]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/soc/fsl/fsl_dma.c
Merge tag 'iwlwifi-for-kalle-2017-11-19' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / sound / soc / fsl / fsl_dma.c
1 /*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
29
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34
35 #include <asm/io.h>
36
37 #include "fsl_dma.h"
38 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
39
40 /*
41 * The formats that the DMA controller supports, which is anything
42 * that is 8, 16, or 32 bits.
43 */
44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
45 SNDRV_PCM_FMTBIT_U8 | \
46 SNDRV_PCM_FMTBIT_S16_LE | \
47 SNDRV_PCM_FMTBIT_S16_BE | \
48 SNDRV_PCM_FMTBIT_U16_LE | \
49 SNDRV_PCM_FMTBIT_U16_BE | \
50 SNDRV_PCM_FMTBIT_S24_LE | \
51 SNDRV_PCM_FMTBIT_S24_BE | \
52 SNDRV_PCM_FMTBIT_U24_LE | \
53 SNDRV_PCM_FMTBIT_U24_BE | \
54 SNDRV_PCM_FMTBIT_S32_LE | \
55 SNDRV_PCM_FMTBIT_S32_BE | \
56 SNDRV_PCM_FMTBIT_U32_LE | \
57 SNDRV_PCM_FMTBIT_U32_BE)
58 struct dma_object {
59 struct snd_soc_platform_driver dai;
60 dma_addr_t ssi_stx_phys;
61 dma_addr_t ssi_srx_phys;
62 unsigned int ssi_fifo_depth;
63 struct ccsr_dma_channel __iomem *channel;
64 unsigned int irq;
65 bool assigned;
66 };
67
68 /*
69 * The number of DMA links to use. Two is the bare minimum, but if you
70 * have really small links you might need more.
71 */
72 #define NUM_DMA_LINKS 2
73
74 /** fsl_dma_private: p-substream DMA data
75 *
76 * Each substream has a 1-to-1 association with a DMA channel.
77 *
78 * The link[] array is first because it needs to be aligned on a 32-byte
79 * boundary, so putting it first will ensure alignment without padding the
80 * structure.
81 *
82 * @link[]: array of link descriptors
83 * @dma_channel: pointer to the DMA channel's registers
84 * @irq: IRQ for this DMA channel
85 * @substream: pointer to the substream object, needed by the ISR
86 * @ssi_sxx_phys: bus address of the STX or SRX register to use
87 * @ld_buf_phys: physical address of the LD buffer
88 * @current_link: index into link[] of the link currently being processed
89 * @dma_buf_phys: physical address of the DMA buffer
90 * @dma_buf_next: physical address of the next period to process
91 * @dma_buf_end: physical address of the byte after the end of the DMA
92 * @buffer period_size: the size of a single period
93 * @num_periods: the number of periods in the DMA buffer
94 */
95 struct fsl_dma_private {
96 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
97 struct ccsr_dma_channel __iomem *dma_channel;
98 unsigned int irq;
99 struct snd_pcm_substream *substream;
100 dma_addr_t ssi_sxx_phys;
101 unsigned int ssi_fifo_depth;
102 dma_addr_t ld_buf_phys;
103 unsigned int current_link;
104 dma_addr_t dma_buf_phys;
105 dma_addr_t dma_buf_next;
106 dma_addr_t dma_buf_end;
107 size_t period_size;
108 unsigned int num_periods;
109 };
110
111 /**
112 * fsl_dma_hardare: define characteristics of the PCM hardware.
113 *
114 * The PCM hardware is the Freescale DMA controller. This structure defines
115 * the capabilities of that hardware.
116 *
117 * Since the sampling rate and data format are not controlled by the DMA
118 * controller, we specify no limits for those values. The only exception is
119 * period_bytes_min, which is set to a reasonably low value to prevent the
120 * DMA controller from generating too many interrupts per second.
