]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - sound/soc/fsl/fsl_ssi.c
Merge branch 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block
[mirror_ubuntu-zesty-kernel.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 */
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/device.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/of_platform.h>
20
21 #include <sound/core.h>
22 #include <sound/pcm.h>
23 #include <sound/pcm_params.h>
24 #include <sound/initval.h>
25 #include <sound/soc.h>
26
27 #include "fsl_ssi.h"
28
29 /**
30 * FSLSSI_I2S_RATES: sample rates supported by the I2S
31 *
32 * This driver currently only supports the SSI running in I2S slave mode,
33 * which means the codec determines the sample rate. Therefore, we tell
34 * ALSA that we support all rates and let the codec driver decide what rates
35 * are really supported.
36 */
37 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
38 SNDRV_PCM_RATE_CONTINUOUS)
39
40 /**
41 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
42 *
43 * This driver currently only supports the SSI running in I2S slave mode.
44 *
45 * The SSI has a limitation in that the samples must be in the same byte
46 * order as the host CPU. This is because when multiple bytes are written
47 * to the STX register, the bytes and bits must be written in the same
48 * order. The STX is a shift register, so all the bits need to be aligned
49 * (bit-endianness must match byte-endianness). Processors typically write
50 * the bits within a byte in the same order that the bytes of a word are
51 * written in. So if the host CPU is big-endian, then only big-endian
52 * samples will be written to STX properly.
53 */
54 #ifdef __BIG_ENDIAN
55 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
56 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
57 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
58 #else
59 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
60 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
61 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
62 #endif
63
64 /* SIER bitflag of interrupts to enable */
65 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
66 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
67 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
68 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
69 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
70
71 /**
72 * fsl_ssi_private: per-SSI private data
73 *
74 * @ssi: pointer to the SSI's registers
75 * @ssi_phys: physical address of the SSI registers
76 * @irq: IRQ of this SSI
77 * @first_stream: pointer to the stream that was opened first
78 * @second_stream: pointer to second stream
79 * @playback: the number of playback streams opened
80 * @capture: the number of capture streams opened
81 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
82 * @cpu_dai: the CPU DAI for this device
83 * @dev_attr: the sysfs device attribute structure
84 * @stats: SSI statistics
85 * @name: name for this device
86 */
87 struct fsl_ssi_private {
88 struct ccsr_ssi __iomem *ssi;
89 dma_addr_t ssi_phys;
90 unsigned int irq;
91 struct snd_pcm_substream *first_stream;
92 struct snd_pcm_substream *second_stream;
93 unsigned int playback;
94 unsigned int capture;
95 int asynchronous;
96 unsigned int fifo_depth;
97 struct snd_soc_dai_driver cpu_dai_drv;
98 struct device_attribute dev_attr;
99 struct platform_device *pdev;
100
101 struct {
102 unsigned int rfrc;
103 unsigned int tfrc;
104 unsigned int cmdau;
105 unsigned int cmddu;
106 unsigned int rxt;
107 unsigned int rdr1;
108 unsigned int rdr0;
109 unsigned int tde1;
110 unsigned int tde0;
111 unsigned int roe1;
112 unsigned int roe0;
113 unsigned int tue1;
114 unsigned int tue0;
115 unsigned int tfs;
116 unsigned int rfs;
117 unsigned int tls;
118 unsigned int rls;
119 unsigned int rff1;
120 unsigned int rff0;
121 unsigned int tfe1;
122 unsigned int tfe0;
123 } stats;
124
125 char name[1];
126 };
127
128 /**
129 * fsl_ssi_isr: SSI interrupt handler
130 *
131 * Although it's possible to use the interrupt handler to send and receive
132 * data to/from the SSI, we use the DMA instead. Programming is more
133 * complicated, but the performance is much better.
134 *
135 * This interrupt handler is used only to gather statistics.
136 *
137 * @irq: IRQ of the SSI device
138 * @dev_id: pointer to the ssi_private structure for this SSI device
139 */
140 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
141 {
142 struct fsl_ssi_private *ssi_private = dev_id;
143 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
144 irqreturn_t ret = IRQ_NONE;
145 __be32 sisr;
146 __be32 sisr2 = 0;
147
148 /* We got an interrupt, so read the status register to see what we
149 were interrupted for. We mask it with the Interrupt Enable register
150 so that we only check for events that we're interested in.
