]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/soc/codecs/sta32x.c
ASoC: sta32x: Set reg_cache_default to sta32x_regs
[mirror_ubuntu-artful-kernel.git] / sound / soc / codecs / sta32x.c
1 /*
2 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
3 *
4 * Copyright: 2011 Raumfeld GmbH
5 * Author: Johannes Stezenbach <js@sig21.net>
6 *
7 * based on code from:
8 * Wolfson Microelectronics PLC.
9 * Mark Brown <broonie@opensource.wolfsonmicro.com>
10 * Freescale Semiconductor, Inc.
11 * Timur Tabi <timur@freescale.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
20
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 #include <sound/tlv.h>
37
38 #include "sta32x.h"
39
40 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
41 SNDRV_PCM_RATE_44100 | \
42 SNDRV_PCM_RATE_48000 | \
43 SNDRV_PCM_RATE_88200 | \
44 SNDRV_PCM_RATE_96000 | \
45 SNDRV_PCM_RATE_176400 | \
46 SNDRV_PCM_RATE_192000)
47
48 #define STA32X_FORMATS \
49 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
50 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
51 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
52 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
53 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
54 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
55
56 /* Power-up register defaults */
57 static const u8 sta32x_regs[STA32X_REGISTER_COUNT] = {
58 0x63, 0x80, 0xc2, 0x40, 0xc2, 0x5c, 0x10, 0xff, 0x60, 0x60,
59 0x60, 0x80, 0x00, 0x00, 0x00, 0x40, 0x80, 0x77, 0x6a, 0x69,
60 0x6a, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
61 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d,
62 0xc0, 0xf3, 0x33, 0x00, 0x0c,
63 };
64
65 /* regulator power supply names */
66 static const char *sta32x_supply_names[] = {
67 "Vdda", /* analog supply, 3.3VV */
68 "Vdd3", /* digital supply, 3.3V */
69 "Vcc" /* power amp spply, 10V - 36V */
70 };
71
72 /* codec private data */
73 struct sta32x_priv {
74 struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
75 struct snd_soc_codec *codec;
76
77 unsigned int mclk;
78 unsigned int format;
79 };
80
81 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
82 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
83 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
84
85 static const char *sta32x_drc_ac[] = {
86 "Anti-Clipping", "Dynamic Range Compression" };
87 static const char *sta32x_auto_eq_mode[] = {
88 "User", "Preset", "Loudness" };
89 static const char *sta32x_auto_gc_mode[] = {
90 "User", "AC no clipping", "AC limited clipping (10%)",
91 "DRC nighttime listening mode" };
92 static const char *sta32x_auto_xo_mode[] = {
93 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
94 "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
95 static const char *sta32x_preset_eq_mode[] = {
96 "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
97 "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
98 "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
99 "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
100 "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
101 "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
102 static const char *sta32x_limiter_select[] = {
103 "Limiter Disabled", "Limiter #1", "Limiter #2" };
104 static const char *sta32x_limiter_attack_rate[] = {
105 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
106 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
107 "0.0645", "0.0564", "0.0501", "0.0451" };
108 static const char *sta32x_limiter_release_rate[] = {
109 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
110 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
111 "0.0134", "0.0117", "0.0110", "0.0104" };
112
113 static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
114 TLV_DB_RANGE_HEAD(2),
115 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
116 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
117 };
118
119 static const unsigned int sta32x_limiter_ac_release_tlv[] = {
120 TLV_DB_RANGE_HEAD(5),
121 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
122 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
123 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
124 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
125 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
126 };
127
128 static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
129 TLV_DB_RANGE_HEAD(3),
130 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
131 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
132 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
133 };
134
135 static const unsigned int sta32x_limiter_drc_release_tlv[] = {
136 TLV_DB_RANGE_HEAD(5),
137 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
138 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
139 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
140 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
141 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
142 };
143
144 static const struct soc_enum sta32x_drc_ac_enum =
145 SOC_ENUM_SINGLE(STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
146 2, sta32x_drc_ac);
