]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - sound/usb/endpoint.c
Merge tag 'iomap-5.4-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-jammy-kernel.git] / sound / usb / endpoint.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 */
4
5 #include <linux/gfp.h>
6 #include <linux/init.h>
7 #include <linux/ratelimit.h>
8 #include <linux/usb.h>
9 #include <linux/usb/audio.h>
10 #include <linux/slab.h>
11
12 #include <sound/core.h>
13 #include <sound/pcm.h>
14 #include <sound/pcm_params.h>
15
16 #include "usbaudio.h"
17 #include "helper.h"
18 #include "card.h"
19 #include "endpoint.h"
20 #include "pcm.h"
21 #include "quirks.h"
22
23 #define EP_FLAG_RUNNING 1
24 #define EP_FLAG_STOPPING 2
25
26 /*
27 * snd_usb_endpoint is a model that abstracts everything related to an
28 * USB endpoint and its streaming.
29 *
30 * There are functions to activate and deactivate the streaming URBs and
31 * optional callbacks to let the pcm logic handle the actual content of the
32 * packets for playback and record. Thus, the bus streaming and the audio
33 * handlers are fully decoupled.
34 *
35 * There are two different types of endpoints in audio applications.
36 *
37 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
38 * inbound and outbound traffic.
39 *
40 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
41 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
42 * (3 or 4 bytes).
43 *
44 * Each endpoint has to be configured prior to being used by calling
45 * snd_usb_endpoint_set_params().
46 *
47 * The model incorporates a reference counting, so that multiple users
48 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
49 * only the first user will effectively start the URBs, and only the last
50 * one to stop it will tear the URBs down again.
51 */
52
53 /*
54 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
55 * this will overflow at approx 524 kHz
56 */
57 static inline unsigned get_usb_full_speed_rate(unsigned int rate)
58 {
59 return ((rate << 13) + 62) / 125;
60 }
61
62 /*
63 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
64 * this will overflow at approx 4 MHz
65 */
66 static inline unsigned get_usb_high_speed_rate(unsigned int rate)
67 {
68 return ((rate << 10) + 62) / 125;
69 }
70
71 /*
72 * release a urb data
73 */
74 static void release_urb_ctx(struct snd_urb_ctx *u)
75 {
76 if (u->buffer_size)
77 usb_free_coherent(u->ep->chip->dev, u->buffer_size,
78 u->urb->transfer_buffer,
79 u->urb->transfer_dma);
80 usb_free_urb(u->urb);
81 u->urb = NULL;
82 }
83
84 static const char *usb_error_string(int err)
85 {
86 switch (err) {
87 case -ENODEV:
88 return "no device";
89 case -ENOENT:
90 return "endpoint not enabled";
91 case -EPIPE:
92 return "endpoint stalled";
93 case -ENOSPC:
94 return "not enough bandwidth";
95 case -ESHUTDOWN:
96 return "device disabled";
97 case -EHOSTUNREACH:
98 return "device suspended";
99 case -EINVAL:
100 case -EAGAIN:
101 case -EFBIG:
102 case -EMSGSIZE:
103 return "internal error";
104 default:
105 return "unknown error";
106 }
107 }
108
109 /**
110 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
111 *
112 * @ep: The snd_usb_endpoint
113 *
114 * Determine whether an endpoint is driven by an implicit feedback
115 * data endpoint source.
116 */
117 int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
118 {
119 return ep->sync_master &&
120 ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
121 ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
122 usb_pipeout(ep->pipe);
123 }
124
125 /*
126 * For streaming based on information derived from sync endpoints,
127 * prepare_outbound_urb_sizes() will call next_packet_size() to
128 * determine the number of samples to be sent in the next packet.
129 *
130 * For implicit feedback, next_packet_size() is unused.
