]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/usb/midi.c
drm/i915/kvmgt: Fix potential Spectre v1
[mirror_ubuntu-bionic-kernel.git] / sound / usb / midi.c
1 /*
2 * usbmidi.c - ALSA USB MIDI driver
3 *
4 * Copyright (c) 2002-2009 Clemens Ladisch
5 * All rights reserved.
6 *
7 * Based on the OSS usb-midi driver by NAGANO Daisuke,
8 * NetBSD's umidi driver by Takuya SHIOZAKI,
9 * the "USB Device Class Definition for MIDI Devices" by Roland
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed and/or modified under the
21 * terms of the GNU General Public License as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any later
23 * version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50 #include <linux/module.h>
51
52 #include <sound/core.h>
53 #include <sound/control.h>
54 #include <sound/rawmidi.h>
55 #include <sound/asequencer.h>
56 #include "usbaudio.h"
57 #include "midi.h"
58 #include "power.h"
59 #include "helper.h"
60
61 /*
62 * define this to log all USB packets
63 */
64 /* #define DUMP_PACKETS */
65
66 /*
67 * how long to wait after some USB errors, so that hub_wq can disconnect() us
68 * without too many spurious errors
69 */
70 #define ERROR_DELAY_JIFFIES (HZ / 10)
71
72 #define OUTPUT_URBS 7
73 #define INPUT_URBS 7
74
75
76 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
77 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
78 MODULE_LICENSE("Dual BSD/GPL");
79
80
81 struct usb_ms_header_descriptor {
82 __u8 bLength;
83 __u8 bDescriptorType;
84 __u8 bDescriptorSubtype;
85 __u8 bcdMSC[2];
86 __le16 wTotalLength;
87 } __attribute__ ((packed));
88
89 struct usb_ms_endpoint_descriptor {
90 __u8 bLength;
91 __u8 bDescriptorType;
92 __u8 bDescriptorSubtype;
93 __u8 bNumEmbMIDIJack;
94 __u8 baAssocJackID[0];
95 } __attribute__ ((packed));
96
97 struct snd_usb_midi_in_endpoint;
98 struct snd_usb_midi_out_endpoint;
99 struct snd_usb_midi_endpoint;
100
101 struct usb_protocol_ops {
102 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
103 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
104 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
105 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint *);
106 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint *);
107 };
108
109 struct snd_usb_midi {
110 struct usb_device *dev;
111 struct snd_card *card;
112 struct usb_interface *iface;
113 const struct snd_usb_audio_quirk *quirk;
114 struct snd_rawmidi *rmidi;
115 const struct usb_protocol_ops *usb_protocol_ops;
116 struct list_head list;
117 struct timer_list error_timer;
118 spinlock_t disc_lock;
119 struct rw_semaphore disc_rwsem;
120 struct mutex mutex;
121 u32 usb_id;
122 int next_midi_device;
123
124 struct snd_usb_midi_endpoint {
125 struct snd_usb_midi_out_endpoint *out;
126 struct snd_usb_midi_in_endpoint *in;
127 } endpoints[MIDI_MAX_ENDPOINTS];
128 unsigned long input_triggered;
129 unsigned int opened[2];
130 unsigned char disconnected;
131 unsigned char input_running;
132
133 struct snd_kcontrol *roland_load_ctl;
134 };
135
136 struct snd_usb_midi_out_endpoint {
137 struct snd_usb_midi *umidi;
138 struct out_urb_context {
139 struct urb *urb;
140 struct snd_usb_midi_out_endpoint *ep;
141 } urbs[OUTPUT_URBS];
142 unsigned int active_urbs;
143 unsigned int drain_urbs;
144 int max_transfer; /* size of urb buffer */
145 struct tasklet_struct tasklet;
146 unsigned int next_urb;
147 spinlock_t buffer_lock;
148
149 struct usbmidi_out_port {
150 struct snd_usb_midi_out_endpoint *ep;
151 struct snd_rawmidi_substream *substream;
152 int active;
153 uint8_t cable; /* cable number << 4 */
154 uint8_t state;
155 #define STATE_UNKNOWN 0
156 #define STATE_1PARAM 1
157 #define STATE_2PARAM_1 2
158 #define STATE_2PARAM_2 3
159 #define STATE_SYSEX_0 4
160 #define STATE_SYSEX_1 5
161 #define STATE_SYSEX_2 6
162 uint8_t data[2];
163 } ports[0x10];
164 int current_port;
165
166 wait_queue_head_t drain_wait;
167 };
168
169 struct snd_usb_midi_in_endpoint {
170 struct snd_usb_midi *umidi;
171 struct urb *urbs[INPUT_URBS];
172 struct usbmidi_in_port {
173 struct snd_rawmidi_substream *substream;
174 u8 running_status_length;
175 } ports[0x10];
176 u8 seen_f5;
177 bool in_sysex;
178 u8 last_cin;
179 u8 error_resubmit;
180 int current_port;
181 };
182
183 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep);
184
185 static const uint8_t snd_usbmidi_cin_length[] = {
186 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
187 };
188
189 /*
190 * Submits the URB, with error handling.
191 */
192 static int snd_usbmidi_submit_urb(struct urb *urb, gfp_t flags)
193 {
194 int err = usb_submit_urb(urb, flags);
195 if (err < 0 && err != -ENODEV)
196 dev_err(&urb->dev->dev, "usb_submit_urb: %d\n", err);
197 return err;
198 }
199
200 /*
201 * Error handling for URB completion functions.
202 */
203 static int snd_usbmidi_urb_error(const struct urb *urb)
204 {
205 switch (urb->status) {
206 /* manually unlinked, or device gone */
207 case -ENOENT:
208 case -ECONNRESET:
209 case -ESHUTDOWN:
210 case -ENODEV:
211 return -ENODEV;
212 /* errors that might occur during unplugging */
213 case -EPROTO:
214 case -ETIME:
215 case -EILSEQ:
216 return -EIO;
217 default:
218 dev_err(&urb->dev->dev, "urb status %d\n", urb->status);
219 return 0; /* continue */
220 }
221 }
222
223 /*
224 * Receives a chunk of MIDI data.
225 */
226 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint *ep,
227 int portidx, uint8_t *data, int length)
228 {
229 struct usbmidi_in_port *port = &ep->ports[portidx];
230
231 if (!port->substream) {
232 dev_dbg(&ep->umidi->dev->dev, "unexpected port %d!\n", portidx);
233 return;
234 }
235 if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
236 return;
237 snd_rawmidi_receive(port->substream, data, length);
238 }
239
240 #ifdef DUMP_PACKETS
241 static void dump_urb(const char *type, const u8 *data, int length)
242 {
243 snd_printk(KERN_DEBUG "%s packet: [", type);
244 for (; length > 0; ++data, --length)
245 printk(KERN_CONT " %02x", *data);
246 printk(KERN_CONT " ]\n");
247 }
248 #else
249 #define dump_urb(type, data, length) /* nothing */
250 #endif
251
252 /*
253 * Processes the data read from the device.
254 */
255 static void snd_usbmidi_in_urb_complete(struct urb *urb)
256 {
257 struct snd_usb_midi_in_endpoint *ep = urb->context;
258
259 if (urb->status == 0) {
260 dump_urb("received", urb->transfer_buffer, urb->actual_length);
261 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
262 urb->actual_length);
263 } else {
264 int err = snd_usbmidi_urb_error(urb);
265 if (err < 0) {
266 if (err != -ENODEV) {
267 ep->error_resubmit = 1;
268 mod_timer(&ep->umidi->error_timer,
269 jiffies + ERROR_DELAY_JIFFIES);
270 }
271 return;
272 }
273 }
274
275 urb->dev = ep->umidi->dev;
276 snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
277 }
278
279 static void snd_usbmidi_out_urb_complete(struct urb *urb)
280 {
281 struct out_urb_context *context = urb->context;
282 struct snd_usb_midi_out_endpoint *ep = context->ep;
283 unsigned int urb_index;
284
285 spin_lock(&ep->buffer_lock);
286 urb_index = context - ep->urbs;
287 ep->active_urbs &= ~(1 << urb_index);
288 if (unlikely(ep->drain_urbs)) {
289 ep->drain_urbs &= ~(1 << urb_index);
290 wake_up(&ep->drain_wait);
291 }
292 spin_unlock(&ep->buffer_lock);
293 if (urb->status < 0) {
294 int err = snd_usbmidi_urb_error(urb);
295 if (err < 0) {
296 if (err != -ENODEV)
297 mod_timer(&ep->umidi->error_timer,
298 jiffies + ERROR_DELAY_JIFFIES);
299 return;
300 }
301 }
302 snd_usbmidi_do_output(ep);
303 }
304
305 /*
306 * This is called when some data should be transferred to the device
307 * (from one or more substreams).
