]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/soc/codecs/nau8825.c
pinctrl: uniphier: fix Ethernet (RMII) pin-mux setting for LD20
[mirror_ubuntu-artful-kernel.git] / sound / soc / codecs / nau8825.c
1 /*
2 * Nuvoton NAU8825 audio codec driver
3 *
4 * Copyright 2015 Google Chromium project.
5 * Author: Anatol Pomozov <anatol@chromium.org>
6 * Copyright 2015 Nuvoton Technology Corp.
7 * Co-author: Meng-Huang Kuo <mhkuo@nuvoton.com>
8 *
9 * Licensed under the GPL-2.
10 */
11
12 #include <linux/module.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/i2c.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/clk.h>
19 #include <linux/acpi.h>
20 #include <linux/math64.h>
21 #include <linux/semaphore.h>
22
23 #include <sound/initval.h>
24 #include <sound/tlv.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include <sound/soc.h>
29 #include <sound/jack.h>
30
31
32 #include "nau8825.h"
33
34
35 #define NUVOTON_CODEC_DAI "nau8825-hifi"
36
37 #define NAU_FREF_MAX 13500000
38 #define NAU_FVCO_MAX 124000000
39 #define NAU_FVCO_MIN 90000000
40
41 /* cross talk suppression detection */
42 #define LOG10_MAGIC 646456993
43 #define GAIN_AUGMENT 22500
44 #define SIDETONE_BASE 207000
45
46 /* the maximum frequency of CLK_ADC and CLK_DAC */
47 #define CLK_DA_AD_MAX 6144000
48
49 static int nau8825_configure_sysclk(struct nau8825 *nau8825,
50 int clk_id, unsigned int freq);
51
52 struct nau8825_fll {
53 int mclk_src;
54 int ratio;
55 int fll_frac;
56 int fll_int;
57 int clk_ref_div;
58 };
59
60 struct nau8825_fll_attr {
61 unsigned int param;
62 unsigned int val;
63 };
64
65 /* scaling for mclk from sysclk_src output */
66 static const struct nau8825_fll_attr mclk_src_scaling[] = {
67 { 1, 0x0 },
68 { 2, 0x2 },
69 { 4, 0x3 },
70 { 8, 0x4 },
71 { 16, 0x5 },
72 { 32, 0x6 },
73 { 3, 0x7 },
74 { 6, 0xa },
75 { 12, 0xb },
76 { 24, 0xc },
77 { 48, 0xd },
78 { 96, 0xe },
79 { 5, 0xf },
80 };
81
82 /* ratio for input clk freq */
83 static const struct nau8825_fll_attr fll_ratio[] = {
84 { 512000, 0x01 },
85 { 256000, 0x02 },
86 { 128000, 0x04 },
87 { 64000, 0x08 },
88 { 32000, 0x10 },
89 { 8000, 0x20 },
90 { 4000, 0x40 },
91 };
92
93 static const struct nau8825_fll_attr fll_pre_scalar[] = {
94 { 1, 0x0 },
95 { 2, 0x1 },
96 { 4, 0x2 },
97 { 8, 0x3 },
98 };
99
100 /* over sampling rate */
101 struct nau8825_osr_attr {
102 unsigned int osr;
103 unsigned int clk_src;
104 };
105
106 static const struct nau8825_osr_attr osr_dac_sel[] = {
107 { 64, 2 }, /* OSR 64, SRC 1/4 */
108 { 256, 0 }, /* OSR 256, SRC 1 */
109 { 128, 1 }, /* OSR 128, SRC 1/2 */
110 { 0, 0 },
111 { 32, 3 }, /* OSR 32, SRC 1/8 */
112 };
113
114 static const struct nau8825_osr_attr osr_adc_sel[] = {
115 { 32, 3 }, /* OSR 32, SRC 1/8 */
116 { 64, 2 }, /* OSR 64, SRC 1/4 */
117 { 128, 1 }, /* OSR 128, SRC 1/2 */
118 { 256, 0 }, /* OSR 256, SRC 1 */
119 };
120
121 static const struct reg_default nau8825_reg_defaults[] = {
122 { NAU8825_REG_ENA_CTRL, 0x00ff },
123 { NAU8825_REG_IIC_ADDR_SET, 0x0 },
124 { NAU8825_REG_CLK_DIVIDER, 0x0050 },
125 { NAU8825_REG_FLL1, 0x0 },
126 { NAU8825_REG_FLL2, 0x3126 },
127 { NAU8825_REG_FLL3, 0x0008 },
128 { NAU8825_REG_FLL4, 0x0010 },
129 { NAU8825_REG_FLL5, 0x0 },
130 { NAU8825_REG_FLL6, 0x6000 },
131 { NAU8825_REG_FLL_VCO_RSV, 0xf13c },
132 { NAU8825_REG_HSD_CTRL, 0x000c },
133 { NAU8825_REG_JACK_DET_CTRL, 0x0 },
134 { NAU8825_REG_INTERRUPT_MASK, 0x0 },
135 { NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff },
136 { NAU8825_REG_SAR_CTRL, 0x0015 },
137 { NAU8825_REG_KEYDET_CTRL, 0x0110 },
138 { NAU8825_REG_VDET_THRESHOLD_1, 0x0 },
139 { NAU8825_REG_VDET_THRESHOLD_2, 0x0 },
140 { NAU8825_REG_VDET_THRESHOLD_3, 0x0 },
141 { NAU8825_REG_VDET_THRESHOLD_4, 0x0 },
142 { NAU8825_REG_GPIO34_CTRL, 0x0 },
143 { NAU8825_REG_GPIO12_CTRL, 0x0 },
144 { NAU8825_REG_TDM_CTRL, 0x0 },
145 { NAU8825_REG_I2S_PCM_CTRL1, 0x000b },
146 { NAU8825_REG_I2S_PCM_CTRL2, 0x8010 },
147 { NAU8825_REG_LEFT_TIME_SLOT, 0x0 },
148 { NAU8825_REG_RIGHT_TIME_SLOT, 0x0 },
149 { NAU8825_REG_BIQ_CTRL, 0x0 },
150 { NAU8825_REG_BIQ_COF1, 0x0 },
151 { NAU8825_REG_BIQ_COF2, 0x0 },
152 { NAU8825_REG_BIQ_COF3, 0x0 },
153 { NAU8825_REG_BIQ_COF4, 0x0 },
154 { NAU8825_REG_BIQ_COF5, 0x0 },
155 { NAU8825_REG_BIQ_COF6, 0x0 },
156 { NAU8825_REG_BIQ_COF7, 0x0 },
157 { NAU8825_REG_BIQ_COF8, 0x0 },
158 { NAU8825_REG_BIQ_COF9, 0x0 },
159 { NAU8825_REG_BIQ_COF10, 0x0 },
160 { NAU8825_REG_ADC_RATE, 0x0010 },
161 { NAU8825_REG_DAC_CTRL1, 0x0001 },
162 { NAU8825_REG_DAC_CTRL2, 0x0 },
163 { NAU8825_REG_DAC_DGAIN_CTRL, 0x0 },
164 { NAU8825_REG_ADC_DGAIN_CTRL, 0x00cf },
165 { NAU8825_REG_MUTE_CTRL, 0x0 },
166 { NAU8825_REG_HSVOL_CTRL, 0x0 },
167 { NAU8825_REG_DACL_CTRL, 0x02cf },
168 { NAU8825_REG_DACR_CTRL, 0x00cf },
169 { NAU8825_REG_ADC_DRC_KNEE_IP12, 0x1486 },
170 { NAU8825_REG_ADC_DRC_KNEE_IP34, 0x0f12 },
171 { NAU8825_REG_ADC_DRC_SLOPES, 0x25ff },
172 { NAU8825_REG_ADC_DRC_ATKDCY, 0x3457 },
173 { NAU8825_REG_DAC_DRC_KNEE_IP12, 0x1486 },
174 { NAU8825_REG_DAC_DRC_KNEE_IP34, 0x0f12 },
175 { NAU8825_REG_DAC_DRC_SLOPES, 0x25f9 },
176 { NAU8825_REG_DAC_DRC_ATKDCY, 0x3457 },
177 { NAU8825_REG_IMM_MODE_CTRL, 0x0 },
178 { NAU8825_REG_CLASSG_CTRL, 0x0 },
179 { NAU8825_REG_OPT_EFUSE_CTRL, 0x0 },
180 { NAU8825_REG_MISC_CTRL, 0x0 },
181 { NAU8825_REG_BIAS_ADJ, 0x0 },
182 { NAU8825_REG_TRIM_SETTINGS, 0x0 },
183 { NAU8825_REG_ANALOG_CONTROL_1, 0x0 },
184 { NAU8825_REG_ANALOG_CONTROL_2, 0x0 },
185 { NAU8825_REG_ANALOG_ADC_1, 0x0011 },
186 { NAU8825_REG_ANALOG_ADC_2, 0x0020 },
187 { NAU8825_REG_RDAC, 0x0008 },
188 { NAU8825_REG_MIC_BIAS, 0x0006 },
189 { NAU8825_REG_BOOST, 0x0 },
190 { NAU8825_REG_FEPGA, 0x0 },
191 { NAU8825_REG_POWER_UP_CONTROL, 0x0 },
192 { NAU8825_REG_CHARGE_PUMP, 0x0 },
193 };
194
195 /* register backup table when cross talk detection */
196 static struct reg_default nau8825_xtalk_baktab[] = {
197 { NAU8825_REG_ADC_DGAIN_CTRL, 0 },
198 { NAU8825_REG_HSVOL_CTRL, 0 },
199 { NAU8825_REG_DACL_CTRL, 0 },
200 { NAU8825_REG_DACR_CTRL, 0 },
201 };
202
203 static const unsigned short logtable[256] = {
204 0x0000, 0x0171, 0x02e0, 0x044e, 0x05ba, 0x0725, 0x088e, 0x09f7,
205 0x0b5d, 0x0cc3, 0x0e27, 0x0f8a, 0x10eb, 0x124b, 0x13aa, 0x1508,
206 0x1664, 0x17bf, 0x1919, 0x1a71, 0x1bc8, 0x1d1e, 0x1e73, 0x1fc6,
207 0x2119, 0x226a, 0x23ba, 0x2508, 0x2656, 0x27a2, 0x28ed, 0x2a37,
208 0x2b80, 0x2cc8, 0x2e0f, 0x2f54, 0x3098, 0x31dc, 0x331e, 0x345f,
209 0x359f, 0x36de, 0x381b, 0x3958, 0x3a94, 0x3bce, 0x3d08, 0x3e41,
210 0x3f78, 0x40af, 0x41e4, 0x4319, 0x444c, 0x457f, 0x46b0, 0x47e1,
211 0x4910, 0x4a3f, 0x4b6c, 0x4c99, 0x4dc5, 0x4eef, 0x5019, 0x5142,
212 0x526a, 0x5391, 0x54b7, 0x55dc, 0x5700, 0x5824, 0x5946, 0x5a68,
213 0x5b89, 0x5ca8, 0x5dc7, 0x5ee5, 0x6003, 0x611f, 0x623a, 0x6355,
214 0x646f, 0x6588, 0x66a0, 0x67b7, 0x68ce, 0x69e4, 0x6af8, 0x6c0c,
215 0x6d20, 0x6e32, 0x6f44, 0x7055, 0x7165, 0x7274, 0x7383, 0x7490,
216 0x759d, 0x76aa, 0x77b5, 0x78c0, 0x79ca, 0x7ad3, 0x7bdb, 0x7ce3,
217 0x7dea, 0x7ef0, 0x7ff6, 0x80fb, 0x81ff, 0x8302, 0x8405, 0x8507,
218 0x8608, 0x8709, 0x8809, 0x8908, 0x8a06, 0x8b04, 0x8c01, 0x8cfe,
219 0x8dfa, 0x8ef5, 0x8fef, 0x90e9, 0x91e2, 0x92db, 0x93d2, 0x94ca,
220 0x95c0, 0x96b6, 0x97ab, 0x98a0, 0x9994, 0x9a87, 0x9b7a, 0x9c6c,
221 0x9d5e, 0x9e4f, 0x9f3f, 0xa02e, 0xa11e, 0xa20c, 0xa2fa, 0xa3e7,
222 0xa4d4, 0xa5c0, 0xa6ab, 0xa796, 0xa881, 0xa96a, 0xaa53, 0xab3c,
223 0xac24, 0xad0c, 0xadf2, 0xaed9, 0xafbe, 0xb0a4, 0xb188, 0xb26c,
224 0xb350, 0xb433, 0xb515, 0xb5f7, 0xb6d9, 0xb7ba, 0xb89a, 0xb97a,
225 0xba59, 0xbb38, 0xbc16, 0xbcf4, 0xbdd1, 0xbead, 0xbf8a, 0xc065,
226 0xc140, 0xc21b, 0xc2f5, 0xc3cf, 0xc4a8, 0xc580, 0xc658, 0xc730,
227 0xc807, 0xc8de, 0xc9b4, 0xca8a, 0xcb5f, 0xcc34, 0xcd08, 0xcddc,
228 0xceaf, 0xcf82, 0xd054, 0xd126, 0xd1f7, 0xd2c8, 0xd399, 0xd469,
229 0xd538, 0xd607, 0xd6d6, 0xd7a4, 0xd872, 0xd93f, 0xda0c, 0xdad9,
230 0xdba5, 0xdc70, 0xdd3b, 0xde06, 0xded0, 0xdf9a, 0xe063, 0xe12c,
231 0xe1f5, 0xe2bd, 0xe385, 0xe44c, 0xe513, 0xe5d9, 0xe69f, 0xe765,
232 0xe82a, 0xe8ef, 0xe9b3, 0xea77, 0xeb3b, 0xebfe, 0xecc1, 0xed83,
233 0xee45, 0xef06, 0xefc8, 0xf088, 0xf149, 0xf209, 0xf2c8, 0xf387,
234 0xf446, 0xf505, 0xf5c3, 0xf680, 0xf73e, 0xf7fb, 0xf8b7, 0xf973,
235 0xfa2f, 0xfaea, 0xfba5, 0xfc60, 0xfd1a, 0xfdd4, 0xfe8e, 0xff47
236 };
237
238 /**
239 * nau8825_sema_acquire - acquire the semaphore of nau88l25
240 * @nau8825: component to register the codec private data with
241 * @timeout: how long in jiffies to wait before failure or zero to wait
242 * until release
243 *
244 * Attempts to acquire the semaphore with number of jiffies. If no more
245 * tasks are allowed to acquire the semaphore, calling this function will
246 * put the task to sleep. If the semaphore is not released within the
247 * specified number of jiffies, this function returns.