131 */
132 int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
133 {
134 unsigned long flags;
135 int ret;
136
137 if (ep->fill_max)
138 return ep->maxframesize;
139
140 spin_lock_irqsave(&ep->lock, flags);
141 ep->phase = (ep->phase & 0xffff)
142 + (ep->freqm << ep->datainterval);
143 ret = min(ep->phase >> 16, ep->maxframesize);
144 spin_unlock_irqrestore(&ep->lock, flags);
145
146 return ret;
147 }
148
149 static void retire_outbound_urb(struct snd_usb_endpoint *ep,
150 struct snd_urb_ctx *urb_ctx)
151 {
152 if (ep->retire_data_urb)
153 ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
154 }
155
156 static void retire_inbound_urb(struct snd_usb_endpoint *ep,
157 struct snd_urb_ctx *urb_ctx)
158 {
159 struct urb *urb = urb_ctx->urb;
160
161 if (unlikely(ep->skip_packets > 0)) {
162 ep->skip_packets--;
163 return;
164 }
165
166 if (ep->sync_slave)
167 snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);
168
169 if (ep->retire_data_urb)
170 ep->retire_data_urb(ep->data_subs, urb);
171 }
172
173 static void prepare_silent_urb(struct snd_usb_endpoint *ep,
174 struct snd_urb_ctx *ctx)
175 {
176 struct urb *urb = ctx->urb;
177 unsigned int offs = 0;
178 unsigned int extra = 0;
179 __le32 packet_length;
180 int i;
181
182 /* For tx_length_quirk, put packet length at start of packet */
183 if (ep->chip->tx_length_quirk)
184 extra = sizeof(packet_length);
185
186 for (i = 0; i < ctx->packets; ++i) {
187 unsigned int offset;
188 unsigned int length;
189 int counts;
190
191 if (ctx->packet_size[i])
192 counts = ctx->packet_size[i];
193 else
194 counts = snd_usb_endpoint_next_packet_size(ep);
195
196 length = counts * ep->stride; /* number of silent bytes */
197 offset = offs * ep->stride + extra * i;
198 urb->iso_frame_desc[i].offset = offset;
199 urb->iso_frame_desc[i].length = length + extra;
200 if (extra) {
201 packet_length = cpu_to_le32(length);
202 memcpy(urb->transfer_buffer + offset,
203 &packet_length, sizeof(packet_length));
204 }
205 memset(urb->transfer_buffer + offset + extra,
206 ep->silence_value, length);
207 offs += counts;
208 }
209
210 urb->number_of_packets = ctx->packets;
211 urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
212 }
213
214 /*
215 * Prepare a PLAYBACK urb for submission to the bus.
216 */
217 static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
218 struct snd_urb_ctx *ctx)
219 {
220 struct urb *urb = ctx->urb;
221 unsigned char *cp = urb->transfer_buffer;
222
223 urb->dev = ep->chip->dev; /* we need to set this at each time */
224
225 switch (ep->type) {
226 case SND_USB_ENDPOINT_TYPE_DATA:
227 if (ep->prepare_data_urb) {
228 ep->prepare_data_urb(ep->data_subs, urb);
229 } else {
230 /* no data provider, so send silence */
231 prepare_silent_urb(ep, ctx);
232 }
233 break;
234
235 case SND_USB_ENDPOINT_TYPE_SYNC:
236 if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
237 /*
238 * fill the length and offset of each urb descriptor.
239 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
240 */
241 urb->iso_frame_desc[0].length = 4;
242 urb->iso_frame_desc[0].offset = 0;
243 cp[0] = ep->freqn;
244 cp[1] = ep->freqn >> 8;
245 cp[2] = ep->freqn >> 16;
246 cp[3] = ep->freqn >> 24;
247 } else {
248 /*
249 * fill the length and offset of each urb descriptor.
250 * the fixed 10.14 frequency is passed through the pipe.
251 */
252 urb->iso_frame_desc[0].length = 3;
253 urb->iso_frame_desc[0].offset = 0;
254 cp[0] = ep->freqn >> 2;
255 cp[1] = ep->freqn >> 10;
256 cp[2] = ep->freqn >> 18;
257 }
258
259 break;
260 }
261 }
262
263 /*
264 * Prepare a CAPTURE or SYNC urb for submission to the bus.
265 */
266 static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
267 struct snd_urb_ctx *urb_ctx)
268 {
269 int i, offs;
270 struct urb *urb = urb_ctx->urb;
271
272 urb->dev = ep->chip->dev; /* we need to set this at each time */
273
274 switch (ep->type) {
275 case SND_USB_ENDPOINT_TYPE_DATA:
276 offs = 0;
277 for (i = 0; i < urb_ctx->packets; i++) {
278 urb->iso_frame_desc[i].offset = offs;
279 urb->iso_frame_desc[i].length = ep->curpacksize;
280 offs += ep->curpacksize;
281 }
282
283 urb->transfer_buffer_length = offs;
284 urb->number_of_packets = urb_ctx->packets;
285 break;
286
287 case SND_USB_ENDPOINT_TYPE_SYNC:
288 urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
289 urb->iso_frame_desc[0].offset = 0;
290 break;
291 }
292 }
293
294 /*
295 * Send output urbs that have been prepared previously. URBs are dequeued
296 * from ep->ready_playback_urbs and in case there there aren't any available
297 * or there are no packets that have been prepared, this function does
298 * nothing.
299 *
300 * The reason why the functionality of sending and preparing URBs is separated
301 * is that host controllers don't guarantee the order in which they return
302 * inbound and outbound packets to their submitters.
303 *
304 * This function is only used for implicit feedback endpoints. For endpoints
305 * driven by dedicated sync endpoints, URBs are immediately re-submitted
306 * from their completion handler.
