]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/soc/atmel/atmel_ssc_dai.c
Merge branch 'pci/host-generic' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / sound / soc / atmel / atmel_ssc_dai.c
1 /*
2 * atmel_ssc_dai.c -- ALSA SoC ATMEL SSC Audio Layer Platform driver
3 *
4 * Copyright (C) 2005 SAN People
5 * Copyright (C) 2008 Atmel
6 *
7 * Author: Sedji Gaouaou <sedji.gaouaou@atmel.com>
8 * ATMEL CORP.
9 *
10 * Based on at91-ssc.c by
11 * Frank Mandarino <fmandarino@endrelia.com>
12 * Based on pxa2xx Platform drivers by
13 * Liam Girdwood <lrg@slimlogic.co.uk>
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/interrupt.h>
33 #include <linux/device.h>
34 #include <linux/delay.h>
35 #include <linux/clk.h>
36 #include <linux/atmel_pdc.h>
37
38 #include <linux/atmel-ssc.h>
39 #include <sound/core.h>
40 #include <sound/pcm.h>
41 #include <sound/pcm_params.h>
42 #include <sound/initval.h>
43 #include <sound/soc.h>
44
45 #include "atmel-pcm.h"
46 #include "atmel_ssc_dai.h"
47
48
49 #define NUM_SSC_DEVICES 3
50
51 /*
52 * SSC PDC registers required by the PCM DMA engine.
53 */
54 static struct atmel_pdc_regs pdc_tx_reg = {
55 .xpr = ATMEL_PDC_TPR,
56 .xcr = ATMEL_PDC_TCR,
57 .xnpr = ATMEL_PDC_TNPR,
58 .xncr = ATMEL_PDC_TNCR,
59 };
60
61 static struct atmel_pdc_regs pdc_rx_reg = {
62 .xpr = ATMEL_PDC_RPR,
63 .xcr = ATMEL_PDC_RCR,
64 .xnpr = ATMEL_PDC_RNPR,
65 .xncr = ATMEL_PDC_RNCR,
66 };
67
68 /*
69 * SSC & PDC status bits for transmit and receive.
70 */
71 static struct atmel_ssc_mask ssc_tx_mask = {
72 .ssc_enable = SSC_BIT(CR_TXEN),
73 .ssc_disable = SSC_BIT(CR_TXDIS),
74 .ssc_endx = SSC_BIT(SR_ENDTX),
75 .ssc_endbuf = SSC_BIT(SR_TXBUFE),
76 .ssc_error = SSC_BIT(SR_OVRUN),
77 .pdc_enable = ATMEL_PDC_TXTEN,
78 .pdc_disable = ATMEL_PDC_TXTDIS,
79 };
80
81 static struct atmel_ssc_mask ssc_rx_mask = {
82 .ssc_enable = SSC_BIT(CR_RXEN),
83 .ssc_disable = SSC_BIT(CR_RXDIS),
84 .ssc_endx = SSC_BIT(SR_ENDRX),
85 .ssc_endbuf = SSC_BIT(SR_RXBUFF),
86 .ssc_error = SSC_BIT(SR_OVRUN),
87 .pdc_enable = ATMEL_PDC_RXTEN,
88 .pdc_disable = ATMEL_PDC_RXTDIS,
89 };
90
91
92 /*
93 * DMA parameters.
