]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/soc/intel/skylake/skl-sst-cldma.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / sound / soc / intel / skylake / skl-sst-cldma.c
1 /*
2 * skl-sst-cldma.c - Code Loader DMA handler
3 *
4 * Copyright (C) 2015, Intel Corporation.
5 * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
6 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as version 2, as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 */
17
18 #include <linux/device.h>
19 #include <linux/mm.h>
20 #include <linux/kthread.h>
21 #include <linux/delay.h>
22 #include "../common/sst-dsp.h"
23 #include "../common/sst-dsp-priv.h"
24
25 static void skl_cldma_int_enable(struct sst_dsp *ctx)
26 {
27 sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
28 SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
29 }
30
31 void skl_cldma_int_disable(struct sst_dsp *ctx)
32 {
33 sst_dsp_shim_update_bits_unlocked(ctx,
34 SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
35 }
36
37 static void skl_cldma_stream_run(struct sst_dsp *ctx, bool enable)
38 {
39 unsigned char val;
40 int timeout;
41
42 sst_dsp_shim_update_bits_unlocked(ctx,
43 SKL_ADSP_REG_CL_SD_CTL,
44 CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));
45
46 udelay(3);
47 timeout = 300;
48 do {
49 /* waiting for hardware to report that the stream Run bit set */
50 val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
51 CL_SD_CTL_RUN_MASK;
52 if (enable && val)
53 break;
54 else if (!enable && !val)
55 break;
56 udelay(3);
57 } while (--timeout);
58
59 if (timeout == 0)
60 dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
61 }
62
63 static void skl_cldma_stream_clear(struct sst_dsp *ctx)
64 {
65 /* make sure Run bit is cleared before setting stream register */
66 skl_cldma_stream_run(ctx, 0);
67
68 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
69 CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
70 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
71 CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
72 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
73 CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
74 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
75 CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
76
77 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
78 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
79
80 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
81 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
82 }
83
84 /* Code loader helper APIs */
85 static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
86 struct snd_dma_buffer *dmab_data,
87 u32 **bdlp, int size, int with_ioc)
88 {
89 u32 *bdl = *bdlp;
90
91 ctx->cl_dev.frags = 0;
92 while (size > 0) {
93 phys_addr_t addr = virt_to_phys(dmab_data->area +
94 (ctx->cl_dev.frags * ctx->cl_dev.bufsize));
95
96 bdl[0] = cpu_to_le32(lower_32_bits(addr));
97 bdl[1] = cpu_to_le32(upper_32_bits(addr));
98
99 bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);
100
101 size -= ctx->cl_dev.bufsize;
102 bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
103
104 bdl += 4;
105 ctx->cl_dev.frags++;
106 }
107 }
108
109 /*
110 * Setup controller
111 * Configure the registers to update the dma buffer address and
112 * enable interrupts.
113 * Note: Using the channel 1 for transfer
114 */
115 static void skl_cldma_setup_controller(struct sst_dsp *ctx,
116 struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
117 u32 count)
118 {
119 skl_cldma_stream_clear(ctx);
120 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
121 CL_SD_BDLPLBA(dmab_bdl->addr));
122 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
123 CL_SD_BDLPUBA(dmab_bdl->addr));
124
125 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
126 sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
127 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
128 CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
129 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
130 CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
131 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
132 CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
133 sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
134 CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
135 }
136
137 static void skl_cldma_setup_spb(struct sst_dsp *ctx,
138 unsigned int size, bool enable)
139 {
140 if (enable)
141 sst_dsp_shim_update_bits_unlocked(ctx,
142 SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
143 CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
144 CL_SPBFIFO_SPBFCCTL_SPIBE(1));
145
146 sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
147 }
148
149 static void skl_cldma_cleanup_spb(struct sst_dsp *ctx)
150 {
151 sst_dsp_shim_update_bits_unlocked(ctx,
152 SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
153 CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
154 CL_SPBFIFO_SPBFCCTL_SPIBE(0));
155
156 sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
157 }
158
159 static void skl_cldma_cleanup(struct sst_dsp *ctx)
160 {
161 skl_cldma_cleanup_spb(ctx);
162 skl_cldma_stream_clear(ctx);
163
164 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
165 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
166 }
167
168 static int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
169 {
170 int ret = 0;
171
172 if (!wait_event_timeout(ctx->cl_dev.wait_queue,
173 ctx->cl_dev.wait_condition,
174 msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
175 dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
176 ret = -EIO;
177 goto cleanup;
178 }
179
180 dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
181 if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
182 dev_err(ctx->dev, "%s: DMA Error\n", __func__);
183 ret = -EIO;
184 }
185
186 cleanup:
187 ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
188 return ret;
189 }
190
191 static void skl_cldma_stop(struct sst_dsp *ctx)
192 {
193 skl_cldma_stream_run(ctx, false);
194 }
195
196 static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
197 const void *curr_pos, bool intr_enable, bool trigger)
198 {
199 dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
200 dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
201 ctx->cl_dev.dma_buffer_offset, trigger);
202 dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
203
204 /*
205 * Check if the size exceeds buffer boundary. If it exceeds
206 * max_buffer size, then copy till buffer size and then copy
207 * remaining buffer from the start of ring buffer.