147 static const struct soc_enum sta32x_auto_eq_enum =
148 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
149 3, sta32x_auto_eq_mode);
150 static const struct soc_enum sta32x_auto_gc_enum =
151 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
152 4, sta32x_auto_gc_mode);
153 static const struct soc_enum sta32x_auto_xo_enum =
154 SOC_ENUM_SINGLE(STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
155 16, sta32x_auto_xo_mode);
156 static const struct soc_enum sta32x_preset_eq_enum =
157 SOC_ENUM_SINGLE(STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
158 32, sta32x_preset_eq_mode);
159 static const struct soc_enum sta32x_limiter_ch1_enum =
160 SOC_ENUM_SINGLE(STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
161 3, sta32x_limiter_select);
162 static const struct soc_enum sta32x_limiter_ch2_enum =
163 SOC_ENUM_SINGLE(STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
164 3, sta32x_limiter_select);
165 static const struct soc_enum sta32x_limiter_ch3_enum =
166 SOC_ENUM_SINGLE(STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
167 3, sta32x_limiter_select);
168 static const struct soc_enum sta32x_limiter1_attack_rate_enum =
169 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxA_SHIFT,
170 16, sta32x_limiter_attack_rate);
171 static const struct soc_enum sta32x_limiter2_attack_rate_enum =
172 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxA_SHIFT,
173 16, sta32x_limiter_attack_rate);
174 static const struct soc_enum sta32x_limiter1_release_rate_enum =
175 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxR_SHIFT,
176 16, sta32x_limiter_release_rate);
177 static const struct soc_enum sta32x_limiter2_release_rate_enum =
178 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxR_SHIFT,
179 16, sta32x_limiter_release_rate);
180
181 /* byte array controls for setting biquad, mixer, scaling coefficients;
182 * for biquads all five coefficients need to be set in one go,
183 * mixer and pre/postscale coefs can be set individually;
184 * each coef is 24bit, the bytes are ordered in the same way
185 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
186 */
187
188 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
189 struct snd_ctl_elem_info *uinfo)
190 {
191 int numcoef = kcontrol->private_value >> 16;
192 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
193 uinfo->count = 3 * numcoef;
194 return 0;
195 }
196
197 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
198 struct snd_ctl_elem_value *ucontrol)
199 {
200 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
201 int numcoef = kcontrol->private_value >> 16;
202 int index = kcontrol->private_value & 0xffff;
203 unsigned int cfud;
204 int i;
205
206 /* preserve reserved bits in STA32X_CFUD */
207 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
208 /* chip documentation does not say if the bits are self clearing,
209 * so do it explicitly */
210 snd_soc_write(codec, STA32X_CFUD, cfud);
211
212 snd_soc_write(codec, STA32X_CFADDR2, index);
213 if (numcoef == 1)
214 snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
215 else if (numcoef == 5)
216 snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
217 else
218 return -EINVAL;
219 for (i = 0; i < 3 * numcoef; i++)
220 ucontrol->value.bytes.data[i] =
221 snd_soc_read(codec, STA32X_B1CF1 + i);
222
223 return 0;
224 }
225
226 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
227 struct snd_ctl_elem_value *ucontrol)
228 {
229 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
230 int numcoef = kcontrol->private_value >> 16;
231 int index = kcontrol->private_value & 0xffff;
232 unsigned int cfud;
233 int i;
234
235 /* preserve reserved bits in STA32X_CFUD */
236 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
237 /* chip documentation does not say if the bits are self clearing,
238 * so do it explicitly */
239 snd_soc_write(codec, STA32X_CFUD, cfud);
240
241 snd_soc_write(codec, STA32X_CFADDR2, index);
242 for (i = 0; i < 3 * numcoef; i++)
243 snd_soc_write(codec, STA32X_B1CF1 + i,
244 ucontrol->value.bytes.data[i]);
245 if (numcoef == 1)
246 snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
247 else if (numcoef == 5)
248 snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
249 else
250 return -EINVAL;
251
252 return 0;
253 }
254
255 #define SINGLE_COEF(xname, index) \
256 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
257 .info = sta32x_coefficient_info, \
258 .get = sta32x_coefficient_get,\
259 .put = sta32x_coefficient_put, \
260 .private_value = index | (1 << 16) }
261
262 #define BIQUAD_COEFS(xname, index) \
263 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
264 .info = sta32x_coefficient_info, \
265 .get = sta32x_coefficient_get,\
266 .put = sta32x_coefficient_put, \
267 .private_value = index | (5 << 16) }
268
269 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
270 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
271 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
272 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
273 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
274 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
