]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/soc/fsl/fsl_ssi.c
6b0c8f717ec2c0781af066cfb1bc3bcce8567791
[mirror_ubuntu-artful-kernel.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 *
12 *
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14 *
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
25 * rate.
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
31 */
32
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/device.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/of.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/of_platform.h>
46
47 #include <sound/core.h>
48 #include <sound/pcm.h>
49 #include <sound/pcm_params.h>
50 #include <sound/initval.h>
51 #include <sound/soc.h>
52 #include <sound/dmaengine_pcm.h>
53
54 #include "fsl_ssi.h"
55 #include "imx-pcm.h"
56
57 /**
58 * FSLSSI_I2S_RATES: sample rates supported by the I2S
59 *
60 * This driver currently only supports the SSI running in I2S slave mode,
61 * which means the codec determines the sample rate. Therefore, we tell
62 * ALSA that we support all rates and let the codec driver decide what rates
63 * are really supported.
64 */
65 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
66
67 /**
68 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69 *
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU. This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order. The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness). Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in. So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79 #ifdef __BIG_ENDIAN
80 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83 #else
84 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88
89 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
90 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
91 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
92 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
93 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
94 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
95
96 enum fsl_ssi_type {
97 FSL_SSI_MCP8610,
98 FSL_SSI_MX21,
99 FSL_SSI_MX35,
100 FSL_SSI_MX51,
101 };
102
103 struct fsl_ssi_reg_val {
104 u32 sier;
105 u32 srcr;
106 u32 stcr;
107 u32 scr;
108 };
109
110 struct fsl_ssi_rxtx_reg_val {
111 struct fsl_ssi_reg_val rx;
112 struct fsl_ssi_reg_val tx;
113 };
114 static const struct regmap_config fsl_ssi_regconfig = {
115 .max_register = CCSR_SSI_SACCDIS,
116 .reg_bits = 32,
117 .val_bits = 32,
118 .reg_stride = 4,
119 .val_format_endian = REGMAP_ENDIAN_NATIVE,
120 };
121
122 struct fsl_ssi_soc_data {
123 bool imx;
124 bool offline_config;
125 u32 sisr_write_mask;
126 };
127
128 /**
129 * fsl_ssi_private: per-SSI private data
130 *
131 * @reg: Pointer to the regmap registers
132 * @irq: IRQ of this SSI
133 * @cpu_dai_drv: CPU DAI driver for this device
134 *
135 * @dai_fmt: DAI configuration this device is currently used with
136 * @i2s_mode: i2s and network mode configuration of the device. Is used to
137 * switch between normal and i2s/network mode
138 * mode depending on the number of channels
139 * @use_dma: DMA is used or FIQ with stream filter
140 * @use_dual_fifo: DMA with support for both FIFOs used
141 * @fifo_deph: Depth of the SSI FIFOs
142 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
143 *
144 * @clk: SSI clock
145 * @baudclk: SSI baud clock for master mode
146 * @baudclk_streams: Active streams that are using baudclk
147 * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
148 *
149 * @dma_params_tx: DMA transmit parameters
150 * @dma_params_rx: DMA receive parameters
151 * @ssi_phys: physical address of the SSI registers
152 *
153 * @fiq_params: FIQ stream filtering parameters
154 *
155 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
156 *
157 * @dbg_stats: Debugging statistics
158 *
159 * @soc: SoC specifc data
160 */
161 struct fsl_ssi_private {
162 struct regmap *regs;
163 int irq;
164 struct snd_soc_dai_driver cpu_dai_drv;
165
166 unsigned int dai_fmt;
167 u8 i2s_mode;
168 bool use_dma;
169 bool use_dual_fifo;
170 bool has_ipg_clk_name;
171 unsigned int fifo_depth;
172 struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
173
174 struct clk *clk;
175 struct clk *baudclk;
176 unsigned int baudclk_streams;
177 unsigned int bitclk_freq;
178
179 /* DMA params */
180 struct snd_dmaengine_dai_dma_data dma_params_tx;
181 struct snd_dmaengine_dai_dma_data dma_params_rx;
182 dma_addr_t ssi_phys;
183
184 /* params for non-dma FIQ stream filtered mode */
185 struct imx_pcm_fiq_params fiq_params;
186
187 /* Used when using fsl-ssi as sound-card. This is only used by ppc and
188 * should be replaced with simple-sound-card. */
189 struct platform_device *pdev;
190
191 struct fsl_ssi_dbg dbg_stats;
192
193 const struct fsl_ssi_soc_data *soc;
194 };
195
196 /*
197 * imx51 and later SoCs have a slightly different IP that allows the
198 * SSI configuration while the SSI unit is running.
199 *
200 * More important, it is necessary on those SoCs to configure the
201 * sperate TX/RX DMA bits just before starting the stream
202 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
203 * sends any DMA requests to the SDMA unit, otherwise it is not defined
204 * how the SDMA unit handles the DMA request.
205 *
206 * SDMA units are present on devices starting at imx35 but the imx35
207 * reference manual states that the DMA bits should not be changed
208 * while the SSI unit is running (SSIEN). So we support the necessary
209 * online configuration of fsl-ssi starting at imx51.
