]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - sound/soc/fsl/fsl_ssi.c
ASoC: fsl_ssi: Use 'const _be *' type for iprop
[mirror_ubuntu-eoan-kernel.git] / sound / soc / fsl / fsl_ssi.c
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 *
12 *
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14 *
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
25 * rate.
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
31 */
32
33 #include <linux/init.h>
34 #include <linux/io.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/ctype.h>
39 #include <linux/device.h>
40 #include <linux/delay.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/of.h>
45 #include <linux/of_address.h>
46 #include <linux/of_irq.h>
47 #include <linux/of_platform.h>
48
49 #include <sound/core.h>
50 #include <sound/pcm.h>
51 #include <sound/pcm_params.h>
52 #include <sound/initval.h>
53 #include <sound/soc.h>
54 #include <sound/dmaengine_pcm.h>
55
56 #include "fsl_ssi.h"
57 #include "imx-pcm.h"
58
59 /**
60 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
61 *
62 * The SSI has a limitation in that the samples must be in the same byte
63 * order as the host CPU. This is because when multiple bytes are written
64 * to the STX register, the bytes and bits must be written in the same
65 * order. The STX is a shift register, so all the bits need to be aligned
66 * (bit-endianness must match byte-endianness). Processors typically write
67 * the bits within a byte in the same order that the bytes of a word are
68 * written in. So if the host CPU is big-endian, then only big-endian
69 * samples will be written to STX properly.
70 */
71 #ifdef __BIG_ENDIAN
72 #define FSLSSI_I2S_FORMATS \
73 (SNDRV_PCM_FMTBIT_S8 | \
74 SNDRV_PCM_FMTBIT_S16_BE | \
75 SNDRV_PCM_FMTBIT_S18_3BE | \
76 SNDRV_PCM_FMTBIT_S20_3BE | \
77 SNDRV_PCM_FMTBIT_S24_3BE | \
78 SNDRV_PCM_FMTBIT_S24_BE)
79 #else
80 #define FSLSSI_I2S_FORMATS \
81 (SNDRV_PCM_FMTBIT_S8 | \
82 SNDRV_PCM_FMTBIT_S16_LE | \
83 SNDRV_PCM_FMTBIT_S18_3LE | \
84 SNDRV_PCM_FMTBIT_S20_3LE | \
85 SNDRV_PCM_FMTBIT_S24_3LE | \
86 SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88
89 #define FSLSSI_SIER_DBG_RX_FLAGS \
90 (SSI_SIER_RFF0_EN | \
91 SSI_SIER_RLS_EN | \
92 SSI_SIER_RFS_EN | \
93 SSI_SIER_ROE0_EN | \
94 SSI_SIER_RFRC_EN)
95 #define FSLSSI_SIER_DBG_TX_FLAGS \
96 (SSI_SIER_TFE0_EN | \
97 SSI_SIER_TLS_EN | \
98 SSI_SIER_TFS_EN | \
99 SSI_SIER_TUE0_EN | \
100 SSI_SIER_TFRC_EN)
101
102 enum fsl_ssi_type {
103 FSL_SSI_MCP8610,
104 FSL_SSI_MX21,
105 FSL_SSI_MX35,
106 FSL_SSI_MX51,
107 };
108
109 struct fsl_ssi_regvals {
110 u32 sier;
111 u32 srcr;
112 u32 stcr;
113 u32 scr;
114 };
115
116 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
117 {
118 switch (reg) {
119 case REG_SSI_SACCEN:
120 case REG_SSI_SACCDIS:
121 return false;
122 default:
123 return true;
124 }
125 }
126
127 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
128 {
129 switch (reg) {
130 case REG_SSI_STX0:
131 case REG_SSI_STX1:
132 case REG_SSI_SRX0:
133 case REG_SSI_SRX1:
134 case REG_SSI_SISR:
135 case REG_SSI_SFCSR:
136 case REG_SSI_SACNT:
137 case REG_SSI_SACADD:
138 case REG_SSI_SACDAT:
139 case REG_SSI_SATAG:
140 case REG_SSI_SACCST:
141 case REG_SSI_SOR:
142 return true;
143 default:
144 return false;
145 }
146 }
147
148 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
149 {
150 switch (reg) {
151 case REG_SSI_SRX0:
152 case REG_SSI_SRX1:
153 case REG_SSI_SISR:
154 case REG_SSI_SACADD:
155 case REG_SSI_SACDAT:
156 case REG_SSI_SATAG:
157 return true;
158 default:
159 return false;
160 }
161 }
162
163 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
164 {
165 switch (reg) {
166 case REG_SSI_SRX0:
167 case REG_SSI_SRX1:
168 case REG_SSI_SACCST:
169 return false;
170 default:
171 return true;
172 }
173 }
174
175 static const struct regmap_config fsl_ssi_regconfig = {
176 .max_register = REG_SSI_SACCDIS,
177 .reg_bits = 32,
178 .val_bits = 32,
179 .reg_stride = 4,
180 .val_format_endian = REGMAP_ENDIAN_NATIVE,
181 .num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
182 .readable_reg = fsl_ssi_readable_reg,
183 .volatile_reg = fsl_ssi_volatile_reg,
184 .precious_reg = fsl_ssi_precious_reg,
185 .writeable_reg = fsl_ssi_writeable_reg,
186 .cache_type = REGCACHE_FLAT,
187 };
188
189 struct fsl_ssi_soc_data {
190 bool imx;
191 bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
192 bool offline_config;
193 u32 sisr_write_mask;
194 };
195
196 /**
197 * fsl_ssi: per-SSI private data
198 *
199 * @regs: Pointer to the regmap registers
200 * @irq: IRQ of this SSI
201 * @cpu_dai_drv: CPU DAI driver for this device
202 *
203 * @dai_fmt: DAI configuration this device is currently used with
204 * @i2s_net: I2S and Network mode configurations of SCR register
205 * @use_dma: DMA is used or FIQ with stream filter
206 * @use_dual_fifo: DMA with support for dual FIFO mode
207 * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
208 * @fifo_depth: Depth of the SSI FIFOs
209 * @slot_width: Width of each DAI slot
210 * @slots: Number of slots
211 * @regvals: Specific RX/TX register settings
212 *
213 * @clk: Clock source to access register
214 * @baudclk: Clock source to generate bit and frame-sync clocks
215 * @baudclk_streams: Active streams that are using baudclk
216 *
217 * @regcache_sfcsr: Cache sfcsr register value during suspend and resume
218 * @regcache_sacnt: Cache sacnt register value during suspend and resume
219 *
220 * @dma_params_tx: DMA transmit parameters
221 * @dma_params_rx: DMA receive parameters
222 * @ssi_phys: physical address of the SSI registers
223 *
224 * @fiq_params: FIQ stream filtering parameters
225 *
226 * @pdev: Pointer to pdev when using fsl-ssi as sound card (ppc only)
227 * TODO: Should be replaced with simple-sound-card
228 *
229 * @dbg_stats: Debugging statistics
230 *
231 * @soc: SoC specific data
232 * @dev: Pointer to &pdev->dev
233 *
234 * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
235 * @fifo_watermark or fewer words in TX fifo or
236 * @fifo_watermark or more empty words in RX fifo.