121 *
122 * Since each link descriptor has a 32-bit byte count field, we set
123 * period_bytes_max to the largest 32-bit number. We also have no maximum
124 * number of periods.
125 *
126 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
127 * limitation in the SSI driver requires the sample rates for playback and
128 * capture to be the same.
129 */
130 static const struct snd_pcm_hardware fsl_dma_hardware = {
131
132 .info = SNDRV_PCM_INFO_INTERLEAVED |
133 SNDRV_PCM_INFO_MMAP |
134 SNDRV_PCM_INFO_MMAP_VALID |
135 SNDRV_PCM_INFO_JOINT_DUPLEX |
136 SNDRV_PCM_INFO_PAUSE,
137 .formats = FSLDMA_PCM_FORMATS,
138 .period_bytes_min = 512, /* A reasonable limit */
139 .period_bytes_max = (u32) -1,
140 .periods_min = NUM_DMA_LINKS,
141 .periods_max = (unsigned int) -1,
142 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
143 };
144
145 /**
146 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
147 *
148 * This function should be called by the ISR whenever the DMA controller
149 * halts data transfer.
150 */
151 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
152 {
153 snd_pcm_stop_xrun(substream);
154 }
155
156 /**
157 * fsl_dma_update_pointers - update LD pointers to point to the next period
158 *
159 * As each period is completed, this function changes the the link
160 * descriptor pointers for that period to point to the next period.
161 */
162 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
163 {
164 struct fsl_dma_link_descriptor *link =
165 &dma_private->link[dma_private->current_link];
166
167 /* Update our link descriptors to point to the next period. On a 36-bit
168 * system, we also need to update the ESAD bits. We also set (keep) the
169 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
170 */
171 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
173 #ifdef CONFIG_PHYS_64BIT
174 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
175 upper_32_bits(dma_private->dma_buf_next));
176 #endif
177 } else {
178 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
179 #ifdef CONFIG_PHYS_64BIT
180 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
181 upper_32_bits(dma_private->dma_buf_next));
182 #endif
183 }
184
185 /* Update our variables for next time */
186 dma_private->dma_buf_next += dma_private->period_size;
187
188 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
189 dma_private->dma_buf_next = dma_private->dma_buf_phys;
190
191 if (++dma_private->current_link >= NUM_DMA_LINKS)
192 dma_private->current_link = 0;
193 }
194
195 /**
196 * fsl_dma_isr: interrupt handler for the DMA controller
197 *
198 * @irq: IRQ of the DMA channel
199 * @dev_id: pointer to the dma_private structure for this DMA channel
200 */
201 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
202 {
203 struct fsl_dma_private *dma_private = dev_id;
204 struct snd_pcm_substream *substream = dma_private->substream;
205 struct snd_soc_pcm_runtime *rtd = substream->private_data;
206 struct device *dev = rtd->platform->dev;
207 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
208 irqreturn_t ret = IRQ_NONE;
209 u32 sr, sr2 = 0;
210
211 /* We got an interrupt, so read the status register to see what we
212 were interrupted for.
213 */
214 sr = in_be32(&dma_channel->sr);
215
216 if (sr & CCSR_DMA_SR_TE) {
217 dev_err(dev, "dma transmit error\n");
218 fsl_dma_abort_stream(substream);
219 sr2 |= CCSR_DMA_SR_TE;
220 ret = IRQ_HANDLED;
221 }
222
223 if (sr & CCSR_DMA_SR_CH)
224 ret = IRQ_HANDLED;
225
226 if (sr & CCSR_DMA_SR_PE) {
227 dev_err(dev, "dma programming error\n");
228 fsl_dma_abort_stream(substream);
229 sr2 |= CCSR_DMA_SR_PE;
230 ret = IRQ_HANDLED;
231 }
232
233 if (sr & CCSR_DMA_SR_EOLNI) {
234 sr2 |= CCSR_DMA_SR_EOLNI;
235 ret = IRQ_HANDLED;
236 }
237
238 if (sr & CCSR_DMA_SR_CB)
239 ret = IRQ_HANDLED;
240
241 if (sr & CCSR_DMA_SR_EOSI) {
242 /* Tell ALSA we completed a period. */
243 snd_pcm_period_elapsed(substream);
244
245 /*
246 * Update our link descriptors to point to the next period. We
247 * only need to do this if the number of periods is not equal to
248 * the number of links.
