_min = 2,
387 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
388 .fifo_size = 0,
389 };
390
391 /*
392 * ADAT I/O capabilities (full-duplex mode)
393 */
394 static struct snd_pcm_hardware snd_rme32_adat_fd_info =
395 {
396 .info = (SNDRV_PCM_INFO_MMAP |
397 SNDRV_PCM_INFO_MMAP_VALID |
398 SNDRV_PCM_INFO_INTERLEAVED |
399 SNDRV_PCM_INFO_PAUSE |
400 SNDRV_PCM_INFO_SYNC_START),
401 .formats= SNDRV_PCM_FMTBIT_S16_LE,
402 .rates = (SNDRV_PCM_RATE_44100 |
403 SNDRV_PCM_RATE_48000),
404 .rate_min = 44100,
405 .rate_max = 48000,
406 .channels_min = 8,
407 .channels_max = 8,
408 .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
409 .period_bytes_min = RME32_BLOCK_SIZE,
410 .period_bytes_max = RME32_BLOCK_SIZE,
411 .periods_min = 2,
412 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
413 .fifo_size = 0,
414 };
415
416 static void snd_rme32_reset_dac(struct rme32 *rme32)
417 {
418 writel(rme32->wcreg | RME32_WCR_PD,
419 rme32->iobase + RME32_IO_CONTROL_REGISTER);
420 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
421 }
422
423 static int snd_rme32_playback_getrate(struct rme32 * rme32)
424 {
425 int rate;
426
427 rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
428 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
429 switch (rate) {
430 case 1:
431 rate = 32000;
432 break;
433 case 2:
434 rate = 44100;
435 break;
436 case 3:
437 rate = 48000;
438 break;
439 default:
440 return -1;
441 }
442 return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
443 }
444
445 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
446 {
447 int n;
448
449 *is_adat = 0;
450 if (rme32->rcreg & RME32_RCR_LOCK) {
451 /* ADAT rate */
452 *is_adat = 1;
453 }
454 if (rme32->rcreg & RME32_RCR_ERF) {
455 return -1;
456 }
457
458 /* S/PDIF rate */
459 n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
460 (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
461 (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
462
463 if (RME32_PRO_WITH_8414(rme32))
464 switch (n) { /* supporting the CS8414 */
465 case 0:
466 case 1:
467 case 2:
468 return -1;
469 case 3:
470 return 96000;
471 case 4:
472 return 88200;
473 case 5:
474 return 48000;
475 case 6:
476 return 44100;
477 case 7:
478 return 32000;
479 default:
480 return -1;
481 break;
482 }
483 else
484 switch (n) { /* supporting the CS8412 */
485 case 0:
486 return -1;
487 case 1:
488 return 48000;
489 case 2:
490 return 44100;
491 case 3:
492 return 32000;
493 case 4:
494 return 48000;
495 case 5:
496 return 44100;
497 case 6:
498 return 44056;
499 case 7:
500 return 32000;
501 default:
502 break;
503 }
504 return -1;
505 }
506
507 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
508 {
509 int ds;
510
511 ds = rme32->wcreg & RME32_WCR_DS_BM;
512 switch (rate) {
513 case 32000:
514 rme32->wcreg &= ~RME32_WCR_DS_BM;
515 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
516 ~RME32_WCR_FREQ_1;
517 break;
518 case 44100:
519 rme32->wcreg &= ~RME32_WCR_DS_BM;
520 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
521 ~RME32_WCR_FREQ_0;
522 break;
523 case 48000:
524 rme32->wcreg &= ~RME32_WCR_DS_BM;
525 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
526 RME32_WCR_FREQ_1;
527 break;
528 case 64000:
529 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
530 return -EINVAL;
531 rme32->wcreg |= RME32_WCR_DS_BM;
532 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
533 ~RME32_WCR_FREQ_1;
534 break;
535 case 88200:
536 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
537 return -EINVAL;
538 rme32->wcreg |= RME32_WCR_DS_BM;
539 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
540 ~RME32_WCR_FREQ_0;
541 break;
542 case 96000:
543 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
544 return -EINVAL;
545 rme32->wcreg |= RME32_WCR_DS_BM;
546 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
547 RME32_WCR_FREQ_1;
548 break;
549 default:
550 return -EINVAL;
551 }
552 if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
553 (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
554 {
555 /* change to/from double-speed: reset the DAC (if available) */
556 snd_rme32_reset_dac(rme32);
557 } else {
558 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
559 }
560 return 0;
561 }
562
563 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
564 {
565 switch (mode) {
566 case RME32_CLOCKMODE_SLAVE:
567 /* AutoSync */
568 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
569 ~RME32_WCR_FREQ_1;
570 break;
571 case RME32_CLOCKMODE_MASTER_32:
572 /* Internal 32.0kHz */
573 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
574 ~RME32_WCR_FREQ_1;
575 break;
576 case RME32_CLOCKMODE_MASTER_44:
577 /* Internal 44.1kHz */
578 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
579 RME32_WCR_FREQ_1;
580 break;
581 case RME32_CLOCKMODE_MASTER_48:
582 /* Internal 48.0kHz */
583 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
584 RME32_WCR_FREQ_1;
585 break;
586 default:
587 return -EINVAL;
588 }
589 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
590 return 0;
591 }
592
593 static int snd_rme32_getclockmode(struct rme32 * rme32)
594 {
595 return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
596 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
597 }
598
599 static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
600 {
601 switch (type) {
602 case RME32_INPUT_OPTICAL:
603 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
604 ~RME32_WCR_INP_1;
605 break;
606 case RME32_INPUT_COAXIAL:
607 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
608 ~RME32_WCR_INP_1;
609 break;
610 case RME32_INPUT_INTERNAL:
611 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
612 RME32_WCR_INP_1;
613 break;
614 case RME32_INPUT_XLR:
615 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
616 RME32_WCR_INP_1;
