]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/soc/atmel/atmel_ssc_dai.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / sound / soc / atmel / atmel_ssc_dai.c
1 /*
2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
3 *
4 * Copyright (C) 2005 SAN People
5 * Copyright (C) 2008 Atmel
6 *
7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8 * ATMEL CORP.
9 *
10 * Based on at91-ssc.c by
11 * Frank Mandarino <fmandarino@endrelia.com>
12 * Based on pxa2xx Platform drivers by
13 * Liam Girdwood <lrg@slimlogic.co.uk>
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
37
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
44
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
47
48
49 #define NUM_SSC_DEVICES 3
50
51 /*
52 * SSC PDC registers required by the PCM DMA engine.
53 */
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 .xpr = ATMEL_PDC_TPR,
56 .xcr = ATMEL_PDC_TCR,
57 .xnpr = ATMEL_PDC_TNPR,
58 .xncr = ATMEL_PDC_TNCR,
59 };
60
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 .xpr = ATMEL_PDC_RPR,
63 .xcr = ATMEL_PDC_RCR,
64 .xnpr = ATMEL_PDC_RNPR,
65 .xncr = ATMEL_PDC_RNCR,
66 };
67
68 /*
69 * SSC & PDC status bits for transmit and receive.
70 */
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 .ssc_enable = SSC_BIT(CR_TXEN),
73 .ssc_disable = SSC_BIT(CR_TXDIS),
74 .ssc_endx = SSC_BIT(SR_ENDTX),
75 .ssc_endbuf = SSC_BIT(SR_TXBUFE),
76 .ssc_error = SSC_BIT(SR_OVRUN),
77 .pdc_enable = ATMEL_PDC_TXTEN,
78 .pdc_disable = ATMEL_PDC_TXTDIS,
79 };
80
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 .ssc_enable = SSC_BIT(CR_RXEN),
83 .ssc_disable = SSC_BIT(CR_RXDIS),
84 .ssc_endx = SSC_BIT(SR_ENDRX),
85 .ssc_endbuf = SSC_BIT(SR_RXBUFF),
86 .ssc_error = SSC_BIT(SR_OVRUN),
87 .pdc_enable = ATMEL_PDC_RXTEN,
88 .pdc_disable = ATMEL_PDC_RXTDIS,
89 };
90
91
92 /*
93 * DMA parameters.
94 */
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
96 {{
97 .name = "SSC0 PCM out",
98 .pdc = &pdc_tx_reg,
99 .mask = &ssc_tx_mask,
100 },
101 {
102 .name = "SSC0 PCM in",
103 .pdc = &pdc_rx_reg,
104 .mask = &ssc_rx_mask,
105 } },
106 {{
107 .name = "SSC1 PCM out",
108 .pdc = &pdc_tx_reg,
109 .mask = &ssc_tx_mask,
110 },
111 {
112 .name = "SSC1 PCM in",
113 .pdc = &pdc_rx_reg,
114 .mask = &ssc_rx_mask,
115 } },
116 {{
117 .name = "SSC2 PCM out",
118 .pdc = &pdc_tx_reg,
119 .mask = &ssc_tx_mask,
120 },
121 {
122 .name = "SSC2 PCM in",
123 .pdc = &pdc_rx_reg,
124 .mask = &ssc_rx_mask,
125 } },
126 };
127
128
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
130 {
131 .name = "ssc0",
132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 .dir_mask = SSC_DIR_MASK_UNUSED,
134 .initialized = 0,
135 },
136 {
137 .name = "ssc1",
138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 .dir_mask = SSC_DIR_MASK_UNUSED,
140 .initialized = 0,
141 },
142 {
143 .name = "ssc2",
144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 .dir_mask = SSC_DIR_MASK_UNUSED,
146 .initialized = 0,
147 },
148 };
149
150
151 /*
152 * SSC interrupt handler. Passes PDC interrupts to the DMA
153 * interrupt handler in the PCM driver.
154 */
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
156 {
157 struct atmel_ssc_info *ssc_p = dev_id;
158 struct atmel_pcm_dma_params *dma_params;
159 u32 ssc_sr;
160 u32 ssc_substream_mask;
161 int i;
162
163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
165
166 /*
167 * Loop through the substreams attached to this SSC. If
168 * a DMA-related interrupt occurred on that substream, call
169 * the DMA interrupt handler function, if one has been
170 * registered in the dma_params structure by the PCM driver.
