]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/soc/soc-core.c
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-bionic-kernel.git] / sound / soc / soc-core.c
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
6 * Copyright (C) 2010 Slimlogic Ltd.
7 * Copyright (C) 2010 Texas Instruments Inc.
8 *
9 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 * with code, comments and ideas from :-
11 * Richard Purdie <richard@openedhand.com>
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 * TODO:
19 * o Add hw rules to enforce rates, etc.
20 * o More testing with other codecs/machines.
21 * o Add more codecs and platforms to ensure good API coverage.
22 * o Support TDM on PCM and I2S
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define NAME_SIZE 32
43
44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46
47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root;
49 #endif
50
51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list);
56
57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60
61 /*
62 * This is a timeout to do a DAPM powerdown after a stream is closed().
63 * It can be used to eliminate pops between different playback streams, e.g.
64 * between two audio tracks.
65 */
66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69
70 /*
71 * This function forces any delayed work to be queued and run.
72 */
73 static int run_delayed_work(struct delayed_work *dwork)
74 {
75 int ret;
76
77 /* cancel any work waiting to be queued. */
78 ret = cancel_delayed_work(dwork);
79
80 /* if there was any work waiting then we run it now and
81 * wait for it's completion */
82 if (ret) {
83 schedule_delayed_work(dwork, 0);
84 flush_scheduled_work();
85 }
86 return ret;
87 }
88
89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 {
92 int ret, i, step = 1, count = 0;
93
94 if (!codec->driver->reg_cache_size)
95 return 0;
96
97 if (codec->driver->reg_cache_step)
98 step = codec->driver->reg_cache_step;
99
100 count += sprintf(buf, "%s registers\n", codec->name);
101 for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103 continue;
104
105 count += sprintf(buf + count, "%2x: ", i);
106 if (count >= PAGE_SIZE - 1)
107 break;
108
109 if (codec->driver->display_register) {
110 count += codec->driver->display_register(codec, buf + count,
111 PAGE_SIZE - count, i);
112 } else {
113 /* If the read fails it's almost certainly due to
114 * the register being volatile and the device being
115 * powered off.
116 */
117 ret = codec->driver->read(codec, i);
118 if (ret >= 0)
119 count += snprintf(buf + count,
120 PAGE_SIZE - count,
121 "%4x", ret);
122 else
123 count += snprintf(buf + count,
124 PAGE_SIZE - count,
125 "<no data: %d>", ret);
126 }
127
128 if (count >= PAGE_SIZE - 1)
129 break;
130
131 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132 if (count >= PAGE_SIZE - 1)
133 break;
134 }
135
136 /* Truncate count; min() would cause a warning */
137 if (count >= PAGE_SIZE)
138 count = PAGE_SIZE - 1;
139
140 return count;
141 }
142 static ssize_t codec_reg_show(struct device *dev,
143 struct device_attribute *attr, char *buf)
144 {
145 struct snd_soc_pcm_runtime *rtd =
146 container_of(dev, struct snd_soc_pcm_runtime, dev);
147
148 return soc_codec_reg_show(rtd->codec, buf);
149 }
150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152
153 static ssize_t pmdown_time_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155 {
156 struct snd_soc_pcm_runtime *rtd =
157 container_of(dev, struct snd_soc_pcm_runtime, dev);
158
159 return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 }
161
162 static ssize_t pmdown_time_set(struct device *dev,
163 struct device_attribute *attr,
164 const char *buf, size_t count)
165 {
166 struct snd_soc_pcm_runtime *rtd =
167 container_of(dev, struct snd_soc_pcm_runtime, dev);
168 int ret;
169
170 ret = strict_strtol(buf, 10, &rtd->pmdown_time);
171 if (ret)
172 return ret;
173
174 return count;
175 }
176
177 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
178
179 #ifdef CONFIG_DEBUG_FS
180 static int codec_reg_open_file(struct inode *inode, struct file *file)
181 {
182 file->private_data = inode->i_private;
183 return 0;
184 }
185
186 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
187 size_t count, loff_t *ppos)
188 {
189 ssize_t ret;
190 struct snd_soc_codec *codec = file->private_data;
191 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
192 if (!buf)
193 return -ENOMEM;
194 ret = soc_codec_reg_show(codec, buf);
195 if (ret >= 0)
196 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
197 kfree(buf);
198 return ret;
199 }
200
201 static ssize_t codec_reg_write_file(struct file *file,
202 const char __user *user_buf, size_t count, loff_t *ppos)
203 {
204 char buf[32];
205 int buf_size;
206 char *start = buf;
207 unsigned long reg, value;
208 int step = 1;
209 struct snd_soc_codec *codec = file->private_data;
210
211 buf_size = min(count, (sizeof(buf)-1));
212 if (copy_from_user(buf, user_buf, buf_size))
213 return -EFAULT;
214 buf[buf_size] = 0;
215
216 if (codec->driver->reg_cache_step)
217 step = codec->driver->reg_cache_step;
218
219 while (*start == ' ')
220 start++;
221 reg = simple_strtoul(start, &start, 16);
222 if ((reg >= codec->driver->reg_cache_size) || (reg % step))
223 return -EINVAL;
224 while (*start == ' ')
225 start++;
226 if (strict_strtoul(start, 16, &value))
227 return -EINVAL;
228 codec->driver->write(codec, reg, value);
229 return buf_size;
230 }
231
232 static const struct file_operations codec_reg_fops = {
233 .open = codec_reg_open_file,
234 .read = codec_reg_read_file,
235 .write = codec_reg_write_file,
236 .llseek = default_llseek,
237 };
238
239 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
240 {
241 codec->debugfs_codec_root = debugfs_create_dir(codec->name ,
242 debugfs_root);
243 if (!codec->debugfs_codec_root) {
244 printk(KERN_WARNING
245 "ASoC: Failed to create codec debugfs directory\n");
246 return;
247 }
248
249 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
250 codec->debugfs_codec_root,
251 codec, &codec_reg_fops);
252 if (!codec->debugfs_reg)
253 printk(KERN_WARNING
254 "ASoC: Failed to create codec register debugfs file\n");
255
256 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
257 codec->debugfs_codec_root,
258 &codec->pop_time);
259 if (!codec->debugfs_pop_time)
260 printk(KERN_WARNING
261 "Failed to create pop time debugfs file\n");
262
263 codec->debugfs_dapm = debugfs_create_dir("dapm",
264 codec->debugfs_codec_root);
265 if (!codec->debugfs_dapm)
266 printk(KERN_WARNING
267 "Failed to create DAPM debugfs directory\n");
268
269 snd_soc_dapm_debugfs_init(codec);
270 }
271
272 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
273 {
274 debugfs_remove_recursive(codec->debugfs_codec_root);
275 }
276
277 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
278 size_t count, loff_t *ppos)
279 {
280 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
281 ssize_t len, ret = 0;
282 struct snd_soc_codec *codec;
283
284 if (!buf)
285 return -ENOMEM;
286
287 list_for_each_entry(codec, &codec_list, list) {
288 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
289 codec->name);
290 if (len >= 0)
291 ret += len;
292 if (ret > PAGE_SIZE) {
293 ret = PAGE_SIZE;
294 break;
295 }
296 }
297
298 if (ret >= 0)
299 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
300
301 kfree(buf);
302
303 return ret;
304 }
305
306 static const struct file_operations codec_list_fops = {
307 .read = codec_list_read_file,
308 .llseek = default_llseek,/* read accesses f_pos */
309 };
310
311 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
312 size_t count, loff_t *ppos)
313 {
314 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
315 ssize_t len, ret = 0;
316 struct snd_soc_dai *dai;
317
318 if (!buf)
319 return -ENOMEM;
320
321 list_for_each_entry(dai, &dai_list, list) {
322 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
323 if (len >= 0)
324 ret += len;
325 if (ret > PAGE_SIZE) {
326 ret = PAGE_SIZE;
327 break;
328 }
329 }
330
331 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
332
333 kfree(buf);
334
335 return ret;
336 }
337
338 static const struct file_operations dai_list_fops = {
339 .read = dai_list_read_file,
340 .llseek = default_llseek,/* read accesses f_pos */
341 };
342
343 static ssize_t platform_list_read_file(struct file *file,
344 char __user *user_buf,
345 size_t count, loff_t *ppos)
346 {
347 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
348 ssize_t len, ret = 0;
349 struct snd_soc_platform *platform;
350
351 if (!buf)
352 return -ENOMEM;
353
354 list_for_each_entry(platform, &platform_list, list) {
355 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
356 platform->name);
357 if (len >= 0)
358 ret += len;
359 if (ret > PAGE_SIZE) {
360 ret = PAGE_SIZE;
361 break;
362 }
363 }
364
365 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
366
367 kfree(buf);
368
369 return ret;
370 }
371
372 static const struct file_operations platform_list_fops = {
373 .read = platform_list_read_file,
374 .llseek = default_llseek,/* read accesses f_pos */
375 };
376
377 #else
378
379 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
380 {
381 }
382
383 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
384 {
385 }
386 #endif
387
388 #ifdef CONFIG_SND_SOC_AC97_BUS
389 /* unregister ac97 codec */
390 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
391 {
392 if (codec->ac97->dev.bus)
393 device_unregister(&codec->ac97->dev);
394 return 0;
395 }
396
397 /* stop no dev release warning */
398 static void soc_ac97_device_release(struct device *dev){}
399
400 /* register ac97 codec to bus */
401 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
402 {
403 int err;
404
405 codec->ac97->dev.bus = &ac97_bus_type;
406 codec->ac97->dev.parent = codec->card->dev;
407 codec->ac97->dev.release = soc_ac97_device_release;
408
409 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
410 codec->card->snd_card->number, 0, codec->name);
411 err = device_register(&codec->ac97->dev);
412 if (err < 0) {
413 snd_printk(KERN_ERR "Can't register ac97 bus\n");
414 codec->ac97->dev.bus = NULL;
415 return err;
416 }
417 return 0;
418 }
419 #endif
420
421 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
422 {
423 struct snd_soc_pcm_runtime *rtd = substream->private_data;
424 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
425 struct snd_soc_dai *codec_dai = rtd->codec_dai;
426 int ret;
427
428 if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
429 rtd->dai_link->symmetric_rates) {
430 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
431 rtd->rate);
432
433 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
434 SNDRV_PCM_HW_PARAM_RATE,
435 rtd->rate,
436 rtd->rate);
437 if (ret < 0) {
438 dev_err(&rtd->dev,
439 "Unable to apply rate symmetry constraint: %d\n", ret);
440 return ret;
441 }
442 }
443
444 return 0;
445 }
446
447 /*
448 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
449 * then initialized and any private data can be allocated. This also calls
450 * startup for the cpu DAI, platform, machine and codec DAI.