617 break;
618 default:
619 return -EINVAL;
620 }
621 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
622 return 0;
623 }
624
625 static int snd_rme32_getinputtype(struct rme32 * rme32)
626 {
627 return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
628 (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
629 }
630
631 static void
632 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
633 {
634 int frlog;
635
636 if (n_channels == 2) {
637 frlog = 1;
638 } else {
639 /* assume 8 channels */
640 frlog = 3;
641 }
642 if (is_playback) {
643 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
644 rme32->playback_frlog = frlog;
645 } else {
646 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
647 rme32->capture_frlog = frlog;
648 }
649 }
650
651 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
652 {
653 switch (format) {
654 case SNDRV_PCM_FORMAT_S16_LE:
655 rme32->wcreg &= ~RME32_WCR_MODE24;
656 break;
657 case SNDRV_PCM_FORMAT_S32_LE:
658 rme32->wcreg |= RME32_WCR_MODE24;
659 break;
660 default:
661 return -EINVAL;
662 }
663 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
664 return 0;
665 }
666
667 static int
668 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
669 struct snd_pcm_hw_params *params)
670 {
671 int err, rate, dummy;
672 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
673 struct snd_pcm_runtime *runtime = substream->runtime;
674
675 if (rme32->fullduplex_mode) {
676 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
677 if (err < 0)
678 return err;
679 } else {
680 runtime->dma_area = (void __force *)(rme32->iobase +
681 RME32_IO_DATA_BUFFER);
682 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
683 runtime->dma_bytes = RME32_BUFFER_SIZE;
684 }
685
686 spin_lock_irq(&rme32->lock);
687 if ((rme32->rcreg & RME32_RCR_KMODE) &&
688 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
689 /* AutoSync */
690 if ((int)params_rate(params) != rate) {
691 spin_unlock_irq(&rme32->lock);
692 return -EIO;
693 }
694 } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
695 spin_unlock_irq(&rme32->lock);
696 return err;
697 }
698 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
699 spin_unlock_irq(&rme32->lock);
700 return err;
701 }
702
703 snd_rme32_setframelog(rme32, params_channels(params), 1);
704 if (rme32->capture_periodsize != 0) {
705 if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
706 spin_unlock_irq(&rme32->lock);
707 return -EBUSY;
708 }
709 }
710 rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
711 /* S/PDIF setup */
712 if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
713 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
714 rme32->wcreg |= rme32->wcreg_spdif_stream;
715 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
716 }
717 spin_unlock_irq(&rme32->lock);
718
719 return 0;
720 }
721
722 static int
723 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
724 struct snd_pcm_hw_params *params)
725 {
726 int err, isadat, rate;
727 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
728 struct snd_pcm_runtime *runtime = substream->runtime;
729
730 if (rme32->fullduplex_mode) {
731 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
732 if (err < 0)
733 return err;
734 } else {
735 runtime->dma_area = (void __force *)rme32->iobase +
736 RME32_IO_DATA_BUFFER;
737 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
738 runtime->dma_bytes = RME32_BUFFER_SIZE;
739 }
740
741 spin_lock_irq(&rme32->lock);
742 /* enable AutoSync for record-preparing */
743 rme32->wcreg |= RME32_WCR_AUTOSYNC;
744 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
745
746 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
747 spin_unlock_irq(&rme32->lock);
748 return err;
749 }
750 if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
751 spin_unlock_irq(&rme32->lock);
752 return err;
753 }
754 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
755 if ((int)params_rate(params) != rate) {
756 spin_unlock_irq(&rme32->lock);
757 return -EIO;
758 }
759 if ((isadat && runtime->hw.channels_min == 2) ||
760 (!isadat && runtime->hw.channels_min == 8)) {
761 spin_unlock_irq(&rme32->lock);
762 return -EIO;
763 }
764 }
765 /* AutoSync off for recording */
766 rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
767 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
768
769 snd_rme32_setframelog(rme32, params_channels(params), 0);
770 if (rme32->playback_periodsize != 0) {
771 if (params_period_size(params) << rme32->capture_frlog !=
772 rme32->playback_periodsize) {
773 spin_unlock_irq(&rme32->lock);
774 return -EBUSY;
775 }
776 }
777 rme32->capture_periodsize =
778 params_period_size(params) << rme32->capture_frlog;
779 spin_unlock_irq(&rme32->lock);
780
781 return 0;
782 }
783
784 static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream)
785 {
786 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
787 if (! rme32->fullduplex_mode)
788 return 0;
789 return snd_pcm_lib_free_pages(substream);
790 }
791
792 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
793 {
794 if (!from_pause) {
795 writel(0, rme32->iobase + RME32_IO_RESET_POS);
796 }
797
798 rme32->wcreg |= RME32_WCR_START;
799 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
800 }
801
802 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
803 {
804 /*
805 * Check if there is an unconfirmed IRQ, if so confirm it, or else
806 * the hardware will not stop generating interrupts
807 */
808 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
809 if (rme32->rcreg & RME32_RCR_IRQ) {
810 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
811 }
812 rme32->wcreg &= ~RME32_WCR_START;
813 if (rme32->wcreg & RME32_WCR_SEL)
814 rme32->wcreg |= RME32_WCR_MUTE;
815 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
816 if (! to_pause)