248 * Acquires the semaphore without jiffies. If no more tasks are allowed
249 * to acquire the semaphore, calling this function will put the task to
250 * sleep until the semaphore is released.
251 * If the semaphore is not released within the specified number of jiffies,
252 * this function returns -ETIME.
253 * If the sleep is interrupted by a signal, this function will return -EINTR.
254 * It returns 0 if the semaphore was acquired successfully.
255 */
256 static int nau8825_sema_acquire(struct nau8825 *nau8825, long timeout)
257 {
258 int ret;
259
260 if (timeout) {
261 ret = down_timeout(&nau8825->xtalk_sem, timeout);
262 if (ret < 0)
263 dev_warn(nau8825->dev, "Acquire semaphone timeout\n");
264 } else {
265 ret = down_interruptible(&nau8825->xtalk_sem);
266 if (ret < 0)
267 dev_warn(nau8825->dev, "Acquire semaphone fail\n");
268 }
269
270 return ret;
271 }
272
273 /**
274 * nau8825_sema_release - release the semaphore of nau88l25
275 * @nau8825: component to register the codec private data with
276 *
277 * Release the semaphore which may be called from any context and
278 * even by tasks which have never called down().
279 */
280 static inline void nau8825_sema_release(struct nau8825 *nau8825)
281 {
282 up(&nau8825->xtalk_sem);
283 }
284
285 /**
286 * nau8825_sema_reset - reset the semaphore for nau88l25
287 * @nau8825: component to register the codec private data with
288 *
289 * Reset the counter of the semaphore. Call this function to restart
290 * a new round task management.
291 */
292 static inline void nau8825_sema_reset(struct nau8825 *nau8825)
293 {
294 nau8825->xtalk_sem.count = 1;
295 }
296
297 /**
298 * Ramp up the headphone volume change gradually to target level.
299 *
300 * @nau8825: component to register the codec private data with
301 * @vol_from: the volume to start up
302 * @vol_to: the target volume
303 * @step: the volume span to move on
304 *
305 * The headphone volume is from 0dB to minimum -54dB and -1dB per step.
306 * If the volume changes sharp, there is a pop noise heard in headphone. We
307 * provide the function to ramp up the volume up or down by delaying 10ms
308 * per step.
309 */
310 static void nau8825_hpvol_ramp(struct nau8825 *nau8825,
311 unsigned int vol_from, unsigned int vol_to, unsigned int step)
312 {
313 unsigned int value, volume, ramp_up, from, to;
314
315 if (vol_from == vol_to || step == 0) {
316 return;
317 } else if (vol_from < vol_to) {
318 ramp_up = true;
319 from = vol_from;
320 to = vol_to;
321 } else {
322 ramp_up = false;
323 from = vol_to;
324 to = vol_from;
325 }
326 /* only handle volume from 0dB to minimum -54dB */
327 if (to > NAU8825_HP_VOL_MIN)
328 to = NAU8825_HP_VOL_MIN;
329
330 for (volume = from; volume < to; volume += step) {
331 if (ramp_up)
332 value = volume;
333 else
334 value = to - volume + from;
335 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
336 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
337 (value << NAU8825_HPL_VOL_SFT) | value);
338 usleep_range(10000, 10500);
339 }
340 if (ramp_up)
341 value = to;
342 else
343 value = from;
344 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSVOL_CTRL,
345 NAU8825_HPL_VOL_MASK | NAU8825_HPR_VOL_MASK,
346 (value << NAU8825_HPL_VOL_SFT) | value);
347 }
348
349 /**
350 * Computes log10 of a value; the result is round off to 3 decimal. This func-
351 * tion takes reference to dvb-math. The source code locates as the following.
352 * Linux/drivers/media/dvb-core/dvb_math.c
353 *
354 * return log10(value) * 1000
355 */
356 static u32 nau8825_intlog10_dec3(u32 value)
357 {
358 u32 msb, logentry, significand, interpolation, log10val;
359 u64 log2val;
360
361 /* first detect the msb (count begins at 0) */
362 msb = fls(value) - 1;
363 /**
364 * now we use a logtable after the following method:
365 *
366 * log2(2^x * y) * 2^24 = x * 2^24 + log2(y) * 2^24
367 * where x = msb and therefore 1 <= y < 2
368 * first y is determined by shifting the value left
369 * so that msb is bit 31
370 * 0x00231f56 -> 0x8C7D5800
371 * the result is y * 2^31 -> "significand"
372 * then the highest 9 bits are used for a table lookup
373 * the highest bit is discarded because it's always set
374 * the highest nine bits in our example are 100011000
375 * so we would use the entry 0x18
376 */
377 significand = value << (31 - msb);
378 logentry = (significand >> 23) & 0xff;
379 /**
380 * last step we do is interpolation because of the
381 * limitations of the log table the error is that part of
382 * the significand which isn't used for lookup then we
383 * compute the ratio between the error and the next table entry
384 * and interpolate it between the log table entry used and the
385 * next one the biggest error possible is 0x7fffff
386 * (in our example it's 0x7D5800)
387 * needed value for next table entry is 0x800000
388 * so the interpolation is
389 * (error / 0x800000) * (logtable_next - logtable_current)
390 * in the implementation the division is moved to the end for
391 * better accuracy there is also an overflow correction if
392 * logtable_next is 256
393 */
394 interpolation = ((significand & 0x7fffff) *
395 ((logtable[(logentry + 1) & 0xff] -
396 logtable[logentry]) & 0xffff)) >> 15;
397
398 log2val = ((msb << 24) + (logtable[logentry] << 8) + interpolation);
399 /**
400 * log10(x) = log2(x) * log10(2)
401 */
402 log10val = (log2val * LOG10_MAGIC) >> 31;
403 /**
404 * the result is round off to 3 decimal
405 */
406 return log10val / ((1 << 24) / 1000);
407 }
408
409 /**
410 * computes cross talk suppression sidetone gain.
411 *
412 * @sig_org: orignal signal level
413 * @sig_cros: cross talk signal level
414 *
415 * The orignal and cross talk signal vlues need to be characterized.
416 * Once these values have been characterized, this sidetone value
417 * can be converted to decibel with the equation below.
418 * sidetone = 20 * log (original signal level / crosstalk signal level)
419 *
420 * return cross talk sidetone gain
421 */
422 static u32 nau8825_xtalk_sidetone(u32 sig_org, u32 sig_cros)
423 {
424 u32 gain, sidetone;
425
426 if (unlikely(sig_org == 0) || unlikely(sig_cros == 0)) {
427 WARN_ON(1);
428 return 0;
429 }
430
431 sig_org = nau8825_intlog10_dec3(sig_org);
432 sig_cros = nau8825_intlog10_dec3(sig_cros);
433 if (sig_org >= sig_cros)
434 gain = (sig_org - sig_cros) * 20 + GAIN_AUGMENT;
435 else
436 gain = (sig_cros - sig_org) * 20 + GAIN_AUGMENT;
437 sidetone = SIDETONE_BASE - gain * 2;
438 sidetone /= 1000;
439
440 return sidetone;
441 }
442
443 static int nau8825_xtalk_baktab_index_by_reg(unsigned int reg)
444 {
445 int index;
446
447 for (index = 0; index < ARRAY_SIZE(nau8825_xtalk_baktab); index++)
448 if (nau8825_xtalk_baktab[index].reg == reg)
449 return index;
450 return -EINVAL;
451 }
452
453 static void nau8825_xtalk_backup(struct nau8825 *nau8825)
454 {
455 int i;
456
457 /* Backup some register values to backup table */
458 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++)
459 regmap_read(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
460 &nau8825_xtalk_baktab[i].def);
461 }
462
463 static void nau8825_xtalk_restore(struct nau8825 *nau8825)
464 {
465 int i, volume;
466
467 /* Restore register values from backup table; When the driver restores
468 * the headphone volumem, it needs recover to original level gradually
469 * with 3dB per step for less pop noise.
470 */
471 for (i = 0; i < ARRAY_SIZE(nau8825_xtalk_baktab); i++) {
472 if (nau8825_xtalk_baktab[i].reg == NAU8825_REG_HSVOL_CTRL) {
473 /* Ramping up the volume change to reduce pop noise */
474 volume = nau8825_xtalk_baktab[i].def &
475 NAU8825_HPR_VOL_MASK;
476 nau8825_hpvol_ramp(nau8825, 0, volume, 3);
477 continue;
478 }
479 regmap_write(nau8825->regmap, nau8825_xtalk_baktab[i].reg,
480 nau8825_xtalk_baktab[i].def);
481 }
482 }
483
484 static void nau8825_xtalk_prepare_dac(struct nau8825 *nau8825)
485 {
486 /* Enable power of DAC path */
487 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
488 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
489 NAU8825_ENABLE_ADC | NAU8825_ENABLE_ADC_CLK |
490 NAU8825_ENABLE_DAC_CLK, NAU8825_ENABLE_DACR |
491 NAU8825_ENABLE_DACL | NAU8825_ENABLE_ADC |
492 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK);
493 /* Prevent startup click by letting charge pump to ramp up and
494 * change bump enable
495 */
496 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
497 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN,
498 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN);
499 /* Enable clock sync of DAC and DAC clock */
500 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
501 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN |
502 NAU8825_RDAC_FS_BCLK_ENB,
503 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN);
504 /* Power up output driver with 2 stage */
505 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
506 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
507 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L,
508 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
509 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L);
510 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
511 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L,
512 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L);
513 /* HP outputs not shouted to ground */
514 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
515 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L, 0);
516 /* Enable HP boost driver */
517 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
518 NAU8825_HP_BOOST_DIS, NAU8825_HP_BOOST_DIS);
519 /* Enable class G compare path to supply 1.8V or 0.9V. */
520 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLASSG_CTRL,
521 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN,
522 NAU8825_CLASSG_LDAC_EN | NAU8825_CLASSG_RDAC_EN);
523 }
524
525 static void nau8825_xtalk_prepare_adc(struct nau8825 *nau8825)
526 {
527 /* Power up left ADC and raise 5dB than Vmid for Vref */
528 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
529 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK,
530 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_VMID_PLUS_0_5DB);
531 }
532
533 static void nau8825_xtalk_clock(struct nau8825 *nau8825)
534 {
535 /* Recover FLL default value */
536 regmap_write(nau8825->regmap, NAU8825_REG_FLL1, 0x0);
537 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, 0x3126);
538 regmap_write(nau8825->regmap, NAU8825_REG_FLL3, 0x0008);
539 regmap_write(nau8825->regmap, NAU8825_REG_FLL4, 0x0010);
540 regmap_write(nau8825->regmap, NAU8825_REG_FLL5, 0x0);
541 regmap_write(nau8825->regmap, NAU8825_REG_FLL6, 0x6000);
542 /* Enable internal VCO clock for detection signal generated */
543 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
544 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
545 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6, NAU8825_DCO_EN,
546 NAU8825_DCO_EN);
547 /* Given specific clock frequency of internal clock to
548 * generate signal.
549 */
550 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
551 NAU8825_CLK_MCLK_SRC_MASK, 0xf);
552 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
553 NAU8825_FLL_RATIO_MASK, 0x10);
554 }
555
556 static void nau8825_xtalk_prepare(struct nau8825 *nau8825)
557 {
558 int volume, index;
559
560 /* Backup those registers changed by cross talk detection */
561 nau8825_xtalk_backup(nau8825);
562 /* Config IIS as master to output signal by codec */
563 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
564 NAU8825_I2S_MS_MASK | NAU8825_I2S_DRV_MASK |
565 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_MASTER |
566 (0x2 << NAU8825_I2S_DRV_SFT) | 0x1);
567 /* Ramp up headphone volume to 0dB to get better performance and
568 * avoid pop noise in headphone.
569 */
570 index = nau8825_xtalk_baktab_index_by_reg(NAU8825_REG_HSVOL_CTRL);
571 if (index != -EINVAL) {
572 volume = nau8825_xtalk_baktab[index].def &
573 NAU8825_HPR_VOL_MASK;
574 nau8825_hpvol_ramp(nau8825, volume, 0, 3);
575 }
576 nau8825_xtalk_clock(nau8825);
577 nau8825_xtalk_prepare_dac(nau8825);
578 nau8825_xtalk_prepare_adc(nau8825);
579 /* Config channel path and digital gain */
580 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
581 NAU8825_DACL_CH_SEL_MASK | NAU8825_DACL_CH_VOL_MASK,
582 NAU8825_DACL_CH_SEL_L | 0xab);
583 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
584 NAU8825_DACR_CH_SEL_MASK | NAU8825_DACR_CH_VOL_MASK,
585 NAU8825_DACR_CH_SEL_R | 0xab);
586 /* Config cross talk parameters and generate the 23Hz sine wave with
587 * 1/16 full scale of signal level for impedance measurement.