451 */
452 static int soc_pcm_open(struct snd_pcm_substream *substream)
453 {
454 struct snd_soc_pcm_runtime *rtd = substream->private_data;
455 struct snd_pcm_runtime *runtime = substream->runtime;
456 struct snd_soc_platform *platform = rtd->platform;
457 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
458 struct snd_soc_dai *codec_dai = rtd->codec_dai;
459 struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
460 struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
461 int ret = 0;
462
463 mutex_lock(&pcm_mutex);
464
465 /* startup the audio subsystem */
466 if (cpu_dai->driver->ops->startup) {
467 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
468 if (ret < 0) {
469 printk(KERN_ERR "asoc: can't open interface %s\n",
470 cpu_dai->name);
471 goto out;
472 }
473 }
474
475 if (platform->driver->ops->open) {
476 ret = platform->driver->ops->open(substream);
477 if (ret < 0) {
478 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
479 goto platform_err;
480 }
481 }
482
483 if (codec_dai->driver->ops->startup) {
484 ret = codec_dai->driver->ops->startup(substream, codec_dai);
485 if (ret < 0) {
486 printk(KERN_ERR "asoc: can't open codec %s\n",
487 codec_dai->name);
488 goto codec_dai_err;
489 }
490 }
491
492 if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
493 ret = rtd->dai_link->ops->startup(substream);
494 if (ret < 0) {
495 printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
496 goto machine_err;
497 }
498 }
499
500 /* Check that the codec and cpu DAI's are compatible */
501 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
502 runtime->hw.rate_min =
503 max(codec_dai_drv->playback.rate_min,
504 cpu_dai_drv->playback.rate_min);
505 runtime->hw.rate_max =
506 min(codec_dai_drv->playback.rate_max,
507 cpu_dai_drv->playback.rate_max);
508 runtime->hw.channels_min =
509 max(codec_dai_drv->playback.channels_min,
510 cpu_dai_drv->playback.channels_min);
511 runtime->hw.channels_max =
512 min(codec_dai_drv->playback.channels_max,
513 cpu_dai_drv->playback.channels_max);
514 runtime->hw.formats =
515 codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
516 runtime->hw.rates =
517 codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
518 if (codec_dai_drv->playback.rates
519 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
520 runtime->hw.rates |= cpu_dai_drv->playback.rates;
521 if (cpu_dai_drv->playback.rates
522 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
523 runtime->hw.rates |= codec_dai_drv->playback.rates;
524 } else {
525 runtime->hw.rate_min =
526 max(codec_dai_drv->capture.rate_min,
527 cpu_dai_drv->capture.rate_min);
528 runtime->hw.rate_max =
529 min(codec_dai_drv->capture.rate_max,
530 cpu_dai_drv->capture.rate_max);
531 runtime->hw.channels_min =
532 max(codec_dai_drv->capture.channels_min,
533 cpu_dai_drv->capture.channels_min);
534 runtime->hw.channels_max =
535 min(codec_dai_drv->capture.channels_max,
536 cpu_dai_drv->capture.channels_max);
537 runtime->hw.formats =
538 codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
539 runtime->hw.rates =
540 codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
541 if (codec_dai_drv->capture.rates
542 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
543 runtime->hw.rates |= cpu_dai_drv->capture.rates;
544 if (cpu_dai_drv->capture.rates
545 & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
546 runtime->hw.rates |= codec_dai_drv->capture.rates;
547 }
548
549 snd_pcm_limit_hw_rates(runtime);
550 if (!runtime->hw.rates) {
551 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
552 codec_dai->name, cpu_dai->name);
553 goto config_err;
554 }
555 if (!runtime->hw.formats) {
556 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
557 codec_dai->name, cpu_dai->name);
558 goto config_err;
559 }
560 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
561 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
562 codec_dai->name, cpu_dai->name);
563 goto config_err;
564 }
565
566 /* Symmetry only applies if we've already got an active stream. */
567 if (cpu_dai->active || codec_dai->active) {
568 ret = soc_pcm_apply_symmetry(substream);
569 if (ret != 0)
570 goto config_err;
571 }
572
573 pr_debug("asoc: %s <-> %s info:\n",
574 codec_dai->name, cpu_dai->name);
575 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
576 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
577 runtime->hw.channels_max);
578 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
579 runtime->hw.rate_max);
580
581 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
582 cpu_dai->playback_active++;
583 codec_dai->playback_active++;
584 } else {
585 cpu_dai->capture_active++;
586 codec_dai->capture_active++;
587 }
588 cpu_dai->active++;
589 codec_dai->active++;
590 rtd->codec->active++;
591 mutex_unlock(&pcm_mutex);
592 return 0;
593
594 config_err:
595 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
596 rtd->dai_link->ops->shutdown(substream);
597
598 machine_err:
599 if (codec_dai->driver->ops->shutdown)
600 codec_dai->driver->ops->shutdown(substream, codec_dai);
601
602 codec_dai_err:
603 if (platform->driver->ops->close)
604 platform->driver->ops->close(substream);
605
606 platform_err:
607 if (cpu_dai->driver->ops->shutdown)
608 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
609 out:
610 mutex_unlock(&pcm_mutex);
611 return ret;
612 }
613
614 /*
615 * Power down the audio subsystem pmdown_time msecs after close is called.
616 * This is to ensure there are no pops or clicks in between any music tracks
617 * due to DAPM power cycling.
618 */
619 static void close_delayed_work(struct work_struct *work)
620 {
621 struct snd_soc_pcm_runtime *rtd =
622 container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
623 struct snd_soc_dai *codec_dai = rtd->codec_dai;
624
625 mutex_lock(&pcm_mutex);
626
627 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
628 codec_dai->driver->playback.stream_name,
629 codec_dai->playback_active ? "active" : "inactive",
630 codec_dai->pop_wait ? "yes" : "no");
631
632 /* are we waiting on this codec DAI stream */
633 if (codec_dai->pop_wait == 1) {
634 codec_dai->pop_wait = 0;
635 snd_soc_dapm_stream_event(rtd,
636 codec_dai->driver->playback.stream_name,
637 SND_SOC_DAPM_STREAM_STOP);
638 }
639
640 mutex_unlock(&pcm_mutex);
641 }
642
643 /*
644 * Called by ALSA when a PCM substream is closed. Private data can be
645 * freed here. The cpu DAI, codec DAI, machine and platform are also
646 * shutdown.
647 */
648 static int soc_codec_close(struct snd_pcm_substream *substream)
649 {
650 struct snd_soc_pcm_runtime *rtd = substream->private_data;
651 struct snd_soc_platform *platform = rtd->platform;
652 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
653 struct snd_soc_dai *codec_dai = rtd->codec_dai;
654 struct snd_soc_codec *codec = rtd->codec;
655
656 mutex_lock(&pcm_mutex);
657
658 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
659 cpu_dai->playback_active--;
660 codec_dai->playback_active--;
661 } else {
662 cpu_dai->capture_active--;
663 codec_dai->capture_active--;
664 }
665
666 cpu_dai->active--;
667 codec_dai->active--;
668 codec->active--;
669
670 /* Muting the DAC suppresses artifacts caused during digital
671 * shutdown, for example from stopping clocks.
672 */
673 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
674 snd_soc_dai_digital_mute(codec_dai, 1);
675
676 if (cpu_dai->driver->ops->shutdown)
677 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
678
679 if (codec_dai->driver->ops->shutdown)
680 codec_dai->driver->ops->shutdown(substream, codec_dai);
681
682 if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
683 rtd->dai_link->ops->shutdown(substream);
684
685 if (platform->driver->ops->close)
686 platform->driver->ops->close(substream);
687 cpu_dai->runtime = NULL;
688
689 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
690 /* start delayed pop wq here for playback streams */
691 codec_dai->pop_wait = 1;
692 schedule_delayed_work(&rtd->delayed_work,
693 msecs_to_jiffies(rtd->pmdown_time));
694 } else {
695 /* capture streams can be powered down now */
696 snd_soc_dapm_stream_event(rtd,
697 codec_dai->driver->capture.stream_name,
698 SND_SOC_DAPM_STREAM_STOP);
699 }
700
701 mutex_unlock(&pcm_mutex);
702 return 0;
703 }
704
705 /*
706 * Called by ALSA when the PCM substream is prepared, can set format, sample
707 * rate, etc. This function is non atomic and can be called multiple times,
708 * it can refer to the runtime info.
709 */
710 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
711 {
712 struct snd_soc_pcm_runtime *rtd = substream->private_data;
713 struct snd_soc_platform *platform = rtd->platform;
714 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
715 struct snd_soc_dai *codec_dai = rtd->codec_dai;
716 int ret = 0;
717
718 mutex_lock(&pcm_mutex);
719
720 if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
721 ret = rtd->dai_link->ops->prepare(substream);
722 if (ret < 0) {
723 printk(KERN_ERR "asoc: machine prepare error\n");
724 goto out;
725 }
726 }
727
728 if (platform->driver->ops->prepare) {
729 ret = platform->driver->ops->prepare(substream);
730 if (ret < 0) {
731 printk(KERN_ERR "asoc: platform prepare error\n");
732 goto out;
733 }
734 }
735
736 if (codec_dai->driver->ops->prepare) {
737 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
738 if (ret < 0) {
739 printk(KERN_ERR "asoc: codec DAI prepare error\n");
740 goto out;
741 }
742 }
743
744 if (cpu_dai->driver->ops->prepare) {
745 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
746 if (ret < 0) {
747 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
748 goto out;
749 }
750 }
751
752 /* cancel any delayed stream shutdown that is pending */
753 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
754 codec_dai->pop_wait) {
755 codec_dai->pop_wait = 0;
756 cancel_delayed_work(&rtd->delayed_work);
757 }
758
759 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
760 snd_soc_dapm_stream_event(rtd,
761 codec_dai->driver->playback.stream_name,
762 SND_SOC_DAPM_STREAM_START);
763 else
764 snd_soc_dapm_stream_event(rtd,
765 codec_dai->driver->capture.stream_name,
766 SND_SOC_DAPM_STREAM_START);
767
768 snd_soc_dai_digital_mute(codec_dai, 0);
769
770 out:
771 mutex_unlock(&pcm_mutex);
772 return ret;
773 }
774
775 /*
776 * Called by ALSA when the hardware params are set by application. This
777 * function can also be called multiple times and can allocate buffers
778 * (using snd_pcm_lib_* ). It's non-atomic.
779 */
780 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
781 struct snd_pcm_hw_params *params)
782 {
783 struct snd_soc_pcm_runtime *rtd = substream->private_data;
784 struct snd_soc_platform *platform = rtd->platform;
785 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
786 struct snd_soc_dai *codec_dai = rtd->codec_dai;
787 int ret = 0;
788
789 mutex_lock(&pcm_mutex);
790
791 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
792 ret = rtd->dai_link->ops->hw_params(substream, params);
793 if (ret < 0) {
794 printk(KERN_ERR "asoc: machine hw_params failed\n");
795 goto out;
796 }
797 }
798
799 if (codec_dai->driver->ops->hw_params) {
800 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
801 if (ret < 0) {
802 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
803 codec_dai->name);
804 goto codec_err;
805 }
806 }
807
808 if (cpu_dai->driver->ops->hw_params) {
809 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
810 if (ret < 0) {
811 printk(KERN_ERR "asoc: interface %s hw params failed\n",
812 cpu_dai->name);
813 goto interface_err;
814 }
815 }
816
817 if (platform->driver->ops->hw_params) {
818 ret = platform->driver->ops->hw_params(substream, params);
819 if (ret < 0) {
820 printk(KERN_ERR "asoc: platform %s hw params failed\n",
821 platform->name);
822 goto platform_err;
823 }
824 }
825
826 rtd->rate = params_rate(params);
827
828 out:
829 mutex_unlock(&pcm_mutex);
830 return ret;
831
832 platform_err:
833 if (cpu_dai->driver->ops->hw_free)
834 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
835
836 interface_err:
837 if (codec_dai->driver->ops->hw_free)
838 codec_dai->driver->ops->hw_free(substream, codec_dai);
839
840 codec_err:
841 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
842 rtd->dai_link->ops->hw_free(substream);
843
844 mutex_unlock(&pcm_mutex);
845 return ret;
846 }
847
848 /*
849 * Free's resources allocated by hw_params, can be called multiple times
850 */
851 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
852 {
853 struct snd_soc_pcm_runtime *rtd = substream->private_data;
854 struct snd_soc_platform *platform = rtd->platform;
855 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
856 struct snd_soc_dai *codec_dai = rtd->codec_dai;
857 struct snd_soc_codec *codec = rtd->codec;
858
859 mutex_lock(&pcm_mutex);
860
861 /* apply codec digital mute */
862 if (!codec->active)
863 snd_soc_dai_digital_mute(codec_dai, 1);
864
865 /* free any machine hw params */
866 if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
867 rtd->dai_link->ops->hw_free(substream);
868
869 /* free any DMA resources */
870 if (platform->driver->ops->hw_free)
871 platform->driver->ops->hw_free(substream);
872
873 /* now free hw params for the DAI's */
874 if (codec_dai->driver->ops->hw_free)
875 codec_dai->driver->ops->hw_free(substream, codec_dai);
876
877 if (cpu_dai->driver->ops->hw_free)
878 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
879
880 mutex_unlock(&pcm_mutex);
881 return 0;
882 }
883
884 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
885 {
886 struct snd_soc_pcm_runtime *rtd = substream->private_data;
887 struct snd_soc_platform *platform = rtd->platform;
888 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
889 struct snd_soc_dai *codec_dai = rtd->codec_dai;
890 int ret;
891
892 if (codec_dai->driver->ops->trigger) {
893 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
894 if (ret < 0)
895 return ret;
896 }
897
898 if (platform->driver->ops->trigger) {
899 ret = platform->driver->ops->trigger(substream, cmd);
900 if (ret < 0)
901 return ret;
902 }
903
904 if (cpu_dai->driver->ops->trigger) {
905 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
906 if (ret < 0)
907 return ret;
908 }
909 return 0;
910 }
911
912 /*
913 * soc level wrapper for pointer callback
914 * If cpu_dai, codec_dai, platform driver has the delay callback, than
915 * the runtime->delay will be updated accordingly.