94 */
95 static struct atmel_pcm_dma_params ssc_dma_params[NUM_SSC_DEVICES][2] = {
96 {{
97 .name = "SSC0 PCM out",
98 .pdc = &pdc_tx_reg,
99 .mask = &ssc_tx_mask,
100 },
101 {
102 .name = "SSC0 PCM in",
103 .pdc = &pdc_rx_reg,
104 .mask = &ssc_rx_mask,
105 } },
106 {{
107 .name = "SSC1 PCM out",
108 .pdc = &pdc_tx_reg,
109 .mask = &ssc_tx_mask,
110 },
111 {
112 .name = "SSC1 PCM in",
113 .pdc = &pdc_rx_reg,
114 .mask = &ssc_rx_mask,
115 } },
116 {{
117 .name = "SSC2 PCM out",
118 .pdc = &pdc_tx_reg,
119 .mask = &ssc_tx_mask,
120 },
121 {
122 .name = "SSC2 PCM in",
123 .pdc = &pdc_rx_reg,
124 .mask = &ssc_rx_mask,
125 } },
126 };
127
128
129 static struct atmel_ssc_info ssc_info[NUM_SSC_DEVICES] = {
130 {
131 .name = "ssc0",
132 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[0].lock),
133 .dir_mask = SSC_DIR_MASK_UNUSED,
134 .initialized = 0,
135 },
136 {
137 .name = "ssc1",
138 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[1].lock),
139 .dir_mask = SSC_DIR_MASK_UNUSED,
140 .initialized = 0,
141 },
142 {
143 .name = "ssc2",
144 .lock = __SPIN_LOCK_UNLOCKED(ssc_info[2].lock),
145 .dir_mask = SSC_DIR_MASK_UNUSED,
146 .initialized = 0,
147 },
148 };
149
150
151 /*
152 * SSC interrupt handler. Passes PDC interrupts to the DMA
153 * interrupt handler in the PCM driver.
154 */
155 static irqreturn_t atmel_ssc_interrupt(int irq, void *dev_id)
156 {
157 struct atmel_ssc_info *ssc_p = dev_id;
158 struct atmel_pcm_dma_params *dma_params;
159 u32 ssc_sr;
160 u32 ssc_substream_mask;
161 int i;
162
163 ssc_sr = (unsigned long)ssc_readl(ssc_p->ssc->regs, SR)
164 & (unsigned long)ssc_readl(ssc_p->ssc->regs, IMR);
165
166 /*
167 * Loop through the substreams attached to this SSC. If
168 * a DMA-related interrupt occurred on that substream, call
169 * the DMA interrupt handler function, if one has been
170 * registered in the dma_params structure by the PCM driver.
171 */
172 for (i = 0; i < ARRAY_SIZE(ssc_p->dma_params); i++) {
173 dma_params = ssc_p->dma_params[i];
174
175 if ((dma_params != NULL) &&
176 (dma_params->dma_intr_handler != NULL)) {
177 ssc_substream_mask = (dma_params->mask->ssc_endx |
178 dma_params->mask->ssc_endbuf);
179 if (ssc_sr & ssc_substream_mask) {
180 dma_params->dma_intr_handler(ssc_sr,
181 dma_params->
182 substream);
183 }
184 }
185 }
186
187 return IRQ_HANDLED;
188 }
189
190
191 /*-------------------------------------------------------------------------*\
192 * DAI functions
193 \*-------------------------------------------------------------------------*/
194 /*
195 * Startup. Only that one substream allowed in each direction.
196 */
197 static int atmel_ssc_startup(struct snd_pcm_substream *substream,
198 struct snd_soc_dai *dai)
199 {
200 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
201 struct atmel_pcm_dma_params *dma_params;
202 int dir, dir_mask;
203
204 pr_debug("atmel_ssc_startup: SSC_SR=0x%u\n",
205 ssc_readl(ssc_p->ssc->regs, SR));
206
207 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
208 dir = 0;
209 dir_mask = SSC_DIR_MASK_PLAYBACK;
210 } else {
211 dir = 1;
212 dir_mask = SSC_DIR_MASK_CAPTURE;
213 }
214
215 dma_params = &ssc_dma_params[dai->id][dir];
216 dma_params->ssc = ssc_p->ssc;
217 dma_params->substream = substream;
218
219 ssc_p->dma_params[dir] = dma_params;
220
221 snd_soc_dai_set_dma_data(dai, substream, dma_params);
222
223 spin_lock_irq(&ssc_p->lock);
224 if (ssc_p->dir_mask & dir_mask) {
225 spin_unlock_irq(&ssc_p->lock);
226 return -EBUSY;
227 }
228 ssc_p->dir_mask |= dir_mask;
229 spin_unlock_irq(&ssc_p->lock);
230
231 return 0;
232 }
233
234 /*
235 * Shutdown. Clear DMA parameters and shutdown the SSC if there
236 * are no other substreams open.