308 */
309 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint *ep)
310 {
311 unsigned int urb_index;
312 struct urb *urb;
313 unsigned long flags;
314
315 spin_lock_irqsave(&ep->buffer_lock, flags);
316 if (ep->umidi->disconnected) {
317 spin_unlock_irqrestore(&ep->buffer_lock, flags);
318 return;
319 }
320
321 urb_index = ep->next_urb;
322 for (;;) {
323 if (!(ep->active_urbs & (1 << urb_index))) {
324 urb = ep->urbs[urb_index].urb;
325 urb->transfer_buffer_length = 0;
326 ep->umidi->usb_protocol_ops->output(ep, urb);
327 if (urb->transfer_buffer_length == 0)
328 break;
329
330 dump_urb("sending", urb->transfer_buffer,
331 urb->transfer_buffer_length);
332 urb->dev = ep->umidi->dev;
333 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
334 break;
335 ep->active_urbs |= 1 << urb_index;
336 }
337 if (++urb_index >= OUTPUT_URBS)
338 urb_index = 0;
339 if (urb_index == ep->next_urb)
340 break;
341 }
342 ep->next_urb = urb_index;
343 spin_unlock_irqrestore(&ep->buffer_lock, flags);
344 }
345
346 static void snd_usbmidi_out_tasklet(unsigned long data)
347 {
348 struct snd_usb_midi_out_endpoint *ep =
349 (struct snd_usb_midi_out_endpoint *) data;
350
351 snd_usbmidi_do_output(ep);
352 }
353
354 /* called after transfers had been interrupted due to some USB error */
355 static void snd_usbmidi_error_timer(struct timer_list *t)
356 {
357 struct snd_usb_midi *umidi = from_timer(umidi, t, error_timer);
358 unsigned int i, j;
359
360 spin_lock(&umidi->disc_lock);
361 if (umidi->disconnected) {
362 spin_unlock(&umidi->disc_lock);
363 return;
364 }
365 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
366 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
367 if (in && in->error_resubmit) {
368 in->error_resubmit = 0;
369 for (j = 0; j < INPUT_URBS; ++j) {
370 if (atomic_read(&in->urbs[j]->use_count))
371 continue;
372 in->urbs[j]->dev = umidi->dev;
373 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
374 }
375 }
376 if (umidi->endpoints[i].out)
377 snd_usbmidi_do_output(umidi->endpoints[i].out);
378 }
379 spin_unlock(&umidi->disc_lock);
380 }
381
382 /* helper function to send static data that may not DMA-able */
383 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint *ep,
384 const void *data, int len)
385 {
386 int err = 0;
387 void *buf = kmemdup(data, len, GFP_KERNEL);
388 if (!buf)
389 return -ENOMEM;
390 dump_urb("sending", buf, len);
391 if (ep->urbs[0].urb)
392 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
393 buf, len, NULL, 250);
394 kfree(buf);
395 return err;
396 }
397
398 /*
399 * Standard USB MIDI protocol: see the spec.
400 * Midiman protocol: like the standard protocol, but the control byte is the
401 * fourth byte in each packet, and uses length instead of CIN.
402 */
403
404 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint *ep,
405 uint8_t *buffer, int buffer_length)
406 {
407 int i;
408
409 for (i = 0; i + 3 < buffer_length; i += 4)
410 if (buffer[i] != 0) {
411 int cable = buffer[i] >> 4;
412 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
413 snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
414 length);
415 }
416 }
417
418 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint *ep,
419 uint8_t *buffer, int buffer_length)
420 {
421 int i;
422
423 for (i = 0; i + 3 < buffer_length; i += 4)
424 if (buffer[i + 3] != 0) {
425 int port = buffer[i + 3] >> 4;
426 int length = buffer[i + 3] & 3;
427 snd_usbmidi_input_data(ep, port, &buffer[i], length);
428 }
429 }
430
431 /*
432 * Buggy M-Audio device: running status on input results in a packet that has
433 * the data bytes but not the status byte and that is marked with CIN 4.
434 */
435 static void snd_usbmidi_maudio_broken_running_status_input(
436 struct snd_usb_midi_in_endpoint *ep,
437 uint8_t *buffer, int buffer_length)
438 {
439 int i;
440
441 for (i = 0; i + 3 < buffer_length; i += 4)
442 if (buffer[i] != 0) {
443 int cable = buffer[i] >> 4;
444 u8 cin = buffer[i] & 0x0f;
445 struct usbmidi_in_port *port = &ep->ports[cable];
446 int length;
447
448 length = snd_usbmidi_cin_length[cin];
449 if (cin == 0xf && buffer[i + 1] >= 0xf8)
450 ; /* realtime msg: no running status change */
451 else if (cin >= 0x8 && cin <= 0xe)
452 /* channel msg */
453 port->running_status_length = length - 1;
454 else if (cin == 0x4 &&
455 port->running_status_length != 0 &&
456 buffer[i + 1] < 0x80)
457 /* CIN 4 that is not a SysEx */
458 length = port->running_status_length;
459 else
460 /*
461 * All other msgs cannot begin running status.
462 * (A channel msg sent as two or three CIN 0xF
463 * packets could in theory, but this device
464 * doesn't use this format.)
465 */
466 port->running_status_length = 0;
467 snd_usbmidi_input_data(ep, cable, &buffer[i + 1],
468 length);
469 }
470 }
471
472 /*
473 * QinHeng CH345 is buggy: every second packet inside a SysEx has not CIN 4
474 * but the previously seen CIN, but still with three data bytes.
475 */
476 static void ch345_broken_sysex_input(struct snd_usb_midi_in_endpoint *ep,
477 uint8_t *buffer, int buffer_length)
478 {
479 unsigned int i, cin, length;
480
481 for (i = 0; i + 3 < buffer_length; i += 4) {
482 if (buffer[i] == 0 && i > 0)
483 break;
484 cin = buffer[i] & 0x0f;
485 if (ep->in_sysex &&
486 cin == ep->last_cin &&
487 (buffer[i + 1 + (cin == 0x6)] & 0x80) == 0)
488 cin = 0x4;
489 #if 0
490 if (buffer[i + 1] == 0x90) {
491 /*
492 * Either a corrupted running status or a real note-on
493 * message; impossible to detect reliably.
494 */
495 }
496 #endif
497 length = snd_usbmidi_cin_length[cin];
498 snd_usbmidi_input_data(ep, 0, &buffer[i + 1], length);
499 ep->in_sysex = cin == 0x4;
500 if (!ep->in_sysex)
501 ep->last_cin = cin;
502 }
503 }
504
505 /*
506 * CME protocol: like the standard protocol, but SysEx commands are sent as a
507 * single USB packet preceded by a 0x0F byte.
508 */
509 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
510 uint8_t *buffer, int buffer_length)
511 {
512 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
513 snd_usbmidi_standard_input(ep, buffer, buffer_length);
514 else
515 snd_usbmidi_input_data(ep, buffer[0] >> 4,
516 &buffer[1], buffer_length - 1);
517 }
518
519 /*
520 * Adds one USB MIDI packet to the output buffer.
521 */
522 static void snd_usbmidi_output_standard_packet(struct urb *urb, uint8_t p0,
523 uint8_t p1, uint8_t p2,
524 uint8_t p3)
525 {
526
527 uint8_t *buf =
528 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
529 buf[0] = p0;
530 buf[1] = p1;
531 buf[2] = p2;
532 buf[3] = p3;
533 urb->transfer_buffer_length += 4;
534 }
535
536 /*
537 * Adds one Midiman packet to the output buffer.
538 */
539 static void snd_usbmidi_output_midiman_packet(struct urb *urb, uint8_t p0,
540 uint8_t p1, uint8_t p2,
541 uint8_t p3)
542 {
543
544 uint8_t *buf =
545 (uint8_t *)urb->transfer_buffer + urb->transfer_buffer_length;
546 buf[0] = p1;
547 buf[1] = p2;
548 buf[2] = p3;
549 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
550 urb->transfer_buffer_length += 4;
551 }
552
553 /*
554 * Converts MIDI commands to USB MIDI packets.
555 */
556 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port *port,
557 uint8_t b, struct urb *urb)
558 {
559 uint8_t p0 = port->cable;
560 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
561 port->ep->umidi->usb_protocol_ops->output_packet;
562
563 if (b >= 0xf8) {
564 output_packet(urb, p0 | 0x0f, b, 0, 0);
565 } else if (b >= 0xf0) {
566 switch (b) {
567 case 0xf0:
568 port->data[0] = b;
569 port->state = STATE_SYSEX_1;
570 break;
571 case 0xf1:
572 case 0xf3:
573 port->data[0] = b;
574 port->state = STATE_1PARAM;
575 break;
576 case 0xf2:
577 port->data[0] = b;
578 port->state = STATE_2PARAM_1;
579 break;
580 case 0xf4:
581 case 0xf5:
582 port->state = STATE_UNKNOWN;
583 break;
584 case 0xf6:
585 output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
586 port->state = STATE_UNKNOWN;
587 break;
588 case 0xf7:
589 switch (port->state) {
590 case STATE_SYSEX_0:
591 output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
592 break;
593 case STATE_SYSEX_1:
594 output_packet(urb, p0 | 0x06, port->data[0],
595 0xf7, 0);
596 break;
597 case STATE_SYSEX_2:
598 output_packet(urb, p0 | 0x07, port->data[0],
599 port->data[1], 0xf7);
600 break;
601 }
602 port->state = STATE_UNKNOWN;
603 break;
604 }
605 } else if (b >= 0x80) {
606 port->data[0] = b;
607 if (b >= 0xc0 && b <= 0xdf)
608 port->state = STATE_1PARAM;
609 else
610 port->state = STATE_2PARAM_1;
611 } else { /* b < 0x80 */
612 switch (port->state) {
613 case STATE_1PARAM:
614 if (port->data[0] < 0xf0) {
615 p0 |= port->data[0] >> 4;
616 } else {
617 p0 |= 0x02;
618 port->state = STATE_UNKNOWN;
619 }
620 output_packet(urb, p0, port->data[0], b, 0);
621 break;
622 case STATE_2PARAM_1:
623 port->data[1] = b;
624 port->state = STATE_2PARAM_2;
625 break;
626 case STATE_2PARAM_2:
627 if (port->data[0] < 0xf0) {
628 p0 |= port->data[0] >> 4;
629 port->state = STATE_2PARAM_1;
630 } else {
631 p0 |= 0x03;
632 port->state = STATE_UNKNOWN;
633 }
634 output_packet(urb, p0, port->data[0], port->data[1], b);
635 break;
636 case STATE_SYSEX_0:
637 port->data[0] = b;
638 port->state = STATE_SYSEX_1;
639 break;
640 case STATE_SYSEX_1:
641 port->data[1] = b;
642 port->state = STATE_SYSEX_2;
643 break;
644 case STATE_SYSEX_2:
645 output_packet(urb, p0 | 0x04, port->data[0],
646 port->data[1], b);
647 port->state = STATE_SYSEX_0;
648 break;
649 }
650 }
651 }
652
653 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint *ep,
654 struct urb *urb)
655 {
656 int p;
657
658 /* FIXME: lower-numbered ports can starve higher-numbered ports */
659 for (p = 0; p < 0x10; ++p) {
660 struct usbmidi_out_port *port = &ep->ports[p];
661 if (!port->active)
662 continue;
663 while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
664 uint8_t b;
665 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
666 port->active = 0;
667 break;
668 }
669 snd_usbmidi_transmit_byte(port, b, urb);
670 }
671 }
672 }
673
674 static const struct usb_protocol_ops snd_usbmidi_standard_ops = {
675 .input = snd_usbmidi_standard_input,
676 .output = snd_usbmidi_standard_output,
677 .output_packet = snd_usbmidi_output_standard_packet,
678 };
679
680 static const struct usb_protocol_ops snd_usbmidi_midiman_ops = {
681 .input = snd_usbmidi_midiman_input,
682 .output = snd_usbmidi_standard_output,
683 .output_packet = snd_usbmidi_output_midiman_packet,
684 };
685
686 static const
687 struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
688 .input = snd_usbmidi_maudio_broken_running_status_input,
689 .output = snd_usbmidi_standard_output,
690 .output_packet = snd_usbmidi_output_standard_packet,
691 };
692
693 static const struct usb_protocol_ops snd_usbmidi_cme_ops = {
694 .input = snd_usbmidi_cme_input,
695 .output = snd_usbmidi_standard_output,
696 .output_packet = snd_usbmidi_output_standard_packet,
697 };
698
699 static const struct usb_protocol_ops snd_usbmidi_ch345_broken_sysex_ops = {
700 .input = ch345_broken_sysex_input,
701 .output = snd_usbmidi_standard_output,
702 .output_packet = snd_usbmidi_output_standard_packet,
703 };
704
705 /*
706 * AKAI MPD16 protocol:
707 *
708 * For control port (endpoint 1):
709 * ==============================
710 * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
711 * SysEx message (msg_len=9 bytes long).
