]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - sound/usb/midi.c
ALSA: usb-audio: refactor code
[mirror_ubuntu-bionic-kernel.git] / sound / usb / midi.c
1 /*
2 * usbmidi.c - ALSA USB MIDI driver
3 *
4 * Copyright (c) 2002-2009 Clemens Ladisch
5 * All rights reserved.
6 *
7 * Based on the OSS usb-midi driver by NAGANO Daisuke,
8 * NetBSD's umidi driver by Takuya SHIOZAKI,
9 * the "USB Device Class Definition for MIDI Devices" by Roland
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed and/or modified under the
21 * terms of the GNU General Public License as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any later
23 * version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50
51 #include <sound/core.h>
52 #include <sound/control.h>
53 #include <sound/rawmidi.h>
54 #include <sound/asequencer.h>
55 #include "usbaudio.h"
56 #include "midi.h"
57 #include "helper.h"
58
59 /*
60 * define this to log all USB packets
61 */
62 /* #define DUMP_PACKETS */
63
64 /*
65 * how long to wait after some USB errors, so that khubd can disconnect() us
66 * without too many spurious errors
67 */
68 #define ERROR_DELAY_JIFFIES (HZ / 10)
69
70 #define OUTPUT_URBS 7
71 #define INPUT_URBS 7
72
73
74 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
75 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
76 MODULE_LICENSE("Dual BSD/GPL");
77
78
79 struct usb_ms_header_descriptor {
80 __u8 bLength;
81 __u8 bDescriptorType;
82 __u8 bDescriptorSubtype;
83 __u8 bcdMSC[2];
84 __le16 wTotalLength;
85 } __attribute__ ((packed));
86
87 struct usb_ms_endpoint_descriptor {
88 __u8 bLength;
89 __u8 bDescriptorType;
90 __u8 bDescriptorSubtype;
91 __u8 bNumEmbMIDIJack;
92 __u8 baAssocJackID[0];
93 } __attribute__ ((packed));
94
95 struct snd_usb_midi_in_endpoint;
96 struct snd_usb_midi_out_endpoint;
97 struct snd_usb_midi_endpoint;
98
99 struct usb_protocol_ops {
100 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
101 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
102 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
103 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
104 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
105 };
106
107 struct snd_usb_midi {
108 struct usb_device *dev;
109 struct snd_card *card;
110 struct usb_interface *iface;
111 const struct snd_usb_audio_quirk *quirk;
112 struct snd_rawmidi *rmidi;
113 struct usb_protocol_ops* usb_protocol_ops;
114 struct list_head list;
115 struct timer_list error_timer;
116 spinlock_t disc_lock;
117 struct mutex mutex;
118 u32 usb_id;
119 int next_midi_device;
120
121 struct snd_usb_midi_endpoint {
122 struct snd_usb_midi_out_endpoint *out;
123 struct snd_usb_midi_in_endpoint *in;
124 } endpoints[MIDI_MAX_ENDPOINTS];
125 unsigned long input_triggered;
126 unsigned int opened;
127 unsigned char disconnected;
128
129 struct snd_kcontrol *roland_load_ctl;
130 };
131
132 struct snd_usb_midi_out_endpoint {
133 struct snd_usb_midi* umidi;
134 struct out_urb_context {
135 struct urb *urb;
136 struct snd_usb_midi_out_endpoint *ep;
137 } urbs[OUTPUT_URBS];
138 unsigned int active_urbs;
139 unsigned int drain_urbs;
140 int max_transfer; /* size of urb buffer */
141 struct tasklet_struct tasklet;
142 unsigned int next_urb;
143 spinlock_t buffer_lock;
144
145 struct usbmidi_out_port {
146 struct snd_usb_midi_out_endpoint* ep;
147 struct snd_rawmidi_substream *substream;
148 int active;
149 uint8_t cable; /* cable number << 4 */
150 uint8_t state;
151 #define STATE_UNKNOWN 0
152 #define STATE_1PARAM 1
153 #define STATE_2PARAM_1 2
154 #define STATE_2PARAM_2 3
155 #define STATE_SYSEX_0 4
156 #define STATE_SYSEX_1 5
157 #define STATE_SYSEX_2 6
158 uint8_t data[2];
159 } ports[0x10];
160 int current_port;
161
162 wait_queue_head_t drain_wait;
163 };
164
165 struct snd_usb_midi_in_endpoint {
166 struct snd_usb_midi* umidi;
167 struct urb* urbs[INPUT_URBS];
168 struct usbmidi_in_port {
169 struct snd_rawmidi_substream *substream;
170 u8 running_status_length;
171 } ports[0x10];
172 u8 seen_f5;
173 u8 error_resubmit;
174 int current_port;
175 };
176
177 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
178
179 static const uint8_t snd_usbmidi_cin_length[] = {
180 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
181 };
182
183 /*
184 * Submits the URB, with error handling.