210 */
211
212 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
213 .imx = false,
214 .offline_config = true,
215 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
216 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
217 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
218 };
219
220 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
221 .imx = true,
222 .offline_config = true,
223 .sisr_write_mask = 0,
224 };
225
226 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
227 .imx = true,
228 .offline_config = true,
229 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
230 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
231 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
232 };
233
234 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
235 .imx = true,
236 .offline_config = false,
237 .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
238 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
239 };
240
241 static const struct of_device_id fsl_ssi_ids[] = {
242 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
243 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
244 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
245 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
246 {}
247 };
248 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
249
250 static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
251 {
252 return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
253 }
254
255 static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
256 {
257 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
258 SND_SOC_DAIFMT_CBS_CFS;
259 }
260
261 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
262 {
263 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
264 SND_SOC_DAIFMT_CBM_CFS;
265 }
266 /**
267 * fsl_ssi_isr: SSI interrupt handler
268 *
269 * Although it's possible to use the interrupt handler to send and receive
270 * data to/from the SSI, we use the DMA instead. Programming is more
271 * complicated, but the performance is much better.
272 *
273 * This interrupt handler is used only to gather statistics.
274 *
275 * @irq: IRQ of the SSI device
276 * @dev_id: pointer to the ssi_private structure for this SSI device
277 */
278 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
279 {
280 struct fsl_ssi_private *ssi_private = dev_id;
281 struct regmap *regs = ssi_private->regs;
282 __be32 sisr;
283 __be32 sisr2;
284
285 /* We got an interrupt, so read the status register to see what we
286 were interrupted for. We mask it with the Interrupt Enable register
287 so that we only check for events that we're interested in.
288 */
289 regmap_read(regs, CCSR_SSI_SISR, &sisr);
290
291 sisr2 = sisr & ssi_private->soc->sisr_write_mask;
292 /* Clear the bits that we set */
293 if (sisr2)
294 regmap_write(regs, CCSR_SSI_SISR, sisr2);
295
296 fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
297
298 return IRQ_HANDLED;
299 }
300
301 /*
302 * Enable/Disable all rx/tx config flags at once.
303 */
304 static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
305 bool enable)
306 {
307 struct regmap *regs = ssi_private->regs;
308 struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
309
310 if (enable) {
311 regmap_update_bits(regs, CCSR_SSI_SIER,
312 vals->rx.sier | vals->tx.sier,
313 vals->rx.sier | vals->tx.sier);
314 regmap_update_bits(regs, CCSR_SSI_SRCR,
315 vals->rx.srcr | vals->tx.srcr,
316 vals->rx.srcr | vals->tx.srcr);
317 regmap_update_bits(regs, CCSR_SSI_STCR,
318 vals->rx.stcr | vals->tx.stcr,
319 vals->rx.stcr | vals->tx.stcr);
320 } else {
321 regmap_update_bits(regs, CCSR_SSI_SRCR,
322 vals->rx.srcr | vals->tx.srcr, 0);
323 regmap_update_bits(regs, CCSR_SSI_STCR,
324 vals->rx.stcr | vals->tx.stcr, 0);
325 regmap_update_bits(regs, CCSR_SSI_SIER,
326 vals->rx.sier | vals->tx.sier, 0);
327 }
328 }
329
330 /*
331 * Calculate the bits that have to be disabled for the current stream that is
332 * getting disabled. This keeps the bits enabled that are necessary for the
333 * second stream to work if 'stream_active' is true.
334 *
335 * Detailed calculation:
336 * These are the values that need to be active after disabling. For non-active
337 * second stream, this is 0:
338 * vals_stream * !!stream_active
339 *
340 * The following computes the overall differences between the setup for the
341 * to-disable stream and the active stream, a simple XOR:
342 * vals_disable ^ (vals_stream * !!(stream_active))
343 *
344 * The full expression adds a mask on all values we care about
345 */
346 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
347 ((vals_disable) & \
348 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
349
350 /*
351 * Enable/Disable a ssi configuration. You have to pass either
352 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
353 */
354 static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
355 struct fsl_ssi_reg_val *vals)
356 {
357 struct regmap *regs = ssi_private->regs;
358 struct fsl_ssi_reg_val *avals;
359 int nr_active_streams;
360 u32 scr_val;
361 int keep_active;
362
363 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
364
365 nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
366 !!(scr_val & CCSR_SSI_SCR_RE);
367
368 if (nr_active_streams - 1 > 0)
369 keep_active = 1;
370 else
371 keep_active = 0;
372
373 /* Find the other direction values rx or tx which we do not want to
374 * modify */
375 if (&ssi_private->rxtx_reg_val.rx == vals)
376 avals = &ssi_private->rxtx_reg_val.tx;
377 else
378 avals = &ssi_private->rxtx_reg_val.rx;
379
380 /* If vals should be disabled, start with disabling the unit */
381 if (!enable) {
382 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
383 keep_active);
384 regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
385 }
386
387 /*
388 * We are running on a SoC which does not support online SSI
389 * reconfiguration, so we have to enable all necessary flags at once
390 * even if we do not use them later (capture and playback configuration)
391 */
392 if (ssi_private->soc->offline_config) {
393 if ((enable && !nr_active_streams) ||
394 (!enable && !keep_active))
395 fsl_ssi_rxtx_config(ssi_private, enable);
396
397 goto config_done;
398 }
399
400 /*
401 * Configure single direction units while the SSI unit is running
402 * (online configuration)
403 */
404 if (enable) {
405 regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
406 regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
407 regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
408 } else {
409 u32 sier;
410 u32 srcr;
411 u32 stcr;
412
413 /*
414 * Disabling the necessary flags for one of rx/tx while the
415 * other stream is active is a little bit more difficult. We
416 * have to disable only those flags that differ between both
417 * streams (rx XOR tx) and that are set in the stream that is
418 * disabled now. Otherwise we could alter flags of the other
419 * stream
420 */
421
422 /* These assignments are simply vals without bits set in avals*/
423 sier = fsl_ssi_disable_val(vals->sier, avals->sier,
424 keep_active);
425 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
426 keep_active);
427 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
428 keep_active);
429
430 regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
431 regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
432 regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
433 }
434
435 config_done:
436 /* Enabling of subunits is done after configuration */
437 if (enable)
438 regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
439 }
440
441
442 static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
443 {
444 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
445 }
446
447 static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
448 {
449 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
450 }
451
452 /*
453 * Setup rx/tx register values used to enable/disable the streams. These will
454 * be used later in fsl_ssi_config to setup the streams without the need to
455 * check for all different SSI modes.