588 */
589 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
590 NAU8825_IMM_THD_MASK | NAU8825_IMM_GEN_VOL_MASK |
591 NAU8825_IMM_CYC_MASK | NAU8825_IMM_DAC_SRC_MASK,
592 (0x9 << NAU8825_IMM_THD_SFT) | NAU8825_IMM_GEN_VOL_1_16th |
593 NAU8825_IMM_CYC_8192 | NAU8825_IMM_DAC_SRC_SIN);
594 /* RMS intrruption enable */
595 regmap_update_bits(nau8825->regmap,
596 NAU8825_REG_INTERRUPT_MASK, NAU8825_IRQ_RMS_EN, 0);
597 /* Power up left and right DAC */
598 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
599 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL, 0);
600 }
601
602 static void nau8825_xtalk_clean_dac(struct nau8825 *nau8825)
603 {
604 /* Disable HP boost driver */
605 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
606 NAU8825_HP_BOOST_DIS, 0);
607 /* HP outputs shouted to ground */
608 regmap_update_bits(nau8825->regmap, NAU8825_REG_HSD_CTRL,
609 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
610 NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
611 /* Power down left and right DAC */
612 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
613 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
614 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
615 /* Enable the TESTDAC and disable L/R HP impedance */
616 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
617 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP |
618 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
619 /* Power down output driver with 2 stage */
620 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
621 NAU8825_POWERUP_HP_DRV_R | NAU8825_POWERUP_HP_DRV_L, 0);
622 regmap_update_bits(nau8825->regmap, NAU8825_REG_POWER_UP_CONTROL,
623 NAU8825_POWERUP_INTEGR_R | NAU8825_POWERUP_INTEGR_L |
624 NAU8825_POWERUP_DRV_IN_R | NAU8825_POWERUP_DRV_IN_L, 0);
625 /* Disable clock sync of DAC and DAC clock */
626 regmap_update_bits(nau8825->regmap, NAU8825_REG_RDAC,
627 NAU8825_RDAC_EN | NAU8825_RDAC_CLK_EN, 0);
628 /* Disable charge pump ramp up function and change bump */
629 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
630 NAU8825_JAMNODCLOW | NAU8825_CHANRGE_PUMP_EN, 0);
631 /* Disable power of DAC path */
632 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
633 NAU8825_ENABLE_DACR | NAU8825_ENABLE_DACL |
634 NAU8825_ENABLE_ADC_CLK | NAU8825_ENABLE_DAC_CLK, 0);
635 if (!nau8825->irq)
636 regmap_update_bits(nau8825->regmap,
637 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
638 }
639
640 static void nau8825_xtalk_clean_adc(struct nau8825 *nau8825)
641 {
642 /* Power down left ADC and restore voltage to Vmid */
643 regmap_update_bits(nau8825->regmap, NAU8825_REG_ANALOG_ADC_2,
644 NAU8825_POWERUP_ADCL | NAU8825_ADC_VREFSEL_MASK, 0);
645 }
646
647 static void nau8825_xtalk_clean(struct nau8825 *nau8825)
648 {
649 /* Enable internal VCO needed for interruptions */
650 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
651 nau8825_xtalk_clean_dac(nau8825);
652 nau8825_xtalk_clean_adc(nau8825);
653 /* Clear cross talk parameters and disable */
654 regmap_write(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL, 0);
655 /* RMS intrruption disable */
656 regmap_update_bits(nau8825->regmap, NAU8825_REG_INTERRUPT_MASK,
657 NAU8825_IRQ_RMS_EN, NAU8825_IRQ_RMS_EN);
658 /* Recover default value for IIS */
659 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
660 NAU8825_I2S_MS_MASK | NAU8825_I2S_DRV_MASK |
661 NAU8825_I2S_BLK_DIV_MASK, NAU8825_I2S_MS_SLAVE);
662 /* Restore value of specific register for cross talk */
663 nau8825_xtalk_restore(nau8825);
664 }
665
666 static void nau8825_xtalk_imm_start(struct nau8825 *nau8825, int vol)
667 {
668 /* Apply ADC volume for better cross talk performance */
669 regmap_update_bits(nau8825->regmap, NAU8825_REG_ADC_DGAIN_CTRL,
670 NAU8825_ADC_DIG_VOL_MASK, vol);
671 /* Disables JKTIP(HPL) DAC channel for right to left measurement.
672 * Do it before sending signal in order to erase pop noise.
673 */
674 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
675 NAU8825_BIAS_TESTDACR_EN | NAU8825_BIAS_TESTDACL_EN,
676 NAU8825_BIAS_TESTDACL_EN);
677 switch (nau8825->xtalk_state) {
678 case NAU8825_XTALK_HPR_R2L:
679 /* Enable right headphone impedance */
680 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
681 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
682 NAU8825_BIAS_HPR_IMP);
683 break;
684 case NAU8825_XTALK_HPL_R2L:
685 /* Enable left headphone impedance */
686 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
687 NAU8825_BIAS_HPR_IMP | NAU8825_BIAS_HPL_IMP,
688 NAU8825_BIAS_HPL_IMP);
689 break;
690 default:
691 break;
692 }
693 msleep(100);
694 /* Impedance measurement mode enable */
695 regmap_update_bits(nau8825->regmap, NAU8825_REG_IMM_MODE_CTRL,
696 NAU8825_IMM_EN, NAU8825_IMM_EN);
697 }
698
699 static void nau8825_xtalk_imm_stop(struct nau8825 *nau8825)
700 {
701 /* Impedance measurement mode disable */
702 regmap_update_bits(nau8825->regmap,
703 NAU8825_REG_IMM_MODE_CTRL, NAU8825_IMM_EN, 0);
704 }
705
706 /* The cross talk measurement function can reduce cross talk across the
707 * JKTIP(HPL) and JKR1(HPR) outputs which measures the cross talk signal
708 * level to determine what cross talk reduction gain is. This system works by
709 * sending a 23Hz -24dBV sine wave into the headset output DAC and through
710 * the PGA. The output of the PGA is then connected to an internal current
711 * sense which measures the attenuated 23Hz signal and passing the output to
712 * an ADC which converts the measurement to a binary code. With two separated
713 * measurement, one for JKR1(HPR) and the other JKTIP(HPL), measurement data
714 * can be separated read in IMM_RMS_L for HSR and HSL after each measurement.
715 * Thus, the measurement function has four states to complete whole sequence.
716 * 1. Prepare state : Prepare the resource for detection and transfer to HPR
717 * IMM stat to make JKR1(HPR) impedance measure.
718 * 2. HPR IMM state : Read out orignal signal level of JKR1(HPR) and transfer
719 * to HPL IMM state to make JKTIP(HPL) impedance measure.
720 * 3. HPL IMM state : Read out cross talk signal level of JKTIP(HPL) and
721 * transfer to IMM state to determine suppression sidetone gain.
722 * 4. IMM state : Computes cross talk suppression sidetone gain with orignal
723 * and cross talk signal level. Apply this gain and then restore codec
724 * configuration. Then transfer to Done state for ending.
725 */
726 static void nau8825_xtalk_measure(struct nau8825 *nau8825)
727 {
728 u32 sidetone;
729
730 switch (nau8825->xtalk_state) {
731 case NAU8825_XTALK_PREPARE:
732 /* In prepare state, set up clock, intrruption, DAC path, ADC
733 * path and cross talk detection parameters for preparation.
734 */
735 nau8825_xtalk_prepare(nau8825);
736 msleep(280);
737 /* Trigger right headphone impedance detection */
738 nau8825->xtalk_state = NAU8825_XTALK_HPR_R2L;
739 nau8825_xtalk_imm_start(nau8825, 0x00d2);
740 break;
741 case NAU8825_XTALK_HPR_R2L:
742 /* In right headphone IMM state, read out right headphone
743 * impedance measure result, and then start up left side.
744 */
745 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
746 &nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
747 dev_dbg(nau8825->dev, "HPR_R2L imm: %x\n",
748 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L]);
749 /* Disable then re-enable IMM mode to update */
750 nau8825_xtalk_imm_stop(nau8825);
751 /* Trigger left headphone impedance detection */
752 nau8825->xtalk_state = NAU8825_XTALK_HPL_R2L;
753 nau8825_xtalk_imm_start(nau8825, 0x00ff);
754 break;
755 case NAU8825_XTALK_HPL_R2L:
756 /* In left headphone IMM state, read out left headphone
757 * impedance measure result, and delay some time to wait
758 * detection sine wave output finish. Then, we can calculate
759 * the cross talk suppresstion side tone according to the L/R
760 * headphone imedance.
761 */
762 regmap_read(nau8825->regmap, NAU8825_REG_IMM_RMS_L,
763 &nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
764 dev_dbg(nau8825->dev, "HPL_R2L imm: %x\n",
765 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
766 nau8825_xtalk_imm_stop(nau8825);
767 msleep(150);
768 nau8825->xtalk_state = NAU8825_XTALK_IMM;
769 break;
770 case NAU8825_XTALK_IMM:
771 /* In impedance measure state, the orignal and cross talk
772 * signal level vlues are ready. The side tone gain is deter-
773 * mined with these signal level. After all, restore codec
774 * configuration.
775 */
776 sidetone = nau8825_xtalk_sidetone(
777 nau8825->imp_rms[NAU8825_XTALK_HPR_R2L],
778 nau8825->imp_rms[NAU8825_XTALK_HPL_R2L]);
779 dev_dbg(nau8825->dev, "cross talk sidetone: %x\n", sidetone);
780 regmap_write(nau8825->regmap, NAU8825_REG_DAC_DGAIN_CTRL,
781 (sidetone << 8) | sidetone);
782 nau8825_xtalk_clean(nau8825);
783 nau8825->xtalk_state = NAU8825_XTALK_DONE;
784 break;
785 default:
786 break;
787 }
788 }
789
790 static void nau8825_xtalk_work(struct work_struct *work)
791 {
792 struct nau8825 *nau8825 = container_of(
793 work, struct nau8825, xtalk_work);
794
795 nau8825_xtalk_measure(nau8825);
796 /* To determine the cross talk side tone gain when reach
797 * the impedance measure state.
798 */
799 if (nau8825->xtalk_state == NAU8825_XTALK_IMM)
800 nau8825_xtalk_measure(nau8825);
801
802 /* Delay jack report until cross talk detection process
803 * completed. It can avoid application to do playback
804 * preparation before cross talk detection is still working.
805 * Meanwhile, the protection of the cross talk detection
806 * is released.
807 */
808 if (nau8825->xtalk_state == NAU8825_XTALK_DONE) {
809 snd_soc_jack_report(nau8825->jack, nau8825->xtalk_event,
810 nau8825->xtalk_event_mask);
811 nau8825_sema_release(nau8825);
812 nau8825->xtalk_protect = false;
813 }
814 }
815
816 static void nau8825_xtalk_cancel(struct nau8825 *nau8825)
817 {
818 /* If the xtalk_protect is true, that means the process is still
819 * on going. The driver forces to cancel the cross talk task and
820 * restores the configuration to original status.
821 */
822 if (nau8825->xtalk_protect) {
823 cancel_work_sync(&nau8825->xtalk_work);
824 nau8825_xtalk_clean(nau8825);
825 }
826 /* Reset parameters for cross talk suppression function */
827 nau8825_sema_reset(nau8825);
828 nau8825->xtalk_state = NAU8825_XTALK_DONE;
829 nau8825->xtalk_protect = false;
830 }
831
832 static bool nau8825_readable_reg(struct device *dev, unsigned int reg)
833 {
834 switch (reg) {
835 case NAU8825_REG_ENA_CTRL ... NAU8825_REG_FLL_VCO_RSV:
836 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
837 case NAU8825_REG_INTERRUPT_MASK ... NAU8825_REG_KEYDET_CTRL:
838 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
839 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
840 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
841 case NAU8825_REG_IMM_MODE_CTRL ... NAU8825_REG_IMM_RMS_R:
842 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
843 case NAU8825_REG_MISC_CTRL:
844 case NAU8825_REG_I2C_DEVICE_ID ... NAU8825_REG_SARDOUT_RAM_STATUS:
845 case NAU8825_REG_BIAS_ADJ:
846 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
847 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
848 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
849 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_GENERAL_STATUS:
850 return true;
851 default:
852 return false;
853 }
854
855 }
856
857 static bool nau8825_writeable_reg(struct device *dev, unsigned int reg)
858 {
859 switch (reg) {
860 case NAU8825_REG_RESET ... NAU8825_REG_FLL_VCO_RSV:
861 case NAU8825_REG_HSD_CTRL ... NAU8825_REG_JACK_DET_CTRL:
862 case NAU8825_REG_INTERRUPT_MASK:
863 case NAU8825_REG_INT_CLR_KEY_STATUS ... NAU8825_REG_KEYDET_CTRL:
864 case NAU8825_REG_VDET_THRESHOLD_1 ... NAU8825_REG_DACR_CTRL:
865 case NAU8825_REG_ADC_DRC_KNEE_IP12 ... NAU8825_REG_ADC_DRC_ATKDCY:
866 case NAU8825_REG_DAC_DRC_KNEE_IP12 ... NAU8825_REG_DAC_DRC_ATKDCY:
867 case NAU8825_REG_IMM_MODE_CTRL:
868 case NAU8825_REG_CLASSG_CTRL ... NAU8825_REG_OPT_EFUSE_CTRL:
869 case NAU8825_REG_MISC_CTRL:
870 case NAU8825_REG_BIAS_ADJ:
871 case NAU8825_REG_TRIM_SETTINGS ... NAU8825_REG_ANALOG_CONTROL_2:
872 case NAU8825_REG_ANALOG_ADC_1 ... NAU8825_REG_MIC_BIAS:
873 case NAU8825_REG_BOOST ... NAU8825_REG_FEPGA:
874 case NAU8825_REG_POWER_UP_CONTROL ... NAU8825_REG_CHARGE_PUMP:
875 return true;
876 default:
877 return false;
878 }
879 }
880
881 static bool nau8825_volatile_reg(struct device *dev, unsigned int reg)
882 {
883 switch (reg) {
884 case NAU8825_REG_RESET:
885 case NAU8825_REG_IRQ_STATUS:
886 case NAU8825_REG_INT_CLR_KEY_STATUS:
887 case NAU8825_REG_IMM_RMS_L:
888 case NAU8825_REG_IMM_RMS_R:
889 case NAU8825_REG_I2C_DEVICE_ID:
890 case NAU8825_REG_SARDOUT_RAM_STATUS:
891 case NAU8825_REG_CHARGE_PUMP_INPUT_READ:
892 case NAU8825_REG_GENERAL_STATUS:
893 case NAU8825_REG_BIQ_CTRL ... NAU8825_REG_BIQ_COF10:
894 return true;
895 default:
896 return false;
897 }
898 }
899
900 static int nau8825_adc_event(struct snd_soc_dapm_widget *w,
901 struct snd_kcontrol *kcontrol, int event)
902 {
903 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
904 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
905
906 switch (event) {
907 case SND_SOC_DAPM_POST_PMU:
908 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
909 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
910 break;
911 case SND_SOC_DAPM_POST_PMD:
912 if (!nau8825->irq)
913 regmap_update_bits(nau8825->regmap,
914 NAU8825_REG_ENA_CTRL, NAU8825_ENABLE_ADC, 0);
915 break;
916 default:
917 return -EINVAL;
918 }
919
920 return 0;
921 }
922
923 static int nau8825_pump_event(struct snd_soc_dapm_widget *w,
924 struct snd_kcontrol *kcontrol, int event)
925 {
926 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
927 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
928
929 switch (event) {
930 case SND_SOC_DAPM_POST_PMU:
931 /* Prevent startup click by letting charge pump to ramp up */
932 msleep(10);
933 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
934 NAU8825_JAMNODCLOW, NAU8825_JAMNODCLOW);
935 break;
936 case SND_SOC_DAPM_PRE_PMD:
937 regmap_update_bits(nau8825->regmap, NAU8825_REG_CHARGE_PUMP,
938 NAU8825_JAMNODCLOW, 0);
939 break;
940 default:
941 return -EINVAL;
942 }
943
944 return 0;
945 }
946
947 static int nau8825_output_dac_event(struct snd_soc_dapm_widget *w,
948 struct snd_kcontrol *kcontrol, int event)
949 {
950 struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
951 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
952
953 switch (event) {
954 case SND_SOC_DAPM_PRE_PMU:
955 /* Disables the TESTDAC to let DAC signal pass through. */
956 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
957 NAU8825_BIAS_TESTDAC_EN, 0);
958 break;
959 case SND_SOC_DAPM_POST_PMD:
960 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
961 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
962 break;
963 default:
964 return -EINVAL;
965 }
966
967 return 0;
968 }
969
970 static int nau8825_biq_coeff_get(struct snd_kcontrol *kcontrol,
971 struct snd_ctl_elem_value *ucontrol)
972 {
973 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
974 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
975
976 if (!component->regmap)
977 return -EINVAL;
978
979 regmap_raw_read(component->regmap, NAU8825_REG_BIQ_COF1,
980 ucontrol->value.bytes.data, params->max);
981 return 0;
982 }
983
984 static int nau8825_biq_coeff_put(struct snd_kcontrol *kcontrol,
985 struct snd_ctl_elem_value *ucontrol)
986 {
987 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
988 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
989 void *data;
990
991 if (!component->regmap)
992 return -EINVAL;
993
994 data = kmemdup(ucontrol->value.bytes.data,
995 params->max, GFP_KERNEL | GFP_DMA);
996 if (!data)
997 return -ENOMEM;
998
999 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1000 NAU8825_BIQ_WRT_EN, 0);
1001 regmap_raw_write(component->regmap, NAU8825_REG_BIQ_COF1,
1002 data, params->max);
1003 regmap_update_bits(component->regmap, NAU8825_REG_BIQ_CTRL,
1004 NAU8825_BIQ_WRT_EN, NAU8825_BIQ_WRT_EN);
1005
1006 kfree(data);
1007 return 0;
1008 }
1009
1010 static const char * const nau8825_biq_path[] = {
1011 "ADC", "DAC"
1012 };
1013
1014 static const struct soc_enum nau8825_biq_path_enum =
1015 SOC_ENUM_SINGLE(NAU8825_REG_BIQ_CTRL, NAU8825_BIQ_PATH_SFT,
1016 ARRAY_SIZE(nau8825_biq_path), nau8825_biq_path);
1017
1018 static const char * const nau8825_adc_decimation[] = {
1019 "32", "64", "128", "256"
1020 };
1021
1022 static const struct soc_enum nau8825_adc_decimation_enum =
1023 SOC_ENUM_SINGLE(NAU8825_REG_ADC_RATE, NAU8825_ADC_SYNC_DOWN_SFT,
1024 ARRAY_SIZE(nau8825_adc_decimation), nau8825_adc_decimation);
1025
1026 static const char * const nau8825_dac_oversampl[] = {
1027 "64", "256", "128", "", "32"
1028 };
1029
1030 static const struct soc_enum nau8825_dac_oversampl_enum =
1031 SOC_ENUM_SINGLE(NAU8825_REG_DAC_CTRL1, NAU8825_DAC_OVERSAMPLE_SFT,
1032 ARRAY_SIZE(nau8825_dac_oversampl), nau8825_dac_oversampl);
1033
1034 static const DECLARE_TLV_DB_MINMAX_MUTE(adc_vol_tlv, -10300, 2400);
1035 static const DECLARE_TLV_DB_MINMAX_MUTE(sidetone_vol_tlv, -4200, 0);
1036 static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -5400, 0);
1037 static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600);
1038 static const DECLARE_TLV_DB_MINMAX_MUTE(crosstalk_vol_tlv, -9600, 2400);
1039
1040 static const struct snd_kcontrol_new nau8825_controls[] = {
1041 SOC_SINGLE_TLV("Mic Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1042 0, 0xff, 0, adc_vol_tlv),
1043 SOC_DOUBLE_TLV("Headphone Bypass Volume", NAU8825_REG_ADC_DGAIN_CTRL,
1044 12, 8, 0x0f, 0, sidetone_vol_tlv),
1045 SOC_DOUBLE_TLV("Headphone Volume", NAU8825_REG_HSVOL_CTRL,
1046 6, 0, 0x3f, 1, dac_vol_tlv),
1047 SOC_SINGLE_TLV("Frontend PGA Volume", NAU8825_REG_POWER_UP_CONTROL,
1048 8, 37, 0, fepga_gain_tlv),
1049 SOC_DOUBLE_TLV("Headphone Crosstalk Volume", NAU8825_REG_DAC_DGAIN_CTRL,
1050 0, 8, 0xff, 0, crosstalk_vol_tlv),
1051
1052 SOC_ENUM("ADC Decimation Rate", nau8825_adc_decimation_enum),
1053 SOC_ENUM("DAC Oversampling Rate", nau8825_dac_oversampl_enum),
1054 /* programmable biquad filter */
1055 SOC_ENUM("BIQ Path Select", nau8825_biq_path_enum),
1056 SND_SOC_BYTES_EXT("BIQ Coefficients", 20,
1057 nau8825_biq_coeff_get, nau8825_biq_coeff_put),
1058 };
1059
1060 /* DAC Mux 0x33[9] and 0x34[9] */
1061 static const char * const nau8825_dac_src[] = {
1062 "DACL", "DACR",
1063 };
1064
1065 static SOC_ENUM_SINGLE_DECL(
1066 nau8825_dacl_enum, NAU8825_REG_DACL_CTRL,
1067 NAU8825_DACL_CH_SEL_SFT, nau8825_dac_src);
1068
1069 static SOC_ENUM_SINGLE_DECL(
1070 nau8825_dacr_enum, NAU8825_REG_DACR_CTRL,
1071 NAU8825_DACR_CH_SEL_SFT, nau8825_dac_src);
1072
1073 static const struct snd_kcontrol_new nau8825_dacl_mux =
1074 SOC_DAPM_ENUM("DACL Source", nau8825_dacl_enum);
1075
1076 static const struct snd_kcontrol_new nau8825_dacr_mux =
1077 SOC_DAPM_ENUM("DACR Source", nau8825_dacr_enum);
1078
1079
1080 static const struct snd_soc_dapm_widget nau8825_dapm_widgets[] = {
1081 SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, NAU8825_REG_I2S_PCM_CTRL2,
1082 15, 1),
1083
1084 SND_SOC_DAPM_INPUT("MIC"),
1085 SND_SOC_DAPM_MICBIAS("MICBIAS", NAU8825_REG_MIC_BIAS, 8, 0),
1086
1087 SND_SOC_DAPM_PGA("Frontend PGA", NAU8825_REG_POWER_UP_CONTROL, 14, 0,
1088 NULL, 0),
1089
1090 SND_SOC_DAPM_ADC_E("ADC", NULL, SND_SOC_NOPM, 0, 0,
1091 nau8825_adc_event, SND_SOC_DAPM_POST_PMU |
1092 SND_SOC_DAPM_POST_PMD),
1093 SND_SOC_DAPM_SUPPLY("ADC Clock", NAU8825_REG_ENA_CTRL, 7, 0, NULL, 0),
1094 SND_SOC_DAPM_SUPPLY("ADC Power", NAU8825_REG_ANALOG_ADC_2, 6, 0, NULL,
1095 0),
1096
1097 /* ADC for button press detection. A dapm supply widget is used to
1098 * prevent dapm_power_widgets keeping the codec at SND_SOC_BIAS_ON
1099 * during suspend.
1100 */
1101 SND_SOC_DAPM_SUPPLY("SAR", NAU8825_REG_SAR_CTRL,
1102 NAU8825_SAR_ADC_EN_SFT, 0, NULL, 0),
1103
1104 SND_SOC_DAPM_PGA_S("ADACL", 2, NAU8825_REG_RDAC, 12, 0, NULL, 0),
1105 SND_SOC_DAPM_PGA_S("ADACR", 2, NAU8825_REG_RDAC, 13, 0, NULL, 0),
1106 SND_SOC_DAPM_PGA_S("ADACL Clock", 3, NAU8825_REG_RDAC, 8, 0, NULL, 0),
1107 SND_SOC_DAPM_PGA_S("ADACR Clock", 3, NAU8825_REG_RDAC, 9, 0, NULL, 0),
1108
1109 SND_SOC_DAPM_DAC("DDACR", NULL, NAU8825_REG_ENA_CTRL,
1110 NAU8825_ENABLE_DACR_SFT, 0),
1111 SND_SOC_DAPM_DAC("DDACL", NULL, NAU8825_REG_ENA_CTRL,
1112 NAU8825_ENABLE_DACL_SFT, 0),
1113 SND_SOC_DAPM_SUPPLY("DDAC Clock", NAU8825_REG_ENA_CTRL, 6, 0, NULL, 0),
1114
1115 SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacl_mux),
1116 SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8825_dacr_mux),
1117
1118 SND_SOC_DAPM_PGA_S("HP amp L", 0,
1119 NAU8825_REG_CLASSG_CTRL, 1, 0, NULL, 0),
1120 SND_SOC_DAPM_PGA_S("HP amp R", 0,
1121 NAU8825_REG_CLASSG_CTRL, 2, 0, NULL, 0),
1122
1123 SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8825_REG_CHARGE_PUMP, 5, 0,
1124 nau8825_pump_event, SND_SOC_DAPM_POST_PMU |
1125 SND_SOC_DAPM_PRE_PMD),
1126
1127 SND_SOC_DAPM_PGA_S("Output Driver R Stage 1", 4,
1128 NAU8825_REG_POWER_UP_CONTROL, 5, 0, NULL, 0),
1129 SND_SOC_DAPM_PGA_S("Output Driver L Stage 1", 4,
1130 NAU8825_REG_POWER_UP_CONTROL, 4, 0, NULL, 0),
1131 SND_SOC_DAPM_PGA_S("Output Driver R Stage 2", 5,
1132 NAU8825_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
1133 SND_SOC_DAPM_PGA_S("Output Driver L Stage 2", 5,
1134 NAU8825_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
1135 SND_SOC_DAPM_PGA_S("Output Driver R Stage 3", 6,
1136 NAU8825_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
1137 SND_SOC_DAPM_PGA_S("Output Driver L Stage 3", 6,
1138 NAU8825_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
1139
1140 SND_SOC_DAPM_PGA_S("Output DACL", 7,
1141 NAU8825_REG_CHARGE_PUMP, 8, 1, nau8825_output_dac_event,
1142 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1143 SND_SOC_DAPM_PGA_S("Output DACR", 7,
1144 NAU8825_REG_CHARGE_PUMP, 9, 1, nau8825_output_dac_event,
1145 SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
1146
1147 /* HPOL/R are ungrounded by disabling 16 Ohm pull-downs on playback */
1148 SND_SOC_DAPM_PGA_S("HPOL Pulldown", 8,
1149 NAU8825_REG_HSD_CTRL, 0, 1, NULL, 0),
1150 SND_SOC_DAPM_PGA_S("HPOR Pulldown", 8,
1151 NAU8825_REG_HSD_CTRL, 1, 1, NULL, 0),
1152
1153 /* High current HPOL/R boost driver */
1154 SND_SOC_DAPM_PGA_S("HP Boost Driver", 9,
1155 NAU8825_REG_BOOST, 9, 1, NULL, 0),
1156
1157 /* Class G operation control*/
1158 SND_SOC_DAPM_PGA_S("Class G", 10,
1159 NAU8825_REG_CLASSG_CTRL, 0, 0, NULL, 0),
1160
1161 SND_SOC_DAPM_OUTPUT("HPOL"),
1162 SND_SOC_DAPM_OUTPUT("HPOR"),
1163 };
1164
1165 static const struct snd_soc_dapm_route nau8825_dapm_routes[] = {
1166 {"Frontend PGA", NULL, "MIC"},
1167 {"ADC", NULL, "Frontend PGA"},
1168 {"ADC", NULL, "ADC Clock"},
1169 {"ADC", NULL, "ADC Power"},
1170 {"AIFTX", NULL, "ADC"},
1171
1172 {"DDACL", NULL, "Playback"},
1173 {"DDACR", NULL, "Playback"},
1174 {"DDACL", NULL, "DDAC Clock"},
1175 {"DDACR", NULL, "DDAC Clock"},
1176 {"DACL Mux", "DACL", "DDACL"},
1177 {"DACL Mux", "DACR", "DDACR"},
1178 {"DACR Mux", "DACL", "DDACL"},
1179 {"DACR Mux", "DACR", "DDACR"},
1180 {"HP amp L", NULL, "DACL Mux"},
1181 {"HP amp R", NULL, "DACR Mux"},
1182 {"Charge Pump", NULL, "HP amp L"},
1183 {"Charge Pump", NULL, "HP amp R"},
1184 {"ADACL", NULL, "Charge Pump"},
1185 {"ADACR", NULL, "Charge Pump"},
1186 {"ADACL Clock", NULL, "ADACL"},
1187 {"ADACR Clock", NULL, "ADACR"},
1188 {"Output Driver L Stage 1", NULL, "ADACL Clock"},
1189 {"Output Driver R Stage 1", NULL, "ADACR Clock"},
1190 {"Output Driver L Stage 2", NULL, "Output Driver L Stage 1"},
1191 {"Output Driver R Stage 2", NULL, "Output Driver R Stage 1"},
1192 {"Output Driver L Stage 3", NULL, "Output Driver L Stage 2"},
1193 {"Output Driver R Stage 3", NULL, "Output Driver R Stage 2"},
1194 {"Output DACL", NULL, "Output Driver L Stage 3"},
1195 {"Output DACR", NULL, "Output Driver R Stage 3"},
1196 {"HPOL Pulldown", NULL, "Output DACL"},
1197 {"HPOR Pulldown", NULL, "Output DACR"},
1198 {"HP Boost Driver", NULL, "HPOL Pulldown"},
1199 {"HP Boost Driver", NULL, "HPOR Pulldown"},
1200 {"Class G", NULL, "HP Boost Driver"},
1201 {"HPOL", NULL, "Class G"},
1202 {"HPOR", NULL, "Class G"},
1203 };
1204
1205 static int nau8825_clock_check(struct nau8825 *nau8825,
1206 int stream, int rate, int osr)
1207 {
1208 int osrate;
1209
1210 if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
1211 if (osr >= ARRAY_SIZE(osr_dac_sel))
1212 return -EINVAL;
1213 osrate = osr_dac_sel[osr].osr;
1214 } else {
1215 if (osr >= ARRAY_SIZE(osr_adc_sel))
1216 return -EINVAL;
1217 osrate = osr_adc_sel[osr].osr;
1218 }
1219
1220 if (!osrate || rate * osr > CLK_DA_AD_MAX) {
1221 dev_err(nau8825->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
1222 return -EINVAL;
1223 }
1224
1225 return 0;
1226 }
1227
1228 static int nau8825_hw_params(struct snd_pcm_substream *substream,
1229 struct snd_pcm_hw_params *params,
1230 struct snd_soc_dai *dai)
1231 {
1232 struct snd_soc_codec *codec = dai->codec;
1233 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1234 unsigned int val_len = 0, osr;
1235
1236 nau8825_sema_acquire(nau8825, 3 * HZ);
1237
1238 /* CLK_DAC or CLK_ADC = OSR * FS
1239 * DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
1240 * multiplied by the audio sample rate (Fs). Note that the OSR and Fs
1241 * values must be selected such that the maximum frequency is less
1242 * than 6.144 MHz.