712 *
713 * For data port (endpoint 2):
714 * ===========================
715 * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
716 * MIDI message (msg_len bytes long)
717 *
718 * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
719 */
720 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
721 uint8_t *buffer, int buffer_length)
722 {
723 unsigned int pos = 0;
724 unsigned int len = (unsigned int)buffer_length;
725 while (pos < len) {
726 unsigned int port = (buffer[pos] >> 4) - 1;
727 unsigned int msg_len = buffer[pos] & 0x0f;
728 pos++;
729 if (pos + msg_len <= len && port < 2)
730 snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
731 pos += msg_len;
732 }
733 }
734
735 #define MAX_AKAI_SYSEX_LEN 9
736
737 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
738 struct urb *urb)
739 {
740 uint8_t *msg;
741 int pos, end, count, buf_end;
742 uint8_t tmp[MAX_AKAI_SYSEX_LEN];
743 struct snd_rawmidi_substream *substream = ep->ports[0].substream;
744
745 if (!ep->ports[0].active)
746 return;
747
748 msg = urb->transfer_buffer + urb->transfer_buffer_length;
749 buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
750
751 /* only try adding more data when there's space for at least 1 SysEx */
752 while (urb->transfer_buffer_length < buf_end) {
753 count = snd_rawmidi_transmit_peek(substream,
754 tmp, MAX_AKAI_SYSEX_LEN);
755 if (!count) {
756 ep->ports[0].active = 0;
757 return;
758 }
759 /* try to skip non-SysEx data */
760 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
761 ;
762
763 if (pos > 0) {
764 snd_rawmidi_transmit_ack(substream, pos);
765 continue;
766 }
767
768 /* look for the start or end marker */
769 for (end = 1; end < count && tmp[end] < 0xF0; end++)
770 ;
771
772 /* next SysEx started before the end of current one */
773 if (end < count && tmp[end] == 0xF0) {
774 /* it's incomplete - drop it */
775 snd_rawmidi_transmit_ack(substream, end);
776 continue;
777 }
778 /* SysEx complete */
779 if (end < count && tmp[end] == 0xF7) {
780 /* queue it, ack it, and get the next one */
781 count = end + 1;
782 msg[0] = 0x10 | count;
783 memcpy(&msg[1], tmp, count);
784 snd_rawmidi_transmit_ack(substream, count);
785 urb->transfer_buffer_length += count + 1;
786 msg += count + 1;
787 continue;
788 }
789 /* less than 9 bytes and no end byte - wait for more */
790 if (count < MAX_AKAI_SYSEX_LEN) {
791 ep->ports[0].active = 0;
792 return;
793 }
794 /* 9 bytes and no end marker in sight - malformed, skip it */
795 snd_rawmidi_transmit_ack(substream, count);
796 }
797 }
798
799 static const struct usb_protocol_ops snd_usbmidi_akai_ops = {
800 .input = snd_usbmidi_akai_input,
801 .output = snd_usbmidi_akai_output,
802 };
803
804 /*
805 * Novation USB MIDI protocol: number of data bytes is in the first byte
806 * (when receiving) (+1!) or in the second byte (when sending); data begins
807 * at the third byte.
808 */
809
810 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint *ep,
811 uint8_t *buffer, int buffer_length)
812 {
813 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
814 return;
815 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
816 }
817
818 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint *ep,
819 struct urb *urb)
820 {
821 uint8_t *transfer_buffer;
822 int count;
823
824 if (!ep->ports[0].active)
825 return;
826 transfer_buffer = urb->transfer_buffer;
827 count = snd_rawmidi_transmit(ep->ports[0].substream,
828 &transfer_buffer[2],
829 ep->max_transfer - 2);
830 if (count < 1) {
831 ep->ports[0].active = 0;
832 return;
833 }
834 transfer_buffer[0] = 0;
835 transfer_buffer[1] = count;
836 urb->transfer_buffer_length = 2 + count;
837 }
838
839 static const struct usb_protocol_ops snd_usbmidi_novation_ops = {
840 .input = snd_usbmidi_novation_input,
841 .output = snd_usbmidi_novation_output,
842 };
843
844 /*
845 * "raw" protocol: just move raw MIDI bytes from/to the endpoint
846 */
847
848 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint *ep,
849 uint8_t *buffer, int buffer_length)
850 {
851 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
852 }
853
854 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint *ep,
855 struct urb *urb)
856 {
857 int count;
858
859 if (!ep->ports[0].active)
860 return;
861 count = snd_rawmidi_transmit(ep->ports[0].substream,
862 urb->transfer_buffer,
863 ep->max_transfer);
864 if (count < 1) {
865 ep->ports[0].active = 0;
866 return;
867 }
868 urb->transfer_buffer_length = count;
869 }
870
871 static const struct usb_protocol_ops snd_usbmidi_raw_ops = {
872 .input = snd_usbmidi_raw_input,
873 .output = snd_usbmidi_raw_output,
874 };
875
876 /*
877 * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes.
878 */
879
880 static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint *ep,
881 uint8_t *buffer, int buffer_length)
882 {
883 if (buffer_length > 2)
884 snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2);
885 }
886
887 static const struct usb_protocol_ops snd_usbmidi_ftdi_ops = {
888 .input = snd_usbmidi_ftdi_input,
889 .output = snd_usbmidi_raw_output,
890 };
891
892 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
893 uint8_t *buffer, int buffer_length)
894 {
895 if (buffer_length != 9)
896 return;
897 buffer_length = 8;
898 while (buffer_length && buffer[buffer_length - 1] == 0xFD)
899 buffer_length--;
900 if (buffer_length)
901 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
902 }
903
904 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
905 struct urb *urb)
906 {
907 int count;
908
909 if (!ep->ports[0].active)
910 return;
911 switch (snd_usb_get_speed(ep->umidi->dev)) {
912 case USB_SPEED_HIGH:
913 case USB_SPEED_SUPER:
914 case USB_SPEED_SUPER_PLUS:
915 count = 1;
916 break;
917 default:
918 count = 2;
919 }
920 count = snd_rawmidi_transmit(ep->ports[0].substream,
921 urb->transfer_buffer,
922 count);
923 if (count < 1) {
924 ep->ports[0].active = 0;
925 return;
926 }
927
928 memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
929 urb->transfer_buffer_length = ep->max_transfer;
930 }
931
932 static const struct usb_protocol_ops snd_usbmidi_122l_ops = {
933 .input = snd_usbmidi_us122l_input,
934 .output = snd_usbmidi_us122l_output,
935 };
936
937 /*
938 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
939 */
940
941 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint *ep)
942 {
943 static const u8 init_data[] = {
944 /* initialization magic: "get version" */
945 0xf0,
946 0x00, 0x20, 0x31, /* Emagic */
947 0x64, /* Unitor8 */
948 0x0b, /* version number request */
949 0x00, /* command version */
950 0x00, /* EEPROM, box 0 */
951 0xf7
952 };
953 send_bulk_static_data(ep, init_data, sizeof(init_data));
954 /* while we're at it, pour on more magic */
955 send_bulk_static_data(ep, init_data, sizeof(init_data));
956 }
957
958 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint *ep)
959 {
960 static const u8 finish_data[] = {
961 /* switch to patch mode with last preset */
962 0xf0,
963 0x00, 0x20, 0x31, /* Emagic */
964 0x64, /* Unitor8 */
965 0x10, /* patch switch command */
966 0x00, /* command version */
967 0x7f, /* to all boxes */
968 0x40, /* last preset in EEPROM */
969 0xf7
970 };
971 send_bulk_static_data(ep, finish_data, sizeof(finish_data));
972 }
973
974 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint *ep,
975 uint8_t *buffer, int buffer_length)
976 {
977 int i;
978
979 /* FF indicates end of valid data */
980 for (i = 0; i < buffer_length; ++i)
981 if (buffer[i] == 0xff) {
982 buffer_length = i;
983 break;
984 }
985
986 /* handle F5 at end of last buffer */
987 if (ep->seen_f5)
988 goto switch_port;
989
990 while (buffer_length > 0) {
991 /* determine size of data until next F5 */
992 for (i = 0; i < buffer_length; ++i)
993 if (buffer[i] == 0xf5)
994 break;
995 snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
996 buffer += i;
997 buffer_length -= i;
998
999 if (buffer_length <= 0)
1000 break;
1001 /* assert(buffer[0] == 0xf5); */
1002 ep->seen_f5 = 1;
1003 ++buffer;
1004 --buffer_length;
1005
1006 switch_port:
1007 if (buffer_length <= 0)
1008 break;
1009 if (buffer[0] < 0x80) {
1010 ep->current_port = (buffer[0] - 1) & 15;
1011 ++buffer;
1012 --buffer_length;
1013 }
1014 ep->seen_f5 = 0;
1015 }
1016 }
1017
1018 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint *ep,
1019 struct urb *urb)
1020 {
1021 int port0 = ep->current_port;
1022 uint8_t *buf = urb->transfer_buffer;
1023 int buf_free = ep->max_transfer;
1024 int length, i;
1025
1026 for (i = 0; i < 0x10; ++i) {
1027 /* round-robin, starting at the last current port */
1028 int portnum = (port0 + i) & 15;
1029 struct usbmidi_out_port *port = &ep->ports[portnum];
1030
1031 if (!port->active)
1032 continue;
1033 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