307 */
308 static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
309 {
310 while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {
311
312 unsigned long flags;
313 struct snd_usb_packet_info *uninitialized_var(packet);
314 struct snd_urb_ctx *ctx = NULL;
315 int err, i;
316
317 spin_lock_irqsave(&ep->lock, flags);
318 if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
319 packet = ep->next_packet + ep->next_packet_read_pos;
320 ep->next_packet_read_pos++;
321 ep->next_packet_read_pos %= MAX_URBS;
322
323 /* take URB out of FIFO */
324 if (!list_empty(&ep->ready_playback_urbs))
325 ctx = list_first_entry(&ep->ready_playback_urbs,
326 struct snd_urb_ctx, ready_list);
327 }
328 spin_unlock_irqrestore(&ep->lock, flags);
329
330 if (ctx == NULL)
331 return;
332
333 list_del_init(&ctx->ready_list);
334
335 /* copy over the length information */
336 for (i = 0; i < packet->packets; i++)
337 ctx->packet_size[i] = packet->packet_size[i];
338
339 /* call the data handler to fill in playback data */
340 prepare_outbound_urb(ep, ctx);
341
342 err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
343 if (err < 0)
344 usb_audio_err(ep->chip,
345 "Unable to submit urb #%d: %d (urb %p)\n",
346 ctx->index, err, ctx->urb);
347 else
348 set_bit(ctx->index, &ep->active_mask);
349 }
350 }
351
352 /*
353 * complete callback for urbs
354 */
355 static void snd_complete_urb(struct urb *urb)
356 {
357 struct snd_urb_ctx *ctx = urb->context;
358 struct snd_usb_endpoint *ep = ctx->ep;
359 struct snd_pcm_substream *substream;
360 unsigned long flags;
361 int err;
362
363 if (unlikely(urb->status == -ENOENT || /* unlinked */
364 urb->status == -ENODEV || /* device removed */
365 urb->status == -ECONNRESET || /* unlinked */
366 urb->status == -ESHUTDOWN)) /* device disabled */
367 goto exit_clear;
368 /* device disconnected */
369 if (unlikely(atomic_read(&ep->chip->shutdown)))
370 goto exit_clear;
371
372 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
373 goto exit_clear;
374
375 if (usb_pipeout(ep->pipe)) {
376 retire_outbound_urb(ep, ctx);
377 /* can be stopped during retire callback */
378 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
379 goto exit_clear;
380
381 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
382 spin_lock_irqsave(&ep->lock, flags);
383 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
384 spin_unlock_irqrestore(&ep->lock, flags);
385 queue_pending_output_urbs(ep);
386
387 goto exit_clear;
388 }
389
390 prepare_outbound_urb(ep, ctx);
391 } else {
392 retire_inbound_urb(ep, ctx);
393 /* can be stopped during retire callback */
394 if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
395 goto exit_clear;
396
397 prepare_inbound_urb(ep, ctx);
398 }
399
400 err = usb_submit_urb(urb, GFP_ATOMIC);
401 if (err == 0)
402 return;
403
404 usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
405 if (ep->data_subs && ep->data_subs->pcm_substream) {
406 substream = ep->data_subs->pcm_substream;
407 snd_pcm_stop_xrun(substream);
408 }
409
410 exit_clear:
411 clear_bit(ctx->index, &ep->active_mask);
412 }
413
414 /**
415 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
416 *
417 * @chip: The chip
418 * @alts: The USB host interface
419 * @ep_num: The number of the endpoint to use
420 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
421 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
422 *
423 * If the requested endpoint has not been added to the given chip before,
424 * a new instance is created. Otherwise, a pointer to the previoulsy
425 * created instance is returned. In case of any error, NULL is returned.
426 *
427 * New endpoints will be added to chip->ep_list and must be freed by
428 * calling snd_usb_endpoint_free().
429 *
430 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
431 * bNumEndpoints > 1 beforehand.
432 */
433 struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
434 struct usb_host_interface *alts,
435 int ep_num, int direction, int type)
436 {
437 struct snd_usb_endpoint *ep;
438 int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
439
440 if (WARN_ON(!alts))
441 return NULL;
442
443 mutex_lock(&chip->mutex);
444
445 list_for_each_entry(ep, &chip->ep_list, list) {
446 if (ep->ep_num == ep_num &&
447 ep->iface == alts->desc.bInterfaceNumber &&
448 ep->altsetting == alts->desc.bAlternateSetting) {
449 usb_audio_dbg(ep->chip,
450 "Re-using EP %x in iface %d,%d @%p\n",
451 ep_num, ep->iface, ep->altsetting, ep);
452 goto __exit_unlock;
453 }
454 }
455
456 usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
457 is_playback ? "playback" : "capture",
458 type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
459 ep_num);
460
461 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
462 if (!ep)
463 goto __exit_unlock;
464
465 ep->chip = chip;
466 spin_lock_init(&ep->lock);
467 ep->type = type;
468 ep->ep_num = ep_num;
469 ep->iface = alts->desc.bInterfaceNumber;
470 ep->altsetting = alts->desc.bAlternateSetting;
471 INIT_LIST_HEAD(&ep->ready_playback_urbs);
472 ep_num &= USB_ENDPOINT_NUMBER_MASK;
473
474 if (is_playback)
475 ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
476 else
477 ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);
478
479 if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
480 if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
481 get_endpoint(alts, 1)->bRefresh >= 1 &&
482 get_endpoint(alts, 1)->bRefresh <= 9)
483 ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
484 else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
485 ep->syncinterval = 1;
486 else if (get_endpoint(alts, 1)->bInterval >= 1 &&
487 get_endpoint(alts, 1)->bInterval <= 16)
488 ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
489 else
490 ep->syncinterval = 3;
491
492 ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
493 }
494
495 list_add_tail(&ep->list, &chip->ep_list);
496
497 __exit_unlock:
498 mutex_unlock(&chip->mutex);
499
500 return ep;
501 }
502
503 /*
504 * wait until all urbs are processed.