1243 */
1244 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1245 regmap_read(nau8825->regmap, NAU8825_REG_DAC_CTRL1, &osr);
1246 osr &= NAU8825_DAC_OVERSAMPLE_MASK;
1247 if (nau8825_clock_check(nau8825, substream->stream,
1248 params_rate(params), osr))
1249 return -EINVAL;
1250 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1251 NAU8825_CLK_DAC_SRC_MASK,
1252 osr_dac_sel[osr].clk_src << NAU8825_CLK_DAC_SRC_SFT);
1253 } else {
1254 regmap_read(nau8825->regmap, NAU8825_REG_ADC_RATE, &osr);
1255 osr &= NAU8825_ADC_SYNC_DOWN_MASK;
1256 if (nau8825_clock_check(nau8825, substream->stream,
1257 params_rate(params), osr))
1258 return -EINVAL;
1259 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1260 NAU8825_CLK_ADC_SRC_MASK,
1261 osr_adc_sel[osr].clk_src << NAU8825_CLK_ADC_SRC_SFT);
1262 }
1263
1264 switch (params_width(params)) {
1265 case 16:
1266 val_len |= NAU8825_I2S_DL_16;
1267 break;
1268 case 20:
1269 val_len |= NAU8825_I2S_DL_20;
1270 break;
1271 case 24:
1272 val_len |= NAU8825_I2S_DL_24;
1273 break;
1274 case 32:
1275 val_len |= NAU8825_I2S_DL_32;
1276 break;
1277 default:
1278 return -EINVAL;
1279 }
1280
1281 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1282 NAU8825_I2S_DL_MASK, val_len);
1283
1284 /* Release the semaphone. */
1285 nau8825_sema_release(nau8825);
1286
1287 return 0;
1288 }
1289
1290 static int nau8825_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
1291 {
1292 struct snd_soc_codec *codec = codec_dai->codec;
1293 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1294 unsigned int ctrl1_val = 0, ctrl2_val = 0;
1295
1296 nau8825_sema_acquire(nau8825, 3 * HZ);
1297
1298 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1299 case SND_SOC_DAIFMT_CBM_CFM:
1300 ctrl2_val |= NAU8825_I2S_MS_MASTER;
1301 break;
1302 case SND_SOC_DAIFMT_CBS_CFS:
1303 break;
1304 default:
1305 return -EINVAL;
1306 }
1307
1308 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1309 case SND_SOC_DAIFMT_NB_NF:
1310 break;
1311 case SND_SOC_DAIFMT_IB_NF:
1312 ctrl1_val |= NAU8825_I2S_BP_INV;
1313 break;
1314 default:
1315 return -EINVAL;
1316 }
1317
1318 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1319 case SND_SOC_DAIFMT_I2S:
1320 ctrl1_val |= NAU8825_I2S_DF_I2S;
1321 break;
1322 case SND_SOC_DAIFMT_LEFT_J:
1323 ctrl1_val |= NAU8825_I2S_DF_LEFT;
1324 break;
1325 case SND_SOC_DAIFMT_RIGHT_J:
1326 ctrl1_val |= NAU8825_I2S_DF_RIGTH;
1327 break;
1328 case SND_SOC_DAIFMT_DSP_A:
1329 ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1330 break;
1331 case SND_SOC_DAIFMT_DSP_B:
1332 ctrl1_val |= NAU8825_I2S_DF_PCM_AB;
1333 ctrl1_val |= NAU8825_I2S_PCMB_EN;
1334 break;
1335 default:
1336 return -EINVAL;
1337 }
1338
1339 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL1,
1340 NAU8825_I2S_DL_MASK | NAU8825_I2S_DF_MASK |
1341 NAU8825_I2S_BP_MASK | NAU8825_I2S_PCMB_MASK,
1342 ctrl1_val);
1343 regmap_update_bits(nau8825->regmap, NAU8825_REG_I2S_PCM_CTRL2,
1344 NAU8825_I2S_MS_MASK, ctrl2_val);
1345
1346 /* Release the semaphone. */
1347 nau8825_sema_release(nau8825);
1348
1349 return 0;
1350 }
1351
1352 static const struct snd_soc_dai_ops nau8825_dai_ops = {
1353 .hw_params = nau8825_hw_params,
1354 .set_fmt = nau8825_set_dai_fmt,
1355 };
1356
1357 #define NAU8825_RATES SNDRV_PCM_RATE_8000_192000
1358 #define NAU8825_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
1359 | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1360
1361 static struct snd_soc_dai_driver nau8825_dai = {
1362 .name = "nau8825-hifi",
1363 .playback = {
1364 .stream_name = "Playback",
1365 .channels_min = 1,
1366 .channels_max = 2,
1367 .rates = NAU8825_RATES,
1368 .formats = NAU8825_FORMATS,
1369 },
1370 .capture = {
1371 .stream_name = "Capture",
1372 .channels_min = 1,
1373 .channels_max = 1,
1374 .rates = NAU8825_RATES,
1375 .formats = NAU8825_FORMATS,
1376 },
1377 .ops = &nau8825_dai_ops,
1378 };
1379
1380 /**
1381 * nau8825_enable_jack_detect - Specify a jack for event reporting
1382 *
1383 * @component: component to register the jack with
1384 * @jack: jack to use to report headset and button events on
1385 *
1386 * After this function has been called the headset insert/remove and button
1387 * events will be routed to the given jack. Jack can be null to stop
1388 * reporting.
1389 */
1390 int nau8825_enable_jack_detect(struct snd_soc_codec *codec,
1391 struct snd_soc_jack *jack)
1392 {
1393 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1394 struct regmap *regmap = nau8825->regmap;
1395
1396 nau8825->jack = jack;
1397
1398 /* Ground HP Outputs[1:0], needed for headset auto detection
1399 * Enable Automatic Mic/Gnd switching reading on insert interrupt[6]
1400 */
1401 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL,
1402 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L,
1403 NAU8825_HSD_AUTO_MODE | NAU8825_SPKR_DWN1R | NAU8825_SPKR_DWN1L);
1404
1405 return 0;
1406 }
1407 EXPORT_SYMBOL_GPL(nau8825_enable_jack_detect);
1408
1409
1410 static bool nau8825_is_jack_inserted(struct regmap *regmap)
1411 {
1412 bool active_high, is_high;
1413 int status, jkdet;
1414
1415 regmap_read(regmap, NAU8825_REG_JACK_DET_CTRL, &jkdet);
1416 active_high = jkdet & NAU8825_JACK_POLARITY;
1417 regmap_read(regmap, NAU8825_REG_I2C_DEVICE_ID, &status);
1418 is_high = status & NAU8825_GPIO2JD1;
1419 /* return jack connection status according to jack insertion logic
1420 * active high or active low.
1421 */
1422 return active_high == is_high;
1423 }
1424
1425 static void nau8825_restart_jack_detection(struct regmap *regmap)
1426 {
1427 /* this will restart the entire jack detection process including MIC/GND
1428 * switching and create interrupts. We have to go from 0 to 1 and back
1429 * to 0 to restart.
1430 */
1431 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1432 NAU8825_JACK_DET_RESTART, NAU8825_JACK_DET_RESTART);
1433 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1434 NAU8825_JACK_DET_RESTART, 0);
1435 }
1436
1437 static void nau8825_int_status_clear_all(struct regmap *regmap)
1438 {
1439 int active_irq, clear_irq, i;
1440
1441 /* Reset the intrruption status from rightmost bit if the corres-
1442 * ponding irq event occurs.
1443 */
1444 regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq);
1445 for (i = 0; i < NAU8825_REG_DATA_LEN; i++) {
1446 clear_irq = (0x1 << i);
1447 if (active_irq & clear_irq)
1448 regmap_write(regmap,
1449 NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1450 }
1451 }
1452
1453 static void nau8825_eject_jack(struct nau8825 *nau8825)
1454 {
1455 struct snd_soc_dapm_context *dapm = nau8825->dapm;
1456 struct regmap *regmap = nau8825->regmap;
1457
1458 /* Force to cancel the cross talk detection process */
1459 nau8825_xtalk_cancel(nau8825);
1460
1461 snd_soc_dapm_disable_pin(dapm, "SAR");
1462 snd_soc_dapm_disable_pin(dapm, "MICBIAS");
1463 /* Detach 2kOhm Resistors from MICBIAS to MICGND1/2 */
1464 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1465 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2, 0);
1466 /* ground HPL/HPR, MICGRND1/2 */
1467 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 0xf, 0xf);
1468
1469 snd_soc_dapm_sync(dapm);
1470
1471 /* Clear all interruption status */
1472 nau8825_int_status_clear_all(regmap);
1473
1474 /* Enable the insertion interruption, disable the ejection inter-
1475 * ruption, and then bypass de-bounce circuit.
1476 */
1477 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
1478 NAU8825_IRQ_EJECT_DIS | NAU8825_IRQ_INSERT_DIS,
1479 NAU8825_IRQ_EJECT_DIS);
1480 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1481 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1482 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_INSERT_EN,
1483 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_EJECT_EN |
1484 NAU8825_IRQ_HEADSET_COMPLETE_EN);
1485 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1486 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
1487
1488 /* Disable ADC needed for interruptions at audo mode */
1489 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1490 NAU8825_ENABLE_ADC, 0);
1491
1492 /* Close clock for jack type detection at manual mode */
1493 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
1494 }
1495
1496 /* Enable audo mode interruptions with internal clock. */
1497 static void nau8825_setup_auto_irq(struct nau8825 *nau8825)
1498 {
1499 struct regmap *regmap = nau8825->regmap;
1500
1501 /* Enable headset jack type detection complete interruption and
1502 * jack ejection interruption.
1503 */
1504 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1505 NAU8825_IRQ_HEADSET_COMPLETE_EN | NAU8825_IRQ_EJECT_EN, 0);
1506
1507 /* Enable internal VCO needed for interruptions */
1508 nau8825_configure_sysclk(nau8825, NAU8825_CLK_INTERNAL, 0);
1509
1510 /* Enable ADC needed for interruptions */
1511 regmap_update_bits(regmap, NAU8825_REG_ENA_CTRL,
1512 NAU8825_ENABLE_ADC, NAU8825_ENABLE_ADC);
1513
1514 /* Chip needs one FSCLK cycle in order to generate interruptions,
1515 * as we cannot guarantee one will be provided by the system. Turning
1516 * master mode on then off enables us to generate that FSCLK cycle
1517 * with a minimum of contention on the clock bus.
1518 */
1519 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1520 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_MASTER);
1521 regmap_update_bits(regmap, NAU8825_REG_I2S_PCM_CTRL2,
1522 NAU8825_I2S_MS_MASK, NAU8825_I2S_MS_SLAVE);
1523
1524 /* Not bypass de-bounce circuit */
1525 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1526 NAU8825_JACK_DET_DB_BYPASS, 0);
1527
1528 /* Unmask all interruptions */
1529 regmap_write(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL, 0);
1530
1531 /* Restart the jack detection process at auto mode */
1532 nau8825_restart_jack_detection(regmap);
1533 }
1534
1535 static int nau8825_button_decode(int value)
1536 {
1537 int buttons = 0;
1538
1539 /* The chip supports up to 8 buttons, but ALSA defines only 6 buttons */
1540 if (value & BIT(0))
1541 buttons |= SND_JACK_BTN_0;
1542 if (value & BIT(1))
1543 buttons |= SND_JACK_BTN_1;
1544 if (value & BIT(2))
1545 buttons |= SND_JACK_BTN_2;
1546 if (value & BIT(3))
1547 buttons |= SND_JACK_BTN_3;
1548 if (value & BIT(4))
1549 buttons |= SND_JACK_BTN_4;
1550 if (value & BIT(5))
1551 buttons |= SND_JACK_BTN_5;
1552
1553 return buttons;
1554 }
1555
1556 static int nau8825_jack_insert(struct nau8825 *nau8825)
1557 {
1558 struct regmap *regmap = nau8825->regmap;
1559 struct snd_soc_dapm_context *dapm = nau8825->dapm;
1560 int jack_status_reg, mic_detected;
1561 int type = 0;
1562
1563 regmap_read(regmap, NAU8825_REG_GENERAL_STATUS, &jack_status_reg);
1564 mic_detected = (jack_status_reg >> 10) & 3;
1565 /* The JKSLV and JKR2 all detected in high impedance headset */
1566 if (mic_detected == 0x3)
1567 nau8825->high_imped = true;
1568 else
1569 nau8825->high_imped = false;
1570
1571 switch (mic_detected) {
1572 case 0:
1573 /* no mic */
1574 type = SND_JACK_HEADPHONE;
1575 break;
1576 case 1:
1577 dev_dbg(nau8825->dev, "OMTP (micgnd1) mic connected\n");
1578 type = SND_JACK_HEADSET;
1579
1580 /* Unground MICGND1 */
1581 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1582 1 << 2);
1583 /* Attach 2kOhm Resistor from MICBIAS to MICGND1 */
1584 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1585 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1586 NAU8825_MICBIAS_JKR2);
1587 /* Attach SARADC to MICGND1 */
1588 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1589 NAU8825_SAR_INPUT_MASK,
1590 NAU8825_SAR_INPUT_JKR2);
1591
1592 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1593 snd_soc_dapm_force_enable_pin(dapm, "SAR");
1594 snd_soc_dapm_sync(dapm);
1595 break;
1596 case 2:
1597 case 3:
1598 dev_dbg(nau8825->dev, "CTIA (micgnd2) mic connected\n");
1599 type = SND_JACK_HEADSET;
1600
1601 /* Unground MICGND2 */
1602 regmap_update_bits(regmap, NAU8825_REG_HSD_CTRL, 3 << 2,
1603 2 << 2);
1604 /* Attach 2kOhm Resistor from MICBIAS to MICGND2 */
1605 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1606 NAU8825_MICBIAS_JKSLV | NAU8825_MICBIAS_JKR2,
1607 NAU8825_MICBIAS_JKSLV);
1608 /* Attach SARADC to MICGND2 */
1609 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1610 NAU8825_SAR_INPUT_MASK,
1611 NAU8825_SAR_INPUT_JKSLV);
1612
1613 snd_soc_dapm_force_enable_pin(dapm, "MICBIAS");
1614 snd_soc_dapm_force_enable_pin(dapm, "SAR");
1615 snd_soc_dapm_sync(dapm);
1616 break;
1617 }
1618
1619 /* Leaving HPOL/R grounded after jack insert by default. They will be
1620 * ungrounded as part of the widget power up sequence at the beginning
1621 * of playback to reduce pop.