1034 port->active = 0;
1035 continue;
1036 }
1037
1038 if (portnum != ep->current_port) {
1039 if (buf_free < 2)
1040 break;
1041 ep->current_port = portnum;
1042 buf[0] = 0xf5;
1043 buf[1] = (portnum + 1) & 15;
1044 buf += 2;
1045 buf_free -= 2;
1046 }
1047
1048 if (buf_free < 1)
1049 break;
1050 length = snd_rawmidi_transmit(port->substream, buf, buf_free);
1051 if (length > 0) {
1052 buf += length;
1053 buf_free -= length;
1054 if (buf_free < 1)
1055 break;
1056 }
1057 }
1058 if (buf_free < ep->max_transfer && buf_free > 0) {
1059 *buf = 0xff;
1060 --buf_free;
1061 }
1062 urb->transfer_buffer_length = ep->max_transfer - buf_free;
1063 }
1064
1065 static const struct usb_protocol_ops snd_usbmidi_emagic_ops = {
1066 .input = snd_usbmidi_emagic_input,
1067 .output = snd_usbmidi_emagic_output,
1068 .init_out_endpoint = snd_usbmidi_emagic_init_out,
1069 .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
1070 };
1071
1072
1073 static void update_roland_altsetting(struct snd_usb_midi *umidi)
1074 {
1075 struct usb_interface *intf;
1076 struct usb_host_interface *hostif;
1077 struct usb_interface_descriptor *intfd;
1078 int is_light_load;
1079
1080 intf = umidi->iface;
1081 is_light_load = intf->cur_altsetting != intf->altsetting;
1082 if (umidi->roland_load_ctl->private_value == is_light_load)
1083 return;
1084 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1085 intfd = get_iface_desc(hostif);
1086 snd_usbmidi_input_stop(&umidi->list);
1087 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1088 intfd->bAlternateSetting);
1089 snd_usbmidi_input_start(&umidi->list);
1090 }
1091
1092 static int substream_open(struct snd_rawmidi_substream *substream, int dir,
1093 int open)
1094 {
1095 struct snd_usb_midi *umidi = substream->rmidi->private_data;
1096 struct snd_kcontrol *ctl;
1097
1098 down_read(&umidi->disc_rwsem);
1099 if (umidi->disconnected) {
1100 up_read(&umidi->disc_rwsem);
1101 return open ? -ENODEV : 0;
1102 }
1103
1104 mutex_lock(&umidi->mutex);
1105 if (open) {
1106 if (!umidi->opened[0] && !umidi->opened[1]) {
1107 if (umidi->roland_load_ctl) {
1108 ctl = umidi->roland_load_ctl;
1109 ctl->vd[0].access |=
1110 SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1111 snd_ctl_notify(umidi->card,
1112 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1113 update_roland_altsetting(umidi);
1114 }
1115 }
1116 umidi->opened[dir]++;
1117 if (umidi->opened[1])
1118 snd_usbmidi_input_start(&umidi->list);
1119 } else {
1120 umidi->opened[dir]--;
1121 if (!umidi->opened[1])
1122 snd_usbmidi_input_stop(&umidi->list);
1123 if (!umidi->opened[0] && !umidi->opened[1]) {
1124 if (umidi->roland_load_ctl) {
1125 ctl = umidi->roland_load_ctl;
1126 ctl->vd[0].access &=
1127 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1128 snd_ctl_notify(umidi->card,
1129 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1130 }
1131 }
1132 }
1133 mutex_unlock(&umidi->mutex);
1134 up_read(&umidi->disc_rwsem);
1135 return 0;
1136 }
1137
1138 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1139 {
1140 struct snd_usb_midi *umidi = substream->rmidi->private_data;
1141 struct usbmidi_out_port *port = NULL;
1142 int i, j;
1143
1144 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1145 if (umidi->endpoints[i].out)
1146 for (j = 0; j < 0x10; ++j)
1147 if (umidi->endpoints[i].out->ports[j].substream == substream) {
1148 port = &umidi->endpoints[i].out->ports[j];
1149 break;
1150 }
1151 if (!port) {
1152 snd_BUG();
1153 return -ENXIO;
1154 }
1155
1156 substream->runtime->private_data = port;
1157 port->state = STATE_UNKNOWN;
1158 return substream_open(substream, 0, 1);
1159 }
1160
1161 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1162 {
1163 return substream_open(substream, 0, 0);
1164 }
1165
1166 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream,
1167 int up)
1168 {
1169 struct usbmidi_out_port *port =
1170 (struct usbmidi_out_port *)substream->runtime->private_data;
1171
1172 port->active = up;
1173 if (up) {
1174 if (port->ep->umidi->disconnected) {
1175 /* gobble up remaining bytes to prevent wait in
1176 * snd_rawmidi_drain_output */
1177 while (!snd_rawmidi_transmit_empty(substream))
1178 snd_rawmidi_transmit_ack(substream, 1);
1179 return;
1180 }
1181 tasklet_schedule(&port->ep->tasklet);
1182 }
1183 }
1184
1185 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1186 {
1187 struct usbmidi_out_port *port = substream->runtime->private_data;
1188 struct snd_usb_midi_out_endpoint *ep = port->ep;
1189 unsigned int drain_urbs;
1190 DEFINE_WAIT(wait);
1191 long timeout = msecs_to_jiffies(50);
1192
1193 if (ep->umidi->disconnected)
1194 return;
1195 /*
1196 * The substream buffer is empty, but some data might still be in the
1197 * currently active URBs, so we have to wait for those to complete.
1198 */
1199 spin_lock_irq(&ep->buffer_lock);
1200 drain_urbs = ep->active_urbs;
1201 if (drain_urbs) {
1202 ep->drain_urbs |= drain_urbs;
1203 do {
1204 prepare_to_wait(&ep->drain_wait, &wait,
1205 TASK_UNINTERRUPTIBLE);
1206 spin_unlock_irq(&ep->buffer_lock);
1207 timeout = schedule_timeout(timeout);
1208 spin_lock_irq(&ep->buffer_lock);
1209 drain_urbs &= ep->drain_urbs;
1210 } while (drain_urbs && timeout);
1211 finish_wait(&ep->drain_wait, &wait);
1212 }
1213 spin_unlock_irq(&ep->buffer_lock);
1214 }
1215
1216 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1217 {
1218 return substream_open(substream, 1, 1);
1219 }
1220
1221 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1222 {
1223 return substream_open(substream, 1, 0);
1224 }
1225
1226 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream,
1227 int up)
1228 {
1229 struct snd_usb_midi *umidi = substream->rmidi->private_data;
1230
1231 if (up)
1232 set_bit(substream->number, &umidi->input_triggered);
1233 else
1234 clear_bit(substream->number, &umidi->input_triggered);
1235 }
1236
1237 static const struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1238 .open = snd_usbmidi_output_open,
1239 .close = snd_usbmidi_output_close,
1240 .trigger = snd_usbmidi_output_trigger,
1241 .drain = snd_usbmidi_output_drain,
1242 };
1243
1244 static const struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1245 .open = snd_usbmidi_input_open,
1246 .close = snd_usbmidi_input_close,
1247 .trigger = snd_usbmidi_input_trigger
1248 };
1249
1250 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1251 unsigned int buffer_length)
1252 {
1253 usb_free_coherent(umidi->dev, buffer_length,
1254 urb->transfer_buffer, urb->transfer_dma);
1255 usb_free_urb(urb);
1256 }
1257
1258 /*
1259 * Frees an input endpoint.
1260 * May be called when ep hasn't been initialized completely.
1261 */
1262 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint *ep)
1263 {
1264 unsigned int i;
1265
1266 for (i = 0; i < INPUT_URBS; ++i)
1267 if (ep->urbs[i])
1268 free_urb_and_buffer(ep->umidi, ep->urbs[i],
1269 ep->urbs[i]->transfer_buffer_length);
1270 kfree(ep);
1271 }
1272
1273 /*
1274 * Creates an input endpoint.
1275 */
1276 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi *umidi,
1277 struct snd_usb_midi_endpoint_info *ep_info,
1278 struct snd_usb_midi_endpoint *rep)
1279 {
1280 struct snd_usb_midi_in_endpoint *ep;
1281 void *buffer;
1282 unsigned int pipe;
1283 int length;
1284 unsigned int i;
1285 int err;
1286
1287 rep->in = NULL;
1288 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1289 if (!ep)
1290 return -ENOMEM;
1291 ep->umidi = umidi;
1292
1293 for (i = 0; i < INPUT_URBS; ++i) {
1294 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1295 if (!ep->urbs[i]) {
1296 err = -ENOMEM;
1297 goto error;
1298 }
1299 }
1300 if (ep_info->in_interval)
1301 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1302 else
1303 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1304 length = usb_maxpacket(umidi->dev, pipe, 0);
1305 for (i = 0; i < INPUT_URBS; ++i) {
1306 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1307 &ep->urbs[i]->transfer_dma);
1308 if (!buffer) {
1309 err = -ENOMEM;
1310 goto error;
1311 }
1312 if (ep_info->in_interval)
1313 usb_fill_int_urb(ep->urbs[i], umidi->dev,
1314 pipe, buffer, length,
1315 snd_usbmidi_in_urb_complete,
1316 ep, ep_info->in_interval);
1317 else
1318 usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1319 pipe, buffer, length,
1320 snd_usbmidi_in_urb_complete, ep);
1321 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1322 err = usb_urb_ep_type_check(ep->urbs[i]);
1323 if (err < 0) {
1324 dev_err(&umidi->dev->dev, "invalid MIDI in EP %x\n",
1325 ep_info->in_ep);
1326 goto error;
1327 }
1328 }
1329
1330 rep->in = ep;
1331 return 0;
1332
1333 error:
1334 snd_usbmidi_in_endpoint_delete(ep);
1335 return -ENOMEM;
1336 }
1337
1338 /*
1339 * Frees an output endpoint.