456 */
457 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
458 {
459 struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
460
461 reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
462 reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
463 reg->rx.scr = 0;
464 reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
465 reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
466 reg->tx.scr = 0;
467
468 if (!fsl_ssi_is_ac97(ssi_private)) {
469 reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
470 reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
471 reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
472 reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
473 }
474
475 if (ssi_private->use_dma) {
476 reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
477 reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
478 } else {
479 reg->rx.sier |= CCSR_SSI_SIER_RIE;
480 reg->tx.sier |= CCSR_SSI_SIER_TIE;
481 }
482
483 reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
484 reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
485 }
486
487 static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
488 {
489 struct regmap *regs = ssi_private->regs;
490
491 /*
492 * Setup the clock control register
493 */
494 regmap_write(regs, CCSR_SSI_STCCR,
495 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
496 regmap_write(regs, CCSR_SSI_SRCCR,
497 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
498
499 /*
500 * Enable AC97 mode and startup the SSI
501 */
502 regmap_write(regs, CCSR_SSI_SACNT,
503 CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
504 regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
505 regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
506
507 /*
508 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
509 * codec before a stream is started.
510 */
511 regmap_update_bits(regs, CCSR_SSI_SCR,
512 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
513 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
514
515 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
516 }
517
518 /**
519 * fsl_ssi_startup: create a new substream
520 *
521 * This is the first function called when a stream is opened.
522 *
523 * If this is the first stream open, then grab the IRQ and program most of
524 * the SSI registers.
525 */
526 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
527 struct snd_soc_dai *dai)
528 {
529 struct snd_soc_pcm_runtime *rtd = substream->private_data;
530 struct fsl_ssi_private *ssi_private =
531 snd_soc_dai_get_drvdata(rtd->cpu_dai);
532 int ret;
533
534 ret = clk_prepare_enable(ssi_private->clk);
535 if (ret)
536 return ret;
537
538 /* When using dual fifo mode, it is safer to ensure an even period
539 * size. If appearing to an odd number while DMA always starts its
540 * task from fifo0, fifo1 would be neglected at the end of each
541 * period. But SSI would still access fifo1 with an invalid data.
542 */
543 if (ssi_private->use_dual_fifo)
544 snd_pcm_hw_constraint_step(substream->runtime, 0,
545 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
546
547 return 0;
548 }
549
550 /**
551 * fsl_ssi_shutdown: shutdown the SSI
552 *
553 */
554 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
555 struct snd_soc_dai *dai)
556 {
557 struct snd_soc_pcm_runtime *rtd = substream->private_data;
558 struct fsl_ssi_private *ssi_private =
559 snd_soc_dai_get_drvdata(rtd->cpu_dai);
560
561 clk_disable_unprepare(ssi_private->clk);
562
563 }
564
565 /**
566 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
567 *
568 * Note: This function can be only called when using SSI as DAI master
569 *
570 * Quick instruction for parameters:
571 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
572 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
573 */
574 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
575 struct snd_soc_dai *cpu_dai,
576 struct snd_pcm_hw_params *hw_params)
577 {
578 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
579 struct regmap *regs = ssi_private->regs;
580 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
581 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
582 unsigned long clkrate, baudrate, tmprate;
583 u64 sub, savesub = 100000;
584 unsigned int freq;
585 bool baudclk_is_used;
586
587 /* Prefer the explicitly set bitclock frequency */
588 if (ssi_private->bitclk_freq)
589 freq = ssi_private->bitclk_freq;
590 else
591 freq = params_channels(hw_params) * 32 * params_rate(hw_params);
592
593 /* Don't apply it to any non-baudclk circumstance */
594 if (IS_ERR(ssi_private->baudclk))
595 return -EINVAL;
596
597 baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
598
599 /* It should be already enough to divide clock by setting pm alone */