237 */
238 static void atmel_ssc_shutdown(struct snd_pcm_substream *substream,
239 struct snd_soc_dai *dai)
240 {
241 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
242 struct atmel_pcm_dma_params *dma_params;
243 int dir, dir_mask;
244
245 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
246 dir = 0;
247 else
248 dir = 1;
249
250 dma_params = ssc_p->dma_params[dir];
251
252 if (dma_params != NULL) {
253 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
254 pr_debug("atmel_ssc_shutdown: %s disabled SSC_SR=0x%08x\n",
255 (dir ? "receive" : "transmit"),
256 ssc_readl(ssc_p->ssc->regs, SR));
257
258 dma_params->ssc = NULL;
259 dma_params->substream = NULL;
260 ssc_p->dma_params[dir] = NULL;
261 }
262
263 dir_mask = 1 << dir;
264
265 spin_lock_irq(&ssc_p->lock);
266 ssc_p->dir_mask &= ~dir_mask;
267 if (!ssc_p->dir_mask) {
268 if (ssc_p->initialized) {
269 /* Shutdown the SSC clock. */
270 pr_debug("atmel_ssc_dai: Stopping clock\n");
271 clk_disable(ssc_p->ssc->clk);
272
273 free_irq(ssc_p->ssc->irq, ssc_p);
274 ssc_p->initialized = 0;
275 }
276
277 /* Reset the SSC */
278 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
279 /* Clear the SSC dividers */
280 ssc_p->cmr_div = ssc_p->tcmr_period = ssc_p->rcmr_period = 0;
281 }
282 spin_unlock_irq(&ssc_p->lock);
283 }
284
285
286 /*
287 * Record the DAI format for use in hw_params().
288 */
289 static int atmel_ssc_set_dai_fmt(struct snd_soc_dai *cpu_dai,
290 unsigned int fmt)
291 {
292 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
293
294 ssc_p->daifmt = fmt;
295 return 0;
296 }
297
298 /*
299 * Record SSC clock dividers for use in hw_params().
300 */
301 static int atmel_ssc_set_dai_clkdiv(struct snd_soc_dai *cpu_dai,
302 int div_id, int div)
303 {
304 struct atmel_ssc_info *ssc_p = &ssc_info[cpu_dai->id];
305
306 switch (div_id) {
307 case ATMEL_SSC_CMR_DIV:
308 /*
309 * The same master clock divider is used for both
310 * transmit and receive, so if a value has already
311 * been set, it must match this value.
312 */
313 if (ssc_p->dir_mask !=
314 (SSC_DIR_MASK_PLAYBACK | SSC_DIR_MASK_CAPTURE))
315 ssc_p->cmr_div = div;
316 else if (ssc_p->cmr_div == 0)
317 ssc_p->cmr_div = div;
318 else
319 if (div != ssc_p->cmr_div)
320 return -EBUSY;
321 break;
322
323 case ATMEL_SSC_TCMR_PERIOD:
324 ssc_p->tcmr_period = div;
325 break;
326
327 case ATMEL_SSC_RCMR_PERIOD:
328 ssc_p->rcmr_period = div;
329 break;
330
331 default:
332 return -EINVAL;
333 }
334
335 return 0;
336 }
337
338 /*
339 * Configure the SSC.
340 */
341 static int atmel_ssc_hw_params(struct snd_pcm_substream *substream,
342 struct snd_pcm_hw_params *params,
343 struct snd_soc_dai *dai)
344 {
345 int id = dai->id;
346 struct atmel_ssc_info *ssc_p = &ssc_info[id];
347 struct ssc_device *ssc = ssc_p->ssc;
348 struct atmel_pcm_dma_params *dma_params;
349 int dir, channels, bits;
350 u32 tfmr, rfmr, tcmr, rcmr;
351 int start_event;
352 int ret;
353 int fslen, fslen_ext;
354
355 /*
356 * Currently, there is only one set of dma params for
357 * each direction. If more are added, this code will
358 * have to be changed to select the proper set.
359 */
360 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
361 dir = 0;
362 else
363 dir = 1;
364
365 dma_params = ssc_p->dma_params[dir];
366
367 channels = params_channels(params);
368
369 /*
370 * Determine sample size in bits and the PDC increment.