505 */
506 static int wait_clear_urbs(struct snd_usb_endpoint *ep)
507 {
508 unsigned long end_time = jiffies + msecs_to_jiffies(1000);
509 int alive;
510
511 do {
512 alive = bitmap_weight(&ep->active_mask, ep->nurbs);
513 if (!alive)
514 break;
515
516 schedule_timeout_uninterruptible(1);
517 } while (time_before(jiffies, end_time));
518
519 if (alive)
520 usb_audio_err(ep->chip,
521 "timeout: still %d active urbs on EP #%x\n",
522 alive, ep->ep_num);
523 clear_bit(EP_FLAG_STOPPING, &ep->flags);
524
525 ep->data_subs = NULL;
526 ep->sync_slave = NULL;
527 ep->retire_data_urb = NULL;
528 ep->prepare_data_urb = NULL;
529
530 return 0;
531 }
532
533 /* sync the pending stop operation;
534 * this function itself doesn't trigger the stop operation
535 */
536 void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
537 {
538 if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
539 wait_clear_urbs(ep);
540 }
541
542 /*
543 * unlink active urbs.
544 */
545 static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
546 {
547 unsigned int i;
548
549 if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */
550 return -EBADFD;
551
552 clear_bit(EP_FLAG_RUNNING, &ep->flags);
553
554 INIT_LIST_HEAD(&ep->ready_playback_urbs);
555 ep->next_packet_read_pos = 0;
556 ep->next_packet_write_pos = 0;
557
558 for (i = 0; i < ep->nurbs; i++) {
559 if (test_bit(i, &ep->active_mask)) {
560 if (!test_and_set_bit(i, &ep->unlink_mask)) {
561 struct urb *u = ep->urb[i].urb;
562 usb_unlink_urb(u);
563 }
564 }
565 }
566
567 return 0;
568 }
569
570 /*
571 * release an endpoint's urbs
572 */
573 static void release_urbs(struct snd_usb_endpoint *ep, int force)
574 {
575 int i;
576
577 /* route incoming urbs to nirvana */
578 ep->retire_data_urb = NULL;
579 ep->prepare_data_urb = NULL;
580
581 /* stop urbs */
582 deactivate_urbs(ep, force);
583 wait_clear_urbs(ep);
584
585 for (i = 0; i < ep->nurbs; i++)
586 release_urb_ctx(&ep->urb[i]);
587
588 if (ep->syncbuf)
589 usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
590 ep->syncbuf, ep->sync_dma);
591
592 ep->syncbuf = NULL;
593 ep->nurbs = 0;
594 }
595
596 /*
597 * configure a data endpoint
598 */
599 static int data_ep_set_params(struct snd_usb_endpoint *ep,
600 snd_pcm_format_t pcm_format,
601 unsigned int channels,
602 unsigned int period_bytes,
603 unsigned int frames_per_period,
604 unsigned int periods_per_buffer,
605 struct audioformat *fmt,
606 struct snd_usb_endpoint *sync_ep)
607 {
608 unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
609 unsigned int max_packs_per_period, urbs_per_period, urb_packs;
610 unsigned int max_urbs, i;
611 int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
612 int tx_length_quirk = (ep->chip->tx_length_quirk &&
613 usb_pipeout(ep->pipe));
614
615 if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
616 /*
617 * When operating in DSD DOP mode, the size of a sample frame
618 * in hardware differs from the actual physical format width
619 * because we need to make room for the DOP markers.
620 */
621 frame_bits += channels << 3;
622 }
623
624 ep->datainterval = fmt->datainterval;
625 ep->stride = frame_bits >> 3;
626
627 switch (pcm_format) {
628 case SNDRV_PCM_FORMAT_U8:
629 ep->silence_value = 0x80;
630 break;
631 case SNDRV_PCM_FORMAT_DSD_U8:
632 case SNDRV_PCM_FORMAT_DSD_U16_LE:
633 case SNDRV_PCM_FORMAT_DSD_U32_LE:
634 case SNDRV_PCM_FORMAT_DSD_U16_BE:
635 case SNDRV_PCM_FORMAT_DSD_U32_BE:
636 ep->silence_value = 0x69;
637 break;
638 default:
639 ep->silence_value = 0;
640 }
641
642 /* assume max. frequency is 50% higher than nominal */
643 ep->freqmax = ep->freqn + (ep->freqn >> 1);
644 /* Round up freqmax to nearest integer in order to calculate maximum
645 * packet size, which must represent a whole number of frames.