151 */
152 sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
153
154 if (sisr & CCSR_SSI_SISR_RFRC) {
155 ssi_private->stats.rfrc++;
156 sisr2 |= CCSR_SSI_SISR_RFRC;
157 ret = IRQ_HANDLED;
158 }
159
160 if (sisr & CCSR_SSI_SISR_TFRC) {
161 ssi_private->stats.tfrc++;
162 sisr2 |= CCSR_SSI_SISR_TFRC;
163 ret = IRQ_HANDLED;
164 }
165
166 if (sisr & CCSR_SSI_SISR_CMDAU) {
167 ssi_private->stats.cmdau++;
168 ret = IRQ_HANDLED;
169 }
170
171 if (sisr & CCSR_SSI_SISR_CMDDU) {
172 ssi_private->stats.cmddu++;
173 ret = IRQ_HANDLED;
174 }
175
176 if (sisr & CCSR_SSI_SISR_RXT) {
177 ssi_private->stats.rxt++;
178 ret = IRQ_HANDLED;
179 }
180
181 if (sisr & CCSR_SSI_SISR_RDR1) {
182 ssi_private->stats.rdr1++;
183 ret = IRQ_HANDLED;
184 }
185
186 if (sisr & CCSR_SSI_SISR_RDR0) {
187 ssi_private->stats.rdr0++;
188 ret = IRQ_HANDLED;
189 }
190
191 if (sisr & CCSR_SSI_SISR_TDE1) {
192 ssi_private->stats.tde1++;
193 ret = IRQ_HANDLED;
194 }
195
196 if (sisr & CCSR_SSI_SISR_TDE0) {
197 ssi_private->stats.tde0++;
198 ret = IRQ_HANDLED;
199 }
200
201 if (sisr & CCSR_SSI_SISR_ROE1) {
202 ssi_private->stats.roe1++;
203 sisr2 |= CCSR_SSI_SISR_ROE1;
204 ret = IRQ_HANDLED;
205 }
206
207 if (sisr & CCSR_SSI_SISR_ROE0) {
208 ssi_private->stats.roe0++;
209 sisr2 |= CCSR_SSI_SISR_ROE0;
210 ret = IRQ_HANDLED;
211 }
212
213 if (sisr & CCSR_SSI_SISR_TUE1) {
214 ssi_private->stats.tue1++;
215 sisr2 |= CCSR_SSI_SISR_TUE1;
216 ret = IRQ_HANDLED;
217 }
218
219 if (sisr & CCSR_SSI_SISR_TUE0) {
220 ssi_private->stats.tue0++;
221 sisr2 |= CCSR_SSI_SISR_TUE0;
222 ret = IRQ_HANDLED;
223 }
224
225 if (sisr & CCSR_SSI_SISR_TFS) {
226 ssi_private->stats.tfs++;
227 ret = IRQ_HANDLED;
228 }
229
230 if (sisr & CCSR_SSI_SISR_RFS) {
231 ssi_private->stats.rfs++;
232 ret = IRQ_HANDLED;
233 }
234
235 if (sisr & CCSR_SSI_SISR_TLS) {
236 ssi_private->stats.tls++;
237 ret = IRQ_HANDLED;
238 }
239
240 if (sisr & CCSR_SSI_SISR_RLS) {
241 ssi_private->stats.rls++;
242 ret = IRQ_HANDLED;
243 }
244
245 if (sisr & CCSR_SSI_SISR_RFF1) {
246 ssi_private->stats.rff1++;
247 ret = IRQ_HANDLED;
248 }
249
250 if (sisr & CCSR_SSI_SISR_RFF0) {
251 ssi_private->stats.rff0++;
252 ret = IRQ_HANDLED;
253 }
254
255 if (sisr & CCSR_SSI_SISR_TFE1) {
256 ssi_private->stats.tfe1++;
257 ret = IRQ_HANDLED;
258 }
259
260 if (sisr & CCSR_SSI_SISR_TFE0) {
261 ssi_private->stats.tfe0++;
262 ret = IRQ_HANDLED;
263 }
264
265 /* Clear the bits that we set */
266 if (sisr2)
267 out_be32(&ssi->sisr, sisr2);
268
269 return ret;
270 }
271
272 /**
273 * fsl_ssi_startup: create a new substream
274 *
275 * This is the first function called when a stream is opened.