916 */
917 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
918 {
919 struct snd_soc_pcm_runtime *rtd = substream->private_data;
920 struct snd_soc_platform *platform = rtd->platform;
921 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
922 struct snd_soc_dai *codec_dai = rtd->codec_dai;
923 struct snd_pcm_runtime *runtime = substream->runtime;
924 snd_pcm_uframes_t offset = 0;
925 snd_pcm_sframes_t delay = 0;
926
927 if (platform->driver->ops->pointer)
928 offset = platform->driver->ops->pointer(substream);
929
930 if (cpu_dai->driver->ops->delay)
931 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
932
933 if (codec_dai->driver->ops->delay)
934 delay += codec_dai->driver->ops->delay(substream, codec_dai);
935
936 if (platform->driver->delay)
937 delay += platform->driver->delay(substream, codec_dai);
938
939 runtime->delay = delay;
940
941 return offset;
942 }
943
944 /* ASoC PCM operations */
945 static struct snd_pcm_ops soc_pcm_ops = {
946 .open = soc_pcm_open,
947 .close = soc_codec_close,
948 .hw_params = soc_pcm_hw_params,
949 .hw_free = soc_pcm_hw_free,
950 .prepare = soc_pcm_prepare,
951 .trigger = soc_pcm_trigger,
952 .pointer = soc_pcm_pointer,
953 };
954
955 #ifdef CONFIG_PM
956 /* powers down audio subsystem for suspend */
957 static int soc_suspend(struct device *dev)
958 {
959 struct platform_device *pdev = to_platform_device(dev);
960 struct snd_soc_card *card = platform_get_drvdata(pdev);
961 int i;
962
963 /* If the initialization of this soc device failed, there is no codec
964 * associated with it. Just bail out in this case.
965 */
966 if (list_empty(&card->codec_dev_list))
967 return 0;
968
969 /* Due to the resume being scheduled into a workqueue we could
970 * suspend before that's finished - wait for it to complete.
971 */
972 snd_power_lock(card->snd_card);
973 snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
974 snd_power_unlock(card->snd_card);
975
976 /* we're going to block userspace touching us until resume completes */
977 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
978
979 /* mute any active DAC's */
980 for (i = 0; i < card->num_rtd; i++) {
981 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
982 struct snd_soc_dai_driver *drv = dai->driver;
983
984 if (card->rtd[i].dai_link->ignore_suspend)
985 continue;
986
987 if (drv->ops->digital_mute && dai->playback_active)
988 drv->ops->digital_mute(dai, 1);
989 }
990
991 /* suspend all pcms */
992 for (i = 0; i < card->num_rtd; i++) {
993 if (card->rtd[i].dai_link->ignore_suspend)
994 continue;
995
996 snd_pcm_suspend_all(card->rtd[i].pcm);
997 }
998
999 if (card->suspend_pre)
1000 card->suspend_pre(pdev, PMSG_SUSPEND);
1001
1002 for (i = 0; i < card->num_rtd; i++) {
1003 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1004 struct snd_soc_platform *platform = card->rtd[i].platform;
1005
1006 if (card->rtd[i].dai_link->ignore_suspend)
1007 continue;
1008
1009 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1010 cpu_dai->driver->suspend(cpu_dai);
1011 if (platform->driver->suspend && !platform->suspended) {
1012 platform->driver->suspend(cpu_dai);
1013 platform->suspended = 1;
1014 }
1015 }
1016
1017 /* close any waiting streams and save state */
1018 for (i = 0; i < card->num_rtd; i++) {
1019 run_delayed_work(&card->rtd[i].delayed_work);
1020 card->rtd[i].codec->suspend_bias_level = card->rtd[i].codec->bias_level;
1021 }
1022
1023 for (i = 0; i < card->num_rtd; i++) {
1024 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1025
1026 if (card->rtd[i].dai_link->ignore_suspend)
1027 continue;
1028
1029 if (driver->playback.stream_name != NULL)
1030 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1031 SND_SOC_DAPM_STREAM_SUSPEND);
1032
1033 if (driver->capture.stream_name != NULL)
1034 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1035 SND_SOC_DAPM_STREAM_SUSPEND);
1036 }
1037
1038 /* suspend all CODECs */
1039 for (i = 0; i < card->num_rtd; i++) {
1040 struct snd_soc_codec *codec = card->rtd[i].codec;
1041 /* If there are paths active then the CODEC will be held with
1042 * bias _ON and should not be suspended. */
1043 if (!codec->suspended && codec->driver->suspend) {
1044 switch (codec->bias_level) {
1045 case SND_SOC_BIAS_STANDBY:
1046 case SND_SOC_BIAS_OFF:
1047 codec->driver->suspend(codec, PMSG_SUSPEND);
1048 codec->suspended = 1;
1049 break;
1050 default:
1051 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1052 break;
1053 }
1054 }
1055 }
1056
1057 for (i = 0; i < card->num_rtd; i++) {
1058 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1059
1060 if (card->rtd[i].dai_link->ignore_suspend)
1061 continue;
1062
1063 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1064 cpu_dai->driver->suspend(cpu_dai);
1065 }
1066
1067 if (card->suspend_post)
1068 card->suspend_post(pdev, PMSG_SUSPEND);
1069
1070 return 0;
1071 }
1072
1073 /* deferred resume work, so resume can complete before we finished
1074 * setting our codec back up, which can be very slow on I2C
1075 */
1076 static void soc_resume_deferred(struct work_struct *work)
1077 {
1078 struct snd_soc_card *card =
1079 container_of(work, struct snd_soc_card, deferred_resume_work);
1080 struct platform_device *pdev = to_platform_device(card->dev);
1081 int i;
1082
1083 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1084 * so userspace apps are blocked from touching us
1085 */
1086
1087 dev_dbg(card->dev, "starting resume work\n");
1088
1089 /* Bring us up into D2 so that DAPM starts enabling things */
1090 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1091
1092 if (card->resume_pre)
1093 card->resume_pre(pdev);
1094
1095 /* resume AC97 DAIs */
1096 for (i = 0; i < card->num_rtd; i++) {
1097 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1098
1099 if (card->rtd[i].dai_link->ignore_suspend)
1100 continue;
1101
1102 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1103 cpu_dai->driver->resume(cpu_dai);
1104 }
1105
1106 for (i = 0; i < card->num_rtd; i++) {
1107 struct snd_soc_codec *codec = card->rtd[i].codec;
1108 /* If the CODEC was idle over suspend then it will have been
1109 * left with bias OFF or STANDBY and suspended so we must now
1110 * resume. Otherwise the suspend was suppressed.
1111 */
1112 if (codec->driver->resume && codec->suspended) {
1113 switch (codec->bias_level) {
1114 case SND_SOC_BIAS_STANDBY:
1115 case SND_SOC_BIAS_OFF:
1116 codec->driver->resume(codec);
1117 codec->suspended = 0;
1118 break;
1119 default:
1120 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1121 break;
1122 }
1123 }
1124 }
1125
1126 for (i = 0; i < card->num_rtd; i++) {
1127 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1128
1129 if (card->rtd[i].dai_link->ignore_suspend)
1130 continue;
1131
1132 if (driver->playback.stream_name != NULL)
1133 snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1134 SND_SOC_DAPM_STREAM_RESUME);
1135
1136 if (driver->capture.stream_name != NULL)
1137 snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1138 SND_SOC_DAPM_STREAM_RESUME);
1139 }
1140
1141 /* unmute any active DACs */
1142 for (i = 0; i < card->num_rtd; i++) {
1143 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1144 struct snd_soc_dai_driver *drv = dai->driver;
1145
1146 if (card->rtd[i].dai_link->ignore_suspend)
1147 continue;
1148
1149 if (drv->ops->digital_mute && dai->playback_active)
1150 drv->ops->digital_mute(dai, 0);
1151 }
1152
1153 for (i = 0; i < card->num_rtd; i++) {
1154 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1155 struct snd_soc_platform *platform = card->rtd[i].platform;
1156
1157 if (card->rtd[i].dai_link->ignore_suspend)
1158 continue;
1159
1160 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1161 cpu_dai->driver->resume(cpu_dai);
1162 if (platform->driver->resume && platform->suspended) {
1163 platform->driver->resume(cpu_dai);
1164 platform->suspended = 0;
1165 }
1166 }
1167
1168 if (card->resume_post)
1169 card->resume_post(pdev);
1170
1171 dev_dbg(card->dev, "resume work completed\n");
1172
1173 /* userspace can access us now we are back as we were before */
1174 snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1175 }
1176
1177 /* powers up audio subsystem after a suspend */
1178 static int soc_resume(struct device *dev)
1179 {
1180 struct platform_device *pdev = to_platform_device(dev);
1181 struct snd_soc_card *card = platform_get_drvdata(pdev);
1182 int i;
1183
1184 /* AC97 devices might have other drivers hanging off them so
1185 * need to resume immediately. Other drivers don't have that
1186 * problem and may take a substantial amount of time to resume
1187 * due to I/O costs and anti-pop so handle them out of line.