249 */
250 if (dma_private->num_periods != NUM_DMA_LINKS)
251 fsl_dma_update_pointers(dma_private);
252
253 sr2 |= CCSR_DMA_SR_EOSI;
254 ret = IRQ_HANDLED;
255 }
256
257 if (sr & CCSR_DMA_SR_EOLSI) {
258 sr2 |= CCSR_DMA_SR_EOLSI;
259 ret = IRQ_HANDLED;
260 }
261
262 /* Clear the bits that we set */
263 if (sr2)
264 out_be32(&dma_channel->sr, sr2);
265
266 return ret;
267 }
268
269 /**
270 * fsl_dma_new: initialize this PCM driver.
271 *
272 * This function is called when the codec driver calls snd_soc_new_pcms(),
273 * once for each .dai_link in the machine driver's snd_soc_card
274 * structure.
275 *
276 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
277 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
278 * is specified. Therefore, any DMA buffers we allocate will always be in low
279 * memory, but we support for 36-bit physical addresses anyway.
280 *
281 * Regardless of where the memory is actually allocated, since the device can
282 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
283 */
284 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
285 {
286 struct snd_card *card = rtd->card->snd_card;
287 struct snd_pcm *pcm = rtd->pcm;
288 int ret;
289
290 ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
291 if (ret)
292 return ret;
293
294 /* Some codecs have separate DAIs for playback and capture, so we
295 * should allocate a DMA buffer only for the streams that are valid.
296 */
297
298 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
299 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
300 fsl_dma_hardware.buffer_bytes_max,
301 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
302 if (ret) {
303 dev_err(card->dev, "can't alloc playback dma buffer\n");
304 return ret;
305 }
306 }
307
308 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
309 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
310 fsl_dma_hardware.buffer_bytes_max,
311 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
312 if (ret) {
313 dev_err(card->dev, "can't alloc capture dma buffer\n");
314 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
315 return ret;
316 }
317 }
318
319 return 0;
320 }
321
322 /**
323 * fsl_dma_open: open a new substream.
324 *
325 * Each substream has its own DMA buffer.
326 *
327 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
328 * descriptors that ping-pong from one period to the next. For example, if
329 * there are six periods and two link descriptors, this is how they look
330 * before playback starts:
331 *
332 * The last link descriptor
333 * ____________ points back to the first
334 * | |
335 * V |
336 * ___ ___ |
337 * | |->| |->|
338 * |___| |___|
339 * | |
340 * | |
341 * V V
342 * _________________________________________
343 * | | | | | | | The DMA buffer is
344 * | | | | | | | divided into 6 parts
345 * |______|______|______|______|______|______|
346 *
347 * and here's how they look after the first period is finished playing:
348 *
349 * ____________
350 * | |
351 * V |
352 * ___ ___ |
353 * | |->| |->|
354 * |___| |___|
355 * | |
356 * |______________
357 * | |
358 * V V
359 * _________________________________________
360 * | | | | | | |
361 * | | | | | | |
362 * |______|______|______|______|______|______|
363 *
364 * The first link descriptor now points to the third period. The DMA
365 * controller is currently playing the second period. When it finishes, it
366 * will jump back to the first descriptor and play the third period.
367 *
368 * There are four reasons we do this:
369 *
370 * 1. The only way to get the DMA controller to automatically restart the
371 * transfer when it gets to the end of the buffer is to use chaining
372 * mode. Basic direct mode doesn't offer that feature.