171 */
172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 dma_params = ssc_p->dma_params[i];
174
175 if ((dma_params != NULL) &&
176 (dma_params->dma_intr_handler != NULL)) {
177 ssc_substream_mask = (dma_params->mask->ssc_endx |
178 dma_params->mask->ssc_endbuf);
179 if (ssc_sr & ssc_substream_mask) {
180 dma_params->dma_intr_handler(ssc_sr,
181 dma_params->
182 substream);
183 }
184 }
185 }
186
187 return IRQ_HANDLED;
188 }
189
190 /*
191 * When the bit clock is input, limit the maximum rate according to the
192 * Serial Clock Ratio Considerations section from the SSC documentation:
193 *
194 * The Transmitter and the Receiver can be programmed to operate
195 * with the clock signals provided on either the TK or RK pins.
196 * This allows the SSC to support many slave-mode data transfers.
197 * In this case, the maximum clock speed allowed on the RK pin is:
198 * - Peripheral clock divided by 2 if Receiver Frame Synchro is input
199 * - Peripheral clock divided by 3 if Receiver Frame Synchro is output
200 * In addition, the maximum clock speed allowed on the TK pin is:
201 * - Peripheral clock divided by 6 if Transmit Frame Synchro is input
202 * - Peripheral clock divided by 2 if Transmit Frame Synchro is output
203 *
204 * When the bit clock is output, limit the rate according to the
205 * SSC divider restrictions.
206 */
207 static int atmel_ssc_hw_rule_rate(struct snd_pcm_hw_params *params,
208 struct snd_pcm_hw_rule *rule)
209 {
210 struct atmel_ssc_info *ssc_p = rule->private;
211 struct ssc_device *ssc = ssc_p->ssc;
212 struct snd_interval *i = hw_param_interval(params, rule->var);
213 struct snd_interval t;
214 struct snd_ratnum r = {
215 .den_min = 1,
216 .den_max = 4095,
217 .den_step = 1,
218 };
219 unsigned int num = 0, den = 0;
220 int frame_size;
221 int mck_div = 2;
222 int ret;
223
224 frame_size = snd_soc_params_to_frame_size(params);
225 if (frame_size < 0)
226 return frame_size;
227
228 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
229 case SND_SOC_DAIFMT_CBM_CFS:
230 if ((ssc_p->dir_mask & SSC_DIR_MASK_CAPTURE)
231 && ssc->clk_from_rk_pin)
232 /* Receiver Frame Synchro (i.e. capture)
233 * is output (format is _CFS) and the RK pin
234 * is used for input (format is _CBM_).
235 */
236 mck_div = 3;
237 break;
238
239 case SND_SOC_DAIFMT_CBM_CFM:
240 if ((ssc_p->dir_mask & SSC_DIR_MASK_PLAYBACK)
241 && !ssc->clk_from_rk_pin)
242 /* Transmit Frame Synchro (i.e. playback)
243 * is input (format is _CFM) and the TK pin
244 * is used for input (format _CBM_ but not
245 * using the RK pin).
246 */
247 mck_div = 6;
248 break;
249 }
250
251 switch (ssc_p->daifmt & SND_SOC_DAIFMT_MASTER_MASK) {
252 case SND_SOC_DAIFMT_CBS_CFS:
253 r.num = ssc_p->mck_rate / mck_div / frame_size;
254
255 ret = snd_interval_ratnum(i, 1, &r, &num, &den);
256 if (ret >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
257 params->rate_num = num;
258 params->rate_den = den;
259 }
260 break;
261
262 case SND_SOC_DAIFMT_CBM_CFS:
263 case SND_SOC_DAIFMT_CBM_CFM:
264 t.min = 8000;
265 t.max = ssc_p->mck_rate / mck_div / frame_size;
266 t.openmin = t.openmax = 0;
267 t.integer = 0;
268 ret = snd_interval_refine(i, &t);
269 break;
270
271 default:
272 ret = -EINVAL;
273 break;
274 }
275
276 return ret;
277 }
278
279 /*-------------------------------------------------------------------------*\
280 * DAI functions
281 \*-------------------------------------------------------------------------*/
282 /*
283 * Startup. Only that one substream allowed in each direction.