1188 */
1189 for (i = 0; i < card->num_rtd; i++) {
1190 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1191 if (cpu_dai->driver->ac97_control) {
1192 dev_dbg(dev, "Resuming AC97 immediately\n");
1193 soc_resume_deferred(&card->deferred_resume_work);
1194 } else {
1195 dev_dbg(dev, "Scheduling resume work\n");
1196 if (!schedule_work(&card->deferred_resume_work))
1197 dev_err(dev, "resume work item may be lost\n");
1198 }
1199 }
1200
1201 return 0;
1202 }
1203 #else
1204 #define soc_suspend NULL
1205 #define soc_resume NULL
1206 #endif
1207
1208 static struct snd_soc_dai_ops null_dai_ops = {
1209 };
1210
1211 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1212 {
1213 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1214 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1215 struct snd_soc_codec *codec;
1216 struct snd_soc_platform *platform;
1217 struct snd_soc_dai *codec_dai, *cpu_dai;
1218
1219 if (rtd->complete)
1220 return 1;
1221 dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1222
1223 /* do we already have the CPU DAI for this link ? */
1224 if (rtd->cpu_dai) {
1225 goto find_codec;
1226 }
1227 /* no, then find CPU DAI from registered DAIs*/
1228 list_for_each_entry(cpu_dai, &dai_list, list) {
1229 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1230
1231 if (!try_module_get(cpu_dai->dev->driver->owner))
1232 return -ENODEV;
1233
1234 rtd->cpu_dai = cpu_dai;
1235 goto find_codec;
1236 }
1237 }
1238 dev_dbg(card->dev, "CPU DAI %s not registered\n",
1239 dai_link->cpu_dai_name);
1240
1241 find_codec:
1242 /* do we already have the CODEC for this link ? */
1243 if (rtd->codec) {
1244 goto find_platform;
1245 }
1246
1247 /* no, then find CODEC from registered CODECs*/
1248 list_for_each_entry(codec, &codec_list, list) {
1249 if (!strcmp(codec->name, dai_link->codec_name)) {
1250 rtd->codec = codec;
1251
1252 if (!try_module_get(codec->dev->driver->owner))
1253 return -ENODEV;
1254
1255 /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1256 list_for_each_entry(codec_dai, &dai_list, list) {
1257 if (codec->dev == codec_dai->dev &&
1258 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1259 rtd->codec_dai = codec_dai;
1260 goto find_platform;
1261 }
1262 }
1263 dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1264 dai_link->codec_dai_name);
1265
1266 goto find_platform;
1267 }
1268 }
1269 dev_dbg(card->dev, "CODEC %s not registered\n",
1270 dai_link->codec_name);
1271
1272 find_platform:
1273 /* do we already have the CODEC DAI for this link ? */
1274 if (rtd->platform) {
1275 goto out;
1276 }
1277 /* no, then find CPU DAI from registered DAIs*/
1278 list_for_each_entry(platform, &platform_list, list) {
1279 if (!strcmp(platform->name, dai_link->platform_name)) {
1280
1281 if (!try_module_get(platform->dev->driver->owner))
1282 return -ENODEV;
1283
1284 rtd->platform = platform;
1285 goto out;
1286 }
1287 }
1288
1289 dev_dbg(card->dev, "platform %s not registered\n",
1290 dai_link->platform_name);
1291 return 0;
1292
1293 out:
1294 /* mark rtd as complete if we found all 4 of our client devices */
1295 if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1296 rtd->complete = 1;
1297 card->num_rtd++;
1298 }
1299 return 1;
1300 }
1301
1302 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1303 {
1304 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1305 struct snd_soc_codec *codec = rtd->codec;
1306 struct snd_soc_platform *platform = rtd->platform;
1307 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1308 int err;
1309
1310 /* unregister the rtd device */
1311 if (rtd->dev_registered) {
1312 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1313 device_unregister(&rtd->dev);
1314 rtd->dev_registered = 0;
1315 }
1316
1317 /* remove the CODEC DAI */
1318 if (codec_dai && codec_dai->probed) {
1319 if (codec_dai->driver->remove) {
1320 err = codec_dai->driver->remove(codec_dai);
1321 if (err < 0)
1322 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1323 }
1324 codec_dai->probed = 0;
1325 list_del(&codec_dai->card_list);
1326 }
1327
1328 /* remove the platform */
1329 if (platform && platform->probed) {
1330 if (platform->driver->remove) {
1331 err = platform->driver->remove(platform);
1332 if (err < 0)
1333 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1334 }
1335 platform->probed = 0;
1336 list_del(&platform->card_list);
1337 module_put(platform->dev->driver->owner);
1338 }
1339
1340 /* remove the CODEC */
1341 if (codec && codec->probed) {
1342 if (codec->driver->remove) {
1343 err = codec->driver->remove(codec);
1344 if (err < 0)
1345 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1346 }
1347
1348 /* Make sure all DAPM widgets are freed */
1349 snd_soc_dapm_free(codec);
1350
1351 soc_cleanup_codec_debugfs(codec);
1352 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1353 codec->probed = 0;
1354 list_del(&codec->card_list);
1355 module_put(codec->dev->driver->owner);
1356 }
1357
1358 /* remove the cpu_dai */
1359 if (cpu_dai && cpu_dai->probed) {
1360 if (cpu_dai->driver->remove) {
1361 err = cpu_dai->driver->remove(cpu_dai);
1362 if (err < 0)
1363 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1364 }
1365 cpu_dai->probed = 0;
1366 list_del(&cpu_dai->card_list);
1367 module_put(cpu_dai->dev->driver->owner);
1368 }
1369 }
1370
1371 static void rtd_release(struct device *dev) {}
1372
1373 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1374 {
1375 struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1376 struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1377 struct snd_soc_codec *codec = rtd->codec;
1378 struct snd_soc_platform *platform = rtd->platform;
1379 struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1380 int ret;
1381
1382 dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1383
1384 /* config components */
1385 codec_dai->codec = codec;
1386 codec->card = card;
1387 cpu_dai->platform = platform;
1388 rtd->card = card;
1389 rtd->dev.parent = card->dev;
1390 codec_dai->card = card;
1391 cpu_dai->card = card;
1392
1393 /* set default power off timeout */
1394 rtd->pmdown_time = pmdown_time;
1395
1396 /* probe the cpu_dai */
1397 if (!cpu_dai->probed) {
1398 if (cpu_dai->driver->probe) {
1399 ret = cpu_dai->driver->probe(cpu_dai);
1400 if (ret < 0) {
1401 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1402 cpu_dai->name);
1403 return ret;
1404 }
1405 }
1406 cpu_dai->probed = 1;
1407 /* mark cpu_dai as probed and add to card cpu_dai list */
1408 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1409 }
1410
1411 /* probe the CODEC */
1412 if (!codec->probed) {
1413 if (codec->driver->probe) {
1414 ret = codec->driver->probe(codec);
1415 if (ret < 0) {
1416 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1417 codec->name);
1418 return ret;
1419 }
1420 }
1421
1422 soc_init_codec_debugfs(codec);
1423
1424 /* mark codec as probed and add to card codec list */
1425 codec->probed = 1;
1426 list_add(&codec->card_list, &card->codec_dev_list);
1427 }
1428
1429 /* probe the platform */
1430 if (!platform->probed) {
1431 if (platform->driver->probe) {
1432 ret = platform->driver->probe(platform);
1433 if (ret < 0) {
1434 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1435 platform->name);
1436 return ret;
1437 }
1438 }
1439 /* mark platform as probed and add to card platform list */
1440 platform->probed = 1;
1441 list_add(&platform->card_list, &card->platform_dev_list);
1442 }
1443
1444 /* probe the CODEC DAI */
1445 if (!codec_dai->probed) {
1446 if (codec_dai->driver->probe) {
1447 ret = codec_dai->driver->probe(codec_dai);
1448 if (ret < 0) {
1449 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1450 codec_dai->name);
1451 return ret;
1452 }
1453 }
1454
1455 /* mark cpu_dai as probed and add to card cpu_dai list */
1456 codec_dai->probed = 1;
1457 list_add(&codec_dai->card_list, &card->dai_dev_list);
1458 }
1459
1460 /* DAPM dai link stream work */
1461 INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1462
1463 /* now that all clients have probed, initialise the DAI link */
1464 if (dai_link->init) {
1465 ret = dai_link->init(rtd);
1466 if (ret < 0) {
1467 printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1468 return ret;
1469 }
1470 }
1471
1472 /* Make sure all DAPM widgets are instantiated */
1473 snd_soc_dapm_new_widgets(codec);
1474 snd_soc_dapm_sync(codec);
1475
1476 /* register the rtd device */
1477 rtd->dev.release = rtd_release;
1478 rtd->dev.init_name = dai_link->name;
1479 ret = device_register(&rtd->dev);
1480 if (ret < 0) {
1481 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1482 return ret;
1483 }
1484
1485 rtd->dev_registered = 1;
1486 ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1487 if (ret < 0)
1488 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1489
1490 /* add DAPM sysfs entries for this codec */
1491 ret = snd_soc_dapm_sys_add(&rtd->dev);
1492 if (ret < 0)
1493 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1494
1495 /* add codec sysfs entries */
1496 ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1497 if (ret < 0)
1498 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1499
1500 /* create the pcm */
1501 ret = soc_new_pcm(rtd, num);
1502 if (ret < 0) {
1503 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1504 return ret;
1505 }
1506
1507 /* add platform data for AC97 devices */
1508 if (rtd->codec_dai->driver->ac97_control)
1509 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1510
1511 return 0;
1512 }
1513
1514 #ifdef CONFIG_SND_SOC_AC97_BUS
1515 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1516 {
1517 int ret;
1518
1519 /* Only instantiate AC97 if not already done by the adaptor
1520 * for the generic AC97 subsystem.
1521 */
1522 if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1523 /*
1524 * It is possible that the AC97 device is already registered to
1525 * the device subsystem. This happens when the device is created
1526 * via snd_ac97_mixer(). Currently only SoC codec that does so
1527 * is the generic AC97 glue but others migh emerge.
1528 *
1529 * In those cases we don't try to register the device again.
1530 */
1531 if (!rtd->codec->ac97_created)
1532 return 0;
1533
1534 ret = soc_ac97_dev_register(rtd->codec);
1535 if (ret < 0) {
1536 printk(KERN_ERR "asoc: AC97 device register failed\n");
1537 return ret;
1538 }
1539
1540 rtd->codec->ac97_registered = 1;
1541 }
1542 return 0;
1543 }
1544
1545 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1546 {
1547 if (codec->ac97_registered) {
1548 soc_ac97_dev_unregister(codec);
1549 codec->ac97_registered = 0;
1550 }
1551 }
1552 #endif
1553
1554 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1555 {
1556 struct platform_device *pdev = to_platform_device(card->dev);
1557 int ret, i;
1558
1559 mutex_lock(&card->mutex);
1560
1561 if (card->instantiated) {
1562 mutex_unlock(&card->mutex);
1563 return;
1564 }
1565
1566 /* bind DAIs */
1567 for (i = 0; i < card->num_links; i++)
1568 soc_bind_dai_link(card, i);
1569
1570 /* bind completed ? */
1571 if (card->num_rtd != card->num_links) {
1572 mutex_unlock(&card->mutex);
1573 return;
1574 }
1575
1576 /* card bind complete so register a sound card */
1577 ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1578 card->owner, 0, &card->snd_card);
1579 if (ret < 0) {
1580 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1581 card->name);
1582 mutex_unlock(&card->mutex);
1583 return;
1584 }
1585 card->snd_card->dev = card->dev;
1586
1587 #ifdef CONFIG_PM
1588 /* deferred resume work */
1589 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1590 #endif
1591
1592 /* initialise the sound card only once */
1593 if (card->probe) {
1594 ret = card->probe(pdev);
1595 if (ret < 0)
1596 goto card_probe_error;
1597 }
1598
1599 for (i = 0; i < card->num_links; i++) {
1600 ret = soc_probe_dai_link(card, i);
1601 if (ret < 0) {
1602 pr_err("asoc: failed to instantiate card %s: %d\n",
1603 card->name, ret);
1604 goto probe_dai_err;
1605 }
1606 }
1607
1608 snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1609 "%s", card->name);
1610 snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1611 "%s", card->name);
1612
1613 ret = snd_card_register(card->snd_card);
1614 if (ret < 0) {
1615 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1616 goto probe_dai_err;
1617 }
1618
1619 #ifdef CONFIG_SND_SOC_AC97_BUS
1620 /* register any AC97 codecs */
1621 for (i = 0; i < card->num_rtd; i++) {
1622 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1623 if (ret < 0) {
1624 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1625 while (--i >= 0)
1626 soc_unregister_ac97_dai_link(&card->rtd[i]);
1627 goto probe_dai_err;
1628 }
1629 }
1630 #endif
1631
1632 card->instantiated = 1;
1633 mutex_unlock(&card->mutex);
1634 return;
1635
1636 probe_dai_err:
1637 for (i = 0; i < card->num_links; i++)
1638 soc_remove_dai_link(card, i);
1639
1640 card_probe_error:
1641 if (card->remove)
1642 card->remove(pdev);
1643
1644 snd_card_free(card->snd_card);
1645
1646 mutex_unlock(&card->mutex);
1647 }
1648
1649 /*
1650 * Attempt to initialise any uninitialised cards. Must be called with
1651 * client_mutex.