237 * @dma_maxburst: Max number of words to transfer in one go. So far,
238 * this is always the same as fifo_watermark.
239 *
240 * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
241 */
242 struct fsl_ssi {
243 struct regmap *regs;
244 int irq;
245 struct snd_soc_dai_driver cpu_dai_drv;
246
247 unsigned int dai_fmt;
248 u8 i2s_net;
249 bool use_dma;
250 bool use_dual_fifo;
251 bool has_ipg_clk_name;
252 unsigned int fifo_depth;
253 unsigned int slot_width;
254 unsigned int slots;
255 struct fsl_ssi_regvals regvals[2];
256
257 struct clk *clk;
258 struct clk *baudclk;
259 unsigned int baudclk_streams;
260
261 u32 regcache_sfcsr;
262 u32 regcache_sacnt;
263
264 struct snd_dmaengine_dai_dma_data dma_params_tx;
265 struct snd_dmaengine_dai_dma_data dma_params_rx;
266 dma_addr_t ssi_phys;
267
268 struct imx_pcm_fiq_params fiq_params;
269
270 struct platform_device *pdev;
271
272 struct fsl_ssi_dbg dbg_stats;
273
274 const struct fsl_ssi_soc_data *soc;
275 struct device *dev;
276
277 u32 fifo_watermark;
278 u32 dma_maxburst;
279
280 struct mutex ac97_reg_lock;
281 };
282
283 /*
284 * SoC specific data
285 *
286 * Notes:
287 * 1) SSI in earlier SoCS has critical bits in control registers that
288 * cannot be changed after SSI starts running -- a software reset
289 * (set SSIEN to 0) is required to change their values. So adding
290 * an offline_config flag for these SoCs.
291 * 2) SDMA is available since imx35. However, imx35 does not support
292 * DMA bits changing when SSI is running, so set offline_config.
293 * 3) imx51 and later versions support register configurations when
294 * SSI is running (SSIEN); For these versions, DMA needs to be
295 * configured before SSI sends DMA request to avoid an undefined
296 * DMA request on the SDMA side.
297 */
298
299 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
300 .imx = false,
301 .offline_config = true,
302 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
303 SSI_SISR_ROE0 | SSI_SISR_ROE1 |
304 SSI_SISR_TUE0 | SSI_SISR_TUE1,
305 };
306
307 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
308 .imx = true,
309 .imx21regs = true,
310 .offline_config = true,
311 .sisr_write_mask = 0,
312 };
313
314 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
315 .imx = true,
316 .offline_config = true,
317 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
318 SSI_SISR_ROE0 | SSI_SISR_ROE1 |
319 SSI_SISR_TUE0 | SSI_SISR_TUE1,
320 };
321
322 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
323 .imx = true,
324 .offline_config = false,
325 .sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
326 SSI_SISR_TUE0 | SSI_SISR_TUE1,
327 };
328
329 static const struct of_device_id fsl_ssi_ids[] = {
330 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
331 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
332 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
333 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
334 {}
335 };
336 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
337
338 static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
339 {
340 return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
341 SND_SOC_DAIFMT_AC97;
342 }
343
344 static bool fsl_ssi_is_i2s_master(struct fsl_ssi *ssi)
345 {
346 return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
347 SND_SOC_DAIFMT_CBS_CFS;
348 }
349
350 static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi)
351 {
352 return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
353 SND_SOC_DAIFMT_CBM_CFS;
354 }
355
356 /**
357 * Interrupt handler to gather states
358 */
359 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
360 {
361 struct fsl_ssi *ssi = dev_id;
362 struct regmap *regs = ssi->regs;
363 __be32 sisr;
364 __be32 sisr2;
365
366 regmap_read(regs, REG_SSI_SISR, &sisr);
367
368 sisr2 = sisr & ssi->soc->sisr_write_mask;
369 /* Clear the bits that we set */
370 if (sisr2)
371 regmap_write(regs, REG_SSI_SISR, sisr2);
372
373 fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
374
375 return IRQ_HANDLED;
376 }
377
378 /**
379 * Enable or disable all rx/tx config flags at once
380 */
381 static void fsl_ssi_rxtx_config(struct fsl_ssi *ssi, bool enable)
382 {
383 struct regmap *regs = ssi->regs;
384 struct fsl_ssi_regvals *vals = ssi->regvals;
385
386 if (enable) {
387 regmap_update_bits(regs, REG_SSI_SIER,
388 vals[RX].sier | vals[TX].sier,
389 vals[RX].sier | vals[TX].sier);
390 regmap_update_bits(regs, REG_SSI_SRCR,
391 vals[RX].srcr | vals[TX].srcr,
392 vals[RX].srcr | vals[TX].srcr);
393 regmap_update_bits(regs, REG_SSI_STCR,
394 vals[RX].stcr | vals[TX].stcr,
395 vals[RX].stcr | vals[TX].stcr);
396 } else {
397 regmap_update_bits(regs, REG_SSI_SRCR,
398 vals[RX].srcr | vals[TX].srcr, 0);
399 regmap_update_bits(regs, REG_SSI_STCR,
400 vals[RX].stcr | vals[TX].stcr, 0);
401 regmap_update_bits(regs, REG_SSI_SIER,
402 vals[RX].sier | vals[TX].sier, 0);
403 }
404 }
405
406 /**
407 * Clear remaining data in the FIFO to avoid dirty data or channel slipping
408 */
409 static void fsl_ssi_fifo_clear(struct fsl_ssi *ssi, bool is_rx)
410 {
411 bool tx = !is_rx;
412
413 regmap_update_bits(ssi->regs, REG_SSI_SOR,
414 SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
415 }
416
417 /**
418 * Calculate the bits that have to be disabled for the current stream that is
419 * getting disabled. This keeps the bits enabled that are necessary for the
420 * second stream to work if 'stream_active' is true.
421 *
422 * Detailed calculation:
423 * These are the values that need to be active after disabling. For non-active
424 * second stream, this is 0:
425 * vals_stream * !!stream_active
426 *
427 * The following computes the overall differences between the setup for the
428 * to-disable stream and the active stream, a simple XOR:
429 * vals_disable ^ (vals_stream * !!(stream_active))
430 *
431 * The full expression adds a mask on all values we care about
432 */
433 #define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
434 ((vals_disable) & \
435 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
436
437 /**
438 * Enable or disable SSI configuration.