284 */
285 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
286 struct snd_soc_dai *dai)
287 {
288 struct platform_device *pdev = to_platform_device(dai->dev);
289 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
290 struct atmel_pcm_dma_params *dma_params;
291 int dir, dir_mask;
292 int ret;
293
294 pr_debug("atmel_ssc_startup: SSC_SR=0x%x\n",
295 ssc_readl(ssc_p->ssc->regs, SR));
296
297 /* Enable PMC peripheral clock for this SSC */
298 pr_debug("atmel_ssc_dai: Starting clock\n");
299 clk_enable(ssc_p->ssc->clk);
300 ssc_p->mck_rate = clk_get_rate(ssc_p->ssc->clk);
301
302 /* Reset the SSC unless initialized to keep it in a clean state */
303 if (!ssc_p->initialized)
304 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
305
306 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
307 dir = 0;
308 dir_mask = SSC_DIR_MASK_PLAYBACK;
309 } else {
310 dir = 1;
311 dir_mask = SSC_DIR_MASK_CAPTURE;
312 }
313
314 ret = snd_pcm_hw_rule_add(substream->runtime, 0,
315 SNDRV_PCM_HW_PARAM_RATE,
316 atmel_ssc_hw_rule_rate,
317 ssc_p,
318 SNDRV_PCM_HW_PARAM_FRAME_BITS,
319 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
320 if (ret < 0) {
321 dev_err(dai->dev, "Failed to specify rate rule: %d\n", ret);
322 return ret;
323 }
324
325 dma_params = &ssc_dma_params[pdev->id][dir];
326 dma_params->ssc = ssc_p->ssc;
327 dma_params->substream = substream;
328
329 ssc_p->dma_params[dir] = dma_params;
330
331 snd_soc_dai_set_dma_data(dai, substream, dma_params);
332
333 spin_lock_irq(&ssc_p->lock);
334 if (ssc_p->dir_mask & dir_mask) {
335 spin_unlock_irq(&ssc_p->lock);
336 return -EBUSY;
337 }
338 ssc_p->dir_mask |= dir_mask;
339 spin_unlock_irq(&ssc_p->lock);
340
341 return 0;
342 }
343
344 /*
345 * Shutdown. Clear DMA parameters and shutdown the SSC if there
346 * are no other substreams open.
347 */
348 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
349 struct snd_soc_dai *dai)
350 {
351 struct platform_device *pdev = to_platform_device(dai->dev);
352 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
353 struct atmel_pcm_dma_params *dma_params;
354 int dir, dir_mask;
355
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
357 dir = 0;
358 else
359 dir = 1;
360
361 dma_params = ssc_p->dma_params[dir];
362
363 if (dma_params != NULL) {
364 dma_params->ssc = NULL;
365 dma_params->substream = NULL;
366 ssc_p->dma_params[dir] = NULL;
367 }
368
369 dir_mask = 1 << dir;
370
371 spin_lock_irq(&ssc_p->lock);
372 ssc_p->dir_mask &= ~dir_mask;
373 if (!ssc_p->dir_mask) {
374 if (ssc_p->initialized) {
375 free_irq(ssc_p->ssc->irq, ssc_p);
376 ssc_p->initialized = 0;
377 }
378
379 /* Reset the SSC */
380 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
381 /* Clear the SSC dividers */
382 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
383 }
384 spin_unlock_irq(&ssc_p->lock);
385
386 /* Shutdown the SSC clock. */
387 pr_debug("atmel_ssc_dai: Stopping clock\n");
388 clk_disable(ssc_p->ssc->clk);
389 }
390
391
392 /*
393 * Record the DAI format for use in hw_params().
394 */
395 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
396 unsigned int fmt)
397 {
398 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
399 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
400
401 ssc_p->daifmt = fmt;
402 return 0;
403 }
404
405 /*
406 * Record SSC clock dividers for use in hw_params().
407 */
408 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
409 int div_id, int div)
410 {
411 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
412 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
413
414 switch (div_id) {
415 case ATMEL_SSC_CMR_DIV:
416 /*
417 * The same master clock divider is used for both
418 * transmit and receive, so if a value has already
419 * been set, it must match this value.