373 * 2. We need to receive an interrupt at the end of every period. The DMA
374 * controller can generate an interrupt at the end of every link transfer
375 * (aka segment). Making each period into a DMA segment will give us the
376 * interrupts we need.
377 * 3. By creating only two link descriptors, regardless of the number of
378 * periods, we do not need to reallocate the link descriptors if the
379 * number of periods changes.
380 * 4. All of the audio data is still stored in a single, contiguous DMA
381 * buffer, which is what ALSA expects. We're just dividing it into
382 * contiguous parts, and creating a link descriptor for each one.
383 */
384 static int fsl_dma_open(struct snd_pcm_substream *substream)
385 {
386 struct snd_pcm_runtime *runtime = substream->runtime;
387 struct snd_soc_pcm_runtime *rtd = substream->private_data;
388 struct device *dev = rtd->platform->dev;
389 struct dma_object *dma =
390 container_of(rtd->platform->driver, struct dma_object, dai);
391 struct fsl_dma_private *dma_private;
392 struct ccsr_dma_channel __iomem *dma_channel;
393 dma_addr_t ld_buf_phys;
394 u64 temp_link; /* Pointer to next link descriptor */
395 u32 mr;
396 unsigned int channel;
397 int ret = 0;
398 unsigned int i;
399
400 /*
401 * Reject any DMA buffer whose size is not a multiple of the period
402 * size. We need to make sure that the DMA buffer can be evenly divided
403 * into periods.
404 */
405 ret = snd_pcm_hw_constraint_integer(runtime,
406 SNDRV_PCM_HW_PARAM_PERIODS);
407 if (ret < 0) {
408 dev_err(dev, "invalid buffer size\n");
409 return ret;
410 }
411
412 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
413
414 if (dma->assigned) {
415 dev_err(dev, "dma channel already assigned\n");
416 return -EBUSY;
417 }
418
419 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
420 &ld_buf_phys, GFP_KERNEL);
421 if (!dma_private) {
422 dev_err(dev, "can't allocate dma private data\n");
423 return -ENOMEM;
424 }
425 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
426 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
427 else
428 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
429
430 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
431 dma_private->dma_channel = dma->channel;
432 dma_private->irq = dma->irq;
433 dma_private->substream = substream;
434 dma_private->ld_buf_phys = ld_buf_phys;
435 dma_private->dma_buf_phys = substream->dma_buffer.addr;
436
437 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
438 dma_private);
439 if (ret) {
440 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
441 dma_private->irq, ret);
442 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
443 dma_private, dma_private->ld_buf_phys);
444 return ret;
445 }
446
447 dma->assigned = true;
448
449 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
450 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
451 runtime->private_data = dma_private;
452
453 /* Program the fixed DMA controller parameters */
454
455 dma_channel = dma_private->dma_channel;
456
457 temp_link = dma_private->ld_buf_phys +
458 sizeof(struct fsl_dma_link_descriptor);
459
460 for (i = 0; i < NUM_DMA_LINKS; i++) {
461 dma_private->link[i].next = cpu_to_be64(temp_link);
462
463 temp_link += sizeof(struct fsl_dma_link_descriptor);
464 }
465 /* The last link descriptor points to the first */
466 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
467
468 /* Tell the DMA controller where the first link descriptor is */
469 out_be32(&dma_channel->clndar,
470 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
471 out_be32(&dma_channel->eclndar,
472 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
473
474 /* The manual says the BCR must be clear before enabling EMP */
475 out_be32(&dma_channel->bcr, 0);
476
477 /*
478 * Program the mode register for interrupts, external master control,
479 * and source/destination hold. Also clear the Channel Abort bit.
480 */
481 mr = in_be32(&dma_channel->mr) &
482 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
483
484 /*
485 * We want External Master Start and External Master Pause enabled,
486 * because the SSI is controlling the DMA controller. We want the DMA
487 * controller to be set up in advance, and then we signal only the SSI
488 * to start transferring.