439 */
440 static void fsl_ssi_config(struct fsl_ssi *ssi, bool enable,
441 struct fsl_ssi_regvals *vals)
442 {
443 struct regmap *regs = ssi->regs;
444 struct fsl_ssi_regvals *avals;
445 int nr_active_streams;
446 u32 scr;
447 int keep_active;
448
449 regmap_read(regs, REG_SSI_SCR, &scr);
450
451 nr_active_streams = !!(scr & SSI_SCR_TE) + !!(scr & SSI_SCR_RE);
452
453 if (nr_active_streams - 1 > 0)
454 keep_active = 1;
455 else
456 keep_active = 0;
457
458 /* Get the opposite direction to keep its values untouched */
459 if (&ssi->regvals[RX] == vals)
460 avals = &ssi->regvals[TX];
461 else
462 avals = &ssi->regvals[RX];
463
464 if (!enable) {
465 /*
466 * To keep the other stream safe, exclude shared bits between
467 * both streams, and get safe bits to disable current stream
468 */
469 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
470 keep_active);
471 /* Safely disable SCR register for the stream */
472 regmap_update_bits(regs, REG_SSI_SCR, scr, 0);
473 }
474
475 /*
476 * For cases where online configuration is not supported,
477 * 1) Enable all necessary bits of both streams when 1st stream starts
478 * even if the opposite stream will not start
479 * 2) Disable all remaining bits of both streams when last stream ends
480 */
481 if (ssi->soc->offline_config) {
482 if ((enable && !nr_active_streams) || (!enable && !keep_active))
483 fsl_ssi_rxtx_config(ssi, enable);
484
485 goto config_done;
486 }
487
488 /* Online configure single direction while SSI is running */
489 if (enable) {
490 fsl_ssi_fifo_clear(ssi, vals->scr & SSI_SCR_RE);
491
492 regmap_update_bits(regs, REG_SSI_SRCR, vals->srcr, vals->srcr);
493 regmap_update_bits(regs, REG_SSI_STCR, vals->stcr, vals->stcr);
494 regmap_update_bits(regs, REG_SSI_SIER, vals->sier, vals->sier);
495 } else {
496 u32 sier;
497 u32 srcr;
498 u32 stcr;
499
500 /*
501 * To keep the other stream safe, exclude shared bits between
502 * both streams, and get safe bits to disable current stream
503 */
504 sier = fsl_ssi_disable_val(vals->sier, avals->sier,
505 keep_active);
506 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
507 keep_active);
508 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
509 keep_active);
510
511 /* Safely disable other control registers for the stream */
512 regmap_update_bits(regs, REG_SSI_SRCR, srcr, 0);
513 regmap_update_bits(regs, REG_SSI_STCR, stcr, 0);
514 regmap_update_bits(regs, REG_SSI_SIER, sier, 0);
515 }
516
517 config_done:
518 /* Enabling of subunits is done after configuration */
519 if (enable) {
520 /*
521 * Start DMA before setting TE to avoid FIFO underrun
522 * which may cause a channel slip or a channel swap
523 *
524 * TODO: FIQ cases might also need this upon testing
525 */
526 if (ssi->use_dma && (vals->scr & SSI_SCR_TE)) {
527 int i;
528 int max_loop = 100;
529
530 /* Enable SSI first to send TX DMA request */
531 regmap_update_bits(regs, REG_SSI_SCR,
532 SSI_SCR_SSIEN, SSI_SCR_SSIEN);
533
534 /* Busy wait until TX FIFO not empty -- DMA working */
535 for (i = 0; i < max_loop; i++) {
536 u32 sfcsr;
537 regmap_read(regs, REG_SSI_SFCSR, &sfcsr);
538 if (SSI_SFCSR_TFCNT0(sfcsr))
539 break;
540 }
541 if (i == max_loop) {
542 dev_err(ssi->dev,
543 "Timeout waiting TX FIFO filling\n");
544 }
545 }
546 /* Enable all remaining bits */
547 regmap_update_bits(regs, REG_SSI_SCR, vals->scr, vals->scr);
548 }
549 }
550
551 static void fsl_ssi_rx_config(struct fsl_ssi *ssi, bool enable)
552 {
553 fsl_ssi_config(ssi, enable, &ssi->regvals[RX]);
554 }
555
556 static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
557 {
558 struct regmap *regs = ssi->regs;
559
560 /* no SACC{ST,EN,DIS} regs on imx21-class SSI */
561 if (!ssi->soc->imx21regs) {
562 /* Disable all channel slots */
563 regmap_write(regs, REG_SSI_SACCDIS, 0xff);
564 /* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
565 regmap_write(regs, REG_SSI_SACCEN, 0x300);
566 }
567 }
568
569 static void fsl_ssi_tx_config(struct fsl_ssi *ssi, bool enable)
570 {
571 /*
572 * SACCST might be modified via AC Link by a CODEC if it sends
573 * extra bits in their SLOTREQ requests, which'll accidentally
574 * send valid data to slots other than normal playback slots.
575 *
576 * To be safe, configure SACCST right before TX starts.
577 */
578 if (enable && fsl_ssi_is_ac97(ssi))
579 fsl_ssi_tx_ac97_saccst_setup(ssi);
580
581 fsl_ssi_config(ssi, enable, &ssi->regvals[TX]);
582 }
583
584 /**
585 * Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely
586 */
587 static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
588 {
589 struct fsl_ssi_regvals *vals = ssi->regvals;
590
591 vals[RX].sier = SSI_SIER_RFF0_EN;
592 vals[RX].srcr = SSI_SRCR_RFEN0;
593 vals[RX].scr = 0;
594 vals[TX].sier = SSI_SIER_TFE0_EN;
595 vals[TX].stcr = SSI_STCR_TFEN0;
596 vals[TX].scr = 0;
597
598 /* AC97 has already enabled SSIEN, RE and TE, so ignore them */
599 if (!fsl_ssi_is_ac97(ssi)) {
600 vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
601 vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
602 }
603
604 if (ssi->use_dma) {
605 vals[RX].sier |= SSI_SIER_RDMAE;
606 vals[TX].sier |= SSI_SIER_TDMAE;
607 } else {
608 vals[RX].sier |= SSI_SIER_RIE;
609 vals[TX].sier |= SSI_SIER_TIE;
610 }
611
612 vals[RX].sier |= FSLSSI_SIER_DBG_RX_FLAGS;
613 vals[TX].sier |= FSLSSI_SIER_DBG_TX_FLAGS;
614 }
615
616 static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
617 {
618 struct regmap *regs = ssi->regs;
619
620 /* Setup the clock control register */
621 regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
622 regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
623
624 /* Enable AC97 mode and startup the SSI */
625 regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
626
627 /* AC97 has to communicate with codec before starting a stream */
628 regmap_update_bits(regs, REG_SSI_SCR,
629 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
630 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
631
632 regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
633 }
634
635 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
636 struct snd_soc_dai *dai)
637 {
638 struct snd_soc_pcm_runtime *rtd = substream->private_data;
639 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
640 int ret;
641
642 ret = clk_prepare_enable(ssi->clk);
643 if (ret)
644 return ret;
645
646 /*
647 * When using dual fifo mode, it is safer to ensure an even period
648 * size. If appearing to an odd number while DMA always starts its
649 * task from fifo0, fifo1 would be neglected at the end of each
650 * period. But SSI would still access fifo1 with an invalid data.