1340 * May be called when ep hasn't been initialized completely.
1341 */
1342 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1343 {
1344 unsigned int i;
1345
1346 for (i = 0; i < OUTPUT_URBS; ++i)
1347 if (ep->urbs[i].urb) {
1348 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1349 ep->max_transfer);
1350 ep->urbs[i].urb = NULL;
1351 }
1352 }
1353
1354 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1355 {
1356 snd_usbmidi_out_endpoint_clear(ep);
1357 kfree(ep);
1358 }
1359
1360 /*
1361 * Creates an output endpoint, and initializes output ports.
1362 */
1363 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi *umidi,
1364 struct snd_usb_midi_endpoint_info *ep_info,
1365 struct snd_usb_midi_endpoint *rep)
1366 {
1367 struct snd_usb_midi_out_endpoint *ep;
1368 unsigned int i;
1369 unsigned int pipe;
1370 void *buffer;
1371 int err;
1372
1373 rep->out = NULL;
1374 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1375 if (!ep)
1376 return -ENOMEM;
1377 ep->umidi = umidi;
1378
1379 for (i = 0; i < OUTPUT_URBS; ++i) {
1380 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1381 if (!ep->urbs[i].urb) {
1382 err = -ENOMEM;
1383 goto error;
1384 }
1385 ep->urbs[i].ep = ep;
1386 }
1387 if (ep_info->out_interval)
1388 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1389 else
1390 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1391 switch (umidi->usb_id) {
1392 default:
1393 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1394 break;
1395 /*
1396 * Various chips declare a packet size larger than 4 bytes, but
1397 * do not actually work with larger packets:
1398 */
1399 case USB_ID(0x0a67, 0x5011): /* Medeli DD305 */
1400 case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1401 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1402 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1403 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1404 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1405 case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1406 ep->max_transfer = 4;
1407 break;
1408 /*
1409 * Some devices only work with 9 bytes packet size:
1410 */
1411 case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1412 case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1413 ep->max_transfer = 9;
1414 break;
1415 }
1416 for (i = 0; i < OUTPUT_URBS; ++i) {
1417 buffer = usb_alloc_coherent(umidi->dev,
1418 ep->max_transfer, GFP_KERNEL,
1419 &ep->urbs[i].urb->transfer_dma);
1420 if (!buffer) {
1421 err = -ENOMEM;
1422 goto error;
1423 }
1424 if (ep_info->out_interval)
1425 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1426 pipe, buffer, ep->max_transfer,
1427 snd_usbmidi_out_urb_complete,
1428 &ep->urbs[i], ep_info->out_interval);
1429 else
1430 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1431 pipe, buffer, ep->max_transfer,
1432 snd_usbmidi_out_urb_complete,
1433 &ep->urbs[i]);
1434 err = usb_urb_ep_type_check(ep->urbs[i].urb);
1435 if (err < 0) {
1436 dev_err(&umidi->dev->dev, "invalid MIDI out EP %x\n",
1437 ep_info->out_ep);
1438 goto error;
1439 }
1440 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1441 }
1442
1443 spin_lock_init(&ep->buffer_lock);
1444 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1445 init_waitqueue_head(&ep->drain_wait);
1446
1447 for (i = 0; i < 0x10; ++i)
1448 if (ep_info->out_cables & (1 << i)) {
1449 ep->ports[i].ep = ep;
1450 ep->ports[i].cable = i << 4;
1451 }
1452
1453 if (umidi->usb_protocol_ops->init_out_endpoint)
1454 umidi->usb_protocol_ops->init_out_endpoint(ep);
1455
1456 rep->out = ep;
1457 return 0;
1458
1459 error:
1460 snd_usbmidi_out_endpoint_delete(ep);
1461 return err;
1462 }
1463
1464 /*
1465 * Frees everything.
1466 */
1467 static void snd_usbmidi_free(struct snd_usb_midi *umidi)
1468 {
1469 int i;
1470
1471 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1472 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
1473 if (ep->out)
1474 snd_usbmidi_out_endpoint_delete(ep->out);
1475 if (ep->in)
1476 snd_usbmidi_in_endpoint_delete(ep->in);
1477 }
1478 mutex_destroy(&umidi->mutex);
1479 kfree(umidi);
1480 }
1481
1482 /*
1483 * Unlinks all URBs (must be done before the usb_device is deleted).
1484 */
1485 void snd_usbmidi_disconnect(struct list_head *p)
1486 {
1487 struct snd_usb_midi *umidi;
1488 unsigned int i, j;
1489
1490 umidi = list_entry(p, struct snd_usb_midi, list);
1491 /*
1492 * an URB's completion handler may start the timer and
1493 * a timer may submit an URB. To reliably break the cycle
1494 * a flag under lock must be used
1495 */
1496 down_write(&umidi->disc_rwsem);
1497 spin_lock_irq(&umidi->disc_lock);
1498 umidi->disconnected = 1;
1499 spin_unlock_irq(&umidi->disc_lock);
1500 up_write(&umidi->disc_rwsem);
1501
1502 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1503 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
1504 if (ep->out)
1505 tasklet_kill(&ep->out->tasklet);
1506 if (ep->out) {
1507 for (j = 0; j < OUTPUT_URBS; ++j)
1508 usb_kill_urb(ep->out->urbs[j].urb);
1509 if (umidi->usb_protocol_ops->finish_out_endpoint)
1510 umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1511 ep->out->active_urbs = 0;
1512 if (ep->out->drain_urbs) {
1513 ep->out->drain_urbs = 0;
1514 wake_up(&ep->out->drain_wait);
1515 }
1516 }
1517 if (ep->in)
1518 for (j = 0; j < INPUT_URBS; ++j)
1519 usb_kill_urb(ep->in->urbs[j]);
1520 /* free endpoints here; later call can result in Oops */
1521 if (ep->out)
1522 snd_usbmidi_out_endpoint_clear(ep->out);
1523 if (ep->in) {
1524 snd_usbmidi_in_endpoint_delete(ep->in);
1525 ep->in = NULL;
1526 }
1527 }
1528 del_timer_sync(&umidi->error_timer);
1529 }
1530 EXPORT_SYMBOL(snd_usbmidi_disconnect);
1531
1532 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1533 {
1534 struct snd_usb_midi *umidi = rmidi->private_data;
1535 snd_usbmidi_free(umidi);
1536 }
1537
1538 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi *umidi,
1539 int stream,
1540 int number)
1541 {
1542 struct snd_rawmidi_substream *substream;
1543
1544 list_for_each_entry(substream, &umidi->rmidi->streams[stream].substreams,
1545 list) {
1546 if (substream->number == number)
1547 return substream;
1548 }
1549 return NULL;
1550 }
1551
1552 /*
1553 * This list specifies names for ports that do not fit into the standard
1554 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1555 * such as internal control or synthesizer ports.