489 *
490 * We want End-Of-Segment Interrupts enabled, because this will generate
491 * an interrupt at the end of each segment (each link descriptor
492 * represents one segment). Each DMA segment is the same thing as an
493 * ALSA period, so this is how we get an interrupt at the end of every
494 * period.
495 *
496 * We want Error Interrupt enabled, so that we can get an error if
497 * the DMA controller is mis-programmed somehow.
498 */
499 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
500 CCSR_DMA_MR_EMS_EN;
501
502 /* For playback, we want the destination address to be held. For
503 capture, set the source address to be held. */
504 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
505 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
506
507 out_be32(&dma_channel->mr, mr);
508
509 return 0;
510 }
511
512 /**
513 * fsl_dma_hw_params: continue initializing the DMA links
514 *
515 * This function obtains hardware parameters about the opened stream and
516 * programs the DMA controller accordingly.
517 *
518 * One drawback of big-endian is that when copying integers of different
519 * sizes to a fixed-sized register, the address to which the integer must be
520 * copied is dependent on the size of the integer.
521 *
522 * For example, if P is the address of a 32-bit register, and X is a 32-bit
523 * integer, then X should be copied to address P. However, if X is a 16-bit
524 * integer, then it should be copied to P+2. If X is an 8-bit register,
525 * then it should be copied to P+3.
526 *
527 * So for playback of 8-bit samples, the DMA controller must transfer single
528 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
529 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
530 *
531 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
532 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
533 * and 8 bytes at a time). So we do not support packed 24-bit samples.
534 * 24-bit data must be padded to 32 bits.
535 */
536 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
537 struct snd_pcm_hw_params *hw_params)
538 {
539 struct snd_pcm_runtime *runtime = substream->runtime;
540 struct fsl_dma_private *dma_private = runtime->private_data;
541 struct snd_soc_pcm_runtime *rtd = substream->private_data;
542 struct device *dev = rtd->platform->dev;
543
544 /* Number of bits per sample */
545 unsigned int sample_bits =
546 snd_pcm_format_physical_width(params_format(hw_params));
547
548 /* Number of bytes per frame */
549 unsigned int sample_bytes = sample_bits / 8;
550
551 /* Bus address of SSI STX register */
552 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
553
554 /* Size of the DMA buffer, in bytes */
555 size_t buffer_size = params_buffer_bytes(hw_params);
556
557 /* Number of bytes per period */
558 size_t period_size = params_period_bytes(hw_params);
559
560 /* Pointer to next period */
561 dma_addr_t temp_addr = substream->dma_buffer.addr;
562
563 /* Pointer to DMA controller */
564 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
565
566 u32 mr; /* DMA Mode Register */
567
568 unsigned int i;
569
570 /* Initialize our DMA tracking variables */
571 dma_private->period_size = period_size;
572 dma_private->num_periods = params_periods(hw_params);
573 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
574 dma_private->dma_buf_next = dma_private->dma_buf_phys +
575 (NUM_DMA_LINKS * period_size);
576
577 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
578 /* This happens if the number of periods == NUM_DMA_LINKS */
579 dma_private->dma_buf_next = dma_private->dma_buf_phys;
580
581 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
582 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
583
584 /* Due to a quirk of the SSI's STX register, the target address
585 * for the DMA operations depends on the sample size. So we calculate
586 * that offset here. While we're at it, also tell the DMA controller
587 * how much data to transfer per sample.
588 */
589 switch (sample_bits) {
590 case 8:
591 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
592 ssi_sxx_phys += 3;
593 break;
594 case 16:
595 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
596 ssi_sxx_phys += 2;
597 break;
598 case 32:
599 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
600 break;
601 default:
602 /* We should never get here */
603 dev_err(dev, "unsupported sample size %u\n", sample_bits);
604 return -EINVAL;
605 }
606
607 /*
608 * BWC determines how many bytes are sent/received before the DMA
609 * controller checks the SSI to see if it needs to stop. BWC should
610 * always be a multiple of the frame size, so that we always transmit
611 * whole frames. Each frame occupies two slots in the FIFO. The
612 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
613 * (MR[BWC] can only represent even powers of two).