275 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
276 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
277 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
278 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
279 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
280 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
281 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
282 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
283 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
284 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
285 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
286 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
287 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
288 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
289 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
290 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
291 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
292 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
293 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
294 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
295 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
296 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
297 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
298 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
299 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
300 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
301 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
302 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
303 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
304
305 /* depending on mode, the attack/release thresholds have
306 * two different enum definitions; provide both
307 */
308 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
309 16, 0, sta32x_limiter_ac_attack_tlv),
310 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
311 16, 0, sta32x_limiter_ac_attack_tlv),
312 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
313 16, 0, sta32x_limiter_ac_release_tlv),
314 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
315 16, 0, sta32x_limiter_ac_release_tlv),
316 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
317 16, 0, sta32x_limiter_drc_attack_tlv),
318 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
319 16, 0, sta32x_limiter_drc_attack_tlv),
320 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
321 16, 0, sta32x_limiter_drc_release_tlv),
322 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
323 16, 0, sta32x_limiter_drc_release_tlv),
324
325 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
326 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
327 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
328 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
329 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
330 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
331 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
332 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
333 BIQUAD_COEFS("High-pass", 40),
334 BIQUAD_COEFS("Low-pass", 45),
335 SINGLE_COEF("Ch1 - Prescale", 50),
336 SINGLE_COEF("Ch2 - Prescale", 51),
337 SINGLE_COEF("Ch1 - Postscale", 52),
338 SINGLE_COEF("Ch2 - Postscale", 53),
339 SINGLE_COEF("Ch3 - Postscale", 54),
340 SINGLE_COEF("Thermal warning - Postscale", 55),
341 SINGLE_COEF("Ch1 - Mix 1", 56),
342 SINGLE_COEF("Ch1 - Mix 2", 57),
343 SINGLE_COEF("Ch2 - Mix 1", 58),
344 SINGLE_COEF("Ch2 - Mix 2", 59),
345 SINGLE_COEF("Ch3 - Mix 1", 60),
346 SINGLE_COEF("Ch3 - Mix 2", 61),
347 };
348
349 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
350 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
351 SND_SOC_DAPM_OUTPUT("LEFT"),
352 SND_SOC_DAPM_OUTPUT("RIGHT"),
353 SND_SOC_DAPM_OUTPUT("SUB"),
354 };
355
356 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
357 { "LEFT", NULL, "DAC" },
358 { "RIGHT", NULL, "DAC" },
359 { "SUB", NULL, "DAC" },
360 };
361
362 /* MCLK interpolation ratio per fs */
363 static struct {
364 int fs;
365 int ir;
366 } interpolation_ratios[] = {
367 { 32000, 0 },
368 { 44100, 0 },
369 { 48000, 0 },
370 { 88200, 1 },
371 { 96000, 1 },
372 { 176400, 2 },
373 { 192000, 2 },
374 };
375
376 /* MCLK to fs clock ratios */
377 static struct {
378 int ratio;
379 int mcs;
380 } mclk_ratios[3][7] = {
381 { { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
382 { 128, 4 }, { 576, 5 }, { 0, 0 } },
383 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
384 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
385 };
386
387
388 /**
389 * sta32x_set_dai_sysclk - configure MCLK
390 * @codec_dai: the codec DAI
391 * @clk_id: the clock ID (ignored)
392 * @freq: the MCLK input frequency
393 * @dir: the clock direction (ignored)
394 *
395 * The value of MCLK is used to determine which sample rates are supported
396 * by the STA32X, based on the mclk_ratios table.
397 *
398 * This function must be called by the machine driver's 'startup' function,
399 * otherwise the list of supported sample rates will not be available in
400 * time for ALSA.