1556 */
1557 static struct port_info {
1558 u32 id;
1559 short int port;
1560 short int voices;
1561 const char *name;
1562 unsigned int seq_flags;
1563 } snd_usbmidi_port_info[] = {
1564 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1565 { .id = USB_ID(vendor, product), \
1566 .port = num, .voices = voices_, \
1567 .name = name_, .seq_flags = flags }
1568 #define EXTERNAL_PORT(vendor, product, num, name) \
1569 PORT_INFO(vendor, product, num, name, 0, \
1570 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1571 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1572 SNDRV_SEQ_PORT_TYPE_PORT)
1573 #define CONTROL_PORT(vendor, product, num, name) \
1574 PORT_INFO(vendor, product, num, name, 0, \
1575 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1576 SNDRV_SEQ_PORT_TYPE_HARDWARE)
1577 #define GM_SYNTH_PORT(vendor, product, num, name, voices) \
1578 PORT_INFO(vendor, product, num, name, voices, \
1579 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1580 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1581 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1582 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1583 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1584 PORT_INFO(vendor, product, num, name, voices, \
1585 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1586 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1587 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1588 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1589 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1590 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1591 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1592 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1593 PORT_INFO(vendor, product, num, name, voices, \
1594 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1595 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1596 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1597 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1598 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1599 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1600 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1601 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1602 /* Yamaha MOTIF XF */
1603 GM_SYNTH_PORT(0x0499, 0x105c, 0, "%s Tone Generator", 128),
1604 CONTROL_PORT(0x0499, 0x105c, 1, "%s Remote Control"),
1605 EXTERNAL_PORT(0x0499, 0x105c, 2, "%s Thru"),
1606 CONTROL_PORT(0x0499, 0x105c, 3, "%s Editor"),
1607 /* Roland UA-100 */
1608 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1609 /* Roland SC-8850 */
1610 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1611 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1612 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1613 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1614 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1615 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1616 /* Roland U-8 */
1617 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1618 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1619 /* Roland SC-8820 */
1620 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1621 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1622 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1623 /* Roland SK-500 */
1624 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1625 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1626 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1627 /* Roland SC-D70 */
1628 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1629 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1630 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1631 /* Edirol UM-880 */
1632 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1633 /* Edirol SD-90 */
1634 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1635 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1636 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1637 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1638 /* Edirol UM-550 */
1639 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1640 /* Edirol SD-20 */
1641 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1642 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1643 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1644 /* Edirol SD-80 */
1645 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1646 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1647 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1648 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1649 /* Edirol UA-700 */
1650 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1651 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1652 /* Roland VariOS */
1653 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1654 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1655 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1656 /* Edirol PCR */
1657 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1658 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1659 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1660 /* BOSS GS-10 */
1661 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1662 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1663 /* Edirol UA-1000 */
1664 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1665 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1666 /* Edirol UR-80 */
1667 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1668 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1669 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1670 /* Edirol PCR-A */
1671 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1672 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1673 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1674 /* BOSS GT-PRO */
1675 CONTROL_PORT(0x0582, 0x0089, 0, "%s Control"),
1676 /* Edirol UM-3EX */
1677 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1678 /* Roland VG-99 */
1679 CONTROL_PORT(0x0582, 0x00b2, 0, "%s Control"),
1680 EXTERNAL_PORT(0x0582, 0x00b2, 1, "%s MIDI"),
1681 /* Cakewalk Sonar V-Studio 100 */
1682 EXTERNAL_PORT(0x0582, 0x00eb, 0, "%s MIDI"),
1683 CONTROL_PORT(0x0582, 0x00eb, 1, "%s Control"),
1684 /* Roland VB-99 */
1685 CONTROL_PORT(0x0582, 0x0102, 0, "%s Control"),
1686 EXTERNAL_PORT(0x0582, 0x0102, 1, "%s MIDI"),
1687 /* Roland A-PRO */
1688 EXTERNAL_PORT(0x0582, 0x010f, 0, "%s MIDI"),
1689 CONTROL_PORT(0x0582, 0x010f, 1, "%s 1"),
1690 CONTROL_PORT(0x0582, 0x010f, 2, "%s 2"),
1691 /* Roland SD-50 */
1692 ROLAND_SYNTH_PORT(0x0582, 0x0114, 0, "%s Synth", 128),
1693 EXTERNAL_PORT(0x0582, 0x0114, 1, "%s MIDI"),
1694 CONTROL_PORT(0x0582, 0x0114, 2, "%s Control"),
1695 /* Roland OCTA-CAPTURE */
1696 EXTERNAL_PORT(0x0582, 0x0120, 0, "%s MIDI"),
1697 CONTROL_PORT(0x0582, 0x0120, 1, "%s Control"),
1698 EXTERNAL_PORT(0x0582, 0x0121, 0, "%s MIDI"),
1699 CONTROL_PORT(0x0582, 0x0121, 1, "%s Control"),
1700 /* Roland SPD-SX */
1701 CONTROL_PORT(0x0582, 0x0145, 0, "%s Control"),
1702 EXTERNAL_PORT(0x0582, 0x0145, 1, "%s MIDI"),
1703 /* Roland A-Series */
1704 CONTROL_PORT(0x0582, 0x0156, 0, "%s Keyboard"),
1705 EXTERNAL_PORT(0x0582, 0x0156, 1, "%s MIDI"),
1706 /* Roland INTEGRA-7 */
1707 ROLAND_SYNTH_PORT(0x0582, 0x015b, 0, "%s Synth", 128),
1708 CONTROL_PORT(0x0582, 0x015b, 1, "%s Control"),
1709 /* M-Audio MidiSport 8x8 */
1710 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1711 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1712 /* MOTU Fastlane */
1713 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1714 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1715 /* Emagic Unitor8/AMT8/MT4 */
1716 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1717 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1718 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1719 /* Akai MPD16 */
1720 CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1721 PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1722 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1723 SNDRV_SEQ_PORT_TYPE_HARDWARE),
1724 /* Access Music Virus TI */
1725 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1726 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1727 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1728 SNDRV_SEQ_PORT_TYPE_HARDWARE |
1729 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1730 };
1731
1732 static struct port_info *find_port_info(struct snd_usb_midi *umidi, int number)
1733 {
1734 int i;
1735
1736 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1737 if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1738 snd_usbmidi_port_info[i].port == number)
1739 return &snd_usbmidi_port_info[i];
1740 }
1741 return NULL;
1742 }
1743
1744 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1745 struct snd_seq_port_info *seq_port_info)
1746 {
1747 struct snd_usb_midi *umidi = rmidi->private_data;
1748 struct port_info *port_info;
1749
1750 /* TODO: read port flags from descriptors */
1751 port_info = find_port_info(umidi, number);
1752 if (port_info) {
1753 seq_port_info->type = port_info->seq_flags;
1754 seq_port_info->midi_voices = port_info->voices;
1755 }
1756 }
1757
1758 static void snd_usbmidi_init_substream(struct snd_usb_midi *umidi,
1759 int stream, int number,
1760 struct snd_rawmidi_substream **rsubstream)
1761 {
1762 struct port_info *port_info;
1763 const char *name_format;
1764
1765 struct snd_rawmidi_substream *substream =
1766 snd_usbmidi_find_substream(umidi, stream, number);
1767 if (!substream) {
1768 dev_err(&umidi->dev->dev, "substream %d:%d not found\n", stream,
1769 number);
1770 return;
1771 }
1772
1773 /* TODO: read port name from jack descriptor */
1774 port_info = find_port_info(umidi, number);
1775 name_format = port_info ? port_info->name : "%s MIDI %d";
1776 snprintf(substream->name, sizeof(substream->name),
1777 name_format, umidi->card->shortname, number + 1);
1778
1779 *rsubstream = substream;
1780 }
1781
1782 /*
1783 * Creates the endpoints and their ports.
1784 */
1785 static int snd_usbmidi_create_endpoints(struct snd_usb_midi *umidi,
1786 struct snd_usb_midi_endpoint_info *endpoints)
1787 {
1788 int i, j, err;
1789 int out_ports = 0, in_ports = 0;
1790
1791 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1792 if (endpoints[i].out_cables) {
1793 err = snd_usbmidi_out_endpoint_create(umidi,
1794 &endpoints[i],
1795 &umidi->endpoints[i]);
1796 if (err < 0)
1797 return err;
1798 }
1799 if (endpoints[i].in_cables) {
1800 err = snd_usbmidi_in_endpoint_create(umidi,
1801 &endpoints[i],
1802 &umidi->endpoints[i]);
1803 if (err < 0)
1804 return err;
1805 }
1806
1807 for (j = 0; j < 0x10; ++j) {
1808 if (endpoints[i].out_cables & (1 << j)) {
1809 snd_usbmidi_init_substream(umidi,
1810 SNDRV_RAWMIDI_STREAM_OUTPUT,
1811 out_ports,
1812 &umidi->endpoints[i].out->ports[j].substream);
1813 ++out_ports;
1814 }
1815 if (endpoints[i].in_cables & (1 << j)) {
1816 snd_usbmidi_init_substream(umidi,
1817 SNDRV_RAWMIDI_STREAM_INPUT,
1818 in_ports,
1819 &umidi->endpoints[i].in->ports[j].substream);
1820 ++in_ports;
1821 }
1822 }
1823 }
1824 dev_dbg(&umidi->dev->dev, "created %d output and %d input ports\n",
1825 out_ports, in_ports);
1826 return 0;
1827 }
1828
1829 /*
1830 * Returns MIDIStreaming device capabilities.
1831 */
1832 static int snd_usbmidi_get_ms_info(struct snd_usb_midi *umidi,
1833 struct snd_usb_midi_endpoint_info *endpoints)
1834 {
1835 struct usb_interface *intf;
1836 struct usb_host_interface *hostif;
1837 struct usb_interface_descriptor *intfd;
1838 struct usb_ms_header_descriptor *ms_header;
1839 struct usb_host_endpoint *hostep;
1840 struct usb_endpoint_descriptor *ep;
1841 struct usb_ms_endpoint_descriptor *ms_ep;
1842 int i, epidx;
1843
1844 intf = umidi->iface;
1845 if (!intf)
1846 return -ENXIO;
1847 hostif = &intf->altsetting[0];
1848 intfd = get_iface_desc(hostif);
1849 ms_header = (struct usb_ms_header_descriptor *)hostif->extra;
1850 if (hostif->extralen >= 7 &&
1851 ms_header->bLength >= 7 &&
1852 ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1853 ms_header->bDescriptorSubtype == UAC_HEADER)
1854 dev_dbg(&umidi->dev->dev, "MIDIStreaming version %02x.%02x\n",
1855 ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1856 else
1857 dev_warn(&umidi->dev->dev,
1858 "MIDIStreaming interface descriptor not found\n");
1859
1860 epidx = 0;
1861 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1862 hostep = &hostif->endpoint[i];
1863 ep = get_ep_desc(hostep);
1864 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1865 continue;
1866 ms_ep = (struct usb_ms_endpoint_descriptor *)hostep->extra;
1867 if (hostep->extralen < 4 ||
1868 ms_ep->bLength < 4 ||
1869 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1870 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1871 continue;
1872 if (usb_endpoint_dir_out(ep)) {
1873 if (endpoints[epidx].out_ep) {
1874 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1875 dev_warn(&umidi->dev->dev,
1876 "too many endpoints\n");
1877 break;
1878 }
1879 }
1880 endpoints[epidx].out_ep = usb_endpoint_num(ep);
1881 if (usb_endpoint_xfer_int(ep))
1882 endpoints[epidx].out_interval = ep->bInterval;
1883 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1884 /*
1885 * Low speed bulk transfers don't exist, so
1886 * force interrupt transfers for devices like
1887 * ESI MIDI Mate that try to use them anyway.