646 * This is accomplished by adding 0x0.ffff before converting the
647 * Q16.16 format into integer.
648 * In order to accurately calculate the maximum packet size when
649 * the data interval is more than 1 (i.e. ep->datainterval > 0),
650 * multiply by the data interval prior to rounding. For instance,
651 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
652 * frames with a data interval of 1, but 11 (10.25) frames with a
653 * data interval of 2.
654 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
655 * maximum datainterval value of 3, at USB full speed, higher for
656 * USB high speed, noting that ep->freqmax is in units of
657 * frames per packet in Q16.16 format.)
658 */
659 maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
660 (frame_bits >> 3);
661 if (tx_length_quirk)
662 maxsize += sizeof(__le32); /* Space for length descriptor */
663 /* but wMaxPacketSize might reduce this */
664 if (ep->maxpacksize && ep->maxpacksize < maxsize) {
665 /* whatever fits into a max. size packet */
666 unsigned int data_maxsize = maxsize = ep->maxpacksize;
667
668 if (tx_length_quirk)
669 /* Need to remove the length descriptor to calc freq */
670 data_maxsize -= sizeof(__le32);
671 ep->freqmax = (data_maxsize / (frame_bits >> 3))
672 << (16 - ep->datainterval);
673 }
674
675 if (ep->fill_max)
676 ep->curpacksize = ep->maxpacksize;
677 else
678 ep->curpacksize = maxsize;
679
680 if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
681 packs_per_ms = 8 >> ep->datainterval;
682 max_packs_per_urb = MAX_PACKS_HS;
683 } else {
684 packs_per_ms = 1;
685 max_packs_per_urb = MAX_PACKS;
686 }
687 if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
688 max_packs_per_urb = min(max_packs_per_urb,
689 1U << sync_ep->syncinterval);
690 max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);
691
692 /*
693 * Capture endpoints need to use small URBs because there's no way
694 * to tell in advance where the next period will end, and we don't
695 * want the next URB to complete much after the period ends.
696 *
697 * Playback endpoints with implicit sync much use the same parameters
698 * as their corresponding capture endpoint.
699 */
700 if (usb_pipein(ep->pipe) ||
701 snd_usb_endpoint_implicit_feedback_sink(ep)) {
702
703 urb_packs = packs_per_ms;
704 /*
705 * Wireless devices can poll at a max rate of once per 4ms.
706 * For dataintervals less than 5, increase the packet count to
707 * allow the host controller to use bursting to fill in the
708 * gaps.
709 */
710 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
711 int interval = ep->datainterval;
712 while (interval < 5) {
713 urb_packs <<= 1;
714 ++interval;
715 }
716 }
717 /* make capture URBs <= 1 ms and smaller than a period */
718 urb_packs = min(max_packs_per_urb, urb_packs);
719 while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
720 urb_packs >>= 1;
721 ep->nurbs = MAX_URBS;
722
723 /*
724 * Playback endpoints without implicit sync are adjusted so that
725 * a period fits as evenly as possible in the smallest number of
726 * URBs. The total number of URBs is adjusted to the size of the
727 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
728 */
729 } else {
730 /* determine how small a packet can be */
731 minsize = (ep->freqn >> (16 - ep->datainterval)) *
732 (frame_bits >> 3);
733 /* with sync from device, assume it can be 12% lower */
734 if (sync_ep)
735 minsize -= minsize >> 3;
736 minsize = max(minsize, 1u);
737
738 /* how many packets will contain an entire ALSA period? */
739 max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);
740
741 /* how many URBs will contain a period? */
742 urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
743 max_packs_per_urb);
744 /* how many packets are needed in each URB? */
745 urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);
746
747 /* limit the number of frames in a single URB */
748 ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
749 urbs_per_period);
750
751 /* try to use enough URBs to contain an entire ALSA buffer */
752 max_urbs = min((unsigned) MAX_URBS,
753 MAX_QUEUE * packs_per_ms / urb_packs);
754 ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
755 }
756
757 /* allocate and initialize data urbs */
758 for (i = 0; i < ep->nurbs; i++) {
759 struct snd_urb_ctx *u = &ep->urb[i];
760 u->index = i;
761 u->ep = ep;
762 u->packets = urb_packs;
763 u->buffer_size = maxsize * u->packets;