420 */
421 if (ssc_p->dir_mask !=
422 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
423 ssc_p->cmr_div = div;
424 else if (ssc_p->cmr_div == 0)
425 ssc_p->cmr_div = div;
426 else
427 if (div != ssc_p->cmr_div)
428 return -EBUSY;
429 break;
430
431 case ATMEL_SSC_TCMR_PERIOD:
432 ssc_p->tcmr_period = div;
433 break;
434
435 case ATMEL_SSC_RCMR_PERIOD:
436 ssc_p->rcmr_period = div;
437 break;
438
439 default:
440 return -EINVAL;
441 }
442
443 return 0;
444 }
445
446 /*
447 * Configure the SSC.
448 */
449 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
450 struct snd_pcm_hw_params *params,
451 struct snd_soc_dai *dai)
452 {
453 struct platform_device *pdev = to_platform_device(dai->dev);
454 int id = pdev->id;
455 struct atmel_ssc_info *ssc_p = &ssc_info[id];
456 struct ssc_device *ssc = ssc_p->ssc;
457 struct atmel_pcm_dma_params *dma_params;
458 int dir, channels, bits;
459 u32 tfmr, rfmr, tcmr, rcmr;
460 int ret;
461 int fslen, fslen_ext;
462
463 /*
464 * Currently, there is only one set of dma params for
465 * each direction. If more are added, this code will
466 * have to be changed to select the proper set.
467 */
468 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
469 dir = 0;
470 else
471 dir = 1;
472
473 dma_params = ssc_p->dma_params[dir];
474
475 channels = params_channels(params);
476
477 /*
478 * Determine sample size in bits and the PDC increment.
479 */
480 switch (params_format(params)) {
481 case SNDRV_PCM_FORMAT_S8:
482 bits = 8;
483 dma_params->pdc_xfer_size = 1;
484 break;
485 case SNDRV_PCM_FORMAT_S16_LE:
486 bits = 16;
487 dma_params->pdc_xfer_size = 2;
488 break;
489 case SNDRV_PCM_FORMAT_S24_LE:
490 bits = 24;
491 dma_params->pdc_xfer_size = 4;
492 break;
493 case SNDRV_PCM_FORMAT_S32_LE:
494 bits = 32;
495 dma_params->pdc_xfer_size = 4;
496 break;
497 default:
498 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
499 return -EINVAL;
500 }
501
502 /*
503 * Compute SSC register settings.
504 */
505 switch (ssc_p->daifmt
506 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
507
508 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
509 /*
510 * I2S format, SSC provides BCLK and LRC clocks.
511 *
512 * The SSC transmit and receive clocks are generated
513 * from the MCK divider, and the BCLK signal
514 * is output on the SSC TK line.
515 */
516
517 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
518 dev_err(dai->dev,
519 "sample size %d is too large for SSC device\n",
520 bits);
521 return -EINVAL;
522 }
523
524 fslen_ext = (bits - 1) / 16;
525 fslen = (bits - 1) % 16;
526
527 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
528 | SSC_BF(RCMR_STTDLY, START_DELAY)
529 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
530 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
531 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
532 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
533
534 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
535 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
536 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
537 | SSC_BF(RFMR_FSLEN, fslen)
538 | SSC_BF(RFMR_DATNB, (channels - 1))
539 | SSC_BIT(RFMR_MSBF)
540 | SSC_BF(RFMR_LOOP, 0)
541 | SSC_BF(RFMR_DATLEN, (bits - 1));
542
543 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
544 | SSC_BF(TCMR_STTDLY, START_DELAY)
545 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
546 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
547 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
548 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
549
550 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
551 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
552 | SSC_BF(TFMR_FSDEN, 0)
553 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
554 | SSC_BF(TFMR_FSLEN, fslen)
555 | SSC_BF(TFMR_DATNB, (channels - 1))
556 | SSC_BIT(TFMR_MSBF)
557 | SSC_BF(TFMR_DATDEF, 0)
558 | SSC_BF(TFMR_DATLEN, (bits - 1));
559 break;
560
561 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
562 /* I2S format, CODEC supplies BCLK and LRC clocks. */
563 rcmr = SSC_BF(RCMR_PERIOD, 0)
564 | SSC_BF(RCMR_STTDLY, START_DELAY)
565 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
566 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
567 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
568 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
569 SSC_CKS_PIN : SSC_CKS_CLOCK);
570
571 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