1888 */
1889 endpoints[epidx].out_interval = 1;
1890 endpoints[epidx].out_cables =
1891 (1 << ms_ep->bNumEmbMIDIJack) - 1;
1892 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
1893 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1894 } else {
1895 if (endpoints[epidx].in_ep) {
1896 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1897 dev_warn(&umidi->dev->dev,
1898 "too many endpoints\n");
1899 break;
1900 }
1901 }
1902 endpoints[epidx].in_ep = usb_endpoint_num(ep);
1903 if (usb_endpoint_xfer_int(ep))
1904 endpoints[epidx].in_interval = ep->bInterval;
1905 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1906 endpoints[epidx].in_interval = 1;
1907 endpoints[epidx].in_cables =
1908 (1 << ms_ep->bNumEmbMIDIJack) - 1;
1909 dev_dbg(&umidi->dev->dev, "EP %02X: %d jack(s)\n",
1910 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1911 }
1912 }
1913 return 0;
1914 }
1915
1916 static int roland_load_info(struct snd_kcontrol *kcontrol,
1917 struct snd_ctl_elem_info *info)
1918 {
1919 static const char *const names[] = { "High Load", "Light Load" };
1920
1921 return snd_ctl_enum_info(info, 1, 2, names);
1922 }
1923
1924 static int roland_load_get(struct snd_kcontrol *kcontrol,
1925 struct snd_ctl_elem_value *value)
1926 {
1927 value->value.enumerated.item[0] = kcontrol->private_value;
1928 return 0;
1929 }
1930
1931 static int roland_load_put(struct snd_kcontrol *kcontrol,
1932 struct snd_ctl_elem_value *value)
1933 {
1934 struct snd_usb_midi *umidi = kcontrol->private_data;
1935 int changed;
1936
1937 if (value->value.enumerated.item[0] > 1)
1938 return -EINVAL;
1939 mutex_lock(&umidi->mutex);
1940 changed = value->value.enumerated.item[0] != kcontrol->private_value;
1941 if (changed)
1942 kcontrol->private_value = value->value.enumerated.item[0];
1943 mutex_unlock(&umidi->mutex);
1944 return changed;
1945 }
1946
1947 static const struct snd_kcontrol_new roland_load_ctl = {
1948 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1949 .name = "MIDI Input Mode",
1950 .info = roland_load_info,
1951 .get = roland_load_get,
1952 .put = roland_load_put,
1953 .private_value = 1,
1954 };
1955
1956 /*
1957 * On Roland devices, use the second alternate setting to be able to use
1958 * the interrupt input endpoint.
1959 */
1960 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi *umidi)
1961 {
1962 struct usb_interface *intf;
1963 struct usb_host_interface *hostif;
1964 struct usb_interface_descriptor *intfd;
1965
1966 intf = umidi->iface;
1967 if (!intf || intf->num_altsetting != 2)
1968 return;
1969
1970 hostif = &intf->altsetting[1];
1971 intfd = get_iface_desc(hostif);
1972 /* If either or both of the endpoints support interrupt transfer,
1973 * then use the alternate setting
1974 */
1975 if (intfd->bNumEndpoints != 2 ||
1976 !((get_endpoint(hostif, 0)->bmAttributes &
1977 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT ||
1978 (get_endpoint(hostif, 1)->bmAttributes &
1979 USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT))
1980 return;
1981
1982 dev_dbg(&umidi->dev->dev, "switching to altsetting %d with int ep\n",
1983 intfd->bAlternateSetting);
1984 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1985 intfd->bAlternateSetting);
1986
1987 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1988 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1989 umidi->roland_load_ctl = NULL;
1990 }
1991
1992 /*
1993 * Try to find any usable endpoints in the interface.
1994 */
1995 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi *umidi,
1996 struct snd_usb_midi_endpoint_info *endpoint,
1997 int max_endpoints)
1998 {
1999 struct usb_interface *intf;
2000 struct usb_host_interface *hostif;
2001 struct usb_interface_descriptor *intfd;
2002 struct usb_endpoint_descriptor *epd;
2003 int i, out_eps = 0, in_eps = 0;
2004
2005 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
2006 snd_usbmidi_switch_roland_altsetting(umidi);
2007
2008 if (endpoint[0].out_ep || endpoint[0].in_ep)
2009 return 0;
2010
2011 intf = umidi->iface;
2012 if (!intf || intf->num_altsetting < 1)
2013 return -ENOENT;
2014 hostif = intf->cur_altsetting;
2015 intfd = get_iface_desc(hostif);
2016
2017 for (i = 0; i < intfd->bNumEndpoints; ++i) {
2018 epd = get_endpoint(hostif, i);
2019 if (!usb_endpoint_xfer_bulk(epd) &&
2020 !usb_endpoint_xfer_int(epd))
2021 continue;
2022 if (out_eps < max_endpoints &&
2023 usb_endpoint_dir_out(epd)) {
2024 endpoint[out_eps].out_ep = usb_endpoint_num(epd);
2025 if (usb_endpoint_xfer_int(epd))
2026 endpoint[out_eps].out_interval = epd->bInterval;
2027 ++out_eps;
2028 }
2029 if (in_eps < max_endpoints &&
2030 usb_endpoint_dir_in(epd)) {
2031 endpoint[in_eps].in_ep = usb_endpoint_num(epd);
2032 if (usb_endpoint_xfer_int(epd))
2033 endpoint[in_eps].in_interval = epd->bInterval;
2034 ++in_eps;
2035 }
2036 }
2037 return (out_eps || in_eps) ? 0 : -ENOENT;
2038 }
2039
2040 /*
2041 * Detects the endpoints for one-port-per-endpoint protocols.
2042 */
2043 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi *umidi,
2044 struct snd_usb_midi_endpoint_info *endpoints)
2045 {
2046 int err, i;
2047
2048 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
2049 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2050 if (endpoints[i].out_ep)
2051 endpoints[i].out_cables = 0x0001;
2052 if (endpoints[i].in_ep)
2053 endpoints[i].in_cables = 0x0001;
2054 }
2055 return err;
2056 }
2057
2058 /*
2059 * Detects the endpoints and ports of Yamaha devices.
2060 */
2061 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi *umidi,
2062 struct snd_usb_midi_endpoint_info *endpoint)
2063 {
2064 struct usb_interface *intf;
2065 struct usb_host_interface *hostif;
2066 struct usb_interface_descriptor *intfd;
2067 uint8_t *cs_desc;
2068
2069 intf = umidi->iface;
2070 if (!intf)
2071 return -ENOENT;
2072 hostif = intf->altsetting;
2073 intfd = get_iface_desc(hostif);
2074 if (intfd->bNumEndpoints < 1)
2075 return -ENOENT;
2076
2077 /*
2078 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
2079 * necessarily with any useful contents. So simply count 'em.
2080 */
2081 for (cs_desc = hostif->extra;
2082 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
2083 cs_desc += cs_desc[0]) {
2084 if (cs_desc[1] == USB_DT_CS_INTERFACE) {
2085 if (cs_desc[2] == UAC_MIDI_IN_JACK)
2086 endpoint->in_cables =
2087 (endpoint->in_cables << 1) | 1;
2088 else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
2089 endpoint->out_cables =
2090 (endpoint->out_cables << 1) | 1;
2091 }
2092 }
2093 if (!endpoint->in_cables && !endpoint->out_cables)
2094 return -ENOENT;
2095
2096 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
2097 }
2098
2099 /*
2100 * Detects the endpoints and ports of Roland devices.
2101 */
2102 static int snd_usbmidi_detect_roland(struct snd_usb_midi *umidi,
2103 struct snd_usb_midi_endpoint_info *endpoint)
2104 {
2105 struct usb_interface *intf;
2106 struct usb_host_interface *hostif;
2107 u8 *cs_desc;
2108
2109 intf = umidi->iface;
2110 if (!intf)
2111 return -ENOENT;
2112 hostif = intf->altsetting;
2113 /*
2114 * Some devices have a descriptor <06 24 F1 02 <inputs> <outputs>>,
2115 * some have standard class descriptors, or both kinds, or neither.
2116 */
2117 for (cs_desc = hostif->extra;
2118 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
2119 cs_desc += cs_desc[0]) {
2120 if (cs_desc[0] >= 6 &&
2121 cs_desc[1] == USB_DT_CS_INTERFACE &&
2122 cs_desc[2] == 0xf1 &&
2123 cs_desc[3] == 0x02) {
2124 endpoint->in_cables = (1 << cs_desc[4]) - 1;
2125 endpoint->out_cables = (1 << cs_desc[5]) - 1;
2126 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
2127 } else if (cs_desc[0] >= 7 &&
2128 cs_desc[1] == USB_DT_CS_INTERFACE &&
2129 cs_desc[2] == UAC_HEADER) {
2130 return snd_usbmidi_get_ms_info(umidi, endpoint);
2131 }
2132 }
2133
2134 return -ENODEV;
2135 }
2136
2137 /*
2138 * Creates the endpoints and their ports for Midiman devices.
2139 */
2140 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi *umidi,
2141 struct snd_usb_midi_endpoint_info *endpoint)
2142 {
2143 struct snd_usb_midi_endpoint_info ep_info;
2144 struct usb_interface *intf;
2145 struct usb_host_interface *hostif;
2146 struct usb_interface_descriptor *intfd;
2147 struct usb_endpoint_descriptor *epd;
2148 int cable, err;
2149
2150 intf = umidi->iface;
2151 if (!intf)
2152 return -ENOENT;
2153 hostif = intf->altsetting;
2154 intfd = get_iface_desc(hostif);
2155 /*
2156 * The various MidiSport devices have more or less random endpoint
2157 * numbers, so we have to identify the endpoints by their index in
2158 * the descriptor array, like the driver for that other OS does.
2159 *
2160 * There is one interrupt input endpoint for all input ports, one
2161 * bulk output endpoint for even-numbered ports, and one for odd-
2162 * numbered ports. Both bulk output endpoints have corresponding
2163 * input bulk endpoints (at indices 1 and 3) which aren't used.