651 */
652 if (ssi->use_dual_fifo)
653 snd_pcm_hw_constraint_step(substream->runtime, 0,
654 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
655
656 return 0;
657 }
658
659 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
660 struct snd_soc_dai *dai)
661 {
662 struct snd_soc_pcm_runtime *rtd = substream->private_data;
663 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
664
665 clk_disable_unprepare(ssi->clk);
666 }
667
668 /**
669 * Configure Digital Audio Interface bit clock
670 *
671 * Note: This function can be only called when using SSI as DAI master
672 *
673 * Quick instruction for parameters:
674 * freq: Output BCLK frequency = samplerate * slots * slot_width
675 * (In 2-channel I2S Master mode, slot_width is fixed 32)
676 */
677 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
678 struct snd_soc_dai *dai,
679 struct snd_pcm_hw_params *hw_params)
680 {
681 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
682 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
683 struct regmap *regs = ssi->regs;
684 int synchronous = ssi->cpu_dai_drv.symmetric_rates, ret;
685 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
686 unsigned long clkrate, baudrate, tmprate;
687 unsigned int slots = params_channels(hw_params);
688 unsigned int slot_width = 32;
689 u64 sub, savesub = 100000;
690 unsigned int freq;
691 bool baudclk_is_used;
692
693 /* Override slots and slot_width if being specifically set... */
694 if (ssi->slots)
695 slots = ssi->slots;
696 /* ...but keep 32 bits if slots is 2 -- I2S Master mode */
697 if (ssi->slot_width && slots != 2)
698 slot_width = ssi->slot_width;
699
700 /* Generate bit clock based on the slot number and slot width */
701 freq = slots * slot_width * params_rate(hw_params);
702
703 /* Don't apply it to any non-baudclk circumstance */
704 if (IS_ERR(ssi->baudclk))
705 return -EINVAL;
706
707 /*
708 * Hardware limitation: The bclk rate must be
709 * never greater than 1/5 IPG clock rate
710 */
711 if (freq * 5 > clk_get_rate(ssi->clk)) {
712 dev_err(dai->dev, "bitclk > ipgclk / 5\n");
713 return -EINVAL;
714 }
715
716 baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
717
718 /* It should be already enough to divide clock by setting pm alone */
719 psr = 0;
720 div2 = 0;
721
722 factor = (div2 + 1) * (7 * psr + 1) * 2;
723
724 for (i = 0; i < 255; i++) {
725 tmprate = freq * factor * (i + 1);
726
727 if (baudclk_is_used)
728 clkrate = clk_get_rate(ssi->baudclk);
729 else
730 clkrate = clk_round_rate(ssi->baudclk, tmprate);
731
732 clkrate /= factor;
733 afreq = clkrate / (i + 1);
734
735 if (freq == afreq)
736 sub = 0;
737 else if (freq / afreq == 1)
738 sub = freq - afreq;
739 else if (afreq / freq == 1)
740 sub = afreq - freq;
741 else
742 continue;
743
744 /* Calculate the fraction */
745 sub *= 100000;
746 do_div(sub, freq);
747
748 if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
749 baudrate = tmprate;
750 savesub = sub;
751 pm = i;
752 }
753
754 /* We are lucky */
755 if (savesub == 0)
756 break;
757 }
758
759 /* No proper pm found if it is still remaining the initial value */
760 if (pm == 999) {
761 dev_err(dai->dev, "failed to handle the required sysclk\n");
762 return -EINVAL;
763 }
764
765 stccr = SSI_SxCCR_PM(pm + 1) | (div2 ? SSI_SxCCR_DIV2 : 0) |
766 (psr ? SSI_SxCCR_PSR : 0);
767 mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
768
769 /* STCCR is used for RX in synchronous mode */
770 tx2 = tx || synchronous;
771 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
772
773 if (!baudclk_is_used) {
774 ret = clk_set_rate(ssi->baudclk, baudrate);
775 if (ret) {
776 dev_err(dai->dev, "failed to set baudclk rate\n");
777 return -EINVAL;
778 }
779 }
780
781 return 0;
782 }
783
784 /**
785 * Configure SSI based on PCM hardware parameters
786 *
787 * Notes:
788 * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
789 * disabled on offline_config SoCs. Even for online configurable SoCs
790 * running in synchronous mode (both TX and RX use STCCR), it is not
791 * safe to re-configure them when both two streams start running.
792 * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
793 * fsl_ssi_set_bclk() if SSI is the DAI clock master.
794 */
795 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
796 struct snd_pcm_hw_params *hw_params,
797 struct snd_soc_dai *dai)
798 {
799 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
800 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
801 struct regmap *regs = ssi->regs;
802 unsigned int channels = params_channels(hw_params);
803 unsigned int sample_size = params_width(hw_params);
804 u32 wl = SSI_SxCCR_WL(sample_size);
805 int ret;
806 u32 scr;
807 int enabled;
808
809 regmap_read(regs, REG_SSI_SCR, &scr);
810 enabled = scr & SSI_SCR_SSIEN;
811
812 /*
813 * SSI is properly configured if it is enabled and running in
814 * the synchronous mode; Note that AC97 mode is an exception
815 * that should set separate configurations for STCCR and SRCCR
816 * despite running in the synchronous mode.