614 *
615 * To simplify the process, we set BWC to the largest value that is
616 * less than or equal to the FIFO watermark. For playback, this ensures
617 * that we transfer the maximum amount without overrunning the FIFO.
618 * For capture, this ensures that we transfer the maximum amount without
619 * underrunning the FIFO.
620 *
621 * f = SSI FIFO depth
622 * w = SSI watermark value (which equals f - 2)
623 * b = DMA bandwidth count (in bytes)
624 * s = sample size (in bytes, which equals frame_size * 2)
625 *
626 * For playback, we never transmit more than the transmit FIFO
627 * watermark, otherwise we might write more data than the FIFO can hold.
628 * The watermark is equal to the FIFO depth minus two.
629 *
630 * For capture, two equations must hold:
631 * w > f - (b / s)
632 * w >= b / s
633 *
634 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
635 * b = s * w, which is equal to
636 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
637 */
638 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
639
640 out_be32(&dma_channel->mr, mr);
641
642 for (i = 0; i < NUM_DMA_LINKS; i++) {
643 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
644
645 link->count = cpu_to_be32(period_size);
646
647 /* The snoop bit tells the DMA controller whether it should tell
648 * the ECM to snoop during a read or write to an address. For
649 * audio, we use DMA to transfer data between memory and an I/O
650 * device (the SSI's STX0 or SRX0 register). Snooping is only
651 * needed if there is a cache, so we need to snoop memory
652 * addresses only. For playback, that means we snoop the source
653 * but not the destination. For capture, we snoop the
654 * destination but not the source.
655 *
656 * Note that failing to snoop properly is unlikely to cause
657 * cache incoherency if the period size is larger than the
658 * size of L1 cache. This is because filling in one period will
659 * flush out the data for the previous period. So if you
660 * increased period_bytes_min to a large enough size, you might
661 * get more performance by not snooping, and you'll still be
662 * okay. You'll need to update fsl_dma_update_pointers() also.
663 */
664 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
665 link->source_addr = cpu_to_be32(temp_addr);
666 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
667 upper_32_bits(temp_addr));
668
669 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
670 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
671 upper_32_bits(ssi_sxx_phys));
672 } else {
673 link->source_addr = cpu_to_be32(ssi_sxx_phys);
674 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
675 upper_32_bits(ssi_sxx_phys));
676
677 link->dest_addr = cpu_to_be32(temp_addr);
678 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
679 upper_32_bits(temp_addr));
680 }
681
682 temp_addr += period_size;
683 }
684
685 return 0;
686 }
687
688 /**
689 * fsl_dma_pointer: determine the current position of the DMA transfer
690 *
691 * This function is called by ALSA when ALSA wants to know where in the
692 * stream buffer the hardware currently is.
693 *
694 * For playback, the SAR register contains the physical address of the most
695 * recent DMA transfer. For capture, the value is in the DAR register.
696 *
697 * The base address of the buffer is stored in the source_addr field of the
698 * first link descriptor.
699 */
700 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
701 {
702 struct snd_pcm_runtime *runtime = substream->runtime;
703 struct fsl_dma_private *dma_private = runtime->private_data;
704 struct snd_soc_pcm_runtime *rtd = substream->private_data;
705 struct device *dev = rtd->platform->dev;
706 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
707 dma_addr_t position;
708 snd_pcm_uframes_t frames;
709
710 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
711 * only have 32-bit DMA addresses. This function is typically called
712 * in interrupt context, so we need to optimize it.