1622 */
1623 return type;
1624 }
1625
1626 #define NAU8825_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
1627 SND_JACK_BTN_2 | SND_JACK_BTN_3)
1628
1629 static irqreturn_t nau8825_interrupt(int irq, void *data)
1630 {
1631 struct nau8825 *nau8825 = (struct nau8825 *)data;
1632 struct regmap *regmap = nau8825->regmap;
1633 int active_irq, clear_irq = 0, event = 0, event_mask = 0;
1634
1635 if (regmap_read(regmap, NAU8825_REG_IRQ_STATUS, &active_irq)) {
1636 dev_err(nau8825->dev, "failed to read irq status\n");
1637 return IRQ_NONE;
1638 }
1639
1640 if ((active_irq & NAU8825_JACK_EJECTION_IRQ_MASK) ==
1641 NAU8825_JACK_EJECTION_DETECTED) {
1642
1643 nau8825_eject_jack(nau8825);
1644 event_mask |= SND_JACK_HEADSET;
1645 clear_irq = NAU8825_JACK_EJECTION_IRQ_MASK;
1646 } else if (active_irq & NAU8825_KEY_SHORT_PRESS_IRQ) {
1647 int key_status;
1648
1649 regmap_read(regmap, NAU8825_REG_INT_CLR_KEY_STATUS,
1650 &key_status);
1651
1652 /* upper 8 bits of the register are for short pressed keys,
1653 * lower 8 bits - for long pressed buttons
1654 */
1655 nau8825->button_pressed = nau8825_button_decode(
1656 key_status >> 8);
1657
1658 event |= nau8825->button_pressed;
1659 event_mask |= NAU8825_BUTTONS;
1660 clear_irq = NAU8825_KEY_SHORT_PRESS_IRQ;
1661 } else if (active_irq & NAU8825_KEY_RELEASE_IRQ) {
1662 event_mask = NAU8825_BUTTONS;
1663 clear_irq = NAU8825_KEY_RELEASE_IRQ;
1664 } else if (active_irq & NAU8825_HEADSET_COMPLETION_IRQ) {
1665 if (nau8825_is_jack_inserted(regmap)) {
1666 event |= nau8825_jack_insert(nau8825);
1667 if (!nau8825->high_imped) {
1668 /* Apply the cross talk suppression in the
1669 * headset without high impedance.
1670 */
1671 if (!nau8825->xtalk_protect) {
1672 /* Raise protection for cross talk de-
1673 * tection if no protection before.
1674 * The driver has to cancel the pro-
1675 * cess and restore changes if process
1676 * is ongoing when ejection.
1677 */
1678 int ret;
1679 nau8825->xtalk_protect = true;
1680 ret = nau8825_sema_acquire(nau8825, 0);
1681 if (ret < 0)
1682 nau8825->xtalk_protect = false;
1683 }
1684 /* Startup cross talk detection process */
1685 nau8825->xtalk_state = NAU8825_XTALK_PREPARE;
1686 schedule_work(&nau8825->xtalk_work);
1687 } else {
1688 /* The cross talk suppression shouldn't apply
1689 * in the headset with high impedance. Thus,
1690 * relieve the protection raised before.
1691 */
1692 if (nau8825->xtalk_protect) {
1693 nau8825_sema_release(nau8825);
1694 nau8825->xtalk_protect = false;
1695 }
1696 }
1697 } else {
1698 dev_warn(nau8825->dev, "Headset completion IRQ fired but no headset connected\n");
1699 nau8825_eject_jack(nau8825);
1700 }
1701
1702 event_mask |= SND_JACK_HEADSET;
1703 clear_irq = NAU8825_HEADSET_COMPLETION_IRQ;
1704 /* Record the interruption report event for driver to report
1705 * the event later. The jack report will delay until cross
1706 * talk detection process is done.
1707 */
1708 if (nau8825->xtalk_state == NAU8825_XTALK_PREPARE) {
1709 nau8825->xtalk_event = event;
1710 nau8825->xtalk_event_mask = event_mask;
1711 }
1712 } else if (active_irq & NAU8825_IMPEDANCE_MEAS_IRQ) {
1713 schedule_work(&nau8825->xtalk_work);
1714 clear_irq = NAU8825_IMPEDANCE_MEAS_IRQ;
1715 } else if ((active_irq & NAU8825_JACK_INSERTION_IRQ_MASK) ==
1716 NAU8825_JACK_INSERTION_DETECTED) {
1717 /* One more step to check GPIO status directly. Thus, the
1718 * driver can confirm the real insertion interruption because
1719 * the intrruption at manual mode has bypassed debounce
1720 * circuit which can get rid of unstable status.
1721 */
1722 if (nau8825_is_jack_inserted(regmap)) {
1723 /* Turn off insertion interruption at manual mode */
1724 regmap_update_bits(regmap,
1725 NAU8825_REG_INTERRUPT_DIS_CTRL,
1726 NAU8825_IRQ_INSERT_DIS,
1727 NAU8825_IRQ_INSERT_DIS);
1728 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1729 NAU8825_IRQ_INSERT_EN, NAU8825_IRQ_INSERT_EN);
1730 /* Enable interruption for jack type detection at audo
1731 * mode which can detect microphone and jack type.
1732 */
1733 nau8825_setup_auto_irq(nau8825);
1734 }
1735 }
1736
1737 if (!clear_irq)
1738 clear_irq = active_irq;
1739 /* clears the rightmost interruption */
1740 regmap_write(regmap, NAU8825_REG_INT_CLR_KEY_STATUS, clear_irq);
1741
1742 /* Delay jack report until cross talk detection is done. It can avoid
1743 * application to do playback preparation when cross talk detection
1744 * process is still working. Otherwise, the resource like clock and
1745 * power will be issued by them at the same time and conflict happens.
1746 */
1747 if (event_mask && nau8825->xtalk_state == NAU8825_XTALK_DONE)
1748 snd_soc_jack_report(nau8825->jack, event, event_mask);
1749
1750 return IRQ_HANDLED;
1751 }
1752
1753 static void nau8825_setup_buttons(struct nau8825 *nau8825)
1754 {
1755 struct regmap *regmap = nau8825->regmap;
1756
1757 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1758 NAU8825_SAR_TRACKING_GAIN_MASK,
1759 nau8825->sar_voltage << NAU8825_SAR_TRACKING_GAIN_SFT);
1760 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1761 NAU8825_SAR_COMPARE_TIME_MASK,
1762 nau8825->sar_compare_time << NAU8825_SAR_COMPARE_TIME_SFT);
1763 regmap_update_bits(regmap, NAU8825_REG_SAR_CTRL,
1764 NAU8825_SAR_SAMPLING_TIME_MASK,
1765 nau8825->sar_sampling_time << NAU8825_SAR_SAMPLING_TIME_SFT);
1766
1767 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1768 NAU8825_KEYDET_LEVELS_NR_MASK,
1769 (nau8825->sar_threshold_num - 1) << NAU8825_KEYDET_LEVELS_NR_SFT);
1770 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1771 NAU8825_KEYDET_HYSTERESIS_MASK,
1772 nau8825->sar_hysteresis << NAU8825_KEYDET_HYSTERESIS_SFT);
1773 regmap_update_bits(regmap, NAU8825_REG_KEYDET_CTRL,
1774 NAU8825_KEYDET_SHORTKEY_DEBOUNCE_MASK,
1775 nau8825->key_debounce << NAU8825_KEYDET_SHORTKEY_DEBOUNCE_SFT);
1776
1777 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_1,
1778 (nau8825->sar_threshold[0] << 8) | nau8825->sar_threshold[1]);
1779 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_2,
1780 (nau8825->sar_threshold[2] << 8) | nau8825->sar_threshold[3]);
1781 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_3,
1782 (nau8825->sar_threshold[4] << 8) | nau8825->sar_threshold[5]);
1783 regmap_write(regmap, NAU8825_REG_VDET_THRESHOLD_4,
1784 (nau8825->sar_threshold[6] << 8) | nau8825->sar_threshold[7]);
1785
1786 /* Enable short press and release interruptions */
1787 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
1788 NAU8825_IRQ_KEY_SHORT_PRESS_EN | NAU8825_IRQ_KEY_RELEASE_EN,
1789 0);
1790 }
1791
1792 static void nau8825_init_regs(struct nau8825 *nau8825)
1793 {
1794 struct regmap *regmap = nau8825->regmap;
1795
1796 /* Latch IIC LSB value */
1797 regmap_write(regmap, NAU8825_REG_IIC_ADDR_SET, 0x0001);
1798 /* Enable Bias/Vmid */
1799 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1800 NAU8825_BIAS_VMID, NAU8825_BIAS_VMID);
1801 regmap_update_bits(nau8825->regmap, NAU8825_REG_BOOST,
1802 NAU8825_GLOBAL_BIAS_EN, NAU8825_GLOBAL_BIAS_EN);
1803
1804 /* VMID Tieoff */
1805 regmap_update_bits(regmap, NAU8825_REG_BIAS_ADJ,
1806 NAU8825_BIAS_VMID_SEL_MASK,
1807 nau8825->vref_impedance << NAU8825_BIAS_VMID_SEL_SFT);
1808 /* Disable Boost Driver, Automatic Short circuit protection enable */
1809 regmap_update_bits(regmap, NAU8825_REG_BOOST,
1810 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1811 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN,
1812 NAU8825_PRECHARGE_DIS | NAU8825_HP_BOOST_DIS |
1813 NAU8825_HP_BOOST_G_DIS | NAU8825_SHORT_SHUTDOWN_EN);
1814
1815 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1816 NAU8825_JKDET_OUTPUT_EN,
1817 nau8825->jkdet_enable ? 0 : NAU8825_JKDET_OUTPUT_EN);
1818 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1819 NAU8825_JKDET_PULL_EN,
1820 nau8825->jkdet_pull_enable ? 0 : NAU8825_JKDET_PULL_EN);
1821 regmap_update_bits(regmap, NAU8825_REG_GPIO12_CTRL,
1822 NAU8825_JKDET_PULL_UP,
1823 nau8825->jkdet_pull_up ? NAU8825_JKDET_PULL_UP : 0);
1824 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1825 NAU8825_JACK_POLARITY,
1826 /* jkdet_polarity - 1 is for active-low */
1827 nau8825->jkdet_polarity ? 0 : NAU8825_JACK_POLARITY);
1828
1829 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1830 NAU8825_JACK_INSERT_DEBOUNCE_MASK,
1831 nau8825->jack_insert_debounce << NAU8825_JACK_INSERT_DEBOUNCE_SFT);
1832 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
1833 NAU8825_JACK_EJECT_DEBOUNCE_MASK,
1834 nau8825->jack_eject_debounce << NAU8825_JACK_EJECT_DEBOUNCE_SFT);
1835
1836 /* Mask unneeded IRQs: 1 - disable, 0 - enable */
1837 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK, 0x7ff, 0x7ff);
1838
1839 regmap_update_bits(regmap, NAU8825_REG_MIC_BIAS,
1840 NAU8825_MICBIAS_VOLTAGE_MASK, nau8825->micbias_voltage);
1841
1842 if (nau8825->sar_threshold_num)
1843 nau8825_setup_buttons(nau8825);
1844
1845 /* Default oversampling/decimations settings are unusable
1846 * (audible hiss). Set it to something better.
1847 */
1848 regmap_update_bits(regmap, NAU8825_REG_ADC_RATE,
1849 NAU8825_ADC_SYNC_DOWN_MASK | NAU8825_ADC_SINC4_EN,
1850 NAU8825_ADC_SYNC_DOWN_64);
1851 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1852 NAU8825_DAC_OVERSAMPLE_MASK, NAU8825_DAC_OVERSAMPLE_64);
1853 /* Disable DACR/L power */
1854 regmap_update_bits(regmap, NAU8825_REG_CHARGE_PUMP,
1855 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL,
1856 NAU8825_POWER_DOWN_DACR | NAU8825_POWER_DOWN_DACL);
1857 /* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
1858 * signal to avoid any glitches due to power up transients in both
1859 * the analog and digital DAC circuit.
1860 */
1861 regmap_update_bits(nau8825->regmap, NAU8825_REG_BIAS_ADJ,
1862 NAU8825_BIAS_TESTDAC_EN, NAU8825_BIAS_TESTDAC_EN);
1863 /* CICCLP off */
1864 regmap_update_bits(regmap, NAU8825_REG_DAC_CTRL1,
1865 NAU8825_DAC_CLIP_OFF, NAU8825_DAC_CLIP_OFF);
1866
1867 /* Class AB bias current to 2x, DAC Capacitor enable MSB/LSB */
1868 regmap_update_bits(regmap, NAU8825_REG_ANALOG_CONTROL_2,
1869 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1870 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB,
1871 NAU8825_HP_NON_CLASSG_CURRENT_2xADJ |
1872 NAU8825_DAC_CAPACITOR_MSB | NAU8825_DAC_CAPACITOR_LSB);
1873 /* Class G timer 64ms */
1874 regmap_update_bits(regmap, NAU8825_REG_CLASSG_CTRL,
1875 NAU8825_CLASSG_TIMER_MASK,
1876 0x20 << NAU8825_CLASSG_TIMER_SFT);
1877 /* DAC clock delay 2ns, VREF */
1878 regmap_update_bits(regmap, NAU8825_REG_RDAC,
1879 NAU8825_RDAC_CLK_DELAY_MASK | NAU8825_RDAC_VREF_MASK,
1880 (0x2 << NAU8825_RDAC_CLK_DELAY_SFT) |
1881 (0x3 << NAU8825_RDAC_VREF_SFT));
1882 /* Config L/R channel */
1883 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACL_CTRL,
1884 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_L);
1885 regmap_update_bits(nau8825->regmap, NAU8825_REG_DACR_CTRL,
1886 NAU8825_DACL_CH_SEL_MASK, NAU8825_DACL_CH_SEL_R);
1887 /* Disable short Frame Sync detection logic */
1888 regmap_update_bits(regmap, NAU8825_REG_LEFT_TIME_SLOT,
1889 NAU8825_DIS_FS_SHORT_DET, NAU8825_DIS_FS_SHORT_DET);
1890 }
1891
1892 static const struct regmap_config nau8825_regmap_config = {
1893 .val_bits = NAU8825_REG_DATA_LEN,
1894 .reg_bits = NAU8825_REG_ADDR_LEN,
1895
1896 .max_register = NAU8825_REG_MAX,
1897 .readable_reg = nau8825_readable_reg,
1898 .writeable_reg = nau8825_writeable_reg,
1899 .volatile_reg = nau8825_volatile_reg,
1900
1901 .cache_type = REGCACHE_RBTREE,
1902 .reg_defaults = nau8825_reg_defaults,
1903 .num_reg_defaults = ARRAY_SIZE(nau8825_reg_defaults),
1904 };
1905
1906 static int nau8825_codec_probe(struct snd_soc_codec *codec)
1907 {
1908 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1909 struct snd_soc_dapm_context *dapm = snd_soc_codec_get_dapm(codec);
1910
1911 nau8825->dapm = dapm;
1912
1913 return 0;
1914 }
1915
1916 static int nau8825_codec_remove(struct snd_soc_codec *codec)
1917 {
1918 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
1919
1920 /* Cancel and reset cross tak suppresstion detection funciton */
1921 nau8825_xtalk_cancel(nau8825);
1922
1923 return 0;
1924 }
1925
1926 /**
1927 * nau8825_calc_fll_param - Calculate FLL parameters.