276 *
277 * If this is the first stream open, then grab the IRQ and program most of
278 * the SSI registers.
279 */
280 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
281 struct snd_soc_dai *dai)
282 {
283 struct snd_soc_pcm_runtime *rtd = substream->private_data;
284 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
285
286 /*
287 * If this is the first stream opened, then request the IRQ
288 * and initialize the SSI registers.
289 */
290 if (!ssi_private->playback && !ssi_private->capture) {
291 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
292 int ret;
293
294 /* The 'name' should not have any slashes in it. */
295 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
296 ssi_private->name, ssi_private);
297 if (ret < 0) {
298 dev_err(substream->pcm->card->dev,
299 "could not claim irq %u\n", ssi_private->irq);
300 return ret;
301 }
302
303 /*
304 * Section 16.5 of the MPC8610 reference manual says that the
305 * SSI needs to be disabled before updating the registers we set
306 * here.
307 */
308 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
309
310 /*
311 * Program the SSI into I2S Slave Non-Network Synchronous mode.
312 * Also enable the transmit and receive FIFO.
313 *
314 * FIXME: Little-endian samples require a different shift dir
315 */
316 clrsetbits_be32(&ssi->scr,
317 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
318 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
319 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
320
321 out_be32(&ssi->stcr,
322 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
323 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
324 CCSR_SSI_STCR_TSCKP);
325
326 out_be32(&ssi->srcr,
327 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
328 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
329 CCSR_SSI_SRCR_RSCKP);
330
331 /*
332 * The DC and PM bits are only used if the SSI is the clock
333 * master.
334 */
335
336 /* 4. Enable the interrupts and DMA requests */
337 out_be32(&ssi->sier, SIER_FLAGS);
338
339 /*
340 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
341 * don't use FIFO 1. We program the transmit water to signal a
342 * DMA transfer if there are only two (or fewer) elements left
343 * in the FIFO. Two elements equals one frame (left channel,
344 * right channel). This value, however, depends on the depth of
345 * the transmit buffer.
346 *
347 * We program the receive FIFO to notify us if at least two
348 * elements (one frame) have been written to the FIFO. We could
349 * make this value larger (and maybe we should), but this way
350 * data will be written to memory as soon as it's available.
351 */
352 out_be32(&ssi->sfcsr,
353 CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
354 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2));
355
356 /*
357 * We keep the SSI disabled because if we enable it, then the
358 * DMA controller will start. It's not supposed to start until
359 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
360 * DMA controller will transfer one "BWC" of data (i.e. the
361 * amount of data that the MR.BWC bits are set to). The reason
362 * this is bad is because at this point, the PCM driver has not
363 * finished initializing the DMA controller.
364 */
365 }
366
367 if (!ssi_private->first_stream)
368 ssi_private->first_stream = substream;
369 else {
370 /* This is the second stream open, so we need to impose sample
371 * rate and maybe sample size constraints. Note that this can
372 * cause a race condition if the second stream is opened before
373 * the first stream is fully initialized.
374 *
375 * We provide some protection by checking to make sure the first
376 * stream is initialized, but it's not perfect. ALSA sometimes
377 * re-initializes the driver with a different sample rate or
378 * size. If the second stream is opened before the first stream
379 * has received its final parameters, then the second stream may
380 * be constrained to the wrong sample rate or size.
381 *
382 * FIXME: This code does not handle opening and closing streams
383 * repeatedly. If you open two streams and then close the first
384 * one, you may not be able to open another stream until you
385 * close the second one as well.
386 */
387 struct snd_pcm_runtime *first_runtime =
388 ssi_private->first_stream->runtime;
389
390 if (!first_runtime->sample_bits) {
391 dev_err(substream->pcm->card->dev,
392 "set sample size in %s stream first\n",
393 substream->stream == SNDRV_PCM_STREAM_PLAYBACK
394 ? "capture" : "playback");
395 return -EAGAIN;
396 }
397
398 /* If we're in synchronous mode, then we need to constrain
399 * the sample size as well. We don't support independent sample
400 * rates in asynchronous mode.