817 writel(0, rme32->iobase + RME32_IO_RESET_POS);
818 }
819
820 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
821 {
822 struct rme32 *rme32 = (struct rme32 *) dev_id;
823
824 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
825 if (!(rme32->rcreg & RME32_RCR_IRQ)) {
826 return IRQ_NONE;
827 } else {
828 if (rme32->capture_substream) {
829 snd_pcm_period_elapsed(rme32->capture_substream);
830 }
831 if (rme32->playback_substream) {
832 snd_pcm_period_elapsed(rme32->playback_substream);
833 }
834 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
835 }
836 return IRQ_HANDLED;
837 }
838
839 static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
840
841 static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
842 .count = ARRAY_SIZE(period_bytes),
843 .list = period_bytes,
844 .mask = 0
845 };
846
847 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
848 {
849 if (! rme32->fullduplex_mode) {
850 snd_pcm_hw_constraint_single(runtime,
851 SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
852 RME32_BUFFER_SIZE);
853 snd_pcm_hw_constraint_list(runtime, 0,
854 SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
855 &hw_constraints_period_bytes);
856 }
857 }
858
859 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
860 {
861 int rate, dummy;
862 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
863 struct snd_pcm_runtime *runtime = substream->runtime;
864
865 snd_pcm_set_sync(substream);
866
867 spin_lock_irq(&rme32->lock);
868 if (rme32->playback_substream != NULL) {
869 spin_unlock_irq(&rme32->lock);
870 return -EBUSY;
871 }
872 rme32->wcreg &= ~RME32_WCR_ADAT;
873 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
874 rme32->playback_substream = substream;
875 spin_unlock_irq(&rme32->lock);
876
877 if (rme32->fullduplex_mode)
878 runtime->hw = snd_rme32_spdif_fd_info;
879 else
880 runtime->hw = snd_rme32_spdif_info;
881 if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
882 runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
883 runtime->hw.rate_max = 96000;
884 }
885 if ((rme32->rcreg & RME32_RCR_KMODE) &&
886 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
887 /* AutoSync */
888 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
889 runtime->hw.rate_min = rate;
890 runtime->hw.rate_max = rate;
891 }
892
893 snd_rme32_set_buffer_constraint(rme32, runtime);
894
895 rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
896 rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
897 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
898 SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
899 return 0;
900 }
901
902 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
903 {
904 int isadat, rate;
905 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
906 struct snd_pcm_runtime *runtime = substream->runtime;
907
908 snd_pcm_set_sync(substream);
909
910 spin_lock_irq(&rme32->lock);
911 if (rme32->capture_substream != NULL) {
912 spin_unlock_irq(&rme32->lock);
913 return -EBUSY;
914 }
915 rme32->capture_substream = substream;
916 spin_unlock_irq(&rme32->lock);
917
918 if (rme32->fullduplex_mode)
919 runtime->hw = snd_rme32_spdif_fd_info;
920 else
921 runtime->hw = snd_rme32_spdif_info;
922 if (RME32_PRO_WITH_8414(rme32)) {
923 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
924 runtime->hw.rate_max = 96000;
925 }
926 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
927 if (isadat) {
928 return -EIO;
929 }
930 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
931 runtime->hw.rate_min = rate;
932 runtime->hw.rate_max = rate;
933 }
934
935 snd_rme32_set_buffer_constraint(rme32, runtime);
936
937 return 0;
938 }
939
940 static int
941 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
942 {
943 int rate, dummy;
944 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
945 struct snd_pcm_runtime *runtime = substream->runtime;
946
947 snd_pcm_set_sync(substream);
948
949 spin_lock_irq(&rme32->lock);
950 if (rme32->playback_substream != NULL) {
951 spin_unlock_irq(&rme32->lock);
952 return -EBUSY;
953 }
954 rme32->wcreg |= RME32_WCR_ADAT;
955 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
956 rme32->playback_substream = substream;
957 spin_unlock_irq(&rme32->lock);
958
959 if (rme32->fullduplex_mode)
960 runtime->hw = snd_rme32_adat_fd_info;
961 else
962 runtime->hw = snd_rme32_adat_info;
963 if ((rme32->rcreg & RME32_RCR_KMODE) &&
964 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
965 /* AutoSync */
966 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
967 runtime->hw.rate_min = rate;
968 runtime->hw.rate_max = rate;
969 }
970
971 snd_rme32_set_buffer_constraint(rme32, runtime);
972 return 0;
973 }
974
975 static int
976 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
977 {
978 int isadat, rate;
979 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
980 struct snd_pcm_runtime *runtime = substream->runtime;
981
982 if (rme32->fullduplex_mode)
983 runtime->hw = snd_rme32_adat_fd_info;
984 else
985 runtime->hw = snd_rme32_adat_info;
986 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
987 if (!isadat) {
988 return -EIO;
989 }
990 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
991 runtime->hw.rate_min = rate;
992 runtime->hw.rate_max = rate;
993 }
994
995 snd_pcm_set_sync(substream);
996
997 spin_lock_irq(&rme32->lock);
998 if (rme32->capture_substream != NULL) {
999 spin_unlock_irq(&rme32->lock);
1000 return -EBUSY;
1001 }
1002 rme32->capture_substream = substream;
1003 spin_unlock_irq(&rme32->lock);
1004
1005 snd_rme32_set_buffer_constraint(rme32, runtime);
1006 return 0;
1007 }
1008
1009 static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
1010 {
1011 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1012 int spdif = 0;
1013
1014 spin_lock_irq(&rme32->lock);
1015 rme32->playback_substream = NULL;