1652 */
1653 static void snd_soc_instantiate_cards(void)
1654 {
1655 struct snd_soc_card *card;
1656 list_for_each_entry(card, &card_list, list)
1657 snd_soc_instantiate_card(card);
1658 }
1659
1660 /* probes a new socdev */
1661 static int soc_probe(struct platform_device *pdev)
1662 {
1663 struct snd_soc_card *card = platform_get_drvdata(pdev);
1664 int ret = 0;
1665
1666 /* Bodge while we unpick instantiation */
1667 card->dev = &pdev->dev;
1668 INIT_LIST_HEAD(&card->dai_dev_list);
1669 INIT_LIST_HEAD(&card->codec_dev_list);
1670 INIT_LIST_HEAD(&card->platform_dev_list);
1671
1672 ret = snd_soc_register_card(card);
1673 if (ret != 0) {
1674 dev_err(&pdev->dev, "Failed to register card\n");
1675 return ret;
1676 }
1677
1678 return 0;
1679 }
1680
1681 /* removes a socdev */
1682 static int soc_remove(struct platform_device *pdev)
1683 {
1684 struct snd_soc_card *card = platform_get_drvdata(pdev);
1685 int i;
1686
1687 if (card->instantiated) {
1688
1689 /* make sure any delayed work runs */
1690 for (i = 0; i < card->num_rtd; i++) {
1691 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1692 run_delayed_work(&rtd->delayed_work);
1693 }
1694
1695 /* remove and free each DAI */
1696 for (i = 0; i < card->num_rtd; i++)
1697 soc_remove_dai_link(card, i);
1698
1699 /* remove the card */
1700 if (card->remove)
1701 card->remove(pdev);
1702
1703 kfree(card->rtd);
1704 snd_card_free(card->snd_card);
1705 }
1706 snd_soc_unregister_card(card);
1707 return 0;
1708 }
1709
1710 static int soc_poweroff(struct device *dev)
1711 {
1712 struct platform_device *pdev = to_platform_device(dev);
1713 struct snd_soc_card *card = platform_get_drvdata(pdev);
1714 int i;
1715
1716 if (!card->instantiated)
1717 return 0;
1718
1719 /* Flush out pmdown_time work - we actually do want to run it
1720 * now, we're shutting down so no imminent restart. */
1721 for (i = 0; i < card->num_rtd; i++) {
1722 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1723 run_delayed_work(&rtd->delayed_work);
1724 }
1725
1726 snd_soc_dapm_shutdown(card);
1727
1728 return 0;
1729 }
1730
1731 static const struct dev_pm_ops soc_pm_ops = {
1732 .suspend = soc_suspend,
1733 .resume = soc_resume,
1734 .poweroff = soc_poweroff,
1735 };
1736
1737 /* ASoC platform driver */
1738 static struct platform_driver soc_driver = {
1739 .driver = {
1740 .name = "soc-audio",
1741 .owner = THIS_MODULE,
1742 .pm = &soc_pm_ops,
1743 },
1744 .probe = soc_probe,
1745 .remove = soc_remove,
1746 };
1747
1748 /* create a new pcm */
1749 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1750 {
1751 struct snd_soc_codec *codec = rtd->codec;
1752 struct snd_soc_platform *platform = rtd->platform;
1753 struct snd_soc_dai *codec_dai = rtd->codec_dai;
1754 struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1755 struct snd_pcm *pcm;
1756 char new_name[64];
1757 int ret = 0, playback = 0, capture = 0;
1758
1759 /* check client and interface hw capabilities */
1760 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1761 rtd->dai_link->stream_name, codec_dai->name, num);
1762
1763 if (codec_dai->driver->playback.channels_min)
1764 playback = 1;
1765 if (codec_dai->driver->capture.channels_min)
1766 capture = 1;
1767
1768 dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1769 ret = snd_pcm_new(rtd->card->snd_card, new_name,
1770 num, playback, capture, &pcm);
1771 if (ret < 0) {
1772 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1773 return ret;
1774 }
1775
1776 rtd->pcm = pcm;
1777 pcm->private_data = rtd;
1778 soc_pcm_ops.mmap = platform->driver->ops->mmap;
1779 soc_pcm_ops.pointer = platform->driver->ops->pointer;
1780 soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1781 soc_pcm_ops.copy = platform->driver->ops->copy;
1782 soc_pcm_ops.silence = platform->driver->ops->silence;
1783 soc_pcm_ops.ack = platform->driver->ops->ack;
1784 soc_pcm_ops.page = platform->driver->ops->page;
1785
1786 if (playback)
1787 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1788
1789 if (capture)
1790 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1791
1792 ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1793 if (ret < 0) {
1794 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1795 return ret;
1796 }
1797
1798 pcm->private_free = platform->driver->pcm_free;
1799 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1800 cpu_dai->name);
1801 return ret;
1802 }
1803
1804 /**
1805 * snd_soc_codec_volatile_register: Report if a register is volatile.
1806 *
1807 * @codec: CODEC to query.
1808 * @reg: Register to query.
1809 *
1810 * Boolean function indiciating if a CODEC register is volatile.
1811 */
1812 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1813 {
1814 if (codec->driver->volatile_register)
1815 return codec->driver->volatile_register(reg);
1816 else
1817 return 0;
1818 }
1819 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1820
1821 /**
1822 * snd_soc_new_ac97_codec - initailise AC97 device
1823 * @codec: audio codec
1824 * @ops: AC97 bus operations
1825 * @num: AC97 codec number
1826 *
1827 * Initialises AC97 codec resources for use by ad-hoc devices only.
1828 */
1829 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1830 struct snd_ac97_bus_ops *ops, int num)
1831 {
1832 mutex_lock(&codec->mutex);
1833
1834 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1835 if (codec->ac97 == NULL) {
1836 mutex_unlock(&codec->mutex);
1837 return -ENOMEM;
1838 }
1839
1840 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1841 if (codec->ac97->bus == NULL) {
1842 kfree(codec->ac97);
1843 codec->ac97 = NULL;
1844 mutex_unlock(&codec->mutex);
1845 return -ENOMEM;
1846 }
1847
1848 codec->ac97->bus->ops = ops;
1849 codec->ac97->num = num;
1850
1851 /*
1852 * Mark the AC97 device to be created by us. This way we ensure that the
1853 * device will be registered with the device subsystem later on.
1854 */
1855 codec->ac97_created = 1;
1856
1857 mutex_unlock(&codec->mutex);
1858 return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1861
1862 /**
1863 * snd_soc_free_ac97_codec - free AC97 codec device
1864 * @codec: audio codec
1865 *
1866 * Frees AC97 codec device resources.
1867 */
1868 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1869 {
1870 mutex_lock(&codec->mutex);
1871 #ifdef CONFIG_SND_SOC_AC97_BUS
1872 soc_unregister_ac97_dai_link(codec);
1873 #endif
1874 kfree(codec->ac97->bus);
1875 kfree(codec->ac97);
1876 codec->ac97 = NULL;
1877 codec->ac97_created = 0;
1878 mutex_unlock(&codec->mutex);
1879 }
1880 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1881
1882 /**
1883 * snd_soc_update_bits - update codec register bits
1884 * @codec: audio codec
1885 * @reg: codec register
1886 * @mask: register mask
1887 * @value: new value
1888 *
1889 * Writes new register value.
1890 *
1891 * Returns 1 for change else 0.
1892 */
1893 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1894 unsigned int mask, unsigned int value)
1895 {
1896 int change;
1897 unsigned int old, new;
1898
1899 old = snd_soc_read(codec, reg);
1900 new = (old & ~mask) | value;
1901 change = old != new;
1902 if (change)
1903 snd_soc_write(codec, reg, new);
1904
1905 return change;
1906 }
1907 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1908
1909 /**
1910 * snd_soc_update_bits_locked - update codec register bits
1911 * @codec: audio codec
1912 * @reg: codec register
1913 * @mask: register mask
1914 * @value: new value
1915 *
1916 * Writes new register value, and takes the codec mutex.
1917 *
1918 * Returns 1 for change else 0.
1919 */
1920 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1921 unsigned short reg, unsigned int mask,
1922 unsigned int value)
1923 {
1924 int change;
1925
1926 mutex_lock(&codec->mutex);
1927 change = snd_soc_update_bits(codec, reg, mask, value);
1928 mutex_unlock(&codec->mutex);
1929
1930 return change;
1931 }
1932 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1933
1934 /**
1935 * snd_soc_test_bits - test register for change
1936 * @codec: audio codec
1937 * @reg: codec register
1938 * @mask: register mask
1939 * @value: new value
1940 *
1941 * Tests a register with a new value and checks if the new value is
1942 * different from the old value.
1943 *
1944 * Returns 1 for change else 0.
1945 */
1946 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1947 unsigned int mask, unsigned int value)
1948 {
1949 int change;
1950 unsigned int old, new;
1951
1952 old = snd_soc_read(codec, reg);
1953 new = (old & ~mask) | value;
1954 change = old != new;
1955
1956 return change;
1957 }
1958 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1959
1960 /**
1961 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1962 * @substream: the pcm substream
1963 * @hw: the hardware parameters
1964 *
1965 * Sets the substream runtime hardware parameters.
1966 */
1967 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1968 const struct snd_pcm_hardware *hw)
1969 {
1970 struct snd_pcm_runtime *runtime = substream->runtime;
1971 runtime->hw.info = hw->info;
1972 runtime->hw.formats = hw->formats;
1973 runtime->hw.period_bytes_min = hw->period_bytes_min;
1974 runtime->hw.period_bytes_max = hw->period_bytes_max;
1975 runtime->hw.periods_min = hw->periods_min;
1976 runtime->hw.periods_max = hw->periods_max;
1977 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1978 runtime->hw.fifo_size = hw->fifo_size;
1979 return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1982
1983 /**
1984 * snd_soc_cnew - create new control
1985 * @_template: control template
1986 * @data: control private data
1987 * @long_name: control long name
1988 *
1989 * Create a new mixer control from a template control.
1990 *
1991 * Returns 0 for success, else error.
1992 */
1993 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1994 void *data, char *long_name)
1995 {
1996 struct snd_kcontrol_new template;
1997
1998 memcpy(&template, _template, sizeof(template));
1999 if (long_name)
2000 template.name = long_name;
2001 template.index = 0;
2002
2003 return snd_ctl_new1(&template, data);
2004 }
2005 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2006
2007 /**
2008 * snd_soc_add_controls - add an array of controls to a codec.
2009 * Convienience function to add a list of controls. Many codecs were
2010 * duplicating this code.
2011 *
2012 * @codec: codec to add controls to
2013 * @controls: array of controls to add
2014 * @num_controls: number of elements in the array
2015 *
2016 * Return 0 for success, else error.
2017 */
2018 int snd_soc_add_controls(struct snd_soc_codec *codec,
2019 const struct snd_kcontrol_new *controls, int num_controls)
2020 {
2021 struct snd_card *card = codec->card->snd_card;
2022 int err, i;
2023
2024 for (i = 0; i < num_controls; i++) {
2025 const struct snd_kcontrol_new *control = &controls[i];
2026 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
2027 if (err < 0) {
2028 dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2029 codec->name, control->name, err);
2030 return err;
2031 }
2032 }
2033
2034 return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2037
2038 /**
2039 * snd_soc_info_enum_double - enumerated double mixer info callback
2040 * @kcontrol: mixer control
2041 * @uinfo: control element information
2042 *
2043 * Callback to provide information about a double enumerated
2044 * mixer control.
2045 *
2046 * Returns 0 for success.
2047 */
2048 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2049 struct snd_ctl_elem_info *uinfo)
2050 {
2051 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2052
2053 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2054 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2055 uinfo->value.enumerated.items = e->max;
2056
2057 if (uinfo->value.enumerated.item > e->max - 1)
2058 uinfo->value.enumerated.item = e->max - 1;
2059 strcpy(uinfo->value.enumerated.name,
2060 e->texts[uinfo->value.enumerated.item]);
2061 return 0;
2062 }
2063 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2064
2065 /**
2066 * snd_soc_get_enum_double - enumerated double mixer get callback
2067 * @kcontrol: mixer control
2068 * @ucontrol: control element information
2069 *
2070 * Callback to get the value of a double enumerated mixer.
2071 *
2072 * Returns 0 for success.
2073 */
2074 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2075 struct snd_ctl_elem_value *ucontrol)
2076 {
2077 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2078 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2079 unsigned int val, bitmask;
2080
2081 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2082 ;
2083 val = snd_soc_read(codec, e->reg);
2084 ucontrol->value.enumerated.item[0]
2085 = (val >> e->shift_l) & (bitmask - 1);
2086 if (e->shift_l != e->shift_r)
2087 ucontrol->value.enumerated.item[1] =
2088 (val >> e->shift_r) & (bitmask - 1);
2089
2090 return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2093
2094 /**
2095 * snd_soc_put_enum_double - enumerated double mixer put callback
2096 * @kcontrol: mixer control
2097 * @ucontrol: control element information
2098 *
2099 * Callback to set the value of a double enumerated mixer.