713 */
714 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
715 position = in_be32(&dma_channel->sar);
716 #ifdef CONFIG_PHYS_64BIT
717 position |= (u64)(in_be32(&dma_channel->satr) &
718 CCSR_DMA_ATR_ESAD_MASK) << 32;
719 #endif
720 } else {
721 position = in_be32(&dma_channel->dar);
722 #ifdef CONFIG_PHYS_64BIT
723 position |= (u64)(in_be32(&dma_channel->datr) &
724 CCSR_DMA_ATR_ESAD_MASK) << 32;
725 #endif
726 }
727
728 /*
729 * When capture is started, the SSI immediately starts to fill its FIFO.
730 * This means that the DMA controller is not started until the FIFO is
731 * full. However, ALSA calls this function before that happens, when
732 * MR.DAR is still zero. In this case, just return zero to indicate
733 * that nothing has been received yet.
734 */
735 if (!position)
736 return 0;
737
738 if ((position < dma_private->dma_buf_phys) ||
739 (position > dma_private->dma_buf_end)) {
740 dev_err(dev, "dma pointer is out of range, halting stream\n");
741 return SNDRV_PCM_POS_XRUN;
742 }
743
744 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
745
746 /*
747 * If the current address is just past the end of the buffer, wrap it
748 * around.
749 */
750 if (frames == runtime->buffer_size)
751 frames = 0;
752
753 return frames;
754 }
755
756 /**
757 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
758 *
759 * Release the resources allocated in fsl_dma_hw_params() and de-program the
760 * registers.
761 *
762 * This function can be called multiple times.
763 */
764 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
765 {
766 struct snd_pcm_runtime *runtime = substream->runtime;
767 struct fsl_dma_private *dma_private = runtime->private_data;
768
769 if (dma_private) {
770 struct ccsr_dma_channel __iomem *dma_channel;
771
772 dma_channel = dma_private->dma_channel;
773
774 /* Stop the DMA */
775 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
776 out_be32(&dma_channel->mr, 0);
777
778 /* Reset all the other registers */
779 out_be32(&dma_channel->sr, -1);
780 out_be32(&dma_channel->clndar, 0);
781 out_be32(&dma_channel->eclndar, 0);
782 out_be32(&dma_channel->satr, 0);
783 out_be32(&dma_channel->sar, 0);
784 out_be32(&dma_channel->datr, 0);
785 out_be32(&dma_channel->dar, 0);
786 out_be32(&dma_channel->bcr, 0);
787 out_be32(&dma_channel->nlndar, 0);
788 out_be32(&dma_channel->enlndar, 0);
789 }
790
791 return 0;
792 }
793
794 /**
795 * fsl_dma_close: close the stream.
796 */
797 static int fsl_dma_close(struct snd_pcm_substream *substream)
798 {
799 struct snd_pcm_runtime *runtime = substream->runtime;
800 struct fsl_dma_private *dma_private = runtime->private_data;
801 struct snd_soc_pcm_runtime *rtd = substream->private_data;
802 struct device *dev = rtd->platform->dev;
803 struct dma_object *dma =
804 container_of(rtd->platform->driver, struct dma_object, dai);
805
806 if (dma_private) {
807 if (dma_private->irq)
808 free_irq(dma_private->irq, dma_private);
809
810 /* Deallocate the fsl_dma_private structure */
811 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
812 dma_private, dma_private->ld_buf_phys);
813 substream->runtime->private_data = NULL;
814 }
815
816 dma->assigned = false;
817
818 return 0;
819 }
820
821 /*
822 * Remove this PCM driver.
823 */
824 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
825 {
826 struct snd_pcm_substream *substream;
827 unsigned int i;
828
829 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
830 substream = pcm->streams[i].substream;
831 if (substream) {
832 snd_dma_free_pages(&substream->dma_buffer);
833 substream->dma_buffer.area = NULL;
834 substream->dma_buffer.addr = 0;
835 }
836 }
837 }
838
839 /**
840 * find_ssi_node -- returns the SSI node that points to its DMA channel node
841 *
842 * Although this DMA driver attempts to operate independently of the other
843 * devices, it still needs to determine some information about the SSI device
844 * that it's working with. Unfortunately, the device tree does not contain
845 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
846 * other way. So we need to scan the device tree for SSI nodes until we find
847 * the one that points to the given DMA channel node. It's ugly, but at least
848 * it's contained in this one function.