1016 rme32->playback_periodsize = 0;
1017 spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
1018 spin_unlock_irq(&rme32->lock);
1019 if (spdif) {
1020 rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1021 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
1022 SNDRV_CTL_EVENT_MASK_INFO,
1023 &rme32->spdif_ctl->id);
1024 }
1025 return 0;
1026 }
1027
1028 static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
1029 {
1030 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1031
1032 spin_lock_irq(&rme32->lock);
1033 rme32->capture_substream = NULL;
1034 rme32->capture_periodsize = 0;
1035 spin_unlock_irq(&rme32->lock);
1036 return 0;
1037 }
1038
1039 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
1040 {
1041 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1042
1043 spin_lock_irq(&rme32->lock);
1044 if (rme32->fullduplex_mode) {
1045 memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
1046 rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1047 rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1048 } else {
1049 writel(0, rme32->iobase + RME32_IO_RESET_POS);
1050 }
1051 if (rme32->wcreg & RME32_WCR_SEL)
1052 rme32->wcreg &= ~RME32_WCR_MUTE;
1053 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1054 spin_unlock_irq(&rme32->lock);
1055 return 0;
1056 }
1057
1058 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
1059 {
1060 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1061
1062 spin_lock_irq(&rme32->lock);
1063 if (rme32->fullduplex_mode) {
1064 memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
1065 rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1066 rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
1067 rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1068 } else {
1069 writel(0, rme32->iobase + RME32_IO_RESET_POS);
1070 }
1071 spin_unlock_irq(&rme32->lock);
1072 return 0;
1073 }
1074
1075 static int
1076 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1077 {
1078 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1079 struct snd_pcm_substream *s;
1080
1081 spin_lock(&rme32->lock);
1082 snd_pcm_group_for_each_entry(s, substream) {
1083 if (s != rme32->playback_substream &&
1084 s != rme32->capture_substream)
1085 continue;
1086 switch (cmd) {
1087 case SNDRV_PCM_TRIGGER_START:
1088 rme32->running |= (1 << s->stream);
1089 if (rme32->fullduplex_mode) {
1090 /* remember the current DMA position */
1091 if (s == rme32->playback_substream) {
1092 rme32->playback_pcm.hw_io =
1093 rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1094 } else {
1095 rme32->capture_pcm.hw_io =
1096 rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1097 }
1098 }
1099 break;
1100 case SNDRV_PCM_TRIGGER_STOP:
1101 rme32->running &= ~(1 << s->stream);
1102 break;
1103 }
1104 snd_pcm_trigger_done(s, substream);
1105 }
1106
1107 /* prefill playback buffer */
1108 if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) {
1109 snd_pcm_group_for_each_entry(s, substream) {
1110 if (s == rme32->playback_substream) {
1111 s->ops->ack(s);
1112 break;
1113 }
1114 }
1115 }
1116
1117 switch (cmd) {
1118 case SNDRV_PCM_TRIGGER_START:
1119 if (rme32->running && ! RME32_ISWORKING(rme32))
1120 snd_rme32_pcm_start(rme32, 0);
1121 break;
1122 case SNDRV_PCM_TRIGGER_STOP:
1123 if (! rme32->running && RME32_ISWORKING(rme32))
1124 snd_rme32_pcm_stop(rme32, 0);
1125 break;
1126 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1127 if (rme32->running && RME32_ISWORKING(rme32))
1128 snd_rme32_pcm_stop(rme32, 1);
1129 break;
1130 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1131 if (rme32->running && ! RME32_ISWORKING(rme32))
1132 snd_rme32_pcm_start(rme32, 1);
1133 break;
1134 }
1135 spin_unlock(&rme32->lock);
1136 return 0;
1137 }
1138
1139 /* pointer callback for halfduplex mode */
1140 static snd_pcm_uframes_t
1141 snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
1142 {
1143 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1144 return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
1145 }
1146
1147 static snd_pcm_uframes_t
1148 snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
1149 {
1150 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1151 return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
1152 }
1153
1154
1155 /* ack and pointer callbacks for fullduplex mode */
1156 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
1157 struct snd_pcm_indirect *rec, size_t bytes)
1158 {
1159 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1160 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1161 substream->runtime->dma_area + rec->sw_data, bytes);
1162 }
1163
1164 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
1165 {
1166 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1167 struct snd_pcm_indirect *rec, *cprec;
1168
1169 rec = &rme32->playback_pcm;
1170 cprec = &rme32->capture_pcm;
1171 spin_lock(&rme32->lock);
1172 rec->hw_queue_size = RME32_BUFFER_SIZE;
1173 if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
1174 rec->hw_queue_size -= cprec->hw_ready;
1175 spin_unlock(&rme32->lock);
1176 return snd_pcm_indirect_playback_transfer(substream, rec,
1177 snd_rme32_pb_trans_copy);
1178 }
1179
1180 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
1181 struct snd_pcm_indirect *rec, size_t bytes)
1182 {
1183 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1184 memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
1185 rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1186 bytes);
1187 }
1188
1189 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
1190 {
1191 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1192 return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
1193 snd_rme32_cp_trans_copy);
1194 }
1195
1196 static snd_pcm_uframes_t
1197 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