401 *
402 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
403 * theoretically possible sample rates to be enabled. Call it again with a
404 * proper value set one the external clock is set (most probably you would do
405 * that from a machine's driver 'hw_param' hook.
406 */
407 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
408 int clk_id, unsigned int freq, int dir)
409 {
410 struct snd_soc_codec *codec = codec_dai->codec;
411 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
412 int i, j, ir, fs;
413 unsigned int rates = 0;
414 unsigned int rate_min = -1;
415 unsigned int rate_max = 0;
416
417 pr_debug("mclk=%u\n", freq);
418 sta32x->mclk = freq;
419
420 if (sta32x->mclk) {
421 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
422 ir = interpolation_ratios[i].ir;
423 fs = interpolation_ratios[i].fs;
424 for (j = 0; mclk_ratios[ir][j].ratio; j++) {
425 if (mclk_ratios[ir][j].ratio * fs == freq) {
426 rates |= snd_pcm_rate_to_rate_bit(fs);
427 if (fs < rate_min)
428 rate_min = fs;
429 if (fs > rate_max)
430 rate_max = fs;
431 }
432 }
433 }
434 /* FIXME: soc should support a rate list */
435 rates &= ~SNDRV_PCM_RATE_KNOT;
436
437 if (!rates) {
438 dev_err(codec->dev, "could not find a valid sample rate\n");
439 return -EINVAL;
440 }
441 } else {
442 /* enable all possible rates */
443 rates = STA32X_RATES;
444 rate_min = 32000;
445 rate_max = 192000;
446 }
447
448 codec_dai->driver->playback.rates = rates;
449 codec_dai->driver->playback.rate_min = rate_min;
450 codec_dai->driver->playback.rate_max = rate_max;
451 return 0;
452 }
453
454 /**
455 * sta32x_set_dai_fmt - configure the codec for the selected audio format
456 * @codec_dai: the codec DAI
457 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
458 *
459 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
460 * codec accordingly.
461 */
462 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
463 unsigned int fmt)
464 {
465 struct snd_soc_codec *codec = codec_dai->codec;
466 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
467 u8 confb = snd_soc_read(codec, STA32X_CONFB);
468
469 pr_debug("\n");
470 confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);
471
472 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
473 case SND_SOC_DAIFMT_CBS_CFS:
474 break;
475 default:
476 return -EINVAL;
477 }
478
479 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
480 case SND_SOC_DAIFMT_I2S:
481 case SND_SOC_DAIFMT_RIGHT_J:
482 case SND_SOC_DAIFMT_LEFT_J:
483 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
484 break;
485 default:
486 return -EINVAL;
487 }
488
489 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
490 case SND_SOC_DAIFMT_NB_NF:
491 confb |= STA32X_CONFB_C2IM;
492 break;
493 case SND_SOC_DAIFMT_NB_IF:
494 confb |= STA32X_CONFB_C1IM;
495 break;
496 default:
497 return -EINVAL;
498 }
499
500 snd_soc_write(codec, STA32X_CONFB, confb);
501 return 0;
502 }
503
504 /**
505 * sta32x_hw_params - program the STA32X with the given hardware parameters.
506 * @substream: the audio stream
507 * @params: the hardware parameters to set
508 * @dai: the SOC DAI (ignored)
509 *
510 * This function programs the hardware with the values provided.
511 * Specifically, the sample rate and the data format.