764
765 if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
766 u->packets++; /* for transfer delimiter */
767 u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
768 if (!u->urb)
769 goto out_of_memory;
770
771 u->urb->transfer_buffer =
772 usb_alloc_coherent(ep->chip->dev, u->buffer_size,
773 GFP_KERNEL, &u->urb->transfer_dma);
774 if (!u->urb->transfer_buffer)
775 goto out_of_memory;
776 u->urb->pipe = ep->pipe;
777 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
778 u->urb->interval = 1 << ep->datainterval;
779 u->urb->context = u;
780 u->urb->complete = snd_complete_urb;
781 INIT_LIST_HEAD(&u->ready_list);
782 }
783
784 return 0;
785
786 out_of_memory:
787 release_urbs(ep, 0);
788 return -ENOMEM;
789 }
790
791 /*
792 * configure a sync endpoint
793 */
794 static int sync_ep_set_params(struct snd_usb_endpoint *ep)
795 {
796 int i;
797
798 ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
799 GFP_KERNEL, &ep->sync_dma);
800 if (!ep->syncbuf)
801 return -ENOMEM;
802
803 for (i = 0; i < SYNC_URBS; i++) {
804 struct snd_urb_ctx *u = &ep->urb[i];
805 u->index = i;
806 u->ep = ep;
807 u->packets = 1;
808 u->urb = usb_alloc_urb(1, GFP_KERNEL);
809 if (!u->urb)
810 goto out_of_memory;
811 u->urb->transfer_buffer = ep->syncbuf + i * 4;
812 u->urb->transfer_dma = ep->sync_dma + i * 4;
813 u->urb->transfer_buffer_length = 4;
814 u->urb->pipe = ep->pipe;
815 u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
816 u->urb->number_of_packets = 1;
817 u->urb->interval = 1 << ep->syncinterval;
818 u->urb->context = u;
819 u->urb->complete = snd_complete_urb;
820 }
821
822 ep->nurbs = SYNC_URBS;
823
824 return 0;
825
826 out_of_memory:
827 release_urbs(ep, 0);
828 return -ENOMEM;
829 }
830
831 /**
832 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
833 *
834 * @ep: the snd_usb_endpoint to configure
835 * @pcm_format: the audio fomat.
836 * @channels: the number of audio channels.
837 * @period_bytes: the number of bytes in one alsa period.
838 * @period_frames: the number of frames in one alsa period.
839 * @buffer_periods: the number of periods in one alsa buffer.
840 * @rate: the frame rate.
841 * @fmt: the USB audio format information
842 * @sync_ep: the sync endpoint to use, if any
843 *
844 * Determine the number of URBs to be used on this endpoint.
845 * An endpoint must be configured before it can be started.
846 * An endpoint that is already running can not be reconfigured.
847 */
848 int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
849 snd_pcm_format_t pcm_format,
850 unsigned int channels,
851 unsigned int period_bytes,
852 unsigned int period_frames,
853 unsigned int buffer_periods,
854 unsigned int rate,
855 struct audioformat *fmt,
856 struct snd_usb_endpoint *sync_ep)
857 {
858 int err;
859
860 if (ep->use_count != 0) {
861 usb_audio_warn(ep->chip,
862 "Unable to change format on ep #%x: already in use\n",
863 ep->ep_num);
864 return -EBUSY;
865 }
866
867 /* release old buffers, if any */
868 release_urbs(ep, 0);
869
870 ep->datainterval = fmt->datainterval;
871 ep->maxpacksize = fmt->maxpacksize;
872 ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
873
874 if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
875 ep->freqn = get_usb_full_speed_rate(rate);
876 else
877 ep->freqn = get_usb_high_speed_rate(rate);
878
879 /* calculate the frequency in 16.16 format */
880 ep->freqm = ep->freqn;
881 ep->freqshift = INT_MIN;
882
883 ep->phase = 0;
884
885 switch (ep->type) {
886 case SND_USB_ENDPOINT_TYPE_DATA:
887 err = data_ep_set_params(ep, pcm_format, channels,
888 period_bytes, period_frames,
889 buffer_periods, fmt, sync_ep);
890 break;
891 case SND_USB_ENDPOINT_TYPE_SYNC:
892 err = sync_ep_set_params(ep);
893 break;
894 default:
895 err = -EINVAL;
896 }
897
898 usb_audio_dbg(ep->chip,
899 "Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
900 ep->ep_num, ep->type, ep->nurbs, err);
901
902 return err;
903 }
904
905 /**
906 * snd_usb_endpoint_start: start an snd_usb_endpoint
907 *
908 * @ep: the endpoint to start
909 *
910 * A call to this function will increment the use count of the endpoint.
911 * In case it is not already running, the URBs for this endpoint will be
912 * submitted. Otherwise, this function does nothing.
913 *
914 * Must be balanced to calls of snd_usb_endpoint_stop().
915 *
916 * Returns an error if the URB submission failed, 0 in all other cases.