1198 {
1199 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1200 return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
1201 snd_rme32_pcm_byteptr(rme32));
1202 }
1203
1204 static snd_pcm_uframes_t
1205 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
1206 {
1207 struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1208 return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
1209 snd_rme32_pcm_byteptr(rme32));
1210 }
1211
1212 /* for halfduplex mode */
1213 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
1214 .open = snd_rme32_playback_spdif_open,
1215 .close = snd_rme32_playback_close,
1216 .ioctl = snd_pcm_lib_ioctl,
1217 .hw_params = snd_rme32_playback_hw_params,
1218 .hw_free = snd_rme32_pcm_hw_free,
1219 .prepare = snd_rme32_playback_prepare,
1220 .trigger = snd_rme32_pcm_trigger,
1221 .pointer = snd_rme32_playback_pointer,
1222 .copy_user = snd_rme32_playback_copy,
1223 .copy_kernel = snd_rme32_playback_copy_kernel,
1224 .fill_silence = snd_rme32_playback_silence,
1225 .mmap = snd_pcm_lib_mmap_iomem,
1226 };
1227
1228 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
1229 .open = snd_rme32_capture_spdif_open,
1230 .close = snd_rme32_capture_close,
1231 .ioctl = snd_pcm_lib_ioctl,
1232 .hw_params = snd_rme32_capture_hw_params,
1233 .hw_free = snd_rme32_pcm_hw_free,
1234 .prepare = snd_rme32_capture_prepare,
1235 .trigger = snd_rme32_pcm_trigger,
1236 .pointer = snd_rme32_capture_pointer,
1237 .copy_user = snd_rme32_capture_copy,
1238 .copy_kernel = snd_rme32_capture_copy_kernel,
1239 .mmap = snd_pcm_lib_mmap_iomem,
1240 };
1241
1242 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
1243 .open = snd_rme32_playback_adat_open,
1244 .close = snd_rme32_playback_close,
1245 .ioctl = snd_pcm_lib_ioctl,
1246 .hw_params = snd_rme32_playback_hw_params,
1247 .prepare = snd_rme32_playback_prepare,
1248 .trigger = snd_rme32_pcm_trigger,
1249 .pointer = snd_rme32_playback_pointer,
1250 .copy_user = snd_rme32_playback_copy,
1251 .copy_kernel = snd_rme32_playback_copy_kernel,
1252 .fill_silence = snd_rme32_playback_silence,
1253 .mmap = snd_pcm_lib_mmap_iomem,
1254 };
1255
1256 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
1257 .open = snd_rme32_capture_adat_open,
1258 .close = snd_rme32_capture_close,
1259 .ioctl = snd_pcm_lib_ioctl,
1260 .hw_params = snd_rme32_capture_hw_params,
1261 .prepare = snd_rme32_capture_prepare,
1262 .trigger = snd_rme32_pcm_trigger,
1263 .pointer = snd_rme32_capture_pointer,
1264 .copy_user = snd_rme32_capture_copy,
1265 .copy_kernel = snd_rme32_capture_copy_kernel,
1266 .mmap = snd_pcm_lib_mmap_iomem,
1267 };
1268
1269 /* for fullduplex mode */
1270 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
1271 .open = snd_rme32_playback_spdif_open,
1272 .close = snd_rme32_playback_close,
1273 .ioctl = snd_pcm_lib_ioctl,
1274 .hw_params = snd_rme32_playback_hw_params,
1275 .hw_free = snd_rme32_pcm_hw_free,
1276 .prepare = snd_rme32_playback_prepare,
1277 .trigger = snd_rme32_pcm_trigger,
1278 .pointer = snd_rme32_playback_fd_pointer,
1279 .ack = snd_rme32_playback_fd_ack,
1280 };
1281
1282 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
1283 .open = snd_rme32_capture_spdif_open,
1284 .close = snd_rme32_capture_close,
1285 .ioctl = snd_pcm_lib_ioctl,
1286 .hw_params = snd_rme32_capture_hw_params,
1287 .hw_free = snd_rme32_pcm_hw_free,
1288 .prepare = snd_rme32_capture_prepare,
1289 .trigger = snd_rme32_pcm_trigger,
1290 .pointer = snd_rme32_capture_fd_pointer,
1291 .ack = snd_rme32_capture_fd_ack,
1292 };
1293
1294 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
1295 .open = snd_rme32_playback_adat_open,
1296 .close = snd_rme32_playback_close,
1297 .ioctl = snd_pcm_lib_ioctl,
1298 .hw_params = snd_rme32_playback_hw_params,
1299 .prepare = snd_rme32_playback_prepare,
1300 .trigger = snd_rme32_pcm_trigger,
1301 .pointer = snd_rme32_playback_fd_pointer,
1302 .ack = snd_rme32_playback_fd_ack,
1303 };
1304
1305 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
1306 .open = snd_rme32_capture_adat_open,
1307 .close = snd_rme32_capture_close,
1308 .ioctl = snd_pcm_lib_ioctl,
1309 .hw_params = snd_rme32_capture_hw_params,
1310 .prepare = snd_rme32_capture_prepare,
1311 .trigger = snd_rme32_pcm_trigger,
1312 .pointer = snd_rme32_capture_fd_pointer,
1313 .ack = snd_rme32_capture_fd_ack,
1314 };
1315
1316 static void snd_rme32_free(void *private_data)
1317 {
1318 struct rme32 *rme32 = (struct rme32 *) private_data;
1319
1320 if (rme32 == NULL) {
1321 return;
1322 }
1323 if (rme32->irq >= 0) {
1324 snd_rme32_pcm_stop(rme32, 0);
1325 free_irq(rme32->irq, (void *) rme32);
1326 rme32->irq = -1;
1327 }
1328 if (rme32->iobase) {
1329 iounmap(rme32->iobase);
1330 rme32->iobase = NULL;
1331 }
1332 if (rme32->port) {
1333 pci_release_regions(rme32->pci);
1334 rme32->port = 0;
1335 }
1336 pci_disable_device(rme32->pci);
1337 }
1338
1339 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
1340 {
1341 struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1342 rme32->spdif_pcm = NULL;
1343 }
1344
1345 static void
1346 snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
1347 {
1348 struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1349 rme32->adat_pcm = NULL;
1350 }
1351
1352 static int snd_rme32_create(struct rme32 *rme32)
1353 {
1354 struct pci_dev *pci = rme32->pci;
1355 int err;
1356
1357 rme32->irq = -1;
1358 spin_lock_init(&rme32->lock);
1359
1360 if ((err = pci_enable_device(pci)) < 0)
1361 return err;
1362
1363 if ((err = pci_request_regions(pci, "RME32")) < 0)
1364 return err;
1365 rme32->port = pci_resource_start(rme32->pci, 0);
1366
1367 rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE);
1368 if (!rme32->iobase) {
1369 dev_err(rme32->card->dev,
1370 "unable to remap memory region 0x%lx-0x%lx\n",