512 */
513 static int sta32x_hw_params(struct snd_pcm_substream *substream,
514 struct snd_pcm_hw_params *params,
515 struct snd_soc_dai *dai)
516 {
517 struct snd_soc_pcm_runtime *rtd = substream->private_data;
518 struct snd_soc_codec *codec = rtd->codec;
519 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
520 unsigned int rate;
521 int i, mcs = -1, ir = -1;
522 u8 confa, confb;
523
524 rate = params_rate(params);
525 pr_debug("rate: %u\n", rate);
526 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
527 if (interpolation_ratios[i].fs == rate) {
528 ir = interpolation_ratios[i].ir;
529 break;
530 }
531 if (ir < 0)
532 return -EINVAL;
533 for (i = 0; mclk_ratios[ir][i].ratio; i++)
534 if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk) {
535 mcs = mclk_ratios[ir][i].mcs;
536 break;
537 }
538 if (mcs < 0)
539 return -EINVAL;
540
541 confa = snd_soc_read(codec, STA32X_CONFA);
542 confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
543 confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);
544
545 confb = snd_soc_read(codec, STA32X_CONFB);
546 confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
547 switch (params_format(params)) {
548 case SNDRV_PCM_FORMAT_S24_LE:
549 case SNDRV_PCM_FORMAT_S24_BE:
550 case SNDRV_PCM_FORMAT_S24_3LE:
551 case SNDRV_PCM_FORMAT_S24_3BE:
552 pr_debug("24bit\n");
553 /* fall through */
554 case SNDRV_PCM_FORMAT_S32_LE:
555 case SNDRV_PCM_FORMAT_S32_BE:
556 pr_debug("24bit or 32bit\n");
557 switch (sta32x->format) {
558 case SND_SOC_DAIFMT_I2S:
559 confb |= 0x0;
560 break;
561 case SND_SOC_DAIFMT_LEFT_J:
562 confb |= 0x1;
563 break;
564 case SND_SOC_DAIFMT_RIGHT_J:
565 confb |= 0x2;
566 break;
567 }
568
569 break;
570 case SNDRV_PCM_FORMAT_S20_3LE:
571 case SNDRV_PCM_FORMAT_S20_3BE:
572 pr_debug("20bit\n");
573 switch (sta32x->format) {
574 case SND_SOC_DAIFMT_I2S:
575 confb |= 0x4;
576 break;
577 case SND_SOC_DAIFMT_LEFT_J:
578 confb |= 0x5;
579 break;
580 case SND_SOC_DAIFMT_RIGHT_J:
581 confb |= 0x6;
582 break;
583 }
584
585 break;
586 case SNDRV_PCM_FORMAT_S18_3LE:
587 case SNDRV_PCM_FORMAT_S18_3BE:
588 pr_debug("18bit\n");
589 switch (sta32x->format) {
590 case SND_SOC_DAIFMT_I2S:
591 confb |= 0x8;
592 break;
593 case SND_SOC_DAIFMT_LEFT_J:
594 confb |= 0x9;
595 break;
596 case SND_SOC_DAIFMT_RIGHT_J:
597 confb |= 0xa;
598 break;
599 }
600
601 break;
602 case SNDRV_PCM_FORMAT_S16_LE:
603 case SNDRV_PCM_FORMAT_S16_BE:
604 pr_debug("16bit\n");
605 switch (sta32x->format) {
606 case SND_SOC_DAIFMT_I2S:
607 confb |= 0x0;
608 break;
609 case SND_SOC_DAIFMT_LEFT_J:
610 confb |= 0xd;
611 break;
612 case SND_SOC_DAIFMT_RIGHT_J:
613 confb |= 0xe;
614 break;
615 }
616
617 break;
618 default:
619 return -EINVAL;
620 }
621
622 snd_soc_write(codec, STA32X_CONFA, confa);
623 snd_soc_write(codec, STA32X_CONFB, confb);
624 return 0;
625 }
626
627 /**
628 * sta32x_set_bias_level - DAPM callback
629 * @codec: the codec device
630 * @level: DAPM power level
631 *
632 * This is called by ALSA to put the codec into low power mode
633 * or to wake it up. If the codec is powered off completely
634 * all registers must be restored after power on.