2164 */
2165 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
2166 dev_dbg(&umidi->dev->dev, "not enough endpoints\n");
2167 return -ENOENT;
2168 }
2169
2170 epd = get_endpoint(hostif, 0);
2171 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
2172 dev_dbg(&umidi->dev->dev, "endpoint[0] isn't interrupt\n");
2173 return -ENXIO;
2174 }
2175 epd = get_endpoint(hostif, 2);
2176 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
2177 dev_dbg(&umidi->dev->dev, "endpoint[2] isn't bulk output\n");
2178 return -ENXIO;
2179 }
2180 if (endpoint->out_cables > 0x0001) {
2181 epd = get_endpoint(hostif, 4);
2182 if (!usb_endpoint_dir_out(epd) ||
2183 !usb_endpoint_xfer_bulk(epd)) {
2184 dev_dbg(&umidi->dev->dev,
2185 "endpoint[4] isn't bulk output\n");
2186 return -ENXIO;
2187 }
2188 }
2189
2190 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress &
2191 USB_ENDPOINT_NUMBER_MASK;
2192 ep_info.out_interval = 0;
2193 ep_info.out_cables = endpoint->out_cables & 0x5555;
2194 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
2195 &umidi->endpoints[0]);
2196 if (err < 0)
2197 return err;
2198
2199 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress &
2200 USB_ENDPOINT_NUMBER_MASK;
2201 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
2202 ep_info.in_cables = endpoint->in_cables;
2203 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info,
2204 &umidi->endpoints[0]);
2205 if (err < 0)
2206 return err;
2207
2208 if (endpoint->out_cables > 0x0001) {
2209 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress &
2210 USB_ENDPOINT_NUMBER_MASK;
2211 ep_info.out_cables = endpoint->out_cables & 0xaaaa;
2212 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info,
2213 &umidi->endpoints[1]);
2214 if (err < 0)
2215 return err;
2216 }
2217
2218 for (cable = 0; cable < 0x10; ++cable) {
2219 if (endpoint->out_cables & (1 << cable))
2220 snd_usbmidi_init_substream(umidi,
2221 SNDRV_RAWMIDI_STREAM_OUTPUT,
2222 cable,
2223 &umidi->endpoints[cable & 1].out->ports[cable].substream);
2224 if (endpoint->in_cables & (1 << cable))
2225 snd_usbmidi_init_substream(umidi,
2226 SNDRV_RAWMIDI_STREAM_INPUT,
2227 cable,
2228 &umidi->endpoints[0].in->ports[cable].substream);
2229 }
2230 return 0;
2231 }
2232
2233 static const struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2234 .get_port_info = snd_usbmidi_get_port_info,
2235 };
2236
2237 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi *umidi,
2238 int out_ports, int in_ports)
2239 {
2240 struct snd_rawmidi *rmidi;
2241 int err;
2242
2243 err = snd_rawmidi_new(umidi->card, "USB MIDI",
2244 umidi->next_midi_device++,
2245 out_ports, in_ports, &rmidi);
2246 if (err < 0)
2247 return err;
2248 strcpy(rmidi->name, umidi->card->shortname);
2249 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2250 SNDRV_RAWMIDI_INFO_INPUT |
2251 SNDRV_RAWMIDI_INFO_DUPLEX;
2252 rmidi->ops = &snd_usbmidi_ops;
2253 rmidi->private_data = umidi;
2254 rmidi->private_free = snd_usbmidi_rawmidi_free;
2255 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
2256 &snd_usbmidi_output_ops);
2257 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
2258 &snd_usbmidi_input_ops);
2259
2260 umidi->rmidi = rmidi;
2261 return 0;
2262 }
2263
2264 /*
2265 * Temporarily stop input.
2266 */
2267 void snd_usbmidi_input_stop(struct list_head *p)
2268 {
2269 struct snd_usb_midi *umidi;
2270 unsigned int i, j;
2271
2272 umidi = list_entry(p, struct snd_usb_midi, list);
2273 if (!umidi->input_running)
2274 return;
2275 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2276 struct snd_usb_midi_endpoint *ep = &umidi->endpoints[i];
2277 if (ep->in)
2278 for (j = 0; j < INPUT_URBS; ++j)
2279 usb_kill_urb(ep->in->urbs[j]);
2280 }
2281 umidi->input_running = 0;
2282 }
2283 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2284
2285 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint *ep)
2286 {
2287 unsigned int i;
2288
2289 if (!ep)
2290 return;
2291 for (i = 0; i < INPUT_URBS; ++i) {
2292 struct urb *urb = ep->urbs[i];
2293 urb->dev = ep->umidi->dev;
2294 snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2295 }
2296 }
2297
2298 /*
2299 * Resume input after a call to snd_usbmidi_input_stop().
2300 */
2301 void snd_usbmidi_input_start(struct list_head *p)
2302 {
2303 struct snd_usb_midi *umidi;
2304 int i;
2305
2306 umidi = list_entry(p, struct snd_usb_midi, list);
2307 if (umidi->input_running || !umidi->opened[1])
2308 return;
2309 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2310 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2311 umidi->input_running = 1;
2312 }
2313 EXPORT_SYMBOL(snd_usbmidi_input_start);
2314
2315 /*
2316 * Prepare for suspend. Typically called from the USB suspend callback.
2317 */
2318 void snd_usbmidi_suspend(struct list_head *p)
2319 {
2320 struct snd_usb_midi *umidi;
2321
2322 umidi = list_entry(p, struct snd_usb_midi, list);
2323 mutex_lock(&umidi->mutex);
2324 snd_usbmidi_input_stop(p);
2325 mutex_unlock(&umidi->mutex);
2326 }
2327 EXPORT_SYMBOL(snd_usbmidi_suspend);
2328
2329 /*
2330 * Resume. Typically called from the USB resume callback.
2331 */
2332 void snd_usbmidi_resume(struct list_head *p)
2333 {
2334 struct snd_usb_midi *umidi;
2335
2336 umidi = list_entry(p, struct snd_usb_midi, list);
2337 mutex_lock(&umidi->mutex);
2338 snd_usbmidi_input_start(p);
2339 mutex_unlock(&umidi->mutex);
2340 }
2341 EXPORT_SYMBOL(snd_usbmidi_resume);
2342
2343 /*
2344 * Creates and registers everything needed for a MIDI streaming interface.
2345 */
2346 int __snd_usbmidi_create(struct snd_card *card,
2347 struct usb_interface *iface,
2348 struct list_head *midi_list,
2349 const struct snd_usb_audio_quirk *quirk,
2350 unsigned int usb_id)
2351 {
2352 struct snd_usb_midi *umidi;
2353 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2354 int out_ports, in_ports;
2355 int i, err;
2356
2357 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2358 if (!umidi)
2359 return -ENOMEM;
2360 umidi->dev = interface_to_usbdev(iface);
2361 umidi->card = card;
2362 umidi->iface = iface;
2363 umidi->quirk = quirk;
2364 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2365 spin_lock_init(&umidi->disc_lock);
2366 init_rwsem(&umidi->disc_rwsem);
2367 mutex_init(&umidi->mutex);
2368 if (!usb_id)
2369 usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2370 le16_to_cpu(umidi->dev->descriptor.idProduct));
2371 umidi->usb_id = usb_id;
2372 timer_setup(&umidi->error_timer, snd_usbmidi_error_timer, 0);
2373
2374 /* detect the endpoint(s) to use */
2375 memset(endpoints, 0, sizeof(endpoints));
2376 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2377 case QUIRK_MIDI_STANDARD_INTERFACE:
2378 err = snd_usbmidi_get_ms_info(umidi, endpoints);
2379 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2380 umidi->usb_protocol_ops =
2381 &snd_usbmidi_maudio_broken_running_status_ops;
2382 break;
2383 case QUIRK_MIDI_US122L:
2384 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2385 /* fall through */
2386 case QUIRK_MIDI_FIXED_ENDPOINT:
2387 memcpy(&endpoints[0], quirk->data,
2388 sizeof(struct snd_usb_midi_endpoint_info));
2389 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2390 break;
2391 case QUIRK_MIDI_YAMAHA:
2392 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2393 break;
2394 case QUIRK_MIDI_ROLAND:
2395 err = snd_usbmidi_detect_roland(umidi, &endpoints[0]);
2396 break;
2397 case QUIRK_MIDI_MIDIMAN:
2398 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2399 memcpy(&endpoints[0], quirk->data,
2400 sizeof(struct snd_usb_midi_endpoint_info));
2401 err = 0;
2402 break;
2403 case QUIRK_MIDI_NOVATION:
2404 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2405 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2406 break;
2407 case QUIRK_MIDI_RAW_BYTES:
2408 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2409 /*
2410 * Interface 1 contains isochronous endpoints, but with the same
2411 * numbers as in interface 0. Since it is interface 1 that the
2412 * USB core has most recently seen, these descriptors are now
2413 * associated with the endpoint numbers. This will foul up our
2414 * attempts to submit bulk/interrupt URBs to the endpoints in
2415 * interface 0, so we have to make sure that the USB core looks
2416 * again at interface 0 by calling usb_set_interface() on it.
2417 */
2418 if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2419 usb_set_interface(umidi->dev, 0, 0);
2420 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2421 break;
2422 case QUIRK_MIDI_EMAGIC:
2423 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2424 memcpy(&endpoints[0], quirk->data,
2425 sizeof(struct snd_usb_midi_endpoint_info));
2426 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2427 break;
2428 case QUIRK_MIDI_CME:
2429 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2430 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2431 break;
2432 case QUIRK_MIDI_AKAI:
2433 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2434 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2435 /* endpoint 1 is input-only */
2436 endpoints[1].out_cables = 0;
2437 break;
2438 case QUIRK_MIDI_FTDI:
2439 umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops;
2440
2441 /* set baud rate to 31250 (48 MHz / 16 / 96) */
2442 err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0),
2443 3, 0x40, 0x60, 0, NULL, 0, 1000);
2444 if (err < 0)
2445 break;
2446
2447 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2448 break;
2449 case QUIRK_MIDI_CH345:
2450 umidi->usb_protocol_ops = &snd_usbmidi_ch345_broken_sysex_ops;
2451 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2452 break;
2453 default:
2454 dev_err(&umidi->dev->dev, "invalid quirk type %d\n",
2455 quirk->type);
2456 err = -ENXIO;
2457 break;
2458 }
2459 if (err < 0)
2460 goto free_midi;
2461
2462 /* create rawmidi device */
2463 out_ports = 0;
2464 in_ports = 0;
2465 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2466 out_ports += hweight16(endpoints[i].out_cables);
2467 in_ports += hweight16(endpoints[i].in_cables);
2468 }
2469 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2470 if (err < 0)
2471 goto free_midi;
2472
2473 /* create endpoint/port structures */
2474 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2475 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2476 else
2477 err = snd_usbmidi_create_endpoints(umidi, endpoints);
2478 if (err < 0)
2479 goto exit;
2480
2481 usb_autopm_get_interface_no_resume(umidi->iface);
2482
2483 list_add_tail(&umidi->list, midi_list);
2484 return 0;
2485
2486 free_midi:
2487 kfree(umidi);
2488 exit:
2489 return err;
2490 }
2491 EXPORT_SYMBOL(__snd_usbmidi_create);