917 */
918 int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
919 {
920 int err;
921 unsigned int i;
922
923 if (atomic_read(&ep->chip->shutdown))
924 return -EBADFD;
925
926 /* already running? */
927 if (++ep->use_count != 1)
928 return 0;
929
930 /* just to be sure */
931 deactivate_urbs(ep, false);
932
933 ep->active_mask = 0;
934 ep->unlink_mask = 0;
935 ep->phase = 0;
936
937 snd_usb_endpoint_start_quirk(ep);
938
939 /*
940 * If this endpoint has a data endpoint as implicit feedback source,
941 * don't start the urbs here. Instead, mark them all as available,
942 * wait for the record urbs to return and queue the playback urbs
943 * from that context.
944 */
945
946 set_bit(EP_FLAG_RUNNING, &ep->flags);
947
948 if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
949 for (i = 0; i < ep->nurbs; i++) {
950 struct snd_urb_ctx *ctx = ep->urb + i;
951 list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
952 }
953
954 return 0;
955 }
956
957 for (i = 0; i < ep->nurbs; i++) {
958 struct urb *urb = ep->urb[i].urb;
959
960 if (snd_BUG_ON(!urb))
961 goto __error;
962
963 if (usb_pipeout(ep->pipe)) {
964 prepare_outbound_urb(ep, urb->context);
965 } else {
966 prepare_inbound_urb(ep, urb->context);
967 }
968
969 err = usb_submit_urb(urb, GFP_ATOMIC);
970 if (err < 0) {
971 usb_audio_err(ep->chip,
972 "cannot submit urb %d, error %d: %s\n",
973 i, err, usb_error_string(err));
974 goto __error;
975 }
976 set_bit(i, &ep->active_mask);
977 }
978
979 return 0;
980
981 __error:
982 clear_bit(EP_FLAG_RUNNING, &ep->flags);
983 ep->use_count--;
984 deactivate_urbs(ep, false);
985 return -EPIPE;
986 }
987
988 /**
989 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
990 *
991 * @ep: the endpoint to stop (may be NULL)
992 *
993 * A call to this function will decrement the use count of the endpoint.
994 * In case the last user has requested the endpoint stop, the URBs will
995 * actually be deactivated.
996 *
997 * Must be balanced to calls of snd_usb_endpoint_start().
998 *
999 * The caller needs to synchronize the pending stop operation via
1000 * snd_usb_endpoint_sync_pending_stop().
1001 */
1002 void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
1003 {
1004 if (!ep)
1005 return;
1006
1007 if (snd_BUG_ON(ep->use_count == 0))
1008 return;
1009
1010 if (--ep->use_count == 0) {
1011 deactivate_urbs(ep, false);
1012 set_bit(EP_FLAG_STOPPING, &ep->flags);
1013 }
1014 }
1015
1016 /**
1017 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
1018 *
1019 * @ep: the endpoint to deactivate
1020 *
1021 * If the endpoint is not currently in use, this functions will
1022 * deactivate its associated URBs.
1023 *
1024 * In case of any active users, this functions does nothing.
1025 */
1026 void snd_usb_endpoint_deactivate(struct snd_usb_endpoint *ep)
1027 {
1028 if (!ep)
1029 return;
1030
1031 if (ep->use_count != 0)
1032 return;
1033
1034 deactivate_urbs(ep, true);
1035 wait_clear_urbs(ep);
1036 }
1037
1038 /**
1039 * snd_usb_endpoint_release: Tear down an snd_usb_endpoint
1040 *
1041 * @ep: the endpoint to release
1042 *
1043 * This function does not care for the endpoint's use count but will tear
1044 * down all the streaming URBs immediately.
1045 */
1046 void snd_usb_endpoint_release(struct snd_usb_endpoint *ep)
1047 {
1048 release_urbs(ep, 1);
1049 }
1050
1051 /**
1052 * snd_usb_endpoint_free: Free the resources of an snd_usb_endpoint
1053 *
1054 * @ep: the endpoint to free
1055 *
1056 * This free all resources of the given ep.
1057 */
1058 void snd_usb_endpoint_free(struct snd_usb_endpoint *ep)
1059 {
1060 kfree(ep);
1061 }
1062
1063 /**
1064 * snd_usb_handle_sync_urb: parse an USB sync packet
1065 *
1066 * @ep: the endpoint to handle the packet
1067 * @sender: the sending endpoint
1068 * @urb: the received packet
1069 *
1070 * This function is called from the context of an endpoint that received
1071 * the packet and is used to let another endpoint object handle the payload.
1072 */
1073 void snd_usb_handle_sync_urb(struct snd_usb_endpoint *ep,
1074 struct snd_usb_endpoint *sender,
1075 const struct urb *urb)
1076 {
1077 int shift;
1078 unsigned int f;
1079 unsigned long flags;
1080
1081 snd_BUG_ON(ep == sender);
1082
1083 /*
1084 * In case the endpoint is operating in implicit feedback mode, prepare
1085 * a new outbound URB that has the same layout as the received packet
1086 * and add it to the list of pending urbs. queue_pending_output_urbs()
1087 * will take care of them later.