817 */
818 if (enabled && ssi->cpu_dai_drv.symmetric_rates)
819 return 0;
820
821 if (fsl_ssi_is_i2s_master(ssi)) {
822 ret = fsl_ssi_set_bclk(substream, dai, hw_params);
823 if (ret)
824 return ret;
825
826 /* Do not enable the clock if it is already enabled */
827 if (!(ssi->baudclk_streams & BIT(substream->stream))) {
828 ret = clk_prepare_enable(ssi->baudclk);
829 if (ret)
830 return ret;
831
832 ssi->baudclk_streams |= BIT(substream->stream);
833 }
834 }
835
836 if (!fsl_ssi_is_ac97(ssi)) {
837 u8 i2s_net;
838 /* Normal + Network mode to send 16-bit data in 32-bit frames */
839 if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
840 i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
841 else
842 i2s_net = ssi->i2s_net;
843
844 regmap_update_bits(regs, REG_SSI_SCR,
845 SSI_SCR_I2S_NET_MASK,
846 channels == 1 ? 0 : i2s_net);
847 }
848
849 /* In synchronous mode, the SSI uses STCCR for capture */
850 tx2 = tx || ssi->cpu_dai_drv.symmetric_rates;
851 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
852
853 return 0;
854 }
855
856 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
857 struct snd_soc_dai *dai)
858 {
859 struct snd_soc_pcm_runtime *rtd = substream->private_data;
860 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
861
862 if (fsl_ssi_is_i2s_master(ssi) &&
863 ssi->baudclk_streams & BIT(substream->stream)) {
864 clk_disable_unprepare(ssi->baudclk);
865 ssi->baudclk_streams &= ~BIT(substream->stream);
866 }
867
868 return 0;
869 }
870
871 static int _fsl_ssi_set_dai_fmt(struct device *dev,
872 struct fsl_ssi *ssi, unsigned int fmt)
873 {
874 struct regmap *regs = ssi->regs;
875 u32 strcr = 0, stcr, srcr, scr, mask;
876 u8 wm;
877
878 ssi->dai_fmt = fmt;
879
880 if (fsl_ssi_is_i2s_master(ssi) && IS_ERR(ssi->baudclk)) {
881 dev_err(dev, "missing baudclk for master mode\n");
882 return -EINVAL;
883 }
884
885 fsl_ssi_setup_regvals(ssi);
886
887 regmap_read(regs, REG_SSI_SCR, &scr);
888 scr &= ~(SSI_SCR_SYN | SSI_SCR_I2S_MODE_MASK);
889 /* Synchronize frame sync clock for TE to avoid data slipping */
890 scr |= SSI_SCR_SYNC_TX_FS;
891
892 mask = SSI_STCR_TXBIT0 | SSI_STCR_TFDIR | SSI_STCR_TXDIR |
893 SSI_STCR_TSCKP | SSI_STCR_TFSI | SSI_STCR_TFSL | SSI_STCR_TEFS;
894 regmap_read(regs, REG_SSI_STCR, &stcr);
895 regmap_read(regs, REG_SSI_SRCR, &srcr);
896 stcr &= ~mask;
897 srcr &= ~mask;
898
899 /* Use Network mode as default */
900 ssi->i2s_net = SSI_SCR_NET;
901 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
902 case SND_SOC_DAIFMT_I2S:
903 regmap_update_bits(regs, REG_SSI_STCCR,
904 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
905 regmap_update_bits(regs, REG_SSI_SRCCR,
906 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
907 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
908 case SND_SOC_DAIFMT_CBM_CFS:
909 case SND_SOC_DAIFMT_CBS_CFS:
910 ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
911 break;
912 case SND_SOC_DAIFMT_CBM_CFM:
913 ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
914 break;
915 default:
916 return -EINVAL;
917 }
918
919 /* Data on rising edge of bclk, frame low, 1clk before data */
920 strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP |
921 SSI_STCR_TXBIT0 | SSI_STCR_TEFS;
922 break;
923 case SND_SOC_DAIFMT_LEFT_J:
924 /* Data on rising edge of bclk, frame high */
925 strcr |= SSI_STCR_TXBIT0 | SSI_STCR_TSCKP;
926 break;
927 case SND_SOC_DAIFMT_DSP_A:
928 /* Data on rising edge of bclk, frame high, 1clk before data */
929 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP |
930 SSI_STCR_TXBIT0 | SSI_STCR_TEFS;
931 break;
932 case SND_SOC_DAIFMT_DSP_B:
933 /* Data on rising edge of bclk, frame high */
934 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TXBIT0;
935 break;
936 case SND_SOC_DAIFMT_AC97:
937 /* Data on falling edge of bclk, frame high, 1clk before data */
938 ssi->i2s_net |= SSI_SCR_I2S_MODE_NORMAL;
939 break;
940 default:
941 return -EINVAL;
942 }
943 scr |= ssi->i2s_net;
944
945 /* DAI clock inversion */
946 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
947 case SND_SOC_DAIFMT_NB_NF:
948 /* Nothing to do for both normal cases */
949 break;
950 case SND_SOC_DAIFMT_IB_NF:
951 /* Invert bit clock */
952 strcr ^= SSI_STCR_TSCKP;
953 break;
954 case SND_SOC_DAIFMT_NB_IF:
955 /* Invert frame clock */
956 strcr ^= SSI_STCR_TFSI;
957 break;
958 case SND_SOC_DAIFMT_IB_IF:
959 /* Invert both clocks */
960 strcr ^= SSI_STCR_TSCKP;
961 strcr ^= SSI_STCR_TFSI;
962 break;
963 default:
964 return -EINVAL;
965 }
966
967 /* DAI clock master masks */
968 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
969 case SND_SOC_DAIFMT_CBS_CFS:
970 /* Output bit and frame sync clocks */
971 strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
972 scr |= SSI_SCR_SYS_CLK_EN;
973 break;
974 case SND_SOC_DAIFMT_CBM_CFM:
975 /* Input bit or frame sync clocks */
976 scr &= ~SSI_SCR_SYS_CLK_EN;
977 break;
978 case SND_SOC_DAIFMT_CBM_CFS:
979 /* Input bit clock but output frame sync clock */
980 strcr &= ~SSI_STCR_TXDIR;
981 strcr |= SSI_STCR_TFDIR;
982 scr &= ~SSI_SCR_SYS_CLK_EN;
983 break;
984 default:
985 if (!fsl_ssi_is_ac97(ssi))
986 return -EINVAL;
987 }
988
989 stcr |= strcr;
990 srcr |= strcr;
991
992 /* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
993 if (ssi->cpu_dai_drv.symmetric_rates || fsl_ssi_is_ac97(ssi)) {
994 srcr &= ~SSI_SRCR_RXDIR;
995 scr |= SSI_SCR_SYN;
996 }
997
998 regmap_write(regs, REG_SSI_STCR, stcr);
999 regmap_write(regs, REG_SSI_SRCR, srcr);
1000 regmap_write(regs, REG_SSI_SCR, scr);
1001
1002 wm = ssi->fifo_watermark;
1003
1004 regmap_write(regs, REG_SSI_SFCSR,
1005 SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1006 SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1007
1008 if (ssi->use_dual_fifo) {
1009 regmap_update_bits(regs, REG_SSI_SRCR,
1010 SSI_SRCR_RFEN1, SSI_SRCR_RFEN1);
1011 regmap_update_bits(regs, REG_SSI_STCR,
1012 SSI_STCR_TFEN1, SSI_STCR_TFEN1);
1013 regmap_update_bits(regs, REG_SSI_SCR,
1014 SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1015 }
1016
1017 if ((fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_AC97)
1018 fsl_ssi_setup_ac97(ssi);
1019
1020 return 0;
1021 }
1022
1023 /**
1024 * Configure Digital Audio Interface (DAI) Format
1025 */
1026 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1027 {
1028 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1029
1030 /* AC97 configured DAIFMT earlier in the probe() */
1031 if (fsl_ssi_is_ac97(ssi))
1032 return 0;
1033
1034 return _fsl_ssi_set_dai_fmt(dai->dev, ssi, fmt);
1035 }
1036
1037 /**
1038 * Set TDM slot number and slot width
1039 */
1040 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1041 u32 rx_mask, int slots, int slot_width)
1042 {
1043 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1044 struct regmap *regs = ssi->regs;
1045 u32 val;
1046
1047 /* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1048 if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1049 dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1050 return -EINVAL;
1051 }
1052
1053 /* The slot number should be >= 2 if using Network mode or I2S mode */
1054 regmap_read(regs, REG_SSI_SCR, &val);
1055 val &= SSI_SCR_I2S_MODE_MASK | SSI_SCR_NET;
1056 if (val && slots < 2) {
1057 dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1058 return -EINVAL;
1059 }
1060
1061 regmap_update_bits(regs, REG_SSI_STCCR,
1062 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1063 regmap_update_bits(regs, REG_SSI_SRCCR,
1064 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1065
1066 /* Save SSIEN bit of the SCR register */
1067 regmap_read(regs, REG_SSI_SCR, &val);
1068 val &= SSI_SCR_SSIEN;
1069 /* Temporarily enable SSI to allow SxMSKs to be configurable */
1070 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1071
1072 regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1073 regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1074
1075 /* Restore the value of SSIEN bit */
1076 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1077
1078 ssi->slot_width = slot_width;
1079 ssi->slots = slots;
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * Start or stop SSI and corresponding DMA transaction.