185 */
186 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
187 {
188 int err = usb_submit_urb(urb, flags);
189 if (err < 0 && err != -ENODEV)
190 snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
191 return err;
192 }
193
194 /*
195 * Error handling for URB completion functions.
196 */
197 static int snd_usbmidi_urb_error(int status)
198 {
199 switch (status) {
200 /* manually unlinked, or device gone */
201 case -ENOENT:
202 case -ECONNRESET:
203 case -ESHUTDOWN:
204 case -ENODEV:
205 return -ENODEV;
206 /* errors that might occur during unplugging */
207 case -EPROTO:
208 case -ETIME:
209 case -EILSEQ:
210 return -EIO;
211 default:
212 snd_printk(KERN_ERR "urb status %d\n", status);
213 return 0; /* continue */
214 }
215 }
216
217 /*
218 * Receives a chunk of MIDI data.
219 */
220 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
221 uint8_t* data, int length)
222 {
223 struct usbmidi_in_port* port = &ep->ports[portidx];
224
225 if (!port->substream) {
226 snd_printd("unexpected port %d!\n", portidx);
227 return;
228 }
229 if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
230 return;
231 snd_rawmidi_receive(port->substream, data, length);
232 }
233
234 #ifdef DUMP_PACKETS
235 static void dump_urb(const char *type, const u8 *data, int length)
236 {
237 snd_printk(KERN_DEBUG "%s packet: [", type);
238 for (; length > 0; ++data, --length)
239 printk(" %02x", *data);
240 printk(" ]\n");
241 }
242 #else
243 #define dump_urb(type, data, length) /* nothing */
244 #endif
245
246 /*
247 * Processes the data read from the device.
248 */
249 static void snd_usbmidi_in_urb_complete(struct urb* urb)
250 {
251 struct snd_usb_midi_in_endpoint* ep = urb->context;
252
253 if (urb->status == 0) {
254 dump_urb("received", urb->transfer_buffer, urb->actual_length);
255 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
256 urb->actual_length);
257 } else {
258 int err = snd_usbmidi_urb_error(urb->status);
259 if (err < 0) {
260 if (err != -ENODEV) {
261 ep->error_resubmit = 1;
262 mod_timer(&ep->umidi->error_timer,
263 jiffies + ERROR_DELAY_JIFFIES);
264 }
265 return;
266 }
267 }
268
269 urb->dev = ep->umidi->dev;
270 snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
271 }
272
273 static void snd_usbmidi_out_urb_complete(struct urb* urb)
274 {
275 struct out_urb_context *context = urb->context;
276 struct snd_usb_midi_out_endpoint* ep = context->ep;
277 unsigned int urb_index;
278
279 spin_lock(&ep->buffer_lock);
280 urb_index = context - ep->urbs;
281 ep->active_urbs &= ~(1 << urb_index);
282 if (unlikely(ep->drain_urbs)) {
283 ep->drain_urbs &= ~(1 << urb_index);
284 wake_up(&ep->drain_wait);
285 }
286 spin_unlock(&ep->buffer_lock);
287 if (urb->status < 0) {
288 int err = snd_usbmidi_urb_error(urb->status);
289 if (err < 0) {
290 if (err != -ENODEV)
291 mod_timer(&ep->umidi->error_timer,
292 jiffies + ERROR_DELAY_JIFFIES);
293 return;
294 }
295 }
296 snd_usbmidi_do_output(ep);
297 }
298
299 /*
300 * This is called when some data should be transferred to the device
301 * (from one or more substreams).