600 psr = 0;
601 div2 = 0;
602
603 factor = (div2 + 1) * (7 * psr + 1) * 2;
604
605 for (i = 0; i < 255; i++) {
606 tmprate = freq * factor * (i + 1);
607
608 if (baudclk_is_used)
609 clkrate = clk_get_rate(ssi_private->baudclk);
610 else
611 clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
612
613 /*
614 * Hardware limitation: The bclk rate must be
615 * never greater than 1/5 IPG clock rate
616 */
617 if (clkrate * 5 > clk_get_rate(ssi_private->clk))
618 continue;
619
620 clkrate /= factor;
621 afreq = clkrate / (i + 1);
622
623 if (freq == afreq)
624 sub = 0;
625 else if (freq / afreq == 1)
626 sub = freq - afreq;
627 else if (afreq / freq == 1)
628 sub = afreq - freq;
629 else
630 continue;
631
632 /* Calculate the fraction */
633 sub *= 100000;
634 do_div(sub, freq);
635
636 if (sub < savesub) {
637 baudrate = tmprate;
638 savesub = sub;
639 pm = i;
640 }
641
642 /* We are lucky */
643 if (savesub == 0)
644 break;
645 }
646
647 /* No proper pm found if it is still remaining the initial value */
648 if (pm == 999) {
649 dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
650 return -EINVAL;
651 }
652
653 stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
654 (psr ? CCSR_SSI_SxCCR_PSR : 0);
655 mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
656 CCSR_SSI_SxCCR_PSR;
657
658 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
659 regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
660 else
661 regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
662
663 if (!baudclk_is_used) {
664 ret = clk_set_rate(ssi_private->baudclk, baudrate);
665 if (ret) {
666 dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
667 return -EINVAL;
668 }
669 }
670
671 return 0;
672 }
673
674 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
675 int clk_id, unsigned int freq, int dir)
676 {
677 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
678
679 ssi_private->bitclk_freq = freq;
680
681 return 0;
682 }
683
684 /**
685 * fsl_ssi_hw_params - program the sample size
686 *
687 * Most of the SSI registers have been programmed in the startup function,
688 * but the word length must be programmed here. Unfortunately, programming
689 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
690 * cause a problem with supporting simultaneous playback and capture. If
691 * the SSI is already playing a stream, then that stream may be temporarily
692 * stopped when you start capture.
693 *
694 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
695 * clock master.
696 */
697 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
698 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
699 {
700 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
701 struct regmap *regs = ssi_private->regs;
702 unsigned int channels = params_channels(hw_params);
703 unsigned int sample_size =
704 snd_pcm_format_width(params_format(hw_params));
705 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
706 int ret;
707 u32 scr_val;
708 int enabled;
709
710 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
711 enabled = scr_val & CCSR_SSI_SCR_SSIEN;
712
713 /*
714 * If we're in synchronous mode, and the SSI is already enabled,
715 * then STCCR is already set properly.
716 */
717 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
718 return 0;
719
720 if (fsl_ssi_is_i2s_master(ssi_private)) {
721 ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
722 if (ret)
723 return ret;
724
725 /* Do not enable the clock if it is already enabled */
726 if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
727 ret = clk_prepare_enable(ssi_private->baudclk);
728 if (ret)
729 return ret;
730
731 ssi_private->baudclk_streams |= BIT(substream->stream);
732 }
733 }
734
735 if (!fsl_ssi_is_ac97(ssi_private)) {
736 u8 i2smode;
737 /*
738 * Switch to normal net mode in order to have a frame sync
739 * signal every 32 bits instead of 16 bits
740 */
741 if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
742 i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
743 CCSR_SSI_SCR_NET;
744 else
745 i2smode = ssi_private->i2s_mode;
746
747 regmap_update_bits(regs, CCSR_SSI_SCR,
748 CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
749 channels == 1 ? 0 : i2smode);
750 }
751
752 /*
753 * FIXME: The documentation says that SxCCR[WL] should not be
754 * modified while the SSI is enabled. The only time this can
755 * happen is if we're trying to do simultaneous playback and
756 * capture in asynchronous mode. Unfortunately, I have been enable
757 * to get that to work at all on the P1022DS. Therefore, we don't
758 * bother to disable/enable the SSI when setting SxCCR[WL], because
759 * the SSI will stop anyway. Maybe one day, this will get fixed.