1086 *
1087 * The DMA channel is in external master start and pause mode, which
1088 * means the SSI completely controls the flow of data.
1089 */
1090 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1091 struct snd_soc_dai *dai)
1092 {
1093 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1094 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
1095 struct regmap *regs = ssi->regs;
1096
1097 switch (cmd) {
1098 case SNDRV_PCM_TRIGGER_START:
1099 case SNDRV_PCM_TRIGGER_RESUME:
1100 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1101 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1102 fsl_ssi_tx_config(ssi, true);
1103 else
1104 fsl_ssi_rx_config(ssi, true);
1105 break;
1106
1107 case SNDRV_PCM_TRIGGER_STOP:
1108 case SNDRV_PCM_TRIGGER_SUSPEND:
1109 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1110 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1111 fsl_ssi_tx_config(ssi, false);
1112 else
1113 fsl_ssi_rx_config(ssi, false);
1114 break;
1115
1116 default:
1117 return -EINVAL;
1118 }
1119
1120 /* Clear corresponding FIFO */
1121 if (fsl_ssi_is_ac97(ssi)) {
1122 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1123 regmap_write(regs, REG_SSI_SOR, SSI_SOR_TX_CLR);
1124 else
1125 regmap_write(regs, REG_SSI_SOR, SSI_SOR_RX_CLR);
1126 }
1127
1128 return 0;
1129 }
1130
1131 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1132 {
1133 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1134
1135 if (ssi->soc->imx && ssi->use_dma) {
1136 dai->playback_dma_data = &ssi->dma_params_tx;
1137 dai->capture_dma_data = &ssi->dma_params_rx;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1144 .startup = fsl_ssi_startup,
1145 .shutdown = fsl_ssi_shutdown,
1146 .hw_params = fsl_ssi_hw_params,
1147 .hw_free = fsl_ssi_hw_free,
1148 .set_fmt = fsl_ssi_set_dai_fmt,
1149 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1150 .trigger = fsl_ssi_trigger,
1151 };
1152
1153 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1154 .probe = fsl_ssi_dai_probe,
1155 .playback = {
1156 .stream_name = "CPU-Playback",
1157 .channels_min = 1,
1158 .channels_max = 32,
1159 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1160 .formats = FSLSSI_I2S_FORMATS,
1161 },
1162 .capture = {
1163 .stream_name = "CPU-Capture",
1164 .channels_min = 1,
1165 .channels_max = 32,
1166 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1167 .formats = FSLSSI_I2S_FORMATS,
1168 },
1169 .ops = &fsl_ssi_dai_ops,
1170 };
1171
1172 static const struct snd_soc_component_driver fsl_ssi_component = {
1173 .name = "fsl-ssi",
1174 };
1175
1176 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1177 .bus_control = true,
1178 .probe = fsl_ssi_dai_probe,
1179 .playback = {
1180 .stream_name = "AC97 Playback",
1181 .channels_min = 2,
1182 .channels_max = 2,
1183 .rates = SNDRV_PCM_RATE_8000_48000,
1184 .formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1185 },
1186 .capture = {
1187 .stream_name = "AC97 Capture",
1188 .channels_min = 2,
1189 .channels_max = 2,
1190 .rates = SNDRV_PCM_RATE_48000,
1191 /* 16-bit capture is broken (errata ERR003778) */
1192 .formats = SNDRV_PCM_FMTBIT_S20,
1193 },
1194 .ops = &fsl_ssi_dai_ops,
1195 };
1196
1197 static struct fsl_ssi *fsl_ac97_data;
1198
1199 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1200 unsigned short val)
1201 {
1202 struct regmap *regs = fsl_ac97_data->regs;
1203 unsigned int lreg;
1204 unsigned int lval;
1205 int ret;
1206
1207 if (reg > 0x7f)
1208 return;
1209
1210 mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1211
1212 ret = clk_prepare_enable(fsl_ac97_data->clk);
1213 if (ret) {
1214 pr_err("ac97 write clk_prepare_enable failed: %d\n",
1215 ret);
1216 goto ret_unlock;
1217 }
1218
1219 lreg = reg << 12;
1220 regmap_write(regs, REG_SSI_SACADD, lreg);
1221
1222 lval = val << 4;
1223 regmap_write(regs, REG_SSI_SACDAT, lval);
1224
1225 regmap_update_bits(regs, REG_SSI_SACNT,
1226 SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1227 udelay(100);
1228
1229 clk_disable_unprepare(fsl_ac97_data->clk);
1230
1231 ret_unlock:
1232 mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1233 }
1234
1235 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1236 unsigned short reg)
1237 {
1238 struct regmap *regs = fsl_ac97_data->regs;
1239 unsigned short val = 0;
1240 u32 reg_val;
1241 unsigned int lreg;
1242 int ret;
1243
1244 mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1245
1246 ret = clk_prepare_enable(fsl_ac97_data->clk);
1247 if (ret) {
1248 pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1249 goto ret_unlock;
1250 }
1251
1252 lreg = (reg & 0x7f) << 12;
1253 regmap_write(regs, REG_SSI_SACADD, lreg);
1254 regmap_update_bits(regs, REG_SSI_SACNT,
1255 SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1256
1257 udelay(100);
1258
1259 regmap_read(regs, REG_SSI_SACDAT, &reg_val);
1260 val = (reg_val >> 4) & 0xffff;
1261
1262 clk_disable_unprepare(fsl_ac97_data->clk);
1263
1264 ret_unlock:
1265 mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1266 return val;
1267 }
1268
1269 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1270 .read = fsl_ssi_ac97_read,
1271 .write = fsl_ssi_ac97_write,
1272 };
1273
1274 /**
1275 * Make every character in a string lower-case
1276 */
1277 static void make_lowercase(char *s)
1278 {
1279 if (!s)
1280 return;
1281 for (; *s; s++)
1282 *s = tolower(*s);
1283 }
1284
1285 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1286 struct fsl_ssi *ssi, void __iomem *iomem)
1287 {
1288 struct device_node *np = pdev->dev.of_node;
1289 struct device *dev = &pdev->dev;
1290 u32 dmas[4];
1291 int ret;
1292
1293 /* Backward compatible for a DT without ipg clock name assigned */
1294 if (ssi->has_ipg_clk_name)