208 */
209 if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
210 unsigned int size_b = ctx->cl_dev.bufsize -
211 ctx->cl_dev.dma_buffer_offset;
212 memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
213 curr_pos, size_b);
214 size -= size_b;
215 curr_pos += size_b;
216 ctx->cl_dev.dma_buffer_offset = 0;
217 }
218
219 memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
220 curr_pos, size);
221
222 if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
223 ctx->cl_dev.dma_buffer_offset = 0;
224 else
225 ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
226
227 ctx->cl_dev.wait_condition = false;
228
229 if (intr_enable)
230 skl_cldma_int_enable(ctx);
231
232 ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
233 if (trigger)
234 ctx->cl_dev.ops.cl_trigger(ctx, true);
235 }
236
237 /*
238 * The CL dma doesn't have any way to update the transfer status until a BDL
239 * buffer is fully transferred
240 *
241 * So Copying is divided in two parts.
242 * 1. Interrupt on buffer done where the size to be transferred is more than
243 * ring buffer size.
244 * 2. Polling on fw register to identify if data left to transferred doesn't
245 * fill the ring buffer. Caller takes care of polling the required status
246 * register to identify the transfer status.
247 */
248 static int
249 skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin, u32 total_size)
250 {
251 int ret = 0;
252 bool start = true;
253 unsigned int excess_bytes;
254 u32 size;
255 unsigned int bytes_left = total_size;
256 const void *curr_pos = bin;
257
258 if (total_size <= 0)
259 return -EINVAL;
260
261 dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
262
263 while (bytes_left) {
264 if (bytes_left > ctx->cl_dev.bufsize) {
265
266 /*
267 * dma transfers only till the write pointer as
268 * updated in spib
269 */
270 if (ctx->cl_dev.curr_spib_pos == 0)
271 ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
272
273 size = ctx->cl_dev.bufsize;
274 skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
275
276 start = false;
277 ret = skl_cldma_wait_interruptible(ctx);
278 if (ret < 0) {
279 skl_cldma_stop(ctx);
280 return ret;
281 }
282
283 } else {
284 skl_cldma_int_disable(ctx);
285
286 if ((ctx->cl_dev.curr_spib_pos + bytes_left)
287 <= ctx->cl_dev.bufsize) {
288 ctx->cl_dev.curr_spib_pos += bytes_left;
289 } else {
290 excess_bytes = bytes_left -
291 (ctx->cl_dev.bufsize -
292 ctx->cl_dev.curr_spib_pos);
293 ctx->cl_dev.curr_spib_pos = excess_bytes;
294 }
295
296 size = bytes_left;
297 skl_cldma_fill_buffer(ctx, size,
298 curr_pos, false, start);
299 }
300 bytes_left -= size;
301 curr_pos = curr_pos + size;
302 }
303
304 return ret;
305 }
306
307 void skl_cldma_process_intr(struct sst_dsp *ctx)
308 {
309 u8 cl_dma_intr_status;
310
311 cl_dma_intr_status =
312 sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
313
314 if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
315 ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
316 else
317 ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
318
319 ctx->cl_dev.wait_condition = true;
320 wake_up(&ctx->cl_dev.wait_queue);
321 }
322
323 int skl_cldma_prepare(struct sst_dsp *ctx)
324 {
325 int ret;
326 u32 *bdl;
327
328 ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
329
330 /* Allocate cl ops */
331 ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
332 ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
333 ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
334 ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
335 ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
336 ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
337 ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
338 ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
339
340 /* Allocate buffer*/
341 ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
342 &ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
343 if (ret < 0) {
344 dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret);
345 return ret;
346 }
347 /* Setup Code loader BDL */
348 ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
349 &ctx->cl_dev.dmab_bdl, PAGE_SIZE);
350 if (ret < 0) {
351 dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret);
352 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
353 return ret;
354 }
355 bdl = (u32 *)ctx->cl_dev.dmab_bdl.area;
356
357 /* Allocate BDLs */
358 ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
359 &bdl, ctx->cl_dev.bufsize, 1);
360 ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
361 ctx->cl_dev.bufsize, ctx->cl_dev.frags);
362
363 ctx->cl_dev.curr_spib_pos = 0;
364 ctx->cl_dev.dma_buffer_offset = 0;
365 init_waitqueue_head(&ctx->cl_dev.wait_queue);
366
367 return ret;
368 }