572 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
573 | SSC_BF(RFMR_FSLEN, 0)
574 | SSC_BF(RFMR_DATNB, (channels - 1))
575 | SSC_BIT(RFMR_MSBF)
576 | SSC_BF(RFMR_LOOP, 0)
577 | SSC_BF(RFMR_DATLEN, (bits - 1));
578
579 tcmr = SSC_BF(TCMR_PERIOD, 0)
580 | SSC_BF(TCMR_STTDLY, START_DELAY)
581 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
582 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
583 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
584 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
585 SSC_CKS_CLOCK : SSC_CKS_PIN);
586
587 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
588 | SSC_BF(TFMR_FSDEN, 0)
589 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
590 | SSC_BF(TFMR_FSLEN, 0)
591 | SSC_BF(TFMR_DATNB, (channels - 1))
592 | SSC_BIT(TFMR_MSBF)
593 | SSC_BF(TFMR_DATDEF, 0)
594 | SSC_BF(TFMR_DATLEN, (bits - 1));
595 break;
596
597 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFS:
598 /* I2S format, CODEC supplies BCLK, SSC supplies LRCLK. */
599 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
600 dev_err(dai->dev,
601 "sample size %d is too large for SSC device\n",
602 bits);
603 return -EINVAL;
604 }
605
606 fslen_ext = (bits - 1) / 16;
607 fslen = (bits - 1) % 16;
608
609 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
610 | SSC_BF(RCMR_STTDLY, START_DELAY)
611 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
612 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
613 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
614 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
615 SSC_CKS_PIN : SSC_CKS_CLOCK);
616
617 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
618 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
619 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
620 | SSC_BF(RFMR_FSLEN, fslen)
621 | SSC_BF(RFMR_DATNB, (channels - 1))
622 | SSC_BIT(RFMR_MSBF)
623 | SSC_BF(RFMR_LOOP, 0)
624 | SSC_BF(RFMR_DATLEN, (bits - 1));
625
626 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
627 | SSC_BF(TCMR_STTDLY, START_DELAY)
628 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
629 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
630 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
631 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
632 SSC_CKS_CLOCK : SSC_CKS_PIN);
633
634 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
635 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_NEGATIVE)
636 | SSC_BF(TFMR_FSDEN, 0)
637 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
638 | SSC_BF(TFMR_FSLEN, fslen)
639 | SSC_BF(TFMR_DATNB, (channels - 1))
640 | SSC_BIT(TFMR_MSBF)
641 | SSC_BF(TFMR_DATDEF, 0)
642 | SSC_BF(TFMR_DATLEN, (bits - 1));
643 break;
644
645 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
646 /*
647 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
648 *
649 * The SSC transmit and receive clocks are generated from the
650 * MCK divider, and the BCLK signal is output
651 * on the SSC TK line.
652 */
653 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
654 | SSC_BF(RCMR_STTDLY, 1)
655 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
656 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
657 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
658 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
659
660 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
661 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
662 | SSC_BF(RFMR_FSLEN, 0)
663 | SSC_BF(RFMR_DATNB, (channels - 1))
664 | SSC_BIT(RFMR_MSBF)
665 | SSC_BF(RFMR_LOOP, 0)
666 | SSC_BF(RFMR_DATLEN, (bits - 1));
667
668 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
669 | SSC_BF(TCMR_STTDLY, 1)
670 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
671 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
672 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
673 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
674
675 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
676 | SSC_BF(TFMR_FSDEN, 0)
677 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
678 | SSC_BF(TFMR_FSLEN, 0)
679 | SSC_BF(TFMR_DATNB, (channels - 1))
680 | SSC_BIT(TFMR_MSBF)
681 | SSC_BF(TFMR_DATDEF, 0)
682 | SSC_BF(TFMR_DATLEN, (bits - 1));
683 break;
684
685 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
686 /*
687 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
688 *
689 * Data is transferred on first BCLK after LRC pulse rising
690 * edge.If stereo, the right channel data is contiguous with
691 * the left channel data.