1371 rme32->port, rme32->port + RME32_IO_SIZE - 1);
1372 return -ENOMEM;
1373 }
1374
1375 if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED,
1376 KBUILD_MODNAME, rme32)) {
1377 dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
1378 return -EBUSY;
1379 }
1380 rme32->irq = pci->irq;
1381
1382 /* read the card's revision number */
1383 pci_read_config_byte(pci, 8, &rme32->rev);
1384
1385 /* set up ALSA pcm device for S/PDIF */
1386 if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) {
1387 return err;
1388 }
1389 rme32->spdif_pcm->private_data = rme32;
1390 rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
1391 strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
1392 if (rme32->fullduplex_mode) {
1393 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1394 &snd_rme32_playback_spdif_fd_ops);
1395 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1396 &snd_rme32_capture_spdif_fd_ops);
1397 snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1398 snd_dma_continuous_data(GFP_KERNEL),
1399 0, RME32_MID_BUFFER_SIZE);
1400 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1401 } else {
1402 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1403 &snd_rme32_playback_spdif_ops);
1404 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1405 &snd_rme32_capture_spdif_ops);
1406 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1407 }
1408
1409 /* set up ALSA pcm device for ADAT */
1410 if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
1411 (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
1412 /* ADAT is not available on DIGI32 and DIGI32 Pro */
1413 rme32->adat_pcm = NULL;
1414 }
1415 else {
1416 if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1417 1, 1, &rme32->adat_pcm)) < 0)
1418 {
1419 return err;
1420 }
1421 rme32->adat_pcm->private_data = rme32;
1422 rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
1423 strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
1424 if (rme32->fullduplex_mode) {
1425 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1426 &snd_rme32_playback_adat_fd_ops);
1427 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1428 &snd_rme32_capture_adat_fd_ops);
1429 snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1430 snd_dma_continuous_data(GFP_KERNEL),
1431 0, RME32_MID_BUFFER_SIZE);
1432 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1433 } else {
1434 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1435 &snd_rme32_playback_adat_ops);
1436 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1437 &snd_rme32_capture_adat_ops);
1438 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1439 }
1440 }
1441
1442
1443 rme32->playback_periodsize = 0;
1444 rme32->capture_periodsize = 0;
1445
1446 /* make sure playback/capture is stopped, if by some reason active */
1447 snd_rme32_pcm_stop(rme32, 0);
1448
1449 /* reset DAC */
1450 snd_rme32_reset_dac(rme32);
1451
1452 /* reset buffer pointer */
1453 writel(0, rme32->iobase + RME32_IO_RESET_POS);
1454
1455 /* set default values in registers */
1456 rme32->wcreg = RME32_WCR_SEL | /* normal playback */
1457 RME32_WCR_INP_0 | /* input select */
1458 RME32_WCR_MUTE; /* muting on */
1459 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1460
1461
1462 /* init switch interface */
1463 if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) {
1464 return err;
1465 }
1466
1467 /* init proc interface */
1468 snd_rme32_proc_init(rme32);
1469
1470 rme32->capture_substream = NULL;
1471 rme32->playback_substream = NULL;
1472
1473 return 0;
1474 }
1475
1476 /*
1477 * proc interface
1478 */
1479
1480 static void
1481 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1482 {
1483 int n;
1484 struct rme32 *rme32 = (struct rme32 *) entry->private_data;
1485
1486 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
1487
1488 snd_iprintf(buffer, rme32->card->longname);
1489 snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
1490
1491 snd_iprintf(buffer, "\nGeneral settings\n");
1492 if (rme32->fullduplex_mode)
1493 snd_iprintf(buffer, " Full-duplex mode\n");
1494 else
1495 snd_iprintf(buffer, " Half-duplex mode\n");
1496 if (RME32_PRO_WITH_8414(rme32)) {
1497 snd_iprintf(buffer, " receiver: CS8414\n");
1498 } else {
1499 snd_iprintf(buffer, " receiver: CS8412\n");
1500 }
1501 if (rme32->wcreg & RME32_WCR_MODE24) {
1502 snd_iprintf(buffer, " format: 24 bit");
1503 } else {
1504 snd_iprintf(buffer, " format: 16 bit");
1505 }
1506 if (rme32->wcreg & RME32_WCR_MONO) {
1507 snd_iprintf(buffer, ", Mono\n");
1508 } else {
1509 snd_iprintf(buffer, ", Stereo\n");
1510 }
1511
1512 snd_iprintf(buffer, "\nInput settings\n");
1513 switch (snd_rme32_getinputtype(rme32)) {
1514 case RME32_INPUT_OPTICAL:
1515 snd_iprintf(buffer, " input: optical");
1516 break;
1517 case RME32_INPUT_COAXIAL:
1518 snd_iprintf(buffer, " input: coaxial");
1519 break;
1520 case RME32_INPUT_INTERNAL:
1521 snd_iprintf(buffer, " input: internal");
1522 break;
1523 case RME32_INPUT_XLR:
1524 snd_iprintf(buffer, " input: XLR");
1525 break;
1526 }
1527 if (snd_rme32_capture_getrate(rme32, &n) < 0) {
1528 snd_iprintf(buffer, "\n sample rate: no valid signal\n");
1529 } else {
1530 if (n) {
1531 snd_iprintf(buffer, " (8 channels)\n");
1532 } else {
1533 snd_iprintf(buffer, " (2 channels)\n");
1534 }
1535 snd_iprintf(buffer, " sample rate: %d Hz\n",
1536 snd_rme32_capture_getrate(rme32, &n));
1537 }
1538
1539 snd_iprintf(buffer, "\nOutput settings\n");
1540 if (rme32->wcreg & RME32_WCR_SEL) {
1541 snd_iprintf(buffer, " output signal: normal playback");
1542 } else {
1543 snd_iprintf(buffer, " output signal: same as input");
1544 }
1545 if (rme32->wcreg & RME32_WCR_MUTE) {
1546 snd_iprintf(buffer, " (muted)\n");
1547 } else {
1548 snd_iprintf(buffer, "\n");
1549 }
1550
1551 /* master output frequency */
1552 if (!