760 */
761
762 /* In synchronous mode, the SSI uses STCCR for capture */
763 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
764 ssi_private->cpu_dai_drv.symmetric_rates)
765 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
766 wl);
767 else
768 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
769 wl);
770
771 return 0;
772 }
773
774 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
775 struct snd_soc_dai *cpu_dai)
776 {
777 struct snd_soc_pcm_runtime *rtd = substream->private_data;
778 struct fsl_ssi_private *ssi_private =
779 snd_soc_dai_get_drvdata(rtd->cpu_dai);
780
781 if (fsl_ssi_is_i2s_master(ssi_private) &&
782 ssi_private->baudclk_streams & BIT(substream->stream)) {
783 clk_disable_unprepare(ssi_private->baudclk);
784 ssi_private->baudclk_streams &= ~BIT(substream->stream);
785 }
786
787 return 0;
788 }
789
790 static int _fsl_ssi_set_dai_fmt(struct device *dev,
791 struct fsl_ssi_private *ssi_private,
792 unsigned int fmt)
793 {
794 struct regmap *regs = ssi_private->regs;
795 u32 strcr = 0, stcr, srcr, scr, mask;
796 u8 wm;
797
798 ssi_private->dai_fmt = fmt;
799
800 if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
801 dev_err(dev, "baudclk is missing which is necessary for master mode\n");
802 return -EINVAL;
803 }
804
805 fsl_ssi_setup_reg_vals(ssi_private);
806
807 regmap_read(regs, CCSR_SSI_SCR, &scr);
808 scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
809 scr |= CCSR_SSI_SCR_SYNC_TX_FS;
810
811 mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
812 CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
813 CCSR_SSI_STCR_TEFS;
814 regmap_read(regs, CCSR_SSI_STCR, &stcr);
815 regmap_read(regs, CCSR_SSI_SRCR, &srcr);
816 stcr &= ~mask;
817 srcr &= ~mask;
818
819 ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
820 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
821 case SND_SOC_DAIFMT_I2S:
822 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
823 case SND_SOC_DAIFMT_CBM_CFS:
824 case SND_SOC_DAIFMT_CBS_CFS:
825 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
826 regmap_update_bits(regs, CCSR_SSI_STCCR,
827 CCSR_SSI_SxCCR_DC_MASK,
828 CCSR_SSI_SxCCR_DC(2));
829 regmap_update_bits(regs, CCSR_SSI_SRCCR,
830 CCSR_SSI_SxCCR_DC_MASK,
831 CCSR_SSI_SxCCR_DC(2));
832 break;
833 case SND_SOC_DAIFMT_CBM_CFM:
834 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
835 break;
836 default:
837 return -EINVAL;
838 }
839
840 /* Data on rising edge of bclk, frame low, 1clk before data */
841 strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
842 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
843 break;
844 case SND_SOC_DAIFMT_LEFT_J:
845 /* Data on rising edge of bclk, frame high */
846 strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
847 break;
848 case SND_SOC_DAIFMT_DSP_A:
849 /* Data on rising edge of bclk, frame high, 1clk before data */
850 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
851 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
852 break;
853 case SND_SOC_DAIFMT_DSP_B:
854 /* Data on rising edge of bclk, frame high */
855 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
856 CCSR_SSI_STCR_TXBIT0;
857 break;
858 case SND_SOC_DAIFMT_AC97:
859 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
860 break;
861 default:
862 return -EINVAL;
863 }
864 scr |= ssi_private->i2s_mode;
865
866 /* DAI clock inversion */
867 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
868 case SND_SOC_DAIFMT_NB_NF:
869 /* Nothing to do for both normal cases */
870 break;
871 case SND_SOC_DAIFMT_IB_NF:
872 /* Invert bit clock */
873 strcr ^= CCSR_SSI_STCR_TSCKP;
874 break;
875 case SND_SOC_DAIFMT_NB_IF:
876 /* Invert frame clock */
877 strcr ^= CCSR_SSI_STCR_TFSI;
878 break;
879 case SND_SOC_DAIFMT_IB_IF:
880 /* Invert both clocks */
881 strcr ^= CCSR_SSI_STCR_TSCKP;
882 strcr ^= CCSR_SSI_STCR_TFSI;
883 break;
884 default:
885 return -EINVAL;
886 }
887
888 /* DAI clock master masks */
889 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
890 case SND_SOC_DAIFMT_CBS_CFS:
891 strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
892 scr |= CCSR_SSI_SCR_SYS_CLK_EN;
893 break;
894 case SND_SOC_DAIFMT_CBM_CFM:
895 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
896 break;
897 case SND_SOC_DAIFMT_CBM_CFS:
898 strcr &= ~CCSR_SSI_STCR_TXDIR;
899 strcr |= CCSR_SSI_STCR_TFDIR;
900 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
901 break;
902 default:
903 return -EINVAL;
904 }
905
906 stcr |= strcr;
907 srcr |= strcr;
908
909 if (ssi_private->cpu_dai_drv.symmetric_rates) {
910 /* Need to clear RXDIR when using SYNC mode */
911 srcr &= ~CCSR_SSI_SRCR_RXDIR;
912 scr |= CCSR_SSI_SCR_SYN;
913 }
914
915 regmap_write(regs, CCSR_SSI_STCR, stcr);
916 regmap_write(regs, CCSR_SSI_SRCR, srcr);
917 regmap_write(regs, CCSR_SSI_SCR, scr);
918
919 /*
920 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
921 * use FIFO 1. We program the transmit water to signal a DMA transfer
922 * if there are only two (or fewer) elements left in the FIFO. Two
923 * elements equals one frame (left channel, right channel). This value,
924 * however, depends on the depth of the transmit buffer.
925 *
926 * We set the watermark on the same level as the DMA burstsize. For
927 * fiq it is probably better to use the biggest possible watermark
928 * size.
929 */
930 if (ssi_private->use_dma)
931 wm = ssi_private->fifo_depth - 2;
932 else
933 wm = ssi_private->fifo_depth;
934
935 regmap_write(regs, CCSR_SSI_SFCSR,
936 CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
937 CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
938
939 if (ssi_private->use_dual_fifo) {
940 regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
941 CCSR_SSI_SRCR_RFEN1);
942 regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
943 CCSR_SSI_STCR_TFEN1);
944 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
945 CCSR_SSI_SCR_TCH_EN);
946 }
947
948 if (fmt & SND_SOC_DAIFMT_AC97)
949 fsl_ssi_setup_ac97(ssi_private);
950
951 return 0;
952
953 }
954
955 /**
956 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
957 */
958 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
959 {
960 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
961
962 return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
963 }
964
965 /**
966 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
967 *
968 * Note: This function can be only called when using SSI as DAI master
969 */
970 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
971 u32 rx_mask, int slots, int slot_width)
972 {
973 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
974 struct regmap *regs = ssi_private->regs;
975 u32 val;
976
977 /* The slot number should be >= 2 if using Network mode or I2S mode */
978 regmap_read(regs, CCSR_SSI_SCR, &val);
979 val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
980 if (val && slots < 2) {
981 dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
982 return -EINVAL;
983 }
984
985 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
986 CCSR_SSI_SxCCR_DC(slots));
987 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
988 CCSR_SSI_SxCCR_DC(slots));
989
990 /* The register SxMSKs needs SSI to provide essential clock due to
991 * hardware design. So we here temporarily enable SSI to set them.