692 */
693 rcmr = SSC_BF(RCMR_PERIOD, 0)
694 | SSC_BF(RCMR_STTDLY, START_DELAY)
695 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
696 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
697 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
698 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
699 SSC_CKS_PIN : SSC_CKS_CLOCK);
700
701 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
702 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
703 | SSC_BF(RFMR_FSLEN, 0)
704 | SSC_BF(RFMR_DATNB, (channels - 1))
705 | SSC_BIT(RFMR_MSBF)
706 | SSC_BF(RFMR_LOOP, 0)
707 | SSC_BF(RFMR_DATLEN, (bits - 1));
708
709 tcmr = SSC_BF(TCMR_PERIOD, 0)
710 | SSC_BF(TCMR_STTDLY, START_DELAY)
711 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
712 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
713 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
714 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
715 SSC_CKS_CLOCK : SSC_CKS_PIN);
716
717 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
718 | SSC_BF(TFMR_FSDEN, 0)
719 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
720 | SSC_BF(TFMR_FSLEN, 0)
721 | SSC_BF(TFMR_DATNB, (channels - 1))
722 | SSC_BIT(TFMR_MSBF)
723 | SSC_BF(TFMR_DATDEF, 0)
724 | SSC_BF(TFMR_DATLEN, (bits - 1));
725 break;
726
727 default:
728 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
729 ssc_p->daifmt);
730 return -EINVAL;
731 }
732 pr_debug("atmel_ssc_hw_params: "
733 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
734 rcmr, rfmr, tcmr, tfmr);
735
736 if (!ssc_p->initialized) {
737 if (!ssc_p->ssc->pdata->use_dma) {
738 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
739 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
740 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
741 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
742
743 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
744 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
745 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
746 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
747 }
748
749 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
750 ssc_p->name, ssc_p);
751 if (ret < 0) {
752 printk(KERN_WARNING
753 "atmel_ssc_dai: request_irq failure\n");
754 pr_debug("Atmel_ssc_dai: Stoping clock\n");
755 clk_disable(ssc_p->ssc->clk);
756 return ret;
757 }
758
759 ssc_p->initialized = 1;
760 }
761
762 /* set SSC clock mode register */
763 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
764
765 /* set receive clock mode and format */
766 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
767 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
768
769 /* set transmit clock mode and format */
770 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
771 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
772
773 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
774 return 0;
775 }
776
777
778 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
779 struct snd_soc_dai *dai)
780 {
781 struct platform_device *pdev = to_platform_device(dai->dev);
782 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
783 struct atmel_pcm_dma_params *dma_params;
784 int dir;
785
786 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
787 dir = 0;
788 else
789 dir = 1;
790
791 dma_params = ssc_p->dma_params[dir];
792
793 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
794 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
795
796 pr_debug("%s enabled SSC_SR=0x%08x\n",
797 dir ? "receive" : "transmit",
798 ssc_readl(ssc_p->ssc->regs, SR));
799 return 0;
800 }
801
802 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
803 int cmd, struct snd_soc_dai *dai)
804 {
805 struct platform_device *pdev = to_platform_device(dai->dev);
806 struct atmel_ssc_info *ssc_p = &ssc_info[pdev->id];
807 struct atmel_pcm_dma_params *dma_params;
808 int dir;
809
810 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
811 dir = 0;
812 else
813 dir = 1;
814
815 dma_params = ssc_p->dma_params[dir];
816
817 switch (cmd) {
818 case SNDRV_PCM_TRIGGER_START:
819 case SNDRV_PCM_TRIGGER_RESUME:
820 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
821 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
822 break;
823 default:
824 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
825 break;
826 }
827
828 return 0;
829 }
830
831 #ifdef CONFIG_PM
832 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
833 {
834 struct atmel_ssc_info *ssc_p;
835 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
836
837 if (!cpu_dai->active)
838 return 0;
839
840 ssc_p = &ssc_info[pdev->id];
841
842 /* Save the status register before disabling transmit and receive */
843 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
844 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