302 */
303 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
304 {
305 unsigned int urb_index;
306 struct urb* urb;
307 unsigned long flags;
308
309 spin_lock_irqsave(&ep->buffer_lock, flags);
310 if (ep->umidi->disconnected) {
311 spin_unlock_irqrestore(&ep->buffer_lock, flags);
312 return;
313 }
314
315 urb_index = ep->next_urb;
316 for (;;) {
317 if (!(ep->active_urbs & (1 << urb_index))) {
318 urb = ep->urbs[urb_index].urb;
319 urb->transfer_buffer_length = 0;
320 ep->umidi->usb_protocol_ops->output(ep, urb);
321 if (urb->transfer_buffer_length == 0)
322 break;
323
324 dump_urb("sending", urb->transfer_buffer,
325 urb->transfer_buffer_length);
326 urb->dev = ep->umidi->dev;
327 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
328 break;
329 ep->active_urbs |= 1 << urb_index;
330 }
331 if (++urb_index >= OUTPUT_URBS)
332 urb_index = 0;
333 if (urb_index == ep->next_urb)
334 break;
335 }
336 ep->next_urb = urb_index;
337 spin_unlock_irqrestore(&ep->buffer_lock, flags);
338 }
339
340 static void snd_usbmidi_out_tasklet(unsigned long data)
341 {
342 struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
343
344 snd_usbmidi_do_output(ep);
345 }
346
347 /* called after transfers had been interrupted due to some USB error */
348 static void snd_usbmidi_error_timer(unsigned long data)
349 {
350 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
351 unsigned int i, j;
352
353 spin_lock(&umidi->disc_lock);
354 if (umidi->disconnected) {
355 spin_unlock(&umidi->disc_lock);
356 return;
357 }
358 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
359 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
360 if (in && in->error_resubmit) {
361 in->error_resubmit = 0;
362 for (j = 0; j < INPUT_URBS; ++j) {
363 in->urbs[j]->dev = umidi->dev;
364 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
365 }
366 }
367 if (umidi->endpoints[i].out)
368 snd_usbmidi_do_output(umidi->endpoints[i].out);
369 }
370 spin_unlock(&umidi->disc_lock);
371 }
372
373 /* helper function to send static data that may not DMA-able */
374 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
375 const void *data, int len)
376 {
377 int err = 0;
378 void *buf = kmemdup(data, len, GFP_KERNEL);
379 if (!buf)
380 return -ENOMEM;
381 dump_urb("sending", buf, len);
382 if (ep->urbs[0].urb)
383 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
384 buf, len, NULL, 250);
385 kfree(buf);
386 return err;
387 }
388
389 /*
390 * Standard USB MIDI protocol: see the spec.
391 * Midiman protocol: like the standard protocol, but the control byte is the
392 * fourth byte in each packet, and uses length instead of CIN.
393 */
394
395 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
396 uint8_t* buffer, int buffer_length)
397 {
398 int i;
399
400 for (i = 0; i + 3 < buffer_length; i += 4)
401 if (buffer[i] != 0) {
402 int cable = buffer[i] >> 4;
403 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
404 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
405 }
406 }
407
408 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
409 uint8_t* buffer, int buffer_length)
410 {
411 int i;
412
413 for (i = 0; i + 3 < buffer_length; i += 4)
414 if (buffer[i + 3] != 0) {
415 int port = buffer[i + 3] >> 4;
416 int length = buffer[i + 3] & 3;
417 snd_usbmidi_input_data(ep, port, &buffer[i], length);
418 }
419 }
420
421 /*
422 * Buggy M-Audio device: running status on input results in a packet that has
423 * the data bytes but not the status byte and that is marked with CIN 4.