992 */
993 regmap_read(regs, CCSR_SSI_SCR, &val);
994 val &= CCSR_SSI_SCR_SSIEN;
995 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
996 CCSR_SSI_SCR_SSIEN);
997
998 regmap_write(regs, CCSR_SSI_STMSK, ~tx_mask);
999 regmap_write(regs, CCSR_SSI_SRMSK, ~rx_mask);
1000
1001 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
1002
1003 return 0;
1004 }
1005
1006 /**
1007 * fsl_ssi_trigger: start and stop the DMA transfer.
1008 *
1009 * This function is called by ALSA to start, stop, pause, and resume the DMA
1010 * transfer of data.
1011 *
1012 * The DMA channel is in external master start and pause mode, which
1013 * means the SSI completely controls the flow of data.
1014 */
1015 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1016 struct snd_soc_dai *dai)
1017 {
1018 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1019 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1020 struct regmap *regs = ssi_private->regs;
1021
1022 switch (cmd) {
1023 case SNDRV_PCM_TRIGGER_START:
1024 case SNDRV_PCM_TRIGGER_RESUME:
1025 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1026 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1027 fsl_ssi_tx_config(ssi_private, true);
1028 else
1029 fsl_ssi_rx_config(ssi_private, true);
1030 break;
1031
1032 case SNDRV_PCM_TRIGGER_STOP:
1033 case SNDRV_PCM_TRIGGER_SUSPEND:
1034 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1035 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1036 fsl_ssi_tx_config(ssi_private, false);
1037 else
1038 fsl_ssi_rx_config(ssi_private, false);
1039 break;
1040
1041 default:
1042 return -EINVAL;
1043 }
1044
1045 if (fsl_ssi_is_ac97(ssi_private)) {
1046 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1047 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
1048 else
1049 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
1050 }
1051
1052 return 0;
1053 }
1054
1055 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1056 {
1057 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1058
1059 if (ssi_private->soc->imx && ssi_private->use_dma) {
1060 dai->playback_dma_data = &ssi_private->dma_params_tx;
1061 dai->capture_dma_data = &ssi_private->dma_params_rx;
1062 }
1063
1064 return 0;
1065 }
1066
1067 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1068 .startup = fsl_ssi_startup,
1069 .shutdown = fsl_ssi_shutdown,
1070 .hw_params = fsl_ssi_hw_params,
1071 .hw_free = fsl_ssi_hw_free,
1072 .set_fmt = fsl_ssi_set_dai_fmt,
1073 .set_sysclk = fsl_ssi_set_dai_sysclk,
1074 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1075 .trigger = fsl_ssi_trigger,
1076 };
1077
1078 /* Template for the CPU dai driver structure */
1079 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1080 .probe = fsl_ssi_dai_probe,
1081 .playback = {
1082 .stream_name = "CPU-Playback",
1083 .channels_min = 1,
1084 .channels_max = 2,
1085 .rates = FSLSSI_I2S_RATES,
1086 .formats = FSLSSI_I2S_FORMATS,
1087 },
1088 .capture = {
1089 .stream_name = "CPU-Capture",
1090 .channels_min = 1,
1091 .channels_max = 2,
1092 .rates = FSLSSI_I2S_RATES,
1093 .formats = FSLSSI_I2S_FORMATS,
1094 },
1095 .ops = &fsl_ssi_dai_ops,
1096 };
1097
1098 static const struct snd_soc_component_driver fsl_ssi_component = {
1099 .name = "fsl-ssi",
1100 };
1101
1102 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1103 .bus_control = true,
1104 .playback = {
1105 .stream_name = "AC97 Playback",
1106 .channels_min = 2,
1107 .channels_max = 2,
1108 .rates = SNDRV_PCM_RATE_8000_48000,
1109 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1110 },
1111 .capture = {
1112 .stream_name = "AC97 Capture",
1113 .channels_min = 2,
1114 .channels_max = 2,
1115 .rates = SNDRV_PCM_RATE_48000,
1116 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1117 },
1118 .ops = &fsl_ssi_dai_ops,
1119 };
1120
1121
1122 static struct fsl_ssi_private *fsl_ac97_data;
1123
1124 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1125 unsigned short val)
1126 {
1127 struct regmap *regs = fsl_ac97_data->regs;
1128 unsigned int lreg;
1129 unsigned int lval;
1130
1131 if (reg > 0x7f)
1132 return;
1133
1134
1135 lreg = reg << 12;
1136 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1137
1138 lval = val << 4;
1139 regmap_write(regs, CCSR_SSI_SACDAT, lval);
1140
1141 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1142 CCSR_SSI_SACNT_WR);
1143 udelay(100);
1144 }
1145