371 */
372 switch (params_format(params)) {
373 case SNDRV_PCM_FORMAT_S8:
374 bits = 8;
375 dma_params->pdc_xfer_size = 1;
376 break;
377 case SNDRV_PCM_FORMAT_S16_LE:
378 bits = 16;
379 dma_params->pdc_xfer_size = 2;
380 break;
381 case SNDRV_PCM_FORMAT_S24_LE:
382 bits = 24;
383 dma_params->pdc_xfer_size = 4;
384 break;
385 case SNDRV_PCM_FORMAT_S32_LE:
386 bits = 32;
387 dma_params->pdc_xfer_size = 4;
388 break;
389 default:
390 printk(KERN_WARNING "atmel_ssc_dai: unsupported PCM format");
391 return -EINVAL;
392 }
393
394 /*
395 * Compute SSC register settings.
396 */
397 switch (ssc_p->daifmt
398 & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_MASTER_MASK)) {
399
400 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBS_CFS:
401 /*
402 * I2S format, SSC provides BCLK and LRC clocks.
403 *
404 * The SSC transmit and receive clocks are generated
405 * from the MCK divider, and the BCLK signal
406 * is output on the SSC TK line.
407 */
408
409 if (bits > 16 && !ssc->pdata->has_fslen_ext) {
410 dev_err(dai->dev,
411 "sample size %d is too large for SSC device\n",
412 bits);
413 return -EINVAL;
414 }
415
416 fslen_ext = (bits - 1) / 16;
417 fslen = (bits - 1) % 16;
418
419 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
420 | SSC_BF(RCMR_STTDLY, START_DELAY)
421 | SSC_BF(RCMR_START, SSC_START_FALLING_RF)
422 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
423 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
424 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
425
426 rfmr = SSC_BF(RFMR_FSLEN_EXT, fslen_ext)
427 | SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
428 | SSC_BF(RFMR_FSOS, SSC_FSOS_NEGATIVE)
429 | SSC_BF(RFMR_FSLEN, fslen)
430 | SSC_BF(RFMR_DATNB, (channels - 1))
431 | SSC_BIT(RFMR_MSBF)
432 | SSC_BF(RFMR_LOOP, 0)
433 | SSC_BF(RFMR_DATLEN, (bits - 1));
434
435 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
436 | SSC_BF(TCMR_STTDLY, START_DELAY)
437 | SSC_BF(TCMR_START, SSC_START_FALLING_RF)
438 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
439 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
440 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
441
442 tfmr = SSC_BF(TFMR_FSLEN_EXT, fslen_ext)
443 | SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
444 | SSC_BF(TFMR_FSDEN, 0)
445 | SSC_BF(TFMR_FSOS, SSC_FSOS_NEGATIVE)
446 | SSC_BF(TFMR_FSLEN, fslen)
447 | SSC_BF(TFMR_DATNB, (channels - 1))
448 | SSC_BIT(TFMR_MSBF)
449 | SSC_BF(TFMR_DATDEF, 0)
450 | SSC_BF(TFMR_DATLEN, (bits - 1));
451 break;
452
453 case SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_CBM_CFM:
454 /*
455 * I2S format, CODEC supplies BCLK and LRC clocks.
456 *
457 * The SSC transmit clock is obtained from the BCLK signal on
458 * on the TK line, and the SSC receive clock is
459 * generated from the transmit clock.
460 *
461 * For single channel data, one sample is transferred
462 * on the falling edge of the LRC clock.
463 * For two channel data, one sample is
464 * transferred on both edges of the LRC clock.
465 */
466 start_event = ((channels == 1)
467 ? SSC_START_FALLING_RF
468 : SSC_START_EDGE_RF);
469
470 rcmr = SSC_BF(RCMR_PERIOD, 0)
471 | SSC_BF(RCMR_STTDLY, START_DELAY)
472 | SSC_BF(RCMR_START, start_event)
473 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
474 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
475 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
476 SSC_CKS_PIN : SSC_CKS_CLOCK);
477
478 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
479 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
480 | SSC_BF(RFMR_FSLEN, 0)
481 | SSC_BF(RFMR_DATNB, 0)
482 | SSC_BIT(RFMR_MSBF)
483 | SSC_BF(RFMR_LOOP, 0)
484 | SSC_BF(RFMR_DATLEN, (bits - 1));
485
486 tcmr = SSC_BF(TCMR_PERIOD, 0)
487 | SSC_BF(TCMR_STTDLY, START_DELAY)
488 | SSC_BF(TCMR_START, start_event)
489 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
490 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
491 | SSC_BF(TCMR_CKS, ssc->clk_from_rk_pin ?