401 */
402 if (!ssi_private->asynchronous)
403 snd_pcm_hw_constraint_minmax(substream->runtime,
404 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
405 first_runtime->sample_bits,
406 first_runtime->sample_bits);
407
408 ssi_private->second_stream = substream;
409 }
410
411 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
412 ssi_private->playback++;
413
414 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
415 ssi_private->capture++;
416
417 return 0;
418 }
419
420 /**
421 * fsl_ssi_hw_params - program the sample size
422 *
423 * Most of the SSI registers have been programmed in the startup function,
424 * but the word length must be programmed here. Unfortunately, programming
425 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
426 * cause a problem with supporting simultaneous playback and capture. If
427 * the SSI is already playing a stream, then that stream may be temporarily
428 * stopped when you start capture.
429 *
430 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
431 * clock master.
432 */
433 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
434 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
435 {
436 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
437
438 if (substream == ssi_private->first_stream) {
439 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
440 unsigned int sample_size =
441 snd_pcm_format_width(params_format(hw_params));
442 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
443
444 /* The SSI should always be disabled at this points (SSIEN=0) */
445
446 /* In synchronous mode, the SSI uses STCCR for capture */
447 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
448 !ssi_private->asynchronous)
449 clrsetbits_be32(&ssi->stccr,
450 CCSR_SSI_SxCCR_WL_MASK, wl);
451 else
452 clrsetbits_be32(&ssi->srccr,
453 CCSR_SSI_SxCCR_WL_MASK, wl);
454 }
455
456 return 0;
457 }
458
459 /**
460 * fsl_ssi_trigger: start and stop the DMA transfer.
461 *
462 * This function is called by ALSA to start, stop, pause, and resume the DMA
463 * transfer of data.
464 *
465 * The DMA channel is in external master start and pause mode, which
466 * means the SSI completely controls the flow of data.
467 */
468 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
469 struct snd_soc_dai *dai)
470 {
471 struct snd_soc_pcm_runtime *rtd = substream->private_data;
472 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
473 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
474
475 switch (cmd) {
476 case SNDRV_PCM_TRIGGER_START:
477 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
478 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
479 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
480 setbits32(&ssi->scr,
481 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
482 else
483 setbits32(&ssi->scr,
484 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
485 break;
486
487 case SNDRV_PCM_TRIGGER_STOP:
488 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
489 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
490 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
491 else
492 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
493 break;
494
495 default:
496 return -EINVAL;
497 }
498
499 return 0;
500 }
501
502 /**
503 * fsl_ssi_shutdown: shutdown the SSI
504 *
505 * Shutdown the SSI if there are no other substreams open.
506 */
507 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
508 struct snd_soc_dai *dai)
509 {
510 struct snd_soc_pcm_runtime *rtd = substream->private_data;
511 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
512
513 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
514 ssi_private->playback--;
515
516 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
517 ssi_private->capture--;
518
519 if (ssi_private->first_stream == substream)
520 ssi_private->first_stream = ssi_private->second_stream;
521
522 ssi_private->second_stream = NULL;
523
524 /*
525 * If this is the last active substream, disable the SSI and release
526 * the IRQ.
527 */
528 if (!ssi_private->playback && !ssi_private->capture) {
529 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
530
531 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
532
533 free_irq(ssi_private->irq, ssi_private);
534 }
535 }
536
537 static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
538 .startup = fsl_ssi_startup,
539 .hw_params = fsl_ssi_hw_params,
540 .shutdown = fsl_ssi_shutdown,
541 .trigger = fsl_ssi_trigger,
542 };
543
544 /* Template for the CPU dai driver structure */
545 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
546 .playback = {
547 /* The SSI does not support monaural audio. */
548 .channels_min = 2,
549 .channels_max = 2,
550 .rates = FSLSSI_I2S_RATES,
551 .formats = FSLSSI_I2S_FORMATS,
552 },
553 .capture = {
554 .channels_min = 2,
555 .channels_max = 2,
556 .rates = FSLSSI_I2S_RATES,
557 .formats = FSLSSI_I2S_FORMATS,
558 },
559 .ops = &fsl_ssi_dai_ops,
560 };
561
562 /* Show the statistics of a flag only if its interrupt is enabled. The
563 * compiler will optimze this code to a no-op if the interrupt is not
564 * enabled.