1928 * @fll_in: external clock provided to codec.
1929 * @fs: sampling rate.
1930 * @fll_param: Pointer to structure of FLL parameters.
1931 *
1932 * Calculate FLL parameters to configure codec.
1933 *
1934 * Returns 0 for success or negative error code.
1935 */
1936 static int nau8825_calc_fll_param(unsigned int fll_in, unsigned int fs,
1937 struct nau8825_fll *fll_param)
1938 {
1939 u64 fvco, fvco_max;
1940 unsigned int fref, i, fvco_sel;
1941
1942 /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
1943 * freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
1944 * FREF = freq_in / NAU8825_FLL_REF_DIV_MASK
1945 */
1946 for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
1947 fref = fll_in / fll_pre_scalar[i].param;
1948 if (fref <= NAU_FREF_MAX)
1949 break;
1950 }
1951 if (i == ARRAY_SIZE(fll_pre_scalar))
1952 return -EINVAL;
1953 fll_param->clk_ref_div = fll_pre_scalar[i].val;
1954
1955 /* Choose the FLL ratio based on FREF */
1956 for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
1957 if (fref >= fll_ratio[i].param)
1958 break;
1959 }
1960 if (i == ARRAY_SIZE(fll_ratio))
1961 return -EINVAL;
1962 fll_param->ratio = fll_ratio[i].val;
1963
1964 /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
1965 * FDCO must be within the 90MHz - 124MHz or the FFL cannot be
1966 * guaranteed across the full range of operation.
1967 * FDCO = freq_out * 2 * mclk_src_scaling
1968 */
1969 fvco_max = 0;
1970 fvco_sel = ARRAY_SIZE(mclk_src_scaling);
1971 for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
1972 fvco = 256 * fs * 2 * mclk_src_scaling[i].param;
1973 if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
1974 fvco_max < fvco) {
1975 fvco_max = fvco;
1976 fvco_sel = i;
1977 }
1978 }
1979 if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
1980 return -EINVAL;
1981 fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
1982
1983 /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
1984 * input based on FDCO, FREF and FLL ratio.
1985 */
1986 fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
1987 fll_param->fll_int = (fvco >> 16) & 0x3FF;
1988 fll_param->fll_frac = fvco & 0xFFFF;
1989 return 0;
1990 }
1991
1992 static void nau8825_fll_apply(struct nau8825 *nau8825,
1993 struct nau8825_fll *fll_param)
1994 {
1995 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
1996 NAU8825_CLK_SRC_MASK | NAU8825_CLK_MCLK_SRC_MASK,
1997 NAU8825_CLK_SRC_MCLK | fll_param->mclk_src);
1998 /* Make DSP operate at high speed for better performance. */
1999 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL1,
2000 NAU8825_FLL_RATIO_MASK | NAU8825_ICTRL_LATCH_MASK,
2001 fll_param->ratio | (0x6 << NAU8825_ICTRL_LATCH_SFT));
2002 /* FLL 16-bit fractional input */
2003 regmap_write(nau8825->regmap, NAU8825_REG_FLL2, fll_param->fll_frac);
2004 /* FLL 10-bit integer input */
2005 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL3,
2006 NAU8825_FLL_INTEGER_MASK, fll_param->fll_int);
2007 /* FLL pre-scaler */
2008 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL4,
2009 NAU8825_FLL_REF_DIV_MASK, fll_param->clk_ref_div);
2010 /* select divided VCO input */
2011 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2012 NAU8825_FLL_CLK_SW_MASK, NAU8825_FLL_CLK_SW_REF);
2013 /* Disable free-running mode */
2014 regmap_update_bits(nau8825->regmap,
2015 NAU8825_REG_FLL6, NAU8825_DCO_EN, 0);
2016 if (fll_param->fll_frac) {
2017 /* set FLL loop filter enable and cutoff frequency at 500Khz */
2018 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2019 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2020 NAU8825_FLL_FTR_SW_MASK,
2021 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2022 NAU8825_FLL_FTR_SW_FILTER);
2023 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2024 NAU8825_SDM_EN | NAU8825_CUTOFF500,
2025 NAU8825_SDM_EN | NAU8825_CUTOFF500);
2026 } else {
2027 /* disable FLL loop filter and cutoff frequency */
2028 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL5,
2029 NAU8825_FLL_PDB_DAC_EN | NAU8825_FLL_LOOP_FTR_EN |
2030 NAU8825_FLL_FTR_SW_MASK, NAU8825_FLL_FTR_SW_ACCU);
2031 regmap_update_bits(nau8825->regmap, NAU8825_REG_FLL6,
2032 NAU8825_SDM_EN | NAU8825_CUTOFF500, 0);
2033 }
2034 }
2035
2036 /* freq_out must be 256*Fs in order to achieve the best performance */
2037 static int nau8825_set_pll(struct snd_soc_codec *codec, int pll_id, int source,
2038 unsigned int freq_in, unsigned int freq_out)
2039 {
2040 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2041 struct nau8825_fll fll_param;
2042 int ret, fs;
2043
2044 fs = freq_out / 256;
2045 ret = nau8825_calc_fll_param(freq_in, fs, &fll_param);
2046 if (ret < 0) {
2047 dev_err(codec->dev, "Unsupported input clock %d\n", freq_in);
2048 return ret;
2049 }
2050 dev_dbg(codec->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
2051 fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
2052 fll_param.fll_int, fll_param.clk_ref_div);
2053
2054 nau8825_fll_apply(nau8825, &fll_param);
2055 mdelay(2);
2056 regmap_update_bits(nau8825->regmap, NAU8825_REG_CLK_DIVIDER,
2057 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2058 return 0;
2059 }
2060
2061 static int nau8825_mclk_prepare(struct nau8825 *nau8825, unsigned int freq)
2062 {
2063 int ret = 0;
2064
2065 nau8825->mclk = devm_clk_get(nau8825->dev, "mclk");
2066 if (IS_ERR(nau8825->mclk)) {
2067 dev_info(nau8825->dev, "No 'mclk' clock found, assume MCLK is managed externally");
2068 return 0;
2069 }
2070
2071 if (!nau8825->mclk_freq) {
2072 ret = clk_prepare_enable(nau8825->mclk);
2073 if (ret) {
2074 dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2075 return ret;
2076 }
2077 }
2078
2079 if (nau8825->mclk_freq != freq) {
2080 freq = clk_round_rate(nau8825->mclk, freq);
2081 ret = clk_set_rate(nau8825->mclk, freq);
2082 if (ret) {
2083 dev_err(nau8825->dev, "Unable to set mclk rate\n");
2084 return ret;
2085 }
2086 nau8825->mclk_freq = freq;
2087 }
2088
2089 return 0;
2090 }
2091
2092 static void nau8825_configure_mclk_as_sysclk(struct regmap *regmap)
2093 {
2094 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2095 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_MCLK);
2096 regmap_update_bits(regmap, NAU8825_REG_FLL6,
2097 NAU8825_DCO_EN, 0);
2098 /* Make DSP operate as default setting for power saving. */
2099 regmap_update_bits(regmap, NAU8825_REG_FLL1,
2100 NAU8825_ICTRL_LATCH_MASK, 0);
2101 }
2102
2103 static int nau8825_configure_sysclk(struct nau8825 *nau8825, int clk_id,
2104 unsigned int freq)
2105 {
2106 struct regmap *regmap = nau8825->regmap;
2107 int ret;
2108
2109 switch (clk_id) {
2110 case NAU8825_CLK_DIS:
2111 /* Clock provided externally and disable internal VCO clock */
2112 nau8825_configure_mclk_as_sysclk(regmap);
2113 if (nau8825->mclk_freq) {
2114 clk_disable_unprepare(nau8825->mclk);
2115 nau8825->mclk_freq = 0;
2116 }
2117
2118 break;
2119 case NAU8825_CLK_MCLK:
2120 /* Acquire the semaphone to synchronize the playback and
2121 * interrupt handler. In order to avoid the playback inter-
2122 * fered by cross talk process, the driver make the playback
2123 * preparation halted until cross talk process finish.
2124 */
2125 nau8825_sema_acquire(nau8825, 3 * HZ);
2126 nau8825_configure_mclk_as_sysclk(regmap);
2127 /* MCLK not changed by clock tree */
2128 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2129 NAU8825_CLK_MCLK_SRC_MASK, 0);
2130 /* Release the semaphone. */
2131 nau8825_sema_release(nau8825);
2132
2133 ret = nau8825_mclk_prepare(nau8825, freq);
2134 if (ret)
2135 return ret;
2136
2137 break;
2138 case NAU8825_CLK_INTERNAL:
2139 if (nau8825_is_jack_inserted(nau8825->regmap)) {
2140 regmap_update_bits(regmap, NAU8825_REG_FLL6,
2141 NAU8825_DCO_EN, NAU8825_DCO_EN);
2142 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2143 NAU8825_CLK_SRC_MASK, NAU8825_CLK_SRC_VCO);
2144 /* Decrease the VCO frequency and make DSP operate
2145 * as default setting for power saving.
2146 */
2147 regmap_update_bits(regmap, NAU8825_REG_CLK_DIVIDER,
2148 NAU8825_CLK_MCLK_SRC_MASK, 0xf);
2149 regmap_update_bits(regmap, NAU8825_REG_FLL1,
2150 NAU8825_ICTRL_LATCH_MASK |
2151 NAU8825_FLL_RATIO_MASK, 0x10);
2152 regmap_update_bits(regmap, NAU8825_REG_FLL6,
2153 NAU8825_SDM_EN, NAU8825_SDM_EN);
2154 } else {
2155 /* The clock turns off intentionally for power saving
2156 * when no headset connected.
2157 */
2158 nau8825_configure_mclk_as_sysclk(regmap);
2159 dev_warn(nau8825->dev, "Disable clock for power saving when no headset connected\n");
2160 }
2161 if (nau8825->mclk_freq) {
2162 clk_disable_unprepare(nau8825->mclk);
2163 nau8825->mclk_freq = 0;
2164 }
2165
2166 break;
2167 case NAU8825_CLK_FLL_MCLK:
2168 /* Acquire the semaphone to synchronize the playback and
2169 * interrupt handler. In order to avoid the playback inter-
2170 * fered by cross talk process, the driver make the playback
2171 * preparation halted until cross talk process finish.
2172 */
2173 nau8825_sema_acquire(nau8825, 3 * HZ);
2174 /* Higher FLL reference input frequency can only set lower
2175 * gain error, such as 0000 for input reference from MCLK
2176 * 12.288Mhz.
2177 */
2178 regmap_update_bits(regmap, NAU8825_REG_FLL3,
2179 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2180 NAU8825_FLL_CLK_SRC_MCLK | 0);
2181 /* Release the semaphone. */
2182 nau8825_sema_release(nau8825);
2183
2184 ret = nau8825_mclk_prepare(nau8825, freq);
2185 if (ret)
2186 return ret;
2187
2188 break;
2189 case NAU8825_CLK_FLL_BLK:
2190 /* Acquire the semaphone to synchronize the playback and
2191 * interrupt handler. In order to avoid the playback inter-
2192 * fered by cross talk process, the driver make the playback
2193 * preparation halted until cross talk process finish.
2194 */
2195 nau8825_sema_acquire(nau8825, 3 * HZ);
2196 /* If FLL reference input is from low frequency source,
2197 * higher error gain can apply such as 0xf which has
2198 * the most sensitive gain error correction threshold,
2199 * Therefore, FLL has the most accurate DCO to
2200 * target frequency.
2201 */
2202 regmap_update_bits(regmap, NAU8825_REG_FLL3,
2203 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2204 NAU8825_FLL_CLK_SRC_BLK |
2205 (0xf << NAU8825_GAIN_ERR_SFT));
2206 /* Release the semaphone. */
2207 nau8825_sema_release(nau8825);
2208
2209 if (nau8825->mclk_freq) {
2210 clk_disable_unprepare(nau8825->mclk);
2211 nau8825->mclk_freq = 0;
2212 }
2213
2214 break;
2215 case NAU8825_CLK_FLL_FS:
2216 /* Acquire the semaphone to synchronize the playback and
2217 * interrupt handler. In order to avoid the playback inter-
2218 * fered by cross talk process, the driver make the playback
2219 * preparation halted until cross talk process finish.
2220 */
2221 nau8825_sema_acquire(nau8825, 3 * HZ);
2222 /* If FLL reference input is from low frequency source,
2223 * higher error gain can apply such as 0xf which has
2224 * the most sensitive gain error correction threshold,
2225 * Therefore, FLL has the most accurate DCO to
2226 * target frequency.