1088 */
1089 if (snd_usb_endpoint_implicit_feedback_sink(ep) &&
1090 ep->use_count != 0) {
1091
1092 /* implicit feedback case */
1093 int i, bytes = 0;
1094 struct snd_urb_ctx *in_ctx;
1095 struct snd_usb_packet_info *out_packet;
1096
1097 in_ctx = urb->context;
1098
1099 /* Count overall packet size */
1100 for (i = 0; i < in_ctx->packets; i++)
1101 if (urb->iso_frame_desc[i].status == 0)
1102 bytes += urb->iso_frame_desc[i].actual_length;
1103
1104 /*
1105 * skip empty packets. At least M-Audio's Fast Track Ultra stops
1106 * streaming once it received a 0-byte OUT URB
1107 */
1108 if (bytes == 0)
1109 return;
1110
1111 spin_lock_irqsave(&ep->lock, flags);
1112 out_packet = ep->next_packet + ep->next_packet_write_pos;
1113
1114 /*
1115 * Iterate through the inbound packet and prepare the lengths
1116 * for the output packet. The OUT packet we are about to send
1117 * will have the same amount of payload bytes per stride as the
1118 * IN packet we just received. Since the actual size is scaled
1119 * by the stride, use the sender stride to calculate the length
1120 * in case the number of channels differ between the implicitly
1121 * fed-back endpoint and the synchronizing endpoint.
1122 */
1123
1124 out_packet->packets = in_ctx->packets;
1125 for (i = 0; i < in_ctx->packets; i++) {
1126 if (urb->iso_frame_desc[i].status == 0)
1127 out_packet->packet_size[i] =
1128 urb->iso_frame_desc[i].actual_length / sender->stride;
1129 else
1130 out_packet->packet_size[i] = 0;
1131 }
1132
1133 ep->next_packet_write_pos++;
1134 ep->next_packet_write_pos %= MAX_URBS;
1135 spin_unlock_irqrestore(&ep->lock, flags);
1136 queue_pending_output_urbs(ep);
1137
1138 return;
1139 }
1140
1141 /*
1142 * process after playback sync complete
1143 *
1144 * Full speed devices report feedback values in 10.14 format as samples
1145 * per frame, high speed devices in 16.16 format as samples per
1146 * microframe.
1147 *
1148 * Because the Audio Class 1 spec was written before USB 2.0, many high
1149 * speed devices use a wrong interpretation, some others use an
1150 * entirely different format.
1151 *
1152 * Therefore, we cannot predict what format any particular device uses
1153 * and must detect it automatically.
1154 */
1155
1156 if (urb->iso_frame_desc[0].status != 0 ||
1157 urb->iso_frame_desc[0].actual_length < 3)
1158 return;
1159
1160 f = le32_to_cpup(urb->transfer_buffer);
1161 if (urb->iso_frame_desc[0].actual_length == 3)
1162 f &= 0x00ffffff;
1163 else
1164 f &= 0x0fffffff;
1165
1166 if (f == 0)
1167 return;
1168
1169 if (unlikely(sender->tenor_fb_quirk)) {
1170 /*
1171 * Devices based on Tenor 8802 chipsets (TEAC UD-H01
1172 * and others) sometimes change the feedback value
1173 * by +/- 0x1.0000.
1174 */
1175 if (f < ep->freqn - 0x8000)
1176 f += 0xf000;
1177 else if (f > ep->freqn + 0x8000)
1178 f -= 0xf000;
1179 } else if (unlikely(ep->freqshift == INT_MIN)) {
1180 /*
1181 * The first time we see a feedback value, determine its format
1182 * by shifting it left or right until it matches the nominal
1183 * frequency value. This assumes that the feedback does not
1184 * differ from the nominal value more than +50% or -25%.
1185 */
1186 shift = 0;
1187 while (f < ep->freqn - ep->freqn / 4) {
1188 f <<= 1;
1189 shift++;
1190 }
1191 while (f > ep->freqn + ep->freqn / 2) {
1192 f >>= 1;
1193 shift--;
1194 }
1195 ep->freqshift = shift;
1196 } else if (ep->freqshift >= 0)
1197 f <<= ep->freqshift;
1198 else
1199 f >>= -ep->freqshift;
1200
1201 if (likely(f >= ep->freqn - ep->freqn / 8 && f <= ep->freqmax)) {
1202 /*
1203 * If the frequency looks valid, set it.
1204 * This value is referred to in prepare_playback_urb().
1205 */
1206 spin_lock_irqsave(&ep->lock, flags);
1207 ep->freqm = f;
1208 spin_unlock_irqrestore(&ep->lock, flags);
1209 } else {
1210 /*
1211 * Out of range; maybe the shift value is wrong.
1212 * Reset it so that we autodetect again the next time.
1213 */
1214 ep->freqshift = INT_MIN;
1215 }
1216 }
1217