2100 *
2101 * Returns 0 for success.
2102 */
2103 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2104 struct snd_ctl_elem_value *ucontrol)
2105 {
2106 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2107 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2108 unsigned int val;
2109 unsigned int mask, bitmask;
2110
2111 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2112 ;
2113 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2114 return -EINVAL;
2115 val = ucontrol->value.enumerated.item[0] << e->shift_l;
2116 mask = (bitmask - 1) << e->shift_l;
2117 if (e->shift_l != e->shift_r) {
2118 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2119 return -EINVAL;
2120 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2121 mask |= (bitmask - 1) << e->shift_r;
2122 }
2123
2124 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2125 }
2126 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2127
2128 /**
2129 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2130 * @kcontrol: mixer control
2131 * @ucontrol: control element information
2132 *
2133 * Callback to get the value of a double semi enumerated mixer.
2134 *
2135 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2136 * used for handling bitfield coded enumeration for example.
2137 *
2138 * Returns 0 for success.
2139 */
2140 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2141 struct snd_ctl_elem_value *ucontrol)
2142 {
2143 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2144 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2145 unsigned int reg_val, val, mux;
2146
2147 reg_val = snd_soc_read(codec, e->reg);
2148 val = (reg_val >> e->shift_l) & e->mask;
2149 for (mux = 0; mux < e->max; mux++) {
2150 if (val == e->values[mux])
2151 break;
2152 }
2153 ucontrol->value.enumerated.item[0] = mux;
2154 if (e->shift_l != e->shift_r) {
2155 val = (reg_val >> e->shift_r) & e->mask;
2156 for (mux = 0; mux < e->max; mux++) {
2157 if (val == e->values[mux])
2158 break;
2159 }
2160 ucontrol->value.enumerated.item[1] = mux;
2161 }
2162
2163 return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2166
2167 /**
2168 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2169 * @kcontrol: mixer control
2170 * @ucontrol: control element information
2171 *
2172 * Callback to set the value of a double semi enumerated mixer.
2173 *
2174 * Semi enumerated mixer: the enumerated items are referred as values. Can be
2175 * used for handling bitfield coded enumeration for example.
2176 *
2177 * Returns 0 for success.
2178 */
2179 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2180 struct snd_ctl_elem_value *ucontrol)
2181 {
2182 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2183 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2184 unsigned int val;
2185 unsigned int mask;
2186
2187 if (ucontrol->value.enumerated.item[0] > e->max - 1)
2188 return -EINVAL;
2189 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2190 mask = e->mask << e->shift_l;
2191 if (e->shift_l != e->shift_r) {
2192 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2193 return -EINVAL;
2194 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2195 mask |= e->mask << e->shift_r;
2196 }
2197
2198 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2199 }
2200 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2201
2202 /**
2203 * snd_soc_info_enum_ext - external enumerated single mixer info callback
2204 * @kcontrol: mixer control
2205 * @uinfo: control element information
2206 *
2207 * Callback to provide information about an external enumerated
2208 * single mixer.
2209 *
2210 * Returns 0 for success.
2211 */
2212 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2213 struct snd_ctl_elem_info *uinfo)
2214 {
2215 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2216
2217 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2218 uinfo->count = 1;
2219 uinfo->value.enumerated.items = e->max;
2220
2221 if (uinfo->value.enumerated.item > e->max - 1)
2222 uinfo->value.enumerated.item = e->max - 1;
2223 strcpy(uinfo->value.enumerated.name,
2224 e->texts[uinfo->value.enumerated.item]);
2225 return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2228
2229 /**
2230 * snd_soc_info_volsw_ext - external single mixer info callback
2231 * @kcontrol: mixer control
2232 * @uinfo: control element information
2233 *
2234 * Callback to provide information about a single external mixer control.
2235 *
2236 * Returns 0 for success.
2237 */
2238 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2239 struct snd_ctl_elem_info *uinfo)
2240 {
2241 int max = kcontrol->private_value;
2242
2243 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2244 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2245 else
2246 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2247
2248 uinfo->count = 1;
2249 uinfo->value.integer.min = 0;
2250 uinfo->value.integer.max = max;
2251 return 0;
2252 }
2253 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2254
2255 /**
2256 * snd_soc_info_volsw - single mixer info callback
2257 * @kcontrol: mixer control
2258 * @uinfo: control element information
2259 *
2260 * Callback to provide information about a single mixer control.
2261 *
2262 * Returns 0 for success.
2263 */
2264 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2265 struct snd_ctl_elem_info *uinfo)
2266 {
2267 struct soc_mixer_control *mc =
2268 (struct soc_mixer_control *)kcontrol->private_value;
2269 int platform_max;
2270 unsigned int shift = mc->shift;
2271 unsigned int rshift = mc->rshift;
2272
2273 if (!mc->platform_max)
2274 mc->platform_max = mc->max;
2275 platform_max = mc->platform_max;
2276
2277 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2278 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2279 else
2280 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2281
2282 uinfo->count = shift == rshift ? 1 : 2;
2283 uinfo->value.integer.min = 0;
2284 uinfo->value.integer.max = platform_max;
2285 return 0;
2286 }
2287 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2288
2289 /**
2290 * snd_soc_get_volsw - single mixer get callback
2291 * @kcontrol: mixer control
2292 * @ucontrol: control element information
2293 *
2294 * Callback to get the value of a single mixer control.
2295 *
2296 * Returns 0 for success.
2297 */
2298 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2299 struct snd_ctl_elem_value *ucontrol)
2300 {
2301 struct soc_mixer_control *mc =
2302 (struct soc_mixer_control *)kcontrol->private_value;
2303 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2304 unsigned int reg = mc->reg;
2305 unsigned int shift = mc->shift;
2306 unsigned int rshift = mc->rshift;
2307 int max = mc->max;
2308 unsigned int mask = (1 << fls(max)) - 1;
2309 unsigned int invert = mc->invert;
2310
2311 ucontrol->value.integer.value[0] =
2312 (snd_soc_read(codec, reg) >> shift) & mask;
2313 if (shift != rshift)
2314 ucontrol->value.integer.value[1] =
2315 (snd_soc_read(codec, reg) >> rshift) & mask;
2316 if (invert) {
2317 ucontrol->value.integer.value[0] =
2318 max - ucontrol->value.integer.value[0];
2319 if (shift != rshift)
2320 ucontrol->value.integer.value[1] =
2321 max - ucontrol->value.integer.value[1];
2322 }
2323
2324 return 0;
2325 }
2326 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2327
2328 /**
2329 * snd_soc_put_volsw - single mixer put callback
2330 * @kcontrol: mixer control
2331 * @ucontrol: control element information
2332 *
2333 * Callback to set the value of a single mixer control.
2334 *
2335 * Returns 0 for success.
2336 */
2337 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2338 struct snd_ctl_elem_value *ucontrol)
2339 {
2340 struct soc_mixer_control *mc =
2341 (struct soc_mixer_control *)kcontrol->private_value;
2342 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2343 unsigned int reg = mc->reg;
2344 unsigned int shift = mc->shift;
2345 unsigned int rshift = mc->rshift;
2346 int max = mc->max;
2347 unsigned int mask = (1 << fls(max)) - 1;
2348 unsigned int invert = mc->invert;
2349 unsigned int val, val2, val_mask;
2350
2351 val = (ucontrol->value.integer.value[0] & mask);
2352 if (invert)
2353 val = max - val;
2354 val_mask = mask << shift;
2355 val = val << shift;
2356 if (shift != rshift) {
2357 val2 = (ucontrol->value.integer.value[1] & mask);
2358 if (invert)
2359 val2 = max - val2;
2360 val_mask |= mask << rshift;
2361 val |= val2 << rshift;
2362 }
2363 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2364 }
2365 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2366
2367 /**
2368 * snd_soc_info_volsw_2r - double mixer info callback
2369 * @kcontrol: mixer control
2370 * @uinfo: control element information
2371 *
2372 * Callback to provide information about a double mixer control that
2373 * spans 2 codec registers.
2374 *
2375 * Returns 0 for success.
2376 */
2377 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2378 struct snd_ctl_elem_info *uinfo)
2379 {
2380 struct soc_mixer_control *mc =
2381 (struct soc_mixer_control *)kcontrol->private_value;
2382 int platform_max;
2383
2384 if (!mc->platform_max)
2385 mc->platform_max = mc->max;
2386 platform_max = mc->platform_max;
2387
2388 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2389 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2390 else
2391 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2392
2393 uinfo->count = 2;
2394 uinfo->value.integer.min = 0;
2395 uinfo->value.integer.max = platform_max;
2396 return 0;
2397 }
2398 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2399
2400 /**
2401 * snd_soc_get_volsw_2r - double mixer get callback
2402 * @kcontrol: mixer control
2403 * @ucontrol: control element information
2404 *
2405 * Callback to get the value of a double mixer control that spans 2 registers.
2406 *
2407 * Returns 0 for success.
2408 */
2409 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2410 struct snd_ctl_elem_value *ucontrol)
2411 {
2412 struct soc_mixer_control *mc =
2413 (struct soc_mixer_control *)kcontrol->private_value;
2414 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2415 unsigned int reg = mc->reg;
2416 unsigned int reg2 = mc->rreg;
2417 unsigned int shift = mc->shift;
2418 int max = mc->max;
2419 unsigned int mask = (1 << fls(max)) - 1;
2420 unsigned int invert = mc->invert;
2421
2422 ucontrol->value.integer.value[0] =
2423 (snd_soc_read(codec, reg) >> shift) & mask;
2424 ucontrol->value.integer.value[1] =
2425 (snd_soc_read(codec, reg2) >> shift) & mask;
2426 if (invert) {
2427 ucontrol->value.integer.value[0] =
2428 max - ucontrol->value.integer.value[0];
2429 ucontrol->value.integer.value[1] =
2430 max - ucontrol->value.integer.value[1];
2431 }
2432
2433 return 0;
2434 }
2435 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2436
2437 /**
2438 * snd_soc_put_volsw_2r - double mixer set callback
2439 * @kcontrol: mixer control
2440 * @ucontrol: control element information
2441 *
2442 * Callback to set the value of a double mixer control that spans 2 registers.
2443 *
2444 * Returns 0 for success.
2445 */
2446 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2447 struct snd_ctl_elem_value *ucontrol)
2448 {
2449 struct soc_mixer_control *mc =
2450 (struct soc_mixer_control *)kcontrol->private_value;
2451 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2452 unsigned int reg = mc->reg;
2453 unsigned int reg2 = mc->rreg;
2454 unsigned int shift = mc->shift;
2455 int max = mc->max;
2456 unsigned int mask = (1 << fls(max)) - 1;
2457 unsigned int invert = mc->invert;
2458 int err;
2459 unsigned int val, val2, val_mask;
2460
2461 val_mask = mask << shift;
2462 val = (ucontrol->value.integer.value[0] & mask);
2463 val2 = (ucontrol->value.integer.value[1] & mask);
2464
2465 if (invert) {
2466 val = max - val;
2467 val2 = max - val2;
2468 }
2469
2470 val = val << shift;
2471 val2 = val2 << shift;
2472
2473 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2474 if (err < 0)
2475 return err;
2476
2477 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2478 return err;
2479 }
2480 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2481
2482 /**
2483 * snd_soc_info_volsw_s8 - signed mixer info callback
2484 * @kcontrol: mixer control
2485 * @uinfo: control element information
2486 *
2487 * Callback to provide information about a signed mixer control.
2488 *
2489 * Returns 0 for success.