1295 ssi->clk = devm_clk_get(dev, "ipg");
1296 else
1297 ssi->clk = devm_clk_get(dev, NULL);
1298 if (IS_ERR(ssi->clk)) {
1299 ret = PTR_ERR(ssi->clk);
1300 dev_err(dev, "failed to get clock: %d\n", ret);
1301 return ret;
1302 }
1303
1304 /* Enable the clock since regmap will not handle it in this case */
1305 if (!ssi->has_ipg_clk_name) {
1306 ret = clk_prepare_enable(ssi->clk);
1307 if (ret) {
1308 dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1309 return ret;
1310 }
1311 }
1312
1313 /* Do not error out for slave cases that live without a baud clock */
1314 ssi->baudclk = devm_clk_get(dev, "baud");
1315 if (IS_ERR(ssi->baudclk))
1316 dev_dbg(dev, "failed to get baud clock: %ld\n",
1317 PTR_ERR(ssi->baudclk));
1318
1319 ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1320 ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1321 ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1322 ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1323
1324 /* Set to dual FIFO mode according to the SDMA sciprt */
1325 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1326 if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
1327 ssi->use_dual_fifo = true;
1328 /*
1329 * Use even numbers to avoid channel swap due to SDMA
1330 * script design
1331 */
1332 ssi->dma_params_tx.maxburst &= ~0x1;
1333 ssi->dma_params_rx.maxburst &= ~0x1;
1334 }
1335
1336 if (!ssi->use_dma) {
1337 /*
1338 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1339 * to get it working, as DMA is not possible in this situation.
1340 */
1341 ssi->fiq_params.irq = ssi->irq;
1342 ssi->fiq_params.base = iomem;
1343 ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1344 ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1345
1346 ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1347 if (ret)
1348 goto error_pcm;
1349 } else {
1350 ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
1351 if (ret)
1352 goto error_pcm;
1353 }
1354
1355 return 0;
1356
1357 error_pcm:
1358 if (!ssi->has_ipg_clk_name)
1359 clk_disable_unprepare(ssi->clk);
1360
1361 return ret;
1362 }
1363
1364 static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1365 {
1366 if (!ssi->use_dma)
1367 imx_pcm_fiq_exit(pdev);
1368 if (!ssi->has_ipg_clk_name)
1369 clk_disable_unprepare(ssi->clk);
1370 }
1371
1372 static int fsl_ssi_probe(struct platform_device *pdev)
1373 {
1374 struct fsl_ssi *ssi;
1375 int ret = 0;
1376 struct device_node *np = pdev->dev.of_node;
1377 struct device *dev = &pdev->dev;
1378 const struct of_device_id *of_id;
1379 const char *p, *sprop;
1380 const __be32 *iprop;
1381 struct resource *res;
1382 void __iomem *iomem;
1383 char name[64];
1384 struct regmap_config regconfig = fsl_ssi_regconfig;
1385
1386 of_id = of_match_device(fsl_ssi_ids, dev);
1387 if (!of_id || !of_id->data)
1388 return -EINVAL;
1389
1390 ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1391 if (!ssi)
1392 return -ENOMEM;
1393
1394 ssi->soc = of_id->data;
1395 ssi->dev = dev;
1396
1397 /* Check if being used in AC97 mode */
1398 sprop = of_get_property(np, "fsl,mode", NULL);
1399 if (sprop) {
1400 if (!strcmp(sprop, "ac97-slave"))
1401 ssi->dai_fmt = SND_SOC_DAIFMT_AC97;
1402 }
1403
1404 /* Select DMA or FIQ */
1405 ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1406
1407 if (fsl_ssi_is_ac97(ssi)) {
1408 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1409 sizeof(fsl_ssi_ac97_dai));
1410 fsl_ac97_data = ssi;
1411 } else {
1412 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1413 sizeof(fsl_ssi_dai_template));
1414 }
1415 ssi->cpu_dai_drv.name = dev_name(dev);
1416
1417 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1418 iomem = devm_ioremap_resource(dev, res);
1419 if (IS_ERR(iomem))
1420 return PTR_ERR(iomem);
1421 ssi->ssi_phys = res->start;
1422
1423 if (ssi->soc->imx21regs) {
1424 /* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1425 regconfig.max_register = REG_SSI_SRMSK;
1426 regconfig.num_reg_defaults_raw =
1427 REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1428 }
1429
1430 ret = of_property_match_string(np, "clock-names", "ipg");
1431 if (ret < 0) {
1432 ssi->has_ipg_clk_name = false;
1433 ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
1434 } else {
1435 ssi->has_ipg_clk_name = true;
1436 ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1437 &regconfig);
1438 }
1439 if (IS_ERR(ssi->regs)) {
1440 dev_err(dev, "failed to init register map\n");
1441 return PTR_ERR(ssi->regs);
1442 }
1443
1444 ssi->irq = platform_get_irq(pdev, 0);
1445 if (ssi->irq < 0) {
1446 dev_err(dev, "no irq for node %s\n", pdev->name);
1447 return ssi->irq;
1448 }
1449
1450 /* Set software limitations for synchronous mode */
1451 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1452 if (!fsl_ssi_is_ac97(ssi)) {
1453 ssi->cpu_dai_drv.symmetric_rates = 1;
1454 ssi->cpu_dai_drv.symmetric_samplebits = 1;
1455 }
1456
1457 ssi->cpu_dai_drv.symmetric_channels = 1;
1458 }
1459
1460 /* Fetch FIFO depth; Set to 8 for older DT without this property */
1461 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1462 if (iprop)
1463 ssi->fifo_depth = be32_to_cpup(iprop);
1464 else
1465 ssi->fifo_depth = 8;
1466
1467 /*
1468 * Configure TX and RX DMA watermarks -- when to send a DMA request
1469 *
1470 * Values should be tested to avoid FIFO under/over run. Set maxburst
1471 * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1472 */
1473 switch (ssi->fifo_depth) {
1474 case 15:
1475 /*
1476 * Set to 8 as a balanced configuration -- When TX FIFO has 8
1477 * empty slots, send a DMA request to fill these 8 slots. The
1478 * remaining 7 slots should be able to allow DMA to finish the
1479 * transaction before TX FIFO underruns; Same applies to RX.