1553 ((!(rme32->wcreg & RME32_WCR_FREQ_0))
1554 && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
1555 snd_iprintf(buffer, " sample rate: %d Hz\n",
1556 snd_rme32_playback_getrate(rme32));
1557 }
1558 if (rme32->rcreg & RME32_RCR_KMODE) {
1559 snd_iprintf(buffer, " sample clock source: AutoSync\n");
1560 } else {
1561 snd_iprintf(buffer, " sample clock source: Internal\n");
1562 }
1563 if (rme32->wcreg & RME32_WCR_PRO) {
1564 snd_iprintf(buffer, " format: AES/EBU (professional)\n");
1565 } else {
1566 snd_iprintf(buffer, " format: IEC958 (consumer)\n");
1567 }
1568 if (rme32->wcreg & RME32_WCR_EMP) {
1569 snd_iprintf(buffer, " emphasis: on\n");
1570 } else {
1571 snd_iprintf(buffer, " emphasis: off\n");
1572 }
1573 }
1574
1575 static void snd_rme32_proc_init(struct rme32 *rme32)
1576 {
1577 struct snd_info_entry *entry;
1578
1579 if (! snd_card_proc_new(rme32->card, "rme32", &entry))
1580 snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read);
1581 }
1582
1583 /*
1584 * control interface
1585 */
1586
1587 #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
1588
1589 static int
1590 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
1591 struct snd_ctl_elem_value *ucontrol)
1592 {
1593 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1594
1595 spin_lock_irq(&rme32->lock);
1596 ucontrol->value.integer.value[0] =
1597 rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
1598 spin_unlock_irq(&rme32->lock);
1599 return 0;
1600 }
1601 static int
1602 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
1603 struct snd_ctl_elem_value *ucontrol)
1604 {
1605 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1606 unsigned int val;
1607 int change;
1608
1609 val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
1610 spin_lock_irq(&rme32->lock);
1611 val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
1612 change = val != rme32->wcreg;
1613 if (ucontrol->value.integer.value[0])
1614 val &= ~RME32_WCR_MUTE;
1615 else
1616 val |= RME32_WCR_MUTE;
1617 rme32->wcreg = val;
1618 writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1619 spin_unlock_irq(&rme32->lock);
1620 return change;
1621 }
1622
1623 static int
1624 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
1625 struct snd_ctl_elem_info *uinfo)
1626 {
1627 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1628 static const char * const texts[4] = {
1629 "Optical", "Coaxial", "Internal", "XLR"
1630 };
1631 int num_items;
1632
1633 switch (rme32->pci->device) {
1634 case PCI_DEVICE_ID_RME_DIGI32:
1635 case PCI_DEVICE_ID_RME_DIGI32_8:
1636 num_items = 3;
1637 break;
1638 case PCI_DEVICE_ID_RME_DIGI32_PRO:
1639 num_items = 4;
1640 break;
1641 default:
1642 snd_BUG();
1643 return -EINVAL;
1644 }
1645 return snd_ctl_enum_info(uinfo, 1, num_items, texts);
1646 }
1647 static int
1648 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
1649 struct snd_ctl_elem_value *ucontrol)
1650 {
1651 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1652 unsigned int items = 3;
1653
1654 spin_lock_irq(&rme32->lock);
1655 ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
1656
1657 switch (rme32->pci->device) {
1658 case PCI_DEVICE_ID_RME_DIGI32:
1659 case PCI_DEVICE_ID_RME_DIGI32_8:
1660 items = 3;
1661 break;
1662 case PCI_DEVICE_ID_RME_DIGI32_PRO:
1663 items = 4;
1664 break;
1665 default:
1666 snd_BUG();
1667 break;
1668 }
1669 if (ucontrol->value.enumerated.item[0] >= items) {
1670 ucontrol->value.enumerated.item[0] = items - 1;
1671 }
1672
1673 spin_unlock_irq(&rme32->lock);
1674 return 0;
1675 }
1676 static int
1677 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
1678 struct snd_ctl_elem_value *ucontrol)
1679 {
1680 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1681 unsigned int val;
1682 int change, items = 3;
1683
1684 switch (rme32->pci->device) {
1685 case PCI_DEVICE_ID_RME_DIGI32:
1686 case PCI_DEVICE_ID_RME_DIGI32_8:
1687 items = 3;
1688 break;
1689 case PCI_DEVICE_ID_RME_DIGI32_PRO:
1690 items = 4;
1691 break;
1692 default:
1693 snd_BUG();
1694 break;
1695 }
1696 val = ucontrol->value.enumerated.item[0] % items;
1697
1698 spin_lock_irq(&rme32->lock);
1699 change = val != (unsigned int)snd_rme32_getinputtype(rme32);
1700 snd_rme32_setinputtype(rme32, val);
1701 spin_unlock_irq(&rme32->lock);
1702 return change;
1703 }
1704
1705 static int
1706 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
1707 struct snd_ctl_elem_info *uinfo)
1708 {
1709 static const char * const texts[4] = { "AutoSync",
1710 "Internal 32.0kHz",
1711 "Internal 44.1kHz",
1712 "Internal 48.0kHz" };
1713
1714 return snd_ctl_enum_info(uinfo, 1, 4, texts);
1715 }
1716 static int
1717 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
1718 struct snd_ctl_elem_value *ucontrol)
1719 {
1720 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1721
1722 spin_lock_irq(&rme32->lock);
1723 ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
1724 spin_unlock_irq(&rme32->lock);
1725 return 0;
1726 }
1727 static int
1728 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
1729 struct snd_ctl_elem_value *ucontrol)
1730 {
1731 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1732 unsigned int val;
1733 int change;
1734
1735 val = ucontrol->value.enumerated.item[0] % 3;
1736 spin_lock_irq(&rme32->lock);
1737 change = val != (unsigned int)snd_rme32_getclockmode(rme32);
1738 snd_rme32_setclockmode(rme32, val);
1739 spin_unlock_irq(&rme32->lock);
1740 return change;
1741 }
1742
1743 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
1744 {
1745 u32 val = 0;
1746 val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
1747 if (val & RME32_WCR_PRO)
1748 val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1749 else
1750 val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1751 return val;
1752 }
1753
1754 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
1755 {
1756 aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
1757 if (val & RME32_WCR_PRO)
1758 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
1759 else
1760 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
1761 }
1762
1763 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
1764 struct snd_ctl_elem_info *uinfo)
1765 {
1766 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1767 uinfo->count = 1;
1768 return 0;
1769 }
1770
1771 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
1772 struct snd_ctl_elem_value *ucontrol)
1773 {
1774 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1775