635 */
636 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
637 enum snd_soc_bias_level level)
638 {
639 int ret;
640 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
641
642 pr_debug("level = %d\n", level);
643 switch (level) {
644 case SND_SOC_BIAS_ON:
645 break;
646
647 case SND_SOC_BIAS_PREPARE:
648 /* Full power on */
649 snd_soc_update_bits(codec, STA32X_CONFF,
650 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
651 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
652 break;
653
654 case SND_SOC_BIAS_STANDBY:
655 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
656 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
657 sta32x->supplies);
658 if (ret != 0) {
659 dev_err(codec->dev,
660 "Failed to enable supplies: %d\n", ret);
661 return ret;
662 }
663
664 snd_soc_cache_sync(codec);
665 }
666
667 /* Power up to mute */
668 /* FIXME */
669 snd_soc_update_bits(codec, STA32X_CONFF,
670 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
671 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
672
673 break;
674
675 case SND_SOC_BIAS_OFF:
676 /* The chip runs through the power down sequence for us. */
677 snd_soc_update_bits(codec, STA32X_CONFF,
678 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
679 STA32X_CONFF_PWDN);
680 msleep(300);
681
682 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
683 sta32x->supplies);
684 break;
685 }
686 codec->dapm.bias_level = level;
687 return 0;
688 }
689
690 static struct snd_soc_dai_ops sta32x_dai_ops = {
691 .hw_params = sta32x_hw_params,
692 .set_sysclk = sta32x_set_dai_sysclk,
693 .set_fmt = sta32x_set_dai_fmt,
694 };
695
696 static struct snd_soc_dai_driver sta32x_dai = {
697 .name = "STA32X",
698 .playback = {
699 .stream_name = "Playback",
700 .channels_min = 2,
701 .channels_max = 2,
702 .rates = STA32X_RATES,
703 .formats = STA32X_FORMATS,
704 },
705 .ops = &sta32x_dai_ops,
706 };
707
708 #ifdef CONFIG_PM
709 static int sta32x_suspend(struct snd_soc_codec *codec, pm_message_t state)
710 {
711 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
712 return 0;
713 }
714
715 static int sta32x_resume(struct snd_soc_codec *codec)
716 {
717 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
718 return 0;
719 }
720 #else
721 #define sta32x_suspend NULL
722 #define sta32x_resume NULL
723 #endif
724
725 static int sta32x_probe(struct snd_soc_codec *codec)
726 {
727 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
728 int i, ret = 0;
729
730 sta32x->codec = codec;
731
732 /* regulators */
733 for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
734 sta32x->supplies[i].supply = sta32x_supply_names[i];
735
736 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sta32x->supplies),
737 sta32x->supplies);
738 if (ret != 0) {
739 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
740 goto err;
741 }
742
743 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
744 sta32x->supplies);
745 if (ret != 0) {
746 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
747 goto err_get;
748 }
749
750 /* Tell ASoC what kind of I/O to use to read the registers. ASoC will
751 * then do the I2C transactions itself.
752 */
753 ret = snd_soc_codec_set_cache_io(codec, 8, 8, SND_SOC_I2C);
754 if (ret < 0) {
755 dev_err(codec->dev, "failed to set cache I/O (ret=%i)\n", ret);
756 return ret;
757 }
758
759 /* preserve reset values of reserved register bits */
760 snd_soc_cache_write(codec, STA32X_CONFC,
761 codec->hw_read(codec, STA32X_CONFC));
762 snd_soc_cache_write(codec, STA32X_CONFE,
763 codec->hw_read(codec, STA32X_CONFE));
764 snd_soc_cache_write(codec, STA32X_CONFF,
765 codec->hw_read(codec, STA32X_CONFF));
766 snd_soc_cache_write(codec, STA32X_MMUTE,
767 codec->hw_read(codec, STA32X_MMUTE));
768 snd_soc_cache_write(codec, STA32X_AUTO1,
769 codec->hw_read(codec, STA32X_AUTO1));
770 snd_soc_cache_write(codec, STA32X_AUTO3,
771 codec->hw_read(codec, STA32X_AUTO3));