492 SSC_CKS_CLOCK : SSC_CKS_PIN);
493
494 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
495 | SSC_BF(TFMR_FSDEN, 0)
496 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
497 | SSC_BF(TFMR_FSLEN, 0)
498 | SSC_BF(TFMR_DATNB, 0)
499 | SSC_BIT(TFMR_MSBF)
500 | SSC_BF(TFMR_DATDEF, 0)
501 | SSC_BF(TFMR_DATLEN, (bits - 1));
502 break;
503
504 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBS_CFS:
505 /*
506 * DSP/PCM Mode A format, SSC provides BCLK and LRC clocks.
507 *
508 * The SSC transmit and receive clocks are generated from the
509 * MCK divider, and the BCLK signal is output
510 * on the SSC TK line.
511 */
512 rcmr = SSC_BF(RCMR_PERIOD, ssc_p->rcmr_period)
513 | SSC_BF(RCMR_STTDLY, 1)
514 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
515 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
516 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
517 | SSC_BF(RCMR_CKS, SSC_CKS_DIV);
518
519 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
520 | SSC_BF(RFMR_FSOS, SSC_FSOS_POSITIVE)
521 | SSC_BF(RFMR_FSLEN, 0)
522 | SSC_BF(RFMR_DATNB, (channels - 1))
523 | SSC_BIT(RFMR_MSBF)
524 | SSC_BF(RFMR_LOOP, 0)
525 | SSC_BF(RFMR_DATLEN, (bits - 1));
526
527 tcmr = SSC_BF(TCMR_PERIOD, ssc_p->tcmr_period)
528 | SSC_BF(TCMR_STTDLY, 1)
529 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
530 | SSC_BF(TCMR_CKI, SSC_CKI_RISING)
531 | SSC_BF(TCMR_CKO, SSC_CKO_CONTINUOUS)
532 | SSC_BF(TCMR_CKS, SSC_CKS_DIV);
533
534 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
535 | SSC_BF(TFMR_FSDEN, 0)
536 | SSC_BF(TFMR_FSOS, SSC_FSOS_POSITIVE)
537 | SSC_BF(TFMR_FSLEN, 0)
538 | SSC_BF(TFMR_DATNB, (channels - 1))
539 | SSC_BIT(TFMR_MSBF)
540 | SSC_BF(TFMR_DATDEF, 0)
541 | SSC_BF(TFMR_DATLEN, (bits - 1));
542 break;
543
544 case SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_CBM_CFM:
545 /*
546 * DSP/PCM Mode A format, CODEC supplies BCLK and LRC clocks.
547 *
548 * The SSC transmit clock is obtained from the BCLK signal on
549 * on the TK line, and the SSC receive clock is
550 * generated from the transmit clock.
551 *
552 * Data is transferred on first BCLK after LRC pulse rising
553 * edge.If stereo, the right channel data is contiguous with
554 * the left channel data.
555 */
556 rcmr = SSC_BF(RCMR_PERIOD, 0)
557 | SSC_BF(RCMR_STTDLY, START_DELAY)
558 | SSC_BF(RCMR_START, SSC_START_RISING_RF)
559 | SSC_BF(RCMR_CKI, SSC_CKI_RISING)
560 | SSC_BF(RCMR_CKO, SSC_CKO_NONE)
561 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
562 SSC_CKS_PIN : SSC_CKS_CLOCK);
563
564 rfmr = SSC_BF(RFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
565 | SSC_BF(RFMR_FSOS, SSC_FSOS_NONE)
566 | SSC_BF(RFMR_FSLEN, 0)
567 | SSC_BF(RFMR_DATNB, (channels - 1))
568 | SSC_BIT(RFMR_MSBF)
569 | SSC_BF(RFMR_LOOP, 0)
570 | SSC_BF(RFMR_DATLEN, (bits - 1));
571
572 tcmr = SSC_BF(TCMR_PERIOD, 0)
573 | SSC_BF(TCMR_STTDLY, START_DELAY)
574 | SSC_BF(TCMR_START, SSC_START_RISING_RF)
575 | SSC_BF(TCMR_CKI, SSC_CKI_FALLING)
576 | SSC_BF(TCMR_CKO, SSC_CKO_NONE)
577 | SSC_BF(RCMR_CKS, ssc->clk_from_rk_pin ?