565 */
566 #define SIER_SHOW(flag, name) \
567 do { \
568 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
569 length += sprintf(buf + length, #name "=%u\n", \
570 ssi_private->stats.name); \
571 } while (0)
572
573
574 /**
575 * fsl_sysfs_ssi_show: display SSI statistics
576 *
577 * Display the statistics for the current SSI device. To avoid confusion,
578 * we only show those counts that are enabled.
579 */
580 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct fsl_ssi_private *ssi_private =
584 container_of(attr, struct fsl_ssi_private, dev_attr);
585 ssize_t length = 0;
586
587 SIER_SHOW(RFRC_EN, rfrc);
588 SIER_SHOW(TFRC_EN, tfrc);
589 SIER_SHOW(CMDAU_EN, cmdau);
590 SIER_SHOW(CMDDU_EN, cmddu);
591 SIER_SHOW(RXT_EN, rxt);
592 SIER_SHOW(RDR1_EN, rdr1);
593 SIER_SHOW(RDR0_EN, rdr0);
594 SIER_SHOW(TDE1_EN, tde1);
595 SIER_SHOW(TDE0_EN, tde0);
596 SIER_SHOW(ROE1_EN, roe1);
597 SIER_SHOW(ROE0_EN, roe0);
598 SIER_SHOW(TUE1_EN, tue1);
599 SIER_SHOW(TUE0_EN, tue0);
600 SIER_SHOW(TFS_EN, tfs);
601 SIER_SHOW(RFS_EN, rfs);
602 SIER_SHOW(TLS_EN, tls);
603 SIER_SHOW(RLS_EN, rls);
604 SIER_SHOW(RFF1_EN, rff1);
605 SIER_SHOW(RFF0_EN, rff0);
606 SIER_SHOW(TFE1_EN, tfe1);
607 SIER_SHOW(TFE0_EN, tfe0);
608
609 return length;
610 }
611
612 /**
613 * Make every character in a string lower-case
614 */
615 static void make_lowercase(char *s)
616 {
617 char *p = s;
618 char c;
619
620 while ((c = *p)) {
621 if ((c >= 'A') && (c <= 'Z'))
622 *p = c + ('a' - 'A');
623 p++;
624 }
625 }
626
627 static int __devinit fsl_ssi_probe(struct platform_device *pdev)
628 {
629 struct fsl_ssi_private *ssi_private;
630 int ret = 0;
631 struct device_attribute *dev_attr = NULL;
632 struct device_node *np = pdev->dev.of_node;
633 const char *p, *sprop;
634 const uint32_t *iprop;
635 struct resource res;
636 char name[64];
637
638 /* SSIs that are not connected on the board should have a
639 * status = "disabled"
640 * property in their device tree nodes.