1776 snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1777 rme32->wcreg_spdif);
1778 return 0;
1779 }
1780
1781 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
1782 struct snd_ctl_elem_value *ucontrol)
1783 {
1784 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1785 int change;
1786 u32 val;
1787
1788 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1789 spin_lock_irq(&rme32->lock);
1790 change = val != rme32->wcreg_spdif;
1791 rme32->wcreg_spdif = val;
1792 spin_unlock_irq(&rme32->lock);
1793 return change;
1794 }
1795
1796 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
1797 struct snd_ctl_elem_info *uinfo)
1798 {
1799 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1800 uinfo->count = 1;
1801 return 0;
1802 }
1803
1804 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
1805 struct snd_ctl_elem_value *
1806 ucontrol)
1807 {
1808 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1809
1810 snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1811 rme32->wcreg_spdif_stream);
1812 return 0;
1813 }
1814
1815 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
1816 struct snd_ctl_elem_value *
1817 ucontrol)
1818 {
1819 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1820 int change;
1821 u32 val;
1822
1823 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1824 spin_lock_irq(&rme32->lock);
1825 change = val != rme32->wcreg_spdif_stream;
1826 rme32->wcreg_spdif_stream = val;
1827 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
1828 rme32->wcreg |= val;
1829 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1830 spin_unlock_irq(&rme32->lock);
1831 return change;
1832 }
1833
1834 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
1835 struct snd_ctl_elem_info *uinfo)
1836 {
1837 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1838 uinfo->count = 1;
1839 return 0;
1840 }
1841
1842 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
1843 struct snd_ctl_elem_value *
1844 ucontrol)
1845 {
1846 ucontrol->value.iec958.status[0] = kcontrol->private_value;
1847 return 0;
1848 }
1849
1850 static struct snd_kcontrol_new snd_rme32_controls[] = {
1851 {
1852 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1853 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1854 .info = snd_rme32_control_spdif_info,
1855 .get = snd_rme32_control_spdif_get,
1856 .put = snd_rme32_control_spdif_put
1857 },
1858 {
1859 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1860 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1861 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
1862 .info = snd_rme32_control_spdif_stream_info,
1863 .get = snd_rme32_control_spdif_stream_get,
1864 .put = snd_rme32_control_spdif_stream_put
1865 },
1866 {
1867 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1868 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1869 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
1870 .info = snd_rme32_control_spdif_mask_info,
1871 .get = snd_rme32_control_spdif_mask_get,
1872 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
1873 },
1874 {
1875 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1876 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1877 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
1878 .info = snd_rme32_control_spdif_mask_info,
1879 .get = snd_rme32_control_spdif_mask_get,
1880 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
1881 },
1882 {
1883 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1884 .name = "Input Connector",
1885 .info = snd_rme32_info_inputtype_control,
1886 .get = snd_rme32_get_inputtype_control,
1887 .put = snd_rme32_put_inputtype_control
1888 },
1889 {
1890 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1891 .name = "Loopback Input",
1892 .info = snd_rme32_info_loopback_control,
1893 .get = snd_rme32_get_loopback_control,
1894 .put = snd_rme32_put_loopback_control
1895 },
1896 {
1897 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1898 .name = "Sample Clock Source",
1899 .info = snd_rme32_info_clockmode_control,
1900 .get = snd_rme32_get_clockmode_control,
1901 .put = snd_rme32_put_clockmode_control
1902 }
1903 };
1904
1905 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
1906 {
1907 int idx, err;
1908 struct snd_kcontrol *kctl;
1909
1910 for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
1911 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0)
1912 return err;
1913 if (idx == 1) /* IEC958 (S/PDIF) Stream */
1914 rme32->spdif_ctl = kctl;
1915 }
1916
1917 return 0;
1918 }
1919
1920 /*
1921 * Card initialisation
1922 */
1923
1924 static void snd_rme32_card_free(struct snd_card *card)
1925 {
1926 snd_rme32_free(card->private_data);
1927 }
1928
1929 static int
1930 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1931 {
1932 static int dev;
1933 struct rme32 *rme32;
1934 struct snd_card *card;
1935 int err;
1936
1937 if (dev >= SNDRV_CARDS) {
1938 return -ENODEV;
1939 }
1940 if (!enable[dev]) {
1941 dev++;
1942 return -ENOENT;
1943 }
1944
1945 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
1946 sizeof(struct rme32), &card);
1947 if (err < 0)
1948 return err;
1949 card->private_free = snd_rme32_card_free;
1950 rme32 = (struct rme32 *) card->private_data;
1951 rme32->card = card;
1952 rme32->pci = pci;
1953 if (fullduplex[dev])
1954 rme32->fullduplex_mode = 1;
1955 if ((err = snd_rme32_create(rme32)) < 0) {
1956 snd_card_free(card);
1957 return err;
1958 }
1959
1960 strcpy(card->driver, "Digi32");
1961 switch (rme32->pci->device) {
1962 case PCI_DEVICE_ID_RME_DIGI32:
1963 strcpy(card->shortname, "RME Digi32");
1964 break;
1965 case PCI_DEVICE_ID_RME_DIGI32_8:
1966 strcpy(card->shortname, "RME Digi32/8");
1967 break;
1968 case PCI_DEVICE_ID_RME_DIGI32_PRO:
1969 strcpy(card->shortname, "RME Digi32 PRO");
1970 break;
1971 }
1972 sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
1973 card->shortname, rme32->rev, rme32->port, rme32->irq);
1974
1975 if ((err = snd_card_register(card)) < 0) {
1976 snd_card_free(card);
1977 return err;
1978 }
1979 pci_set_drvdata(pci, card);
1980 dev++;
1981 return 0;
1982 }
1983
1984 static void snd_rme32_remove(struct pci_dev *pci)
1985 {
1986 snd_card_free(pci_get_drvdata(pci));
1987 }
1988
1989 static struct pci_driver rme32_driver = {
1990 .name = KBUILD_MODNAME,
1991 .id_table = snd_rme32_ids,
1992 .probe = snd_rme32_probe,
1993 .remove = snd_rme32_remove,
1994 };
1995
1996 module_pci_driver(rme32_driver);