578 SSC_CKS_CLOCK : SSC_CKS_PIN);
579
580 tfmr = SSC_BF(TFMR_FSEDGE, SSC_FSEDGE_POSITIVE)
581 | SSC_BF(TFMR_FSDEN, 0)
582 | SSC_BF(TFMR_FSOS, SSC_FSOS_NONE)
583 | SSC_BF(TFMR_FSLEN, 0)
584 | SSC_BF(TFMR_DATNB, (channels - 1))
585 | SSC_BIT(TFMR_MSBF)
586 | SSC_BF(TFMR_DATDEF, 0)
587 | SSC_BF(TFMR_DATLEN, (bits - 1));
588 break;
589
590 default:
591 printk(KERN_WARNING "atmel_ssc_dai: unsupported DAI format 0x%x\n",
592 ssc_p->daifmt);
593 return -EINVAL;
594 }
595 pr_debug("atmel_ssc_hw_params: "
596 "RCMR=%08x RFMR=%08x TCMR=%08x TFMR=%08x\n",
597 rcmr, rfmr, tcmr, tfmr);
598
599 if (!ssc_p->initialized) {
600
601 /* Enable PMC peripheral clock for this SSC */
602 pr_debug("atmel_ssc_dai: Starting clock\n");
603 clk_enable(ssc_p->ssc->clk);
604
605 /* Reset the SSC and its PDC registers */
606 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_SWRST));
607
608 ssc_writel(ssc_p->ssc->regs, PDC_RPR, 0);
609 ssc_writel(ssc_p->ssc->regs, PDC_RCR, 0);
610 ssc_writel(ssc_p->ssc->regs, PDC_RNPR, 0);
611 ssc_writel(ssc_p->ssc->regs, PDC_RNCR, 0);
612
613 ssc_writel(ssc_p->ssc->regs, PDC_TPR, 0);
614 ssc_writel(ssc_p->ssc->regs, PDC_TCR, 0);
615 ssc_writel(ssc_p->ssc->regs, PDC_TNPR, 0);
616 ssc_writel(ssc_p->ssc->regs, PDC_TNCR, 0);
617
618 ret = request_irq(ssc_p->ssc->irq, atmel_ssc_interrupt, 0,
619 ssc_p->name, ssc_p);
620 if (ret < 0) {
621 printk(KERN_WARNING
622 "atmel_ssc_dai: request_irq failure\n");
623 pr_debug("Atmel_ssc_dai: Stoping clock\n");
624 clk_disable(ssc_p->ssc->clk);
625 return ret;
626 }
627
628 ssc_p->initialized = 1;
629 }
630
631 /* set SSC clock mode register */
632 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->cmr_div);
633
634 /* set receive clock mode and format */
635 ssc_writel(ssc_p->ssc->regs, RCMR, rcmr);
636 ssc_writel(ssc_p->ssc->regs, RFMR, rfmr);
637
638 /* set transmit clock mode and format */
639 ssc_writel(ssc_p->ssc->regs, TCMR, tcmr);
640 ssc_writel(ssc_p->ssc->regs, TFMR, tfmr);
641
642 pr_debug("atmel_ssc_dai,hw_params: SSC initialized\n");
643 return 0;
644 }
645
646
647 static int atmel_ssc_prepare(struct snd_pcm_substream *substream,
648 struct snd_soc_dai *dai)
649 {
650 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
651 struct atmel_pcm_dma_params *dma_params;
652 int dir;
653
654 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
655 dir = 0;
656 else
657 dir = 1;
658
659 dma_params = ssc_p->dma_params[dir];
660
661 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
662 ssc_writel(ssc_p->ssc->regs, IDR, dma_params->mask->ssc_error);
663
664 pr_debug("%s enabled SSC_SR=0x%08x\n",
665 dir ? "receive" : "transmit",
666 ssc_readl(ssc_p->ssc->regs, SR));
667 return 0;
668 }
669
670 static int atmel_ssc_trigger(struct snd_pcm_substream *substream,
671 int cmd, struct snd_soc_dai *dai)
672 {
673 struct atmel_ssc_info *ssc_p = &ssc_info[dai->id];
674 struct atmel_pcm_dma_params *dma_params;