1146 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1147 unsigned short reg)
1148 {
1149 struct regmap *regs = fsl_ac97_data->regs;
1150
1151 unsigned short val = -1;
1152 u32 reg_val;
1153 unsigned int lreg;
1154
1155 lreg = (reg & 0x7f) << 12;
1156 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1157 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
1158 CCSR_SSI_SACNT_RD);
1159
1160 udelay(100);
1161
1162 regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1163 val = (reg_val >> 4) & 0xffff;
1164
1165 return val;
1166 }
1167
1168 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1169 .read = fsl_ssi_ac97_read,
1170 .write = fsl_ssi_ac97_write,
1171 };
1172
1173 /**
1174 * Make every character in a string lower-case
1175 */
1176 static void make_lowercase(char *s)
1177 {
1178 char *p = s;
1179 char c;
1180
1181 while ((c = *p)) {
1182 if ((c >= 'A') && (c <= 'Z'))
1183 *p = c + ('a' - 'A');
1184 p++;
1185 }
1186 }
1187
1188 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1189 struct fsl_ssi_private *ssi_private, void __iomem *iomem)
1190 {
1191 struct device_node *np = pdev->dev.of_node;
1192 u32 dmas[4];
1193 int ret;
1194
1195 if (ssi_private->has_ipg_clk_name)
1196 ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1197 else
1198 ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
1199 if (IS_ERR(ssi_private->clk)) {
1200 ret = PTR_ERR(ssi_private->clk);
1201 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1202 return ret;
1203 }
1204
1205 if (!ssi_private->has_ipg_clk_name) {
1206 ret = clk_prepare_enable(ssi_private->clk);
1207 if (ret) {
1208 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1209 return ret;
1210 }
1211 }
1212
1213 /* For those SLAVE implementations, we ingore non-baudclk cases
1214 * and, instead, abandon MASTER mode that needs baud clock.
1215 */
1216 ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1217 if (IS_ERR(ssi_private->baudclk))
1218 dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1219 PTR_ERR(ssi_private->baudclk));
1220
1221 /*
1222 * We have burstsize be "fifo_depth - 2" to match the SSI
1223 * watermark setting in fsl_ssi_startup().
1224 */
1225 ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1226 ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
1227 ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1228 ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
1229
1230 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1231 if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1232 ssi_private->use_dual_fifo = true;
1233 /* When using dual fifo mode, we need to keep watermark
1234 * as even numbers due to dma script limitation.
1235 */
1236 ssi_private->dma_params_tx.maxburst &= ~0x1;
1237 ssi_private->dma_params_rx.maxburst &= ~0x1;
1238 }
1239
1240 if (!ssi_private->use_dma) {
1241
1242 /*
1243 * Some boards use an incompatible codec. To get it
1244 * working, we are using imx-fiq-pcm-audio, that
1245 * can handle those codecs. DMA is not possible in this
1246 * situation.
1247 */
1248
1249 ssi_private->fiq_params.irq = ssi_private->irq;
1250 ssi_private->fiq_params.base = iomem;
1251 ssi_private->fiq_params.dma_params_rx =
1252 &ssi_private->dma_params_rx;
1253 ssi_private->fiq_params.dma_params_tx =
1254 &ssi_private->dma_params_tx;
1255
1256 ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1257 if (ret)
1258 goto error_pcm;
1259 } else {
1260 ret = imx_pcm_dma_init(pdev);
1261 if (ret)
1262 goto error_pcm;
1263 }
1264
1265 return 0;
1266
1267 error_pcm:
1268
1269 if (!ssi_private->has_ipg_clk_name)
1270 clk_disable_unprepare(ssi_private->clk);
1271 return ret;
1272 }
1273
1274 static void fsl_ssi_imx_clean(struct platform_device *pdev,
1275 struct fsl_ssi_private *ssi_private)
1276 {
1277 if (!ssi_private->use_dma)
1278 imx_pcm_fiq_exit(pdev);
1279 if (!ssi_private->has_ipg_clk_name)
1280 clk_disable_unprepare(ssi_private->clk);
1281 }
1282
1283 static int fsl_ssi_probe(struct platform_device *pdev)
1284 {
1285 struct fsl_ssi_private *ssi_private;
1286 int ret = 0;
1287 struct device_node *np = pdev->dev.of_node;
1288 const struct of_device_id *of_id;
1289 const char *p, *sprop;
1290 const uint32_t *iprop;
1291 struct resource res;
1292 void __iomem *iomem;
1293 char name[64];
1294
1295 /* SSIs that are not connected on the board should have a
1296 * status = "disabled"
1297 * property in their device tree nodes.