2227 */
2228 regmap_update_bits(regmap, NAU8825_REG_FLL3,
2229 NAU8825_FLL_CLK_SRC_MASK | NAU8825_GAIN_ERR_MASK,
2230 NAU8825_FLL_CLK_SRC_FS |
2231 (0xf << NAU8825_GAIN_ERR_SFT));
2232 /* Release the semaphone. */
2233 nau8825_sema_release(nau8825);
2234
2235 if (nau8825->mclk_freq) {
2236 clk_disable_unprepare(nau8825->mclk);
2237 nau8825->mclk_freq = 0;
2238 }
2239
2240 break;
2241 default:
2242 dev_err(nau8825->dev, "Invalid clock id (%d)\n", clk_id);
2243 return -EINVAL;
2244 }
2245
2246 dev_dbg(nau8825->dev, "Sysclk is %dHz and clock id is %d\n", freq,
2247 clk_id);
2248 return 0;
2249 }
2250
2251 static int nau8825_set_sysclk(struct snd_soc_codec *codec, int clk_id,
2252 int source, unsigned int freq, int dir)
2253 {
2254 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2255
2256 return nau8825_configure_sysclk(nau8825, clk_id, freq);
2257 }
2258
2259 static int nau8825_resume_setup(struct nau8825 *nau8825)
2260 {
2261 struct regmap *regmap = nau8825->regmap;
2262
2263 /* Close clock when jack type detection at manual mode */
2264 nau8825_configure_sysclk(nau8825, NAU8825_CLK_DIS, 0);
2265
2266 /* Clear all interruption status */
2267 nau8825_int_status_clear_all(regmap);
2268
2269 /* Enable both insertion and ejection interruptions, and then
2270 * bypass de-bounce circuit.
2271 */
2272 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_MASK,
2273 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN |
2274 NAU8825_IRQ_EJECT_EN | NAU8825_IRQ_INSERT_EN,
2275 NAU8825_IRQ_OUTPUT_EN | NAU8825_IRQ_HEADSET_COMPLETE_EN);
2276 regmap_update_bits(regmap, NAU8825_REG_JACK_DET_CTRL,
2277 NAU8825_JACK_DET_DB_BYPASS, NAU8825_JACK_DET_DB_BYPASS);
2278 regmap_update_bits(regmap, NAU8825_REG_INTERRUPT_DIS_CTRL,
2279 NAU8825_IRQ_INSERT_DIS | NAU8825_IRQ_EJECT_DIS, 0);
2280
2281 return 0;
2282 }
2283
2284 static int nau8825_set_bias_level(struct snd_soc_codec *codec,
2285 enum snd_soc_bias_level level)
2286 {
2287 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2288 int ret;
2289
2290 switch (level) {
2291 case SND_SOC_BIAS_ON:
2292 break;
2293
2294 case SND_SOC_BIAS_PREPARE:
2295 break;
2296
2297 case SND_SOC_BIAS_STANDBY:
2298 if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
2299 if (nau8825->mclk_freq) {
2300 ret = clk_prepare_enable(nau8825->mclk);
2301 if (ret) {
2302 dev_err(nau8825->dev, "Unable to prepare codec mclk\n");
2303 return ret;
2304 }
2305 }
2306 /* Setup codec configuration after resume */
2307 nau8825_resume_setup(nau8825);
2308 }
2309 break;
2310
2311 case SND_SOC_BIAS_OFF:
2312 /* Cancel and reset cross talk detection funciton */
2313 nau8825_xtalk_cancel(nau8825);
2314 /* Turn off all interruptions before system shutdown. Keep the
2315 * interruption quiet before resume setup completes.
2316 */
2317 regmap_write(nau8825->regmap,
2318 NAU8825_REG_INTERRUPT_DIS_CTRL, 0xffff);
2319 /* Disable ADC needed for interruptions at audo mode */
2320 regmap_update_bits(nau8825->regmap, NAU8825_REG_ENA_CTRL,
2321 NAU8825_ENABLE_ADC, 0);
2322 if (nau8825->mclk_freq)
2323 clk_disable_unprepare(nau8825->mclk);
2324 break;
2325 }
2326 return 0;
2327 }
2328
2329 static int __maybe_unused nau8825_suspend(struct snd_soc_codec *codec)
2330 {
2331 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2332
2333 disable_irq(nau8825->irq);
2334 snd_soc_codec_force_bias_level(codec, SND_SOC_BIAS_OFF);
2335 regcache_cache_only(nau8825->regmap, true);
2336 regcache_mark_dirty(nau8825->regmap);
2337
2338 return 0;
2339 }
2340
2341 static int __maybe_unused nau8825_resume(struct snd_soc_codec *codec)
2342 {
2343 struct nau8825 *nau8825 = snd_soc_codec_get_drvdata(codec);
2344 int ret;
2345
2346 regcache_cache_only(nau8825->regmap, false);
2347 regcache_sync(nau8825->regmap);
2348 nau8825->xtalk_protect = true;
2349 ret = nau8825_sema_acquire(nau8825, 0);
2350 if (ret < 0)
2351 nau8825->xtalk_protect = false;
2352 enable_irq(nau8825->irq);
2353
2354 return 0;
2355 }
2356
2357 static struct snd_soc_codec_driver nau8825_codec_driver = {
2358 .probe = nau8825_codec_probe,
2359 .remove = nau8825_codec_remove,
2360 .set_sysclk = nau8825_set_sysclk,
2361 .set_pll = nau8825_set_pll,
2362 .set_bias_level = nau8825_set_bias_level,
2363 .suspend_bias_off = true,
2364 .suspend = nau8825_suspend,
2365 .resume = nau8825_resume,
2366
2367 .component_driver = {
2368 .controls = nau8825_controls,
2369 .num_controls = ARRAY_SIZE(nau8825_controls),
2370 .dapm_widgets = nau8825_dapm_widgets,
2371 .num_dapm_widgets = ARRAY_SIZE(nau8825_dapm_widgets),
2372 .dapm_routes = nau8825_dapm_routes,
2373 .num_dapm_routes = ARRAY_SIZE(nau8825_dapm_routes),
2374 },
2375 };
2376
2377 static void nau8825_reset_chip(struct regmap *regmap)
2378 {
2379 regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2380 regmap_write(regmap, NAU8825_REG_RESET, 0x00);
2381 }
2382
2383 static void nau8825_print_device_properties(struct nau8825 *nau8825)
2384 {
2385 int i;
2386 struct device *dev = nau8825->dev;
2387
2388 dev_dbg(dev, "jkdet-enable: %d\n", nau8825->jkdet_enable);
2389 dev_dbg(dev, "jkdet-pull-enable: %d\n", nau8825->jkdet_pull_enable);
2390 dev_dbg(dev, "jkdet-pull-up: %d\n", nau8825->jkdet_pull_up);
2391 dev_dbg(dev, "jkdet-polarity: %d\n", nau8825->jkdet_polarity);
2392 dev_dbg(dev, "micbias-voltage: %d\n", nau8825->micbias_voltage);
2393 dev_dbg(dev, "vref-impedance: %d\n", nau8825->vref_impedance);
2394
2395 dev_dbg(dev, "sar-threshold-num: %d\n", nau8825->sar_threshold_num);
2396 for (i = 0; i < nau8825->sar_threshold_num; i++)
2397 dev_dbg(dev, "sar-threshold[%d]=%d\n", i,
2398 nau8825->sar_threshold[i]);
2399
2400 dev_dbg(dev, "sar-hysteresis: %d\n", nau8825->sar_hysteresis);
2401 dev_dbg(dev, "sar-voltage: %d\n", nau8825->sar_voltage);
2402 dev_dbg(dev, "sar-compare-time: %d\n", nau8825->sar_compare_time);
2403 dev_dbg(dev, "sar-sampling-time: %d\n", nau8825->sar_sampling_time);
2404 dev_dbg(dev, "short-key-debounce: %d\n", nau8825->key_debounce);
2405 dev_dbg(dev, "jack-insert-debounce: %d\n",
2406 nau8825->jack_insert_debounce);
2407 dev_dbg(dev, "jack-eject-debounce: %d\n",
2408 nau8825->jack_eject_debounce);
2409 }
2410
2411 static int nau8825_read_device_properties(struct device *dev,
2412 struct nau8825 *nau8825) {
2413
2414 nau8825->jkdet_enable = device_property_read_bool(dev,
2415 "nuvoton,jkdet-enable");
2416 nau8825->jkdet_pull_enable = device_property_read_bool(dev,
2417 "nuvoton,jkdet-pull-enable");
2418 nau8825->jkdet_pull_up = device_property_read_bool(dev,
2419 "nuvoton,jkdet-pull-up");
2420 device_property_read_u32(dev, "nuvoton,jkdet-polarity",
2421 &nau8825->jkdet_polarity);
2422 device_property_read_u32(dev, "nuvoton,micbias-voltage",
2423 &nau8825->micbias_voltage);
2424 device_property_read_u32(dev, "nuvoton,vref-impedance",
2425 &nau8825->vref_impedance);
2426 device_property_read_u32(dev, "nuvoton,sar-threshold-num",
2427 &nau8825->sar_threshold_num);
2428 device_property_read_u32_array(dev, "nuvoton,sar-threshold",
2429 nau8825->sar_threshold, nau8825->sar_threshold_num);
2430 device_property_read_u32(dev, "nuvoton,sar-hysteresis",
2431 &nau8825->sar_hysteresis);
2432 device_property_read_u32(dev, "nuvoton,sar-voltage",
2433 &nau8825->sar_voltage);
2434 device_property_read_u32(dev, "nuvoton,sar-compare-time",
2435 &nau8825->sar_compare_time);
2436 device_property_read_u32(dev, "nuvoton,sar-sampling-time",
2437 &nau8825->sar_sampling_time);
2438 device_property_read_u32(dev, "nuvoton,short-key-debounce",
2439 &nau8825->key_debounce);
2440 device_property_read_u32(dev, "nuvoton,jack-insert-debounce",
2441 &nau8825->jack_insert_debounce);
2442 device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
2443 &nau8825->jack_eject_debounce);
2444
2445 nau8825->mclk = devm_clk_get(dev, "mclk");
2446 if (PTR_ERR(nau8825->mclk) == -EPROBE_DEFER) {
2447 return -EPROBE_DEFER;
2448 } else if (PTR_ERR(nau8825->mclk) == -ENOENT) {
2449 /* The MCLK is managed externally or not used at all */
2450 nau8825->mclk = NULL;
2451 dev_info(dev, "No 'mclk' clock found, assume MCLK is managed externally");
2452 } else if (IS_ERR(nau8825->mclk)) {
2453 return -EINVAL;
2454 }
2455
2456 return 0;
2457 }
2458
2459 static int nau8825_setup_irq(struct nau8825 *nau8825)
2460 {
2461 int ret;
2462
2463 ret = devm_request_threaded_irq(nau8825->dev, nau8825->irq, NULL,
2464 nau8825_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
2465 "nau8825", nau8825);
2466
2467 if (ret) {
2468 dev_err(nau8825->dev, "Cannot request irq %d (%d)\n",
2469 nau8825->irq, ret);
2470 return ret;
2471 }
2472
2473 return 0;
2474 }
2475
2476 static int nau8825_i2c_probe(struct i2c_client *i2c,
2477 const struct i2c_device_id *id)
2478 {
2479 struct device *dev = &i2c->dev;
2480 struct nau8825 *nau8825 = dev_get_platdata(&i2c->dev);
2481 int ret, value;
2482
2483 if (!nau8825) {
2484 nau8825 = devm_kzalloc(dev, sizeof(*nau8825), GFP_KERNEL);
2485 if (!nau8825)
2486 return -ENOMEM;
2487 ret = nau8825_read_device_properties(dev, nau8825);
2488 if (ret)
2489 return ret;
2490 }
2491
2492 i2c_set_clientdata(i2c, nau8825);
2493
2494 nau8825->regmap = devm_regmap_init_i2c(i2c, &nau8825_regmap_config);
2495 if (IS_ERR(nau8825->regmap))
2496 return PTR_ERR(nau8825->regmap);
2497 nau8825->dev = dev;
2498 nau8825->irq = i2c->irq;
2499 /* Initiate parameters, semaphone and work queue which are needed in
2500 * cross talk suppression measurment function.
2501 */
2502 nau8825->xtalk_state = NAU8825_XTALK_DONE;
2503 nau8825->xtalk_protect = false;
2504 sema_init(&nau8825->xtalk_sem, 1);
2505 INIT_WORK(&nau8825->xtalk_work, nau8825_xtalk_work);
2506
2507 nau8825_print_device_properties(nau8825);
2508
2509 nau8825_reset_chip(nau8825->regmap);
2510 ret = regmap_read(nau8825->regmap, NAU8825_REG_I2C_DEVICE_ID, &value);
2511 if (ret < 0) {
2512 dev_err(dev, "Failed to read device id from the NAU8825: %d\n",
2513 ret);
2514 return ret;
2515 }
2516 if ((value & NAU8825_SOFTWARE_ID_MASK) !=
2517 NAU8825_SOFTWARE_ID_NAU8825) {
2518 dev_err(dev, "Not a NAU8825 chip\n");
2519 return -ENODEV;
2520 }
2521
2522 nau8825_init_regs(nau8825);
2523
2524 if (i2c->irq)
2525 nau8825_setup_irq(nau8825);
2526
2527 return snd_soc_register_codec(&i2c->dev, &nau8825_codec_driver,
2528 &nau8825_dai, 1);
2529 }
2530
2531 static int nau8825_i2c_remove(struct i2c_client *client)
2532 {
2533 snd_soc_unregister_codec(&client->dev);
2534 return 0;
2535 }
2536
2537 static const struct i2c_device_id nau8825_i2c_ids[] = {
2538 { "nau8825", 0 },
2539 { }
2540 };
2541 MODULE_DEVICE_TABLE(i2c, nau8825_i2c_ids);
2542
2543 #ifdef CONFIG_OF
2544 static const struct of_device_id nau8825_of_ids[] = {
2545 { .compatible = "nuvoton,nau8825", },
2546 {}
2547 };
2548 MODULE_DEVICE_TABLE(of, nau8825_of_ids);
2549 #endif
2550
2551 #ifdef CONFIG_ACPI
2552 static const struct acpi_device_id nau8825_acpi_match[] = {
2553 { "10508825", 0 },
2554 {},
2555 };
2556 MODULE_DEVICE_TABLE(acpi, nau8825_acpi_match);
2557 #endif
2558
2559 static struct i2c_driver nau8825_driver = {
2560 .driver = {
2561 .name = "nau8825",
2562 .of_match_table = of_match_ptr(nau8825_of_ids),
2563 .acpi_match_table = ACPI_PTR(nau8825_acpi_match),
2564 },
2565 .probe = nau8825_i2c_probe,
2566 .remove = nau8825_i2c_remove,
2567 .id_table = nau8825_i2c_ids,
2568 };
2569 module_i2c_driver(nau8825_driver);
2570
2571 MODULE_DESCRIPTION("ASoC nau8825 driver");
2572 MODULE_AUTHOR("Anatol Pomozov <anatol@chromium.org>");
2573 MODULE_LICENSE("GPL");