675 int dir;
676
677 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
678 dir = 0;
679 else
680 dir = 1;
681
682 dma_params = ssc_p->dma_params[dir];
683
684 switch (cmd) {
685 case SNDRV_PCM_TRIGGER_START:
686 case SNDRV_PCM_TRIGGER_RESUME:
687 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
688 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_enable);
689 break;
690 default:
691 ssc_writel(ssc_p->ssc->regs, CR, dma_params->mask->ssc_disable);
692 break;
693 }
694
695 return 0;
696 }
697
698 #ifdef CONFIG_PM
699 static int atmel_ssc_suspend(struct snd_soc_dai *cpu_dai)
700 {
701 struct atmel_ssc_info *ssc_p;
702
703 if (!cpu_dai->active)
704 return 0;
705
706 ssc_p = &ssc_info[cpu_dai->id];
707
708 /* Save the status register before disabling transmit and receive */
709 ssc_p->ssc_state.ssc_sr = ssc_readl(ssc_p->ssc->regs, SR);
710 ssc_writel(ssc_p->ssc->regs, CR, SSC_BIT(CR_TXDIS) | SSC_BIT(CR_RXDIS));
711
712 /* Save the current interrupt mask, then disable unmasked interrupts */
713 ssc_p->ssc_state.ssc_imr = ssc_readl(ssc_p->ssc->regs, IMR);
714 ssc_writel(ssc_p->ssc->regs, IDR, ssc_p->ssc_state.ssc_imr);
715
716 ssc_p->ssc_state.ssc_cmr = ssc_readl(ssc_p->ssc->regs, CMR);
717 ssc_p->ssc_state.ssc_rcmr = ssc_readl(ssc_p->ssc->regs, RCMR);
718 ssc_p->ssc_state.ssc_rfmr = ssc_readl(ssc_p->ssc->regs, RFMR);
719 ssc_p->ssc_state.ssc_tcmr = ssc_readl(ssc_p->ssc->regs, TCMR);
720 ssc_p->ssc_state.ssc_tfmr = ssc_readl(ssc_p->ssc->regs, TFMR);
721
722 return 0;
723 }
724
725
726
727 static int atmel_ssc_resume(struct snd_soc_dai *cpu_dai)
728 {
729 struct atmel_ssc_info *ssc_p;
730 u32 cr;
731
732 if (!cpu_dai->active)
733 return 0;
734
735 ssc_p = &ssc_info[cpu_dai->id];
736
737 /* restore SSC register settings */
738 ssc_writel(ssc_p->ssc->regs, TFMR, ssc_p->ssc_state.ssc_tfmr);
739 ssc_writel(ssc_p->ssc->regs, TCMR, ssc_p->ssc_state.ssc_tcmr);
740 ssc_writel(ssc_p->ssc->regs, RFMR, ssc_p->ssc_state.ssc_rfmr);
741 ssc_writel(ssc_p->ssc->regs, RCMR, ssc_p->ssc_state.ssc_rcmr);
742 ssc_writel(ssc_p->ssc->regs, CMR, ssc_p->ssc_state.ssc_cmr);
743
744 /* re-enable interrupts */
745 ssc_writel(ssc_p->ssc->regs, IER, ssc_p->ssc_state.ssc_imr);
746
747 /* Re-enable receive and transmit as appropriate */
748 cr = 0;
749 cr |=
750 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_RXEN)) ? SSC_BIT(CR_RXEN) : 0;
751 cr |=
752 (ssc_p->ssc_state.ssc_sr & SSC_BIT(SR_TXEN)) ? SSC_BIT(CR_TXEN) : 0;
753 ssc_writel(ssc_p->ssc->regs, CR, cr);
754
755 return 0;
756 }
757 #else /* CONFIG_PM */
758 # define atmel_ssc_suspend NULL
759 # define atmel_ssc_resume NULL
760 #endif /* CONFIG_PM */
761
762 #define ATMEL_SSC_RATES (SNDRV_PCM_RATE_8000_96000)
763
764 #define ATMEL_SSC_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE |\
765 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
766
767 static const struct snd_soc_dai_ops atmel_ssc_dai_ops = {