845
846 /* Save the current interrupt mask, then disable unmasked interrupts */
847 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
848 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
849
850 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
851 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
852 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
853 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
854 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
855
856 return 0;
857 }
858
859
860
861 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
862 {
863 struct atmel_ssc_info *ssc_p;
864 struct platform_device *pdev = to_platform_device(cpu_dai->dev);
865 u32 cr;
866
867 if (!cpu_dai->active)
868 return 0;
869
870 ssc_p = &ssc_info[pdev->id];
871
872 /* restore SSC register settings */
873 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
874 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
875 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
876 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
877 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
878
879 /* re-enable interrupts */
880 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
881
882 /* Re-enable receive and transmit as appropriate */
883 cr = 0;
884 cr |=
885 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
886 cr |=
887 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
888 ssc_writel(ssc_p->ssc->regs, CR, cr);
889
890 return 0;
891 }
892 #else /* CONFIG_PM */
893 # define atmel_ssc_suspend NULL
894 # define atmel_ssc_resume NULL
895 #endif /* CONFIG_PM */
896
897 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
898 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
899
900 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
901 .startup = atmel_ssc_startup,
902 .shutdown = atmel_ssc_shutdown,
903 .prepare = atmel_ssc_prepare,
904 .trigger = atmel_ssc_trigger,
905 .hw_params = atmel_ssc_hw_params,
906 .set_fmt = atmel_ssc_set_dai_fmt,
907 .set_clkdiv = atmel_ssc_set_dai_clkdiv,
908 };
909
910 static struct snd_soc_dai_driver atmel_ssc_dai = {
911 .suspend = atmel_ssc_suspend,
912 .resume = atmel_ssc_resume,
913 .playback = {
914 .channels_min = 1,
915 .channels_max = 2,
916 .rates = SNDRV_PCM_RATE_CONTINUOUS,
917 .rate_min = 8000,
918 .rate_max = 384000,
919 .formats = ATMEL_SSC_FORMATS,},
920 .capture = {
921 .channels_min = 1,
922 .channels_max = 2,
923 .rates = SNDRV_PCM_RATE_CONTINUOUS,
924 .rate_min = 8000,
925 .rate_max = 384000,
926 .formats = ATMEL_SSC_FORMATS,},
927 .ops = &atmel_ssc_dai_ops,
928 };
929
930 static const struct snd_soc_component_driver atmel_ssc_component = {
931 .name = "atmel-ssc",
932 };
933
934 static int asoc_ssc_init(struct device *dev)
935 {
936 struct platform_device *pdev = to_platform_device(dev);
937 struct ssc_device *ssc = platform_get_drvdata(pdev);
938 int ret;
939
940 ret = snd_soc_register_component(dev, &atmel_ssc_component,
941 &atmel_ssc_dai, 1);
942 if (ret) {
943 dev_err(dev, "Could not register DAI: %d\n", ret);
944 goto err;
945 }
946
947 if (ssc->pdata->use_dma)
948 ret = atmel_pcm_dma_platform_register(dev);
949 else
950 ret = atmel_pcm_pdc_platform_register(dev);
951
952 if (ret) {
953 dev_err(dev, "Could not register PCM: %d\n", ret);
954 goto err_unregister_dai;
955 }
956
957 return 0;
958
959 err_unregister_dai:
960 snd_soc_unregister_component(dev);
961 err:
962 return ret;
963 }
964
965 static void asoc_ssc_exit(struct device *dev)
966 {
967 struct platform_device *pdev = to_platform_device(dev);
968 struct ssc_device *ssc = platform_get_drvdata(pdev);
969
970 if (ssc->pdata->use_dma)
971 atmel_pcm_dma_platform_unregister(dev);
972 else
973 atmel_pcm_pdc_platform_unregister(dev);
974
975 snd_soc_unregister_component(dev);
976 }
977
978 /**
979 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
980 */
981 int atmel_ssc_set_audio(int ssc_id)
982 {
983 struct ssc_device *ssc;
984 int ret;
985
986 /* If we can grab the SSC briefly to parent the DAI device off it */
987 ssc = ssc_request(ssc_id);
988 if (IS_ERR(ssc)) {
989 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
990 PTR_ERR(ssc));
991 return PTR_ERR(ssc);
992 } else {
993 ssc_info[ssc_id].ssc = ssc;
994 }
995
996 ret = asoc_ssc_init(&ssc->pdev->dev);
997
998 return ret;
999 }
1000 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
1001
1002 void atmel_ssc_put_audio(int ssc_id)
1003 {
1004 struct ssc_device *ssc = ssc_info[ssc_id].ssc;
1005
1006 asoc_ssc_exit(&ssc->pdev->dev);
1007 ssc_free(ssc);
1008 }
1009 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
1010
1011 /* Module information */
1012 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
1013 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
1014 MODULE_LICENSE("GPL");