2490 */
2491 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2492 struct snd_ctl_elem_info *uinfo)
2493 {
2494 struct soc_mixer_control *mc =
2495 (struct soc_mixer_control *)kcontrol->private_value;
2496 int platform_max;
2497 int min = mc->min;
2498
2499 if (!mc->platform_max)
2500 mc->platform_max = mc->max;
2501 platform_max = mc->platform_max;
2502
2503 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2504 uinfo->count = 2;
2505 uinfo->value.integer.min = 0;
2506 uinfo->value.integer.max = platform_max - min;
2507 return 0;
2508 }
2509 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2510
2511 /**
2512 * snd_soc_get_volsw_s8 - signed mixer get callback
2513 * @kcontrol: mixer control
2514 * @ucontrol: control element information
2515 *
2516 * Callback to get the value of a signed mixer control.
2517 *
2518 * Returns 0 for success.
2519 */
2520 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2521 struct snd_ctl_elem_value *ucontrol)
2522 {
2523 struct soc_mixer_control *mc =
2524 (struct soc_mixer_control *)kcontrol->private_value;
2525 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2526 unsigned int reg = mc->reg;
2527 int min = mc->min;
2528 int val = snd_soc_read(codec, reg);
2529
2530 ucontrol->value.integer.value[0] =
2531 ((signed char)(val & 0xff))-min;
2532 ucontrol->value.integer.value[1] =
2533 ((signed char)((val >> 8) & 0xff))-min;
2534 return 0;
2535 }
2536 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2537
2538 /**
2539 * snd_soc_put_volsw_sgn - signed mixer put callback
2540 * @kcontrol: mixer control
2541 * @ucontrol: control element information
2542 *
2543 * Callback to set the value of a signed mixer control.
2544 *
2545 * Returns 0 for success.
2546 */
2547 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2548 struct snd_ctl_elem_value *ucontrol)
2549 {
2550 struct soc_mixer_control *mc =
2551 (struct soc_mixer_control *)kcontrol->private_value;
2552 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2553 unsigned int reg = mc->reg;
2554 int min = mc->min;
2555 unsigned int val;
2556
2557 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2558 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2559
2560 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2561 }
2562 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2563
2564 /**
2565 * snd_soc_limit_volume - Set new limit to an existing volume control.
2566 *
2567 * @codec: where to look for the control
2568 * @name: Name of the control
2569 * @max: new maximum limit
2570 *
2571 * Return 0 for success, else error.
2572 */
2573 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2574 const char *name, int max)
2575 {
2576 struct snd_card *card = codec->card->snd_card;
2577 struct snd_kcontrol *kctl;
2578 struct soc_mixer_control *mc;
2579 int found = 0;
2580 int ret = -EINVAL;
2581
2582 /* Sanity check for name and max */
2583 if (unlikely(!name || max <= 0))
2584 return -EINVAL;
2585
2586 list_for_each_entry(kctl, &card->controls, list) {
2587 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2588 found = 1;
2589 break;
2590 }
2591 }
2592 if (found) {
2593 mc = (struct soc_mixer_control *)kctl->private_value;
2594 if (max <= mc->max) {
2595 mc->platform_max = max;
2596 ret = 0;
2597 }
2598 }
2599 return ret;
2600 }
2601 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2602
2603 /**
2604 * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2605 * mixer info callback
2606 * @kcontrol: mixer control
2607 * @uinfo: control element information
2608 *
2609 * Returns 0 for success.
2610 */
2611 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2612 struct snd_ctl_elem_info *uinfo)
2613 {
2614 struct soc_mixer_control *mc =
2615 (struct soc_mixer_control *)kcontrol->private_value;
2616 int max = mc->max;
2617 int min = mc->min;
2618
2619 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2620 uinfo->count = 2;
2621 uinfo->value.integer.min = 0;
2622 uinfo->value.integer.max = max-min;
2623
2624 return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2627
2628 /**
2629 * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2630 * mixer get callback
2631 * @kcontrol: mixer control
2632 * @uinfo: control element information
2633 *
2634 * Returns 0 for success.
2635 */
2636 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2637 struct snd_ctl_elem_value *ucontrol)
2638 {
2639 struct soc_mixer_control *mc =
2640 (struct soc_mixer_control *)kcontrol->private_value;
2641 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2642 unsigned int mask = (1<<mc->shift)-1;
2643 int min = mc->min;
2644 int val = snd_soc_read(codec, mc->reg) & mask;
2645 int valr = snd_soc_read(codec, mc->rreg) & mask;
2646
2647 ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2648 ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2649 return 0;
2650 }
2651 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2652
2653 /**
2654 * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2655 * mixer put callback
2656 * @kcontrol: mixer control
2657 * @uinfo: control element information
2658 *
2659 * Returns 0 for success.
2660 */
2661 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2662 struct snd_ctl_elem_value *ucontrol)
2663 {
2664 struct soc_mixer_control *mc =
2665 (struct soc_mixer_control *)kcontrol->private_value;
2666 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2667 unsigned int mask = (1<<mc->shift)-1;
2668 int min = mc->min;
2669 int ret;
2670 unsigned int val, valr, oval, ovalr;
2671
2672 val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2673 val &= mask;
2674 valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2675 valr &= mask;
2676
2677 oval = snd_soc_read(codec, mc->reg) & mask;
2678 ovalr = snd_soc_read(codec, mc->rreg) & mask;
2679
2680 ret = 0;
2681 if (oval != val) {
2682 ret = snd_soc_write(codec, mc->reg, val);
2683 if (ret < 0)
2684 return ret;
2685 }
2686 if (ovalr != valr) {
2687 ret = snd_soc_write(codec, mc->rreg, valr);
2688 if (ret < 0)
2689 return ret;
2690 }
2691
2692 return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2695
2696 /**
2697 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2698 * @dai: DAI
2699 * @clk_id: DAI specific clock ID
2700 * @freq: new clock frequency in Hz
2701 * @dir: new clock direction - input/output.
2702 *
2703 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2704 */
2705 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2706 unsigned int freq, int dir)
2707 {
2708 if (dai->driver && dai->driver->ops->set_sysclk)
2709 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2710 else
2711 return -EINVAL;
2712 }
2713 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2714
2715 /**
2716 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2717 * @dai: DAI
2718 * @div_id: DAI specific clock divider ID
2719 * @div: new clock divisor.
2720 *
2721 * Configures the clock dividers. This is used to derive the best DAI bit and
2722 * frame clocks from the system or master clock. It's best to set the DAI bit
2723 * and frame clocks as low as possible to save system power.
2724 */
2725 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2726 int div_id, int div)
2727 {
2728 if (dai->driver && dai->driver->ops->set_clkdiv)
2729 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2730 else
2731 return -EINVAL;
2732 }
2733 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2734
2735 /**
2736 * snd_soc_dai_set_pll - configure DAI PLL.
2737 * @dai: DAI
2738 * @pll_id: DAI specific PLL ID
2739 * @source: DAI specific source for the PLL
2740 * @freq_in: PLL input clock frequency in Hz
2741 * @freq_out: requested PLL output clock frequency in Hz
2742 *
2743 * Configures and enables PLL to generate output clock based on input clock.
2744 */
2745 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2746 unsigned int freq_in, unsigned int freq_out)
2747 {
2748 if (dai->driver && dai->driver->ops->set_pll)
2749 return dai->driver->ops->set_pll(dai, pll_id, source,
2750 freq_in, freq_out);
2751 else
2752 return -EINVAL;
2753 }
2754 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2755
2756 /**
2757 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2758 * @dai: DAI
2759 * @fmt: SND_SOC_DAIFMT_ format value.
2760 *
2761 * Configures the DAI hardware format and clocking.
2762 */
2763 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2764 {
2765 if (dai->driver && dai->driver->ops->set_fmt)
2766 return dai->driver->ops->set_fmt(dai, fmt);
2767 else
2768 return -EINVAL;
2769 }
2770 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2771
2772 /**
2773 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2774 * @dai: DAI
2775 * @tx_mask: bitmask representing active TX slots.
2776 * @rx_mask: bitmask representing active RX slots.
2777 * @slots: Number of slots in use.
2778 * @slot_width: Width in bits for each slot.
2779 *
2780 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2781 * specific.
2782 */
2783 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2784 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2785 {
2786 if (dai->driver && dai->driver->ops->set_tdm_slot)
2787 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2788 slots, slot_width);
2789 else
2790 return -EINVAL;
2791 }
2792 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2793
2794 /**
2795 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2796 * @dai: DAI
2797 * @tx_num: how many TX channels
2798 * @tx_slot: pointer to an array which imply the TX slot number channel
2799 * 0~num-1 uses
2800 * @rx_num: how many RX channels
2801 * @rx_slot: pointer to an array which imply the RX slot number channel
2802 * 0~num-1 uses
2803 *
2804 * configure the relationship between channel number and TDM slot number.
2805 */
2806 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2807 unsigned int tx_num, unsigned int *tx_slot,
2808 unsigned int rx_num, unsigned int *rx_slot)
2809 {
2810 if (dai->driver && dai->driver->ops->set_channel_map)
2811 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2812 rx_num, rx_slot);
2813 else
2814 return -EINVAL;
2815 }
2816 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2817
2818 /**
2819 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2820 * @dai: DAI
2821 * @tristate: tristate enable
2822 *
2823 * Tristates the DAI so that others can use it.
2824 */
2825 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2826 {
2827 if (dai->driver && dai->driver->ops->set_tristate)
2828 return dai->driver->ops->set_tristate(dai, tristate);
2829 else
2830 return -EINVAL;
2831 }
2832 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2833
2834 /**
2835 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2836 * @dai: DAI
2837 * @mute: mute enable
2838 *
2839 * Mutes the DAI DAC.
2840 */
2841 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2842 {
2843 if (dai->driver && dai->driver->ops->digital_mute)
2844 return dai->driver->ops->digital_mute(dai, mute);
2845 else
2846 return -EINVAL;
2847 }
2848 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2849
2850 /**
2851 * snd_soc_register_card - Register a card with the ASoC core
2852 *
2853 * @card: Card to register
2854 *
2855 * Note that currently this is an internal only function: it will be
2856 * exposed to machine drivers after further backporting of ASoC v2
2857 * registration APIs.
2858 */
2859 static int snd_soc_register_card(struct snd_soc_card *card)
2860 {
2861 int i;
2862
2863 if (!card->name || !card->dev)
2864 return -EINVAL;
2865
2866 card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2867 GFP_KERNEL);
2868 if (card->rtd == NULL)
2869 return -ENOMEM;
2870
2871 for (i = 0; i < card->num_links; i++)
2872 card->rtd[i].dai_link = &card->dai_link[i];
2873
2874 INIT_LIST_HEAD(&card->list);
2875 card->instantiated = 0;
2876 mutex_init(&card->mutex);
2877
2878 mutex_lock(&client_mutex);
2879 list_add(&card->list, &card_list);
2880 snd_soc_instantiate_cards();
2881 mutex_unlock(&client_mutex);
2882
2883 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2884
2885 return 0;
2886 }
2887
2888 /**
2889 * snd_soc_unregister_card - Unregister a card with the ASoC core
2890 *
2891 * @card: Card to unregister
2892 *
2893 * Note that currently this is an internal only function: it will be
2894 * exposed to machine drivers after further backporting of ASoC v2
2895 * registration APIs.
2896 */
2897 static int snd_soc_unregister_card(struct snd_soc_card *card)
2898 {
2899 mutex_lock(&client_mutex);
2900 list_del(&card->list);
2901 mutex_unlock(&client_mutex);
2902 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2903
2904 return 0;
2905 }
2906
2907 /*
2908 * Simplify DAI link configuration by removing ".-1" from device names
2909 * and sanitizing names.