1298 */
1299 if (!of_device_is_available(np))
1300 return -ENODEV;
1301
1302 of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
1303 if (!of_id || !of_id->data)
1304 return -EINVAL;
1305
1306 ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1307 GFP_KERNEL);
1308 if (!ssi_private) {
1309 dev_err(&pdev->dev, "could not allocate DAI object\n");
1310 return -ENOMEM;
1311 }
1312
1313 ssi_private->soc = of_id->data;
1314
1315 sprop = of_get_property(np, "fsl,mode", NULL);
1316 if (sprop) {
1317 if (!strcmp(sprop, "ac97-slave"))
1318 ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
1319 }
1320
1321 ssi_private->use_dma = !of_property_read_bool(np,
1322 "fsl,fiq-stream-filter");
1323
1324 if (fsl_ssi_is_ac97(ssi_private)) {
1325 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1326 sizeof(fsl_ssi_ac97_dai));
1327
1328 fsl_ac97_data = ssi_private;
1329
1330 snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1331 } else {
1332 /* Initialize this copy of the CPU DAI driver structure */
1333 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1334 sizeof(fsl_ssi_dai_template));
1335 }
1336 ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
1337
1338 /* Get the addresses and IRQ */
1339 ret = of_address_to_resource(np, 0, &res);
1340 if (ret) {
1341 dev_err(&pdev->dev, "could not determine device resources\n");
1342 return ret;
1343 }
1344 ssi_private->ssi_phys = res.start;
1345
1346 iomem = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1347 if (!iomem) {
1348 dev_err(&pdev->dev, "could not map device resources\n");
1349 return -ENOMEM;
1350 }
1351
1352 ret = of_property_match_string(np, "clock-names", "ipg");
1353 if (ret < 0) {
1354 ssi_private->has_ipg_clk_name = false;
1355 ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
1356 &fsl_ssi_regconfig);
1357 } else {
1358 ssi_private->has_ipg_clk_name = true;
1359 ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1360 "ipg", iomem, &fsl_ssi_regconfig);
1361 }
1362 if (IS_ERR(ssi_private->regs)) {
1363 dev_err(&pdev->dev, "Failed to init register map\n");
1364 return PTR_ERR(ssi_private->regs);
1365 }
1366
1367 ssi_private->irq = platform_get_irq(pdev, 0);
1368 if (!ssi_private->irq) {
1369 dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
1370 return ssi_private->irq;
1371 }
1372
1373 /* Are the RX and the TX clocks locked? */
1374 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1375 ssi_private->cpu_dai_drv.symmetric_rates = 1;
1376 ssi_private->cpu_dai_drv.symmetric_channels = 1;
1377 ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1378 }
1379
1380 /* Determine the FIFO depth. */
1381 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1382 if (iprop)
1383 ssi_private->fifo_depth = be32_to_cpup(iprop);
1384 else
1385 /* Older 8610 DTs didn't have the fifo-depth property */
1386 ssi_private->fifo_depth = 8;
1387
1388 dev_set_drvdata(&pdev->dev, ssi_private);
1389
1390 if (ssi_private->soc->imx) {
1391 ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
1392 if (ret)
1393 return ret;
1394 }
1395
1396 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1397 &ssi_private->cpu_dai_drv, 1);
1398 if (ret) {
1399 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1400 goto error_asoc_register;
1401 }
1402
1403 if (ssi_private->use_dma) {
1404 ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1405 fsl_ssi_isr, 0, dev_name(&pdev->dev),
1406 ssi_private);
1407 if (ret < 0) {
1408 dev_err(&pdev->dev, "could not claim irq %u\n",
1409 ssi_private->irq);
1410 goto error_irq;
1411 }
1412 }
1413
1414 ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
1415 if (ret)
1416 goto error_irq;
1417
1418 /*
1419 * If codec-handle property is missing from SSI node, we assume
1420 * that the machine driver uses new binding which does not require
1421 * SSI driver to trigger machine driver's probe.
1422 */
1423 if (!of_get_property(np, "codec-handle", NULL))
1424 goto done;
1425
1426 /* Trigger the machine driver's probe function. The platform driver
1427 * name of the machine driver is taken from /compatible property of the
1428 * device tree. We also pass the address of the CPU DAI driver
1429 * structure.
1430 */
1431 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1432 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1433 p = strrchr(sprop, ',');
1434 if (p)
1435 sprop = p + 1;
1436 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1437 make_lowercase(name);
1438
1439 ssi_private->pdev =
1440 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1441 if (IS_ERR(ssi_private->pdev)) {
1442 ret = PTR_ERR(ssi_private->pdev);
1443 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1444 goto error_sound_card;
1445 }
1446
1447 done:
1448 if (ssi_private->dai_fmt)
1449 _fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1450 ssi_private->dai_fmt);
1451
1452 return 0;
1453
1454 error_sound_card:
1455 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1456
1457 error_irq:
1458 snd_soc_unregister_component(&pdev->dev);
1459
1460 error_asoc_register:
1461 if (ssi_private->soc->imx)
1462 fsl_ssi_imx_clean(pdev, ssi_private);
1463
1464 return ret;
1465 }
1466
1467 static int fsl_ssi_remove(struct platform_device *pdev)
1468 {
1469 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1470
1471 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
1472
1473 if (ssi_private->pdev)
1474 platform_device_unregister(ssi_private->pdev);
1475 snd_soc_unregister_component(&pdev->dev);
1476
1477 if (ssi_private->soc->imx)
1478 fsl_ssi_imx_clean(pdev, ssi_private);
1479
1480 return 0;
1481 }
1482
1483 static struct platform_driver fsl_ssi_driver = {
1484 .driver = {
1485 .name = "fsl-ssi-dai",
1486 .of_match_table = fsl_ssi_ids,
1487 },
1488 .probe = fsl_ssi_probe,
1489 .remove = fsl_ssi_remove,
1490 };
1491
1492 module_platform_driver(fsl_ssi_driver);
1493
1494 MODULE_ALIAS("platform:fsl-ssi-dai");
1495 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1496 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1497 MODULE_LICENSE("GPL v2");