1480 *
1481 * Tested with cases running at 48kHz @ 16 bits x 16 channels
1482 */
1483 ssi->fifo_watermark = 8;
1484 ssi->dma_maxburst = 8;
1485 break;
1486 case 8:
1487 default:
1488 /* Safely use old watermark configurations for older chips */
1489 ssi->fifo_watermark = ssi->fifo_depth - 2;
1490 ssi->dma_maxburst = ssi->fifo_depth - 2;
1491 break;
1492 }
1493
1494 dev_set_drvdata(dev, ssi);
1495
1496 if (ssi->soc->imx) {
1497 ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1498 if (ret)
1499 return ret;
1500 }
1501
1502 if (fsl_ssi_is_ac97(ssi)) {
1503 mutex_init(&ssi->ac97_reg_lock);
1504 ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1505 if (ret) {
1506 dev_err(dev, "failed to set AC'97 ops\n");
1507 goto error_ac97_ops;
1508 }
1509 }
1510
1511 ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1512 &ssi->cpu_dai_drv, 1);
1513 if (ret) {
1514 dev_err(dev, "failed to register DAI: %d\n", ret);
1515 goto error_asoc_register;
1516 }
1517
1518 if (ssi->use_dma) {
1519 ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1520 dev_name(dev), ssi);
1521 if (ret < 0) {
1522 dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1523 goto error_asoc_register;
1524 }
1525 }
1526
1527 ret = fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1528 if (ret)
1529 goto error_asoc_register;
1530
1531 /* Bypass it if using newer DT bindings of ASoC machine drivers */
1532 if (!of_get_property(np, "codec-handle", NULL))
1533 goto done;
1534
1535 /*
1536 * Backward compatible for older bindings by manually triggering the
1537 * machine driver's probe(). Use /compatible property, including the
1538 * address of CPU DAI driver structure, as the name of machine driver.
1539 */
1540 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1541 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1542 p = strrchr(sprop, ',');
1543 if (p)
1544 sprop = p + 1;
1545 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1546 make_lowercase(name);
1547
1548 ssi->pdev = platform_device_register_data(dev, name, 0, NULL, 0);
1549 if (IS_ERR(ssi->pdev)) {
1550 ret = PTR_ERR(ssi->pdev);
1551 dev_err(dev, "failed to register platform: %d\n", ret);
1552 goto error_sound_card;
1553 }
1554
1555 done:
1556 if (ssi->dai_fmt)
1557 _fsl_ssi_set_dai_fmt(dev, ssi, ssi->dai_fmt);
1558
1559 if (fsl_ssi_is_ac97(ssi)) {
1560 u32 ssi_idx;
1561
1562 ret = of_property_read_u32(np, "cell-index", &ssi_idx);
1563 if (ret) {
1564 dev_err(dev, "failed to get SSI index property\n");
1565 goto error_sound_card;
1566 }
1567
1568 ssi->pdev = platform_device_register_data(NULL, "ac97-codec",
1569 ssi_idx, NULL, 0);
1570 if (IS_ERR(ssi->pdev)) {
1571 ret = PTR_ERR(ssi->pdev);
1572 dev_err(dev,
1573 "failed to register AC97 codec platform: %d\n",
1574 ret);
1575 goto error_sound_card;
1576 }
1577 }
1578
1579 return 0;
1580
1581 error_sound_card:
1582 fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1583 error_asoc_register:
1584 if (fsl_ssi_is_ac97(ssi))
1585 snd_soc_set_ac97_ops(NULL);
1586 error_ac97_ops:
1587 if (fsl_ssi_is_ac97(ssi))
1588 mutex_destroy(&ssi->ac97_reg_lock);
1589
1590 if (ssi->soc->imx)
1591 fsl_ssi_imx_clean(pdev, ssi);
1592
1593 return ret;
1594 }
1595
1596 static int fsl_ssi_remove(struct platform_device *pdev)
1597 {
1598 struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1599
1600 fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1601
1602 if (ssi->pdev)
1603 platform_device_unregister(ssi->pdev);
1604
1605 if (ssi->soc->imx)
1606 fsl_ssi_imx_clean(pdev, ssi);
1607
1608 if (fsl_ssi_is_ac97(ssi)) {
1609 snd_soc_set_ac97_ops(NULL);
1610 mutex_destroy(&ssi->ac97_reg_lock);
1611 }
1612
1613 return 0;
1614 }
1615
1616 #ifdef CONFIG_PM_SLEEP
1617 static int fsl_ssi_suspend(struct device *dev)
1618 {
1619 struct fsl_ssi *ssi = dev_get_drvdata(dev);
1620 struct regmap *regs = ssi->regs;
1621
1622 regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1623 regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1624
1625 regcache_cache_only(regs, true);
1626 regcache_mark_dirty(regs);
1627
1628 return 0;
1629 }
1630
1631 static int fsl_ssi_resume(struct device *dev)
1632 {
1633 struct fsl_ssi *ssi = dev_get_drvdata(dev);
1634 struct regmap *regs = ssi->regs;
1635
1636 regcache_cache_only(regs, false);
1637
1638 regmap_update_bits(regs, REG_SSI_SFCSR,
1639 SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1640 SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1641 ssi->regcache_sfcsr);
1642 regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1643
1644 return regcache_sync(regs);
1645 }
1646 #endif /* CONFIG_PM_SLEEP */
1647
1648 static const struct dev_pm_ops fsl_ssi_pm = {
1649 SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1650 };
1651
1652 static struct platform_driver fsl_ssi_driver = {
1653 .driver = {
1654 .name = "fsl-ssi-dai",
1655 .of_match_table = fsl_ssi_ids,
1656 .pm = &fsl_ssi_pm,
1657 },
1658 .probe = fsl_ssi_probe,
1659 .remove = fsl_ssi_remove,
1660 };
1661
1662 module_platform_driver(fsl_ssi_driver);
1663
1664 MODULE_ALIAS("platform:fsl-ssi-dai");
1665 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1666 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1667 MODULE_LICENSE("GPL v2");