2910 */
2911 static inline char *fmt_single_name(struct device *dev, int *id)
2912 {
2913 char *found, name[NAME_SIZE];
2914 int id1, id2;
2915
2916 if (dev_name(dev) == NULL)
2917 return NULL;
2918
2919 strncpy(name, dev_name(dev), NAME_SIZE);
2920
2921 /* are we a "%s.%d" name (platform and SPI components) */
2922 found = strstr(name, dev->driver->name);
2923 if (found) {
2924 /* get ID */
2925 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2926
2927 /* discard ID from name if ID == -1 */
2928 if (*id == -1)
2929 found[strlen(dev->driver->name)] = '\0';
2930 }
2931
2932 } else {
2933 /* I2C component devices are named "bus-addr" */
2934 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2935 char tmp[NAME_SIZE];
2936
2937 /* create unique ID number from I2C addr and bus */
2938 *id = ((id1 & 0xffff) << 16) + id2;
2939
2940 /* sanitize component name for DAI link creation */
2941 snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2942 strncpy(name, tmp, NAME_SIZE);
2943 } else
2944 *id = 0;
2945 }
2946
2947 return kstrdup(name, GFP_KERNEL);
2948 }
2949
2950 /*
2951 * Simplify DAI link naming for single devices with multiple DAIs by removing
2952 * any ".-1" and using the DAI name (instead of device name).
2953 */
2954 static inline char *fmt_multiple_name(struct device *dev,
2955 struct snd_soc_dai_driver *dai_drv)
2956 {
2957 if (dai_drv->name == NULL) {
2958 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
2959 dev_name(dev));
2960 return NULL;
2961 }
2962
2963 return kstrdup(dai_drv->name, GFP_KERNEL);
2964 }
2965
2966 /**
2967 * snd_soc_register_dai - Register a DAI with the ASoC core
2968 *
2969 * @dai: DAI to register
2970 */
2971 int snd_soc_register_dai(struct device *dev,
2972 struct snd_soc_dai_driver *dai_drv)
2973 {
2974 struct snd_soc_dai *dai;
2975
2976 dev_dbg(dev, "dai register %s\n", dev_name(dev));
2977
2978 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2979 if (dai == NULL)
2980 return -ENOMEM;
2981
2982 /* create DAI component name */
2983 dai->name = fmt_single_name(dev, &dai->id);
2984 if (dai->name == NULL) {
2985 kfree(dai);
2986 return -ENOMEM;
2987 }
2988
2989 dai->dev = dev;
2990 dai->driver = dai_drv;
2991 if (!dai->driver->ops)
2992 dai->driver->ops = &null_dai_ops;
2993
2994 mutex_lock(&client_mutex);
2995 list_add(&dai->list, &dai_list);
2996 snd_soc_instantiate_cards();
2997 mutex_unlock(&client_mutex);
2998
2999 pr_debug("Registered DAI '%s'\n", dai->name);
3000
3001 return 0;
3002 }
3003 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3004
3005 /**
3006 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3007 *
3008 * @dai: DAI to unregister
3009 */
3010 void snd_soc_unregister_dai(struct device *dev)
3011 {
3012 struct snd_soc_dai *dai;
3013
3014 list_for_each_entry(dai, &dai_list, list) {
3015 if (dev == dai->dev)
3016 goto found;
3017 }
3018 return;
3019
3020 found:
3021 mutex_lock(&client_mutex);
3022 list_del(&dai->list);
3023 mutex_unlock(&client_mutex);
3024
3025 pr_debug("Unregistered DAI '%s'\n", dai->name);
3026 kfree(dai->name);
3027 kfree(dai);
3028 }
3029 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3030
3031 /**
3032 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3033 *
3034 * @dai: Array of DAIs to register
3035 * @count: Number of DAIs
3036 */
3037 int snd_soc_register_dais(struct device *dev,
3038 struct snd_soc_dai_driver *dai_drv, size_t count)
3039 {
3040 struct snd_soc_dai *dai;
3041 int i, ret = 0;
3042
3043 dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3044
3045 for (i = 0; i < count; i++) {
3046
3047 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3048 if (dai == NULL) {
3049 ret = -ENOMEM;
3050 goto err;
3051 }
3052
3053 /* create DAI component name */
3054 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3055 if (dai->name == NULL) {
3056 kfree(dai);
3057 ret = -EINVAL;
3058 goto err;
3059 }
3060
3061 dai->dev = dev;
3062 dai->driver = &dai_drv[i];
3063 if (dai->driver->id)
3064 dai->id = dai->driver->id;
3065 else
3066 dai->id = i;
3067 if (!dai->driver->ops)
3068 dai->driver->ops = &null_dai_ops;
3069
3070 mutex_lock(&client_mutex);
3071 list_add(&dai->list, &dai_list);
3072 mutex_unlock(&client_mutex);
3073
3074 pr_debug("Registered DAI '%s'\n", dai->name);
3075 }
3076
3077 mutex_lock(&client_mutex);
3078 snd_soc_instantiate_cards();
3079 mutex_unlock(&client_mutex);
3080 return 0;
3081
3082 err:
3083 for (i--; i >= 0; i--)
3084 snd_soc_unregister_dai(dev);
3085
3086 return ret;
3087 }
3088 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3089
3090 /**
3091 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3092 *
3093 * @dai: Array of DAIs to unregister
3094 * @count: Number of DAIs
3095 */
3096 void snd_soc_unregister_dais(struct device *dev, size_t count)
3097 {
3098 int i;
3099
3100 for (i = 0; i < count; i++)
3101 snd_soc_unregister_dai(dev);
3102 }
3103 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3104
3105 /**
3106 * snd_soc_register_platform - Register a platform with the ASoC core
3107 *
3108 * @platform: platform to register
3109 */
3110 int snd_soc_register_platform(struct device *dev,
3111 struct snd_soc_platform_driver *platform_drv)
3112 {
3113 struct snd_soc_platform *platform;
3114
3115 dev_dbg(dev, "platform register %s\n", dev_name(dev));
3116
3117 platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3118 if (platform == NULL)
3119 return -ENOMEM;
3120
3121 /* create platform component name */
3122 platform->name = fmt_single_name(dev, &platform->id);
3123 if (platform->name == NULL) {
3124 kfree(platform);
3125 return -ENOMEM;
3126 }
3127
3128 platform->dev = dev;
3129 platform->driver = platform_drv;
3130
3131 mutex_lock(&client_mutex);
3132 list_add(&platform->list, &platform_list);
3133 snd_soc_instantiate_cards();
3134 mutex_unlock(&client_mutex);
3135
3136 pr_debug("Registered platform '%s'\n", platform->name);
3137
3138 return 0;
3139 }
3140 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3141
3142 /**
3143 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3144 *
3145 * @platform: platform to unregister
3146 */
3147 void snd_soc_unregister_platform(struct device *dev)
3148 {
3149 struct snd_soc_platform *platform;
3150
3151 list_for_each_entry(platform, &platform_list, list) {
3152 if (dev == platform->dev)
3153 goto found;
3154 }
3155 return;
3156
3157 found:
3158 mutex_lock(&client_mutex);
3159 list_del(&platform->list);
3160 mutex_unlock(&client_mutex);
3161
3162 pr_debug("Unregistered platform '%s'\n", platform->name);
3163 kfree(platform->name);
3164 kfree(platform);
3165 }
3166 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3167
3168 static u64 codec_format_map[] = {
3169 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3170 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3171 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3172 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3173 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3174 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3175 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3176 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3177 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3178 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3179 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3180 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3181 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3182 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3183 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3184 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3185 };
3186
3187 /* Fix up the DAI formats for endianness: codecs don't actually see
3188 * the endianness of the data but we're using the CPU format
3189 * definitions which do need to include endianness so we ensure that
3190 * codec DAIs always have both big and little endian variants set.
3191 */
3192 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3193 {
3194 int i;
3195
3196 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3197 if (stream->formats & codec_format_map[i])
3198 stream->formats |= codec_format_map[i];
3199 }
3200
3201 /**
3202 * snd_soc_register_codec - Register a codec with the ASoC core
3203 *
3204 * @codec: codec to register
3205 */
3206 int snd_soc_register_codec(struct device *dev,
3207 struct snd_soc_codec_driver *codec_drv,
3208 struct snd_soc_dai_driver *dai_drv, int num_dai)
3209 {
3210 struct snd_soc_codec *codec;
3211 int ret, i;
3212
3213 dev_dbg(dev, "codec register %s\n", dev_name(dev));
3214
3215 codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3216 if (codec == NULL)
3217 return -ENOMEM;
3218
3219 /* create CODEC component name */
3220 codec->name = fmt_single_name(dev, &codec->id);
3221 if (codec->name == NULL) {
3222 kfree(codec);
3223 return -ENOMEM;
3224 }
3225
3226 /* allocate CODEC register cache */
3227 if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3228
3229 if (codec_drv->reg_cache_default)
3230 codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3231 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3232 else
3233 codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3234 codec_drv->reg_word_size, GFP_KERNEL);
3235
3236 if (codec->reg_cache == NULL) {
3237 kfree(codec->name);
3238 kfree(codec);
3239 return -ENOMEM;
3240 }
3241 }
3242
3243 codec->dev = dev;
3244 codec->driver = codec_drv;
3245 codec->bias_level = SND_SOC_BIAS_OFF;
3246 codec->num_dai = num_dai;
3247 mutex_init(&codec->mutex);
3248 INIT_LIST_HEAD(&codec->dapm_widgets);
3249 INIT_LIST_HEAD(&codec->dapm_paths);
3250
3251 for (i = 0; i < num_dai; i++) {
3252 fixup_codec_formats(&dai_drv[i].playback);
3253 fixup_codec_formats(&dai_drv[i].capture);
3254 }
3255
3256 /* register any DAIs */
3257 if (num_dai) {
3258 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3259 if (ret < 0)
3260 goto error;
3261 }
3262
3263 mutex_lock(&client_mutex);
3264 list_add(&codec->list, &codec_list);
3265 snd_soc_instantiate_cards();
3266 mutex_unlock(&client_mutex);
3267
3268 pr_debug("Registered codec '%s'\n", codec->name);
3269 return 0;
3270
3271 error:
3272 if (codec->reg_cache)
3273 kfree(codec->reg_cache);
3274 kfree(codec->name);
3275 kfree(codec);
3276 return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3279
3280 /**
3281 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3282 *
3283 * @codec: codec to unregister
3284 */
3285 void snd_soc_unregister_codec(struct device *dev)
3286 {
3287 struct snd_soc_codec *codec;
3288 int i;
3289
3290 list_for_each_entry(codec, &codec_list, list) {
3291 if (dev == codec->dev)
3292 goto found;
3293 }
3294 return;
3295
3296 found:
3297 if (codec->num_dai)
3298 for (i = 0; i < codec->num_dai; i++)
3299 snd_soc_unregister_dai(dev);
3300
3301 mutex_lock(&client_mutex);
3302 list_del(&codec->list);
3303 mutex_unlock(&client_mutex);
3304
3305 pr_debug("Unregistered codec '%s'\n", codec->name);
3306
3307 if (codec->reg_cache)
3308 kfree(codec->reg_cache);
3309 kfree(codec->name);
3310 kfree(codec);
3311 }
3312 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3313
3314 static int __init snd_soc_init(void)
3315 {
3316 #ifdef CONFIG_DEBUG_FS
3317 debugfs_root = debugfs_create_dir("asoc", NULL);
3318 if (IS_ERR(debugfs_root) || !debugfs_root) {
3319 printk(KERN_WARNING
3320 "ASoC: Failed to create debugfs directory\n");
3321 debugfs_root = NULL;
3322 }
3323
3324 if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3325 &codec_list_fops))
3326 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3327
3328 if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3329 &dai_list_fops))
3330 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3331
3332 if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3333 &platform_list_fops))
3334 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3335 #endif
3336
3337 return platform_driver_register(&soc_driver);
3338 }
3339 module_init(snd_soc_init);
3340
3341 static void __exit snd_soc_exit(void)
3342 {
3343 #ifdef CONFIG_DEBUG_FS
3344 debugfs_remove_recursive(debugfs_root);
3345 #endif
3346 platform_driver_unregister(&soc_driver);
3347 }
3348 module_exit(snd_soc_exit);
3349
3350 /* Module information */
3351 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3352 MODULE_DESCRIPTION("ALSA SoC Core");
3353 MODULE_LICENSE("GPL");
3354 MODULE_ALIAS("platform:soc-audio");