849 */
850 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
851 {
852 struct device_node *ssi_np, *np;
853
854 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
855 /* Check each DMA phandle to see if it points to us. We
856 * assume that device_node pointers are a valid comparison.
857 */
858 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
859 of_node_put(np);
860 if (np == dma_channel_np)
861 return ssi_np;
862
863 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
864 of_node_put(np);
865 if (np == dma_channel_np)
866 return ssi_np;
867 }
868
869 return NULL;
870 }
871
872 static const struct snd_pcm_ops fsl_dma_ops = {
873 .open = fsl_dma_open,
874 .close = fsl_dma_close,
875 .ioctl = snd_pcm_lib_ioctl,
876 .hw_params = fsl_dma_hw_params,
877 .hw_free = fsl_dma_hw_free,
878 .pointer = fsl_dma_pointer,
879 };
880
881 static int fsl_soc_dma_probe(struct platform_device *pdev)
882 {
883 struct dma_object *dma;
884 struct device_node *np = pdev->dev.of_node;
885 struct device_node *ssi_np;
886 struct resource res;
887 const uint32_t *iprop;
888 int ret;
889
890 /* Find the SSI node that points to us. */
891 ssi_np = find_ssi_node(np);
892 if (!ssi_np) {
893 dev_err(&pdev->dev, "cannot find parent SSI node\n");
894 return -ENODEV;
895 }
896
897 ret = of_address_to_resource(ssi_np, 0, &res);
898 if (ret) {
899 dev_err(&pdev->dev, "could not determine resources for %pOF\n",
900 ssi_np);
901 of_node_put(ssi_np);
902 return ret;
903 }
904
905 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
906 if (!dma) {
907 of_node_put(ssi_np);
908 return -ENOMEM;
909 }
910
911 dma->dai.ops = &fsl_dma_ops;
912 dma->dai.pcm_new = fsl_dma_new;
913 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
914
915 /* Store the SSI-specific information that we need */
916 dma->ssi_stx_phys = res.start + CCSR_SSI_STX0;
917 dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0;
918
919 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
920 if (iprop)
921 dma->ssi_fifo_depth = be32_to_cpup(iprop);
922 else
923 /* Older 8610 DTs didn't have the fifo-depth property */
924 dma->ssi_fifo_depth = 8;
925
926 of_node_put(ssi_np);
927
928 ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
929 if (ret) {
930 dev_err(&pdev->dev, "could not register platform\n");
931 kfree(dma);
932 return ret;
933 }
934
935 dma->channel = of_iomap(np, 0);
936 dma->irq = irq_of_parse_and_map(np, 0);
937
938 dev_set_drvdata(&pdev->dev, dma);
939
940 return 0;
941 }
942
943 static int fsl_soc_dma_remove(struct platform_device *pdev)
944 {
945 struct dma_object *dma = dev_get_drvdata(&pdev->dev);
946
947 snd_soc_unregister_platform(&pdev->dev);
948 iounmap(dma->channel);
949 irq_dispose_mapping(dma->irq);
950 kfree(dma);
951
952 return 0;
953 }
954
955 static const struct of_device_id fsl_soc_dma_ids[] = {
956 { .compatible = "fsl,ssi-dma-channel", },
957 {}
958 };
959 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
960
961 static struct platform_driver fsl_soc_dma_driver = {
962 .driver = {
963 .name = "fsl-pcm-audio",
964 .of_match_table = fsl_soc_dma_ids,
965 },
966 .probe = fsl_soc_dma_probe,
967 .remove = fsl_soc_dma_remove,
968 };
969
970 module_platform_driver(fsl_soc_dma_driver);
971
972 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
973 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
974 MODULE_LICENSE("GPL v2");