772 snd_soc_cache_write(codec, STA32X_C3CFG,
773 codec->hw_read(codec, STA32X_C3CFG));
774
775 /* FIXME enable thermal warning adjustment and recovery */
776 snd_soc_update_bits(codec, STA32X_CONFA,
777 STA32X_CONFA_TWAB | STA32X_CONFA_TWRB, 0);
778
779 /* FIXME select 2.1 mode */
780 snd_soc_update_bits(codec, STA32X_CONFF,
781 STA32X_CONFF_OCFG_MASK,
782 1 << STA32X_CONFF_OCFG_SHIFT);
783
784 /* FIXME channel to output mapping */
785 snd_soc_update_bits(codec, STA32X_C1CFG,
786 STA32X_CxCFG_OM_MASK,
787 0 << STA32X_CxCFG_OM_SHIFT);
788 snd_soc_update_bits(codec, STA32X_C2CFG,
789 STA32X_CxCFG_OM_MASK,
790 1 << STA32X_CxCFG_OM_SHIFT);
791 snd_soc_update_bits(codec, STA32X_C3CFG,
792 STA32X_CxCFG_OM_MASK,
793 2 << STA32X_CxCFG_OM_SHIFT);
794
795 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
796 /* Bias level configuration will have done an extra enable */
797 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
798
799 return 0;
800
801 err_get:
802 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
803 err:
804 return ret;
805 }
806
807 static int sta32x_remove(struct snd_soc_codec *codec)
808 {
809 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
810
811 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
812 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
813 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
814
815 return 0;
816 }
817
818 static int sta32x_reg_is_volatile(struct snd_soc_codec *codec,
819 unsigned int reg)
820 {
821 switch (reg) {
822 case STA32X_CONFA ... STA32X_L2ATRT:
823 case STA32X_MPCC1 ... STA32X_FDRC2:
824 return 0;
825 }
826 return 1;
827 }
828
829 static const struct snd_soc_codec_driver sta32x_codec = {
830 .probe = sta32x_probe,
831 .remove = sta32x_remove,
832 .suspend = sta32x_suspend,
833 .resume = sta32x_resume,
834 .reg_cache_size = STA32X_REGISTER_COUNT,
835 .reg_word_size = sizeof(u8),
836 .reg_cache_default = sta32x_regs,
837 .volatile_register = sta32x_reg_is_volatile,
838 .set_bias_level = sta32x_set_bias_level,
839 .controls = sta32x_snd_controls,
840 .num_controls = ARRAY_SIZE(sta32x_snd_controls),
841 .dapm_widgets = sta32x_dapm_widgets,
842 .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets),
843 .dapm_routes = sta32x_dapm_routes,
844 .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes),
845 };
846
847 static __devinit int sta32x_i2c_probe(struct i2c_client *i2c,
848 const struct i2c_device_id *id)
849 {
850 struct sta32x_priv *sta32x;
851 int ret;
852
853 sta32x = kzalloc(sizeof(struct sta32x_priv), GFP_KERNEL);
854 if (!sta32x)
855 return -ENOMEM;
856
857 i2c_set_clientdata(i2c, sta32x);
858
859 ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
860 if (ret != 0) {
861 dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
862 kfree(sta32x);
863 return ret;
864 }
865
866 return 0;
867 }
868
869 static __devexit int sta32x_i2c_remove(struct i2c_client *client)
870 {
871 struct sta32x_priv *sta32x = i2c_get_clientdata(client);
872
873 snd_soc_unregister_codec(&client->dev);
874 kfree(sta32x);
875 return 0;
876 }
877
878 static const struct i2c_device_id sta32x_i2c_id[] = {
879 { "sta326", 0 },
880 { "sta328", 0 },
881 { "sta329", 0 },
882 { }
883 };
884 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
885
886 static struct i2c_driver sta32x_i2c_driver = {
887 .driver = {
888 .name = "sta32x",
889 .owner = THIS_MODULE,
890 },
891 .probe = sta32x_i2c_probe,
892 .remove = __devexit_p(sta32x_i2c_remove),
893 .id_table = sta32x_i2c_id,
894 };
895
896 static int __init sta32x_init(void)
897 {
898 return i2c_add_driver(&sta32x_i2c_driver);
899 }
900 module_init(sta32x_init);
901
902 static void __exit sta32x_exit(void)
903 {
904 i2c_del_driver(&sta32x_i2c_driver);
905 }
906 module_exit(sta32x_exit);
907
908 MODULE_DESCRIPTION("ASoC STA32X driver");
909 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
910 MODULE_LICENSE("GPL");