768 .startup = atmel_ssc_startup,
769 .shutdown = atmel_ssc_shutdown,
770 .prepare = atmel_ssc_prepare,
771 .trigger = atmel_ssc_trigger,
772 .hw_params = atmel_ssc_hw_params,
773 .set_fmt = atmel_ssc_set_dai_fmt,
774 .set_clkdiv = atmel_ssc_set_dai_clkdiv,
775 };
776
777 static struct snd_soc_dai_driver atmel_ssc_dai = {
778 .suspend = atmel_ssc_suspend,
779 .resume = atmel_ssc_resume,
780 .playback = {
781 .channels_min = 1,
782 .channels_max = 2,
783 .rates = ATMEL_SSC_RATES,
784 .formats = ATMEL_SSC_FORMATS,},
785 .capture = {
786 .channels_min = 1,
787 .channels_max = 2,
788 .rates = ATMEL_SSC_RATES,
789 .formats = ATMEL_SSC_FORMATS,},
790 .ops = &atmel_ssc_dai_ops,
791 };
792
793 static const struct snd_soc_component_driver atmel_ssc_component = {
794 .name = "atmel-ssc",
795 };
796
797 static int asoc_ssc_init(struct device *dev)
798 {
799 struct platform_device *pdev = to_platform_device(dev);
800 struct ssc_device *ssc = platform_get_drvdata(pdev);
801 int ret;
802
803 ret = snd_soc_register_component(dev, &atmel_ssc_component,
804 &atmel_ssc_dai, 1);
805 if (ret) {
806 dev_err(dev, "Could not register DAI: %d\n", ret);
807 goto err;
808 }
809
810 if (ssc->pdata->use_dma)
811 ret = atmel_pcm_dma_platform_register(dev);
812 else
813 ret = atmel_pcm_pdc_platform_register(dev);
814
815 if (ret) {
816 dev_err(dev, "Could not register PCM: %d\n", ret);
817 goto err_unregister_dai;
818 }
819
820 return 0;
821
822 err_unregister_dai:
823 snd_soc_unregister_component(dev);
824 err:
825 return ret;
826 }
827
828 static void asoc_ssc_exit(struct device *dev)
829 {
830 struct platform_device *pdev = to_platform_device(dev);
831 struct ssc_device *ssc = platform_get_drvdata(pdev);
832
833 if (ssc->pdata->use_dma)
834 atmel_pcm_dma_platform_unregister(dev);
835 else
836 atmel_pcm_pdc_platform_unregister(dev);
837
838 snd_soc_unregister_component(dev);
839 }
840
841 /**
842 * atmel_ssc_set_audio - Allocate the specified SSC for audio use.
843 */
844 int atmel_ssc_set_audio(int ssc_id)
845 {
846 struct ssc_device *ssc;
847 int ret;
848
849 /* If we can grab the SSC briefly to parent the DAI device off it */
850 ssc = ssc_request(ssc_id);
851 if (IS_ERR(ssc)) {
852 pr_err("Unable to parent ASoC SSC DAI on SSC: %ld\n",
853 PTR_ERR(ssc));
854 return PTR_ERR(ssc);
855 } else {
856 ssc_info[ssc_id].ssc = ssc;
857 }
858
859 ret = asoc_ssc_init(&ssc->pdev->dev);
860
861 return ret;
862 }
863 EXPORT_SYMBOL_GPL(atmel_ssc_set_audio);
864
865 void atmel_ssc_put_audio(int ssc_id)
866 {
867 struct ssc_device *ssc = ssc_info[ssc_id].ssc;
868
869 asoc_ssc_exit(&ssc->pdev->dev);
870 ssc_free(ssc);
871 }
872 EXPORT_SYMBOL_GPL(atmel_ssc_put_audio);
873
874 /* Module information */
875 MODULE_AUTHOR("Sedji Gaouaou, sedji.gaouaou@atmel.com, www.atmel.com");
876 MODULE_DESCRIPTION("ATMEL SSC ASoC Interface");
877 MODULE_LICENSE("GPL");