641 */
642 if (!of_device_is_available(np))
643 return -ENODEV;
644
645 /* Check for a codec-handle property. */
646 if (!of_get_property(np, "codec-handle", NULL)) {
647 dev_err(&pdev->dev, "missing codec-handle property\n");
648 return -ENODEV;
649 }
650
651 /* We only support the SSI in "I2S Slave" mode */
652 sprop = of_get_property(np, "fsl,mode", NULL);
653 if (!sprop || strcmp(sprop, "i2s-slave")) {
654 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
655 return -ENODEV;
656 }
657
658 /* The DAI name is the last part of the full name of the node. */
659 p = strrchr(np->full_name, '/') + 1;
660 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
661 GFP_KERNEL);
662 if (!ssi_private) {
663 dev_err(&pdev->dev, "could not allocate DAI object\n");
664 return -ENOMEM;
665 }
666
667 strcpy(ssi_private->name, p);
668
669 /* Initialize this copy of the CPU DAI driver structure */
670 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
671 sizeof(fsl_ssi_dai_template));
672 ssi_private->cpu_dai_drv.name = ssi_private->name;
673
674 /* Get the addresses and IRQ */
675 ret = of_address_to_resource(np, 0, &res);
676 if (ret) {
677 dev_err(&pdev->dev, "could not determine device resources\n");
678 kfree(ssi_private);
679 return ret;
680 }
681 ssi_private->ssi = ioremap(res.start, 1 + res.end - res.start);
682 ssi_private->ssi_phys = res.start;
683 ssi_private->irq = irq_of_parse_and_map(np, 0);
684
685 /* Are the RX and the TX clocks locked? */
686 if (of_find_property(np, "fsl,ssi-asynchronous", NULL))
687 ssi_private->asynchronous = 1;
688 else
689 ssi_private->cpu_dai_drv.symmetric_rates = 1;
690
691 /* Determine the FIFO depth. */
692 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
693 if (iprop)
694 ssi_private->fifo_depth = *iprop;
695 else
696 /* Older 8610 DTs didn't have the fifo-depth property */
697 ssi_private->fifo_depth = 8;
698
699 /* Initialize the the device_attribute structure */
700 dev_attr = &ssi_private->dev_attr;
701 dev_attr->attr.name = "statistics";
702 dev_attr->attr.mode = S_IRUGO;
703 dev_attr->show = fsl_sysfs_ssi_show;
704
705 ret = device_create_file(&pdev->dev, dev_attr);
706 if (ret) {
707 dev_err(&pdev->dev, "could not create sysfs %s file\n",
708 ssi_private->dev_attr.attr.name);
709 goto error;
710 }
711
712 /* Register with ASoC */
713 dev_set_drvdata(&pdev->dev, ssi_private);
714
715 ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
716 if (ret) {
717 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
718 goto error;
719 }
720
721 /* Trigger the machine driver's probe function. The platform driver
722 * name of the machine driver is taken from the /model property of the
723 * device tree. We also pass the address of the CPU DAI driver
724 * structure.
725 */
726 sprop = of_get_property(of_find_node_by_path("/"), "model", NULL);
727 /* Sometimes the model name has a "fsl," prefix, so we strip that. */
728 p = strrchr(sprop, ',');
729 if (p)
730 sprop = p + 1;
731 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
732 make_lowercase(name);
733
734 ssi_private->pdev =
735 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
736 if (IS_ERR(ssi_private->pdev)) {
737 ret = PTR_ERR(ssi_private->pdev);
738 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
739 goto error;
740 }
741
742 return 0;
743
744 error:
745 snd_soc_unregister_dai(&pdev->dev);
746 dev_set_drvdata(&pdev->dev, NULL);
747 if (dev_attr)
748 device_remove_file(&pdev->dev, dev_attr);
749 irq_dispose_mapping(ssi_private->irq);
750 iounmap(ssi_private->ssi);
751 kfree(ssi_private);
752
753 return ret;
754 }
755
756 static int fsl_ssi_remove(struct platform_device *pdev)
757 {
758 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
759
760 platform_device_unregister(ssi_private->pdev);
761 snd_soc_unregister_dai(&pdev->dev);
762 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
763
764 kfree(ssi_private);
765 dev_set_drvdata(&pdev->dev, NULL);
766
767 return 0;
768 }
769
770 static const struct of_device_id fsl_ssi_ids[] = {
771 { .compatible = "fsl,mpc8610-ssi", },
772 {}
773 };
774 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
775
776 static struct platform_driver fsl_ssi_driver = {
777 .driver = {
778 .name = "fsl-ssi-dai",
779 .owner = THIS_MODULE,
780 .of_match_table = fsl_ssi_ids,
781 },
782 .probe = fsl_ssi_probe,
783 .remove = fsl_ssi_remove,
784 };
785
786 static int __init fsl_ssi_init(void)
787 {
788 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
789
790 return platform_driver_register(&fsl_ssi_driver);
791 }
792
793 static void __exit fsl_ssi_exit(void)
794 {
795 platform_driver_unregister(&fsl_ssi_driver);
796 }
797
798 module_init(fsl_ssi_init);
799 module_exit(fsl_ssi_exit);
800
801 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
802 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
803 MODULE_LICENSE("GPL v2");