424 */
425 static void snd_usbmidi_maudio_broken_running_status_input(
426 struct snd_usb_midi_in_endpoint* ep,
427 uint8_t* buffer, int buffer_length)
428 {
429 int i;
430
431 for (i = 0; i + 3 < buffer_length; i += 4)
432 if (buffer[i] != 0) {
433 int cable = buffer[i] >> 4;
434 u8 cin = buffer[i] & 0x0f;
435 struct usbmidi_in_port *port = &ep->ports[cable];
436 int length;
437
438 length = snd_usbmidi_cin_length[cin];
439 if (cin == 0xf && buffer[i + 1] >= 0xf8)
440 ; /* realtime msg: no running status change */
441 else if (cin >= 0x8 && cin <= 0xe)
442 /* channel msg */
443 port->running_status_length = length - 1;
444 else if (cin == 0x4 &&
445 port->running_status_length != 0 &&
446 buffer[i + 1] < 0x80)
447 /* CIN 4 that is not a SysEx */
448 length = port->running_status_length;
449 else
450 /*
451 * All other msgs cannot begin running status.
452 * (A channel msg sent as two or three CIN 0xF
453 * packets could in theory, but this device
454 * doesn't use this format.)
455 */
456 port->running_status_length = 0;
457 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
458 }
459 }
460
461 /*
462 * CME protocol: like the standard protocol, but SysEx commands are sent as a
463 * single USB packet preceded by a 0x0F byte.
464 */
465 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
466 uint8_t *buffer, int buffer_length)
467 {
468 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
469 snd_usbmidi_standard_input(ep, buffer, buffer_length);
470 else
471 snd_usbmidi_input_data(ep, buffer[0] >> 4,
472 &buffer[1], buffer_length - 1);
473 }
474
475 /*
476 * Adds one USB MIDI packet to the output buffer.
477 */
478 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
479 uint8_t p1, uint8_t p2, uint8_t p3)
480 {
481
482 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
483 buf[0] = p0;
484 buf[1] = p1;
485 buf[2] = p2;
486 buf[3] = p3;
487 urb->transfer_buffer_length += 4;
488 }
489
490 /*
491 * Adds one Midiman packet to the output buffer.
492 */
493 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
494 uint8_t p1, uint8_t p2, uint8_t p3)
495 {
496
497 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
498 buf[0] = p1;
499 buf[1] = p2;
500 buf[2] = p3;
501 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
502 urb->transfer_buffer_length += 4;
503 }
504
505 /*
506 * Converts MIDI commands to USB MIDI packets.
507 */
508 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
509 uint8_t b, struct urb* urb)
510 {
511 uint8_t p0 = port->cable;
512 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
513 port->ep->umidi->usb_protocol_ops->output_packet;
514
515 if (b >= 0xf8) {
516 output_packet(urb, p0 | 0x0f, b, 0, 0);
517 } else if (b >= 0xf0) {
518 switch (b) {
519 case 0xf0:
520 port->data[0] = b;
521 port->state = STATE_SYSEX_1;
522 break;
523 case 0xf1:
524 case 0xf3:
525 port->data[0] = b;
526 port->state = STATE_1PARAM;
527 break;
528 case 0xf2:
529 port->data[0] = b;
530 port->state = STATE_2PARAM_1;
531 break;
532 case 0xf4:
533 case 0xf5:
534 port->state = STATE_UNKNOWN;
535 break;
536 case 0xf6:
537 output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
538 port->state = STATE_UNKNOWN;
539 break;
540 case 0xf7:
541 switch (port->state) {
542 case STATE_SYSEX_0:
543 output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
544 break;
545 case STATE_SYSEX_1:
546 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
547 break;
548 case STATE_SYSEX_2:
549 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
550 break;
551 }
552 port->state = STATE_UNKNOWN;
553 break;
554 }
555 } else if (b >= 0x80) {
556 port->data[0] = b;
557 if (b >= 0xc0 && b <= 0xdf)
558 port->state = STATE_1PARAM;
559 else
560 port->state = STATE_2PARAM_1;
561 } else { /* b < 0x80 */
562 switch (port->state) {
563 case STATE_1PARAM:
564 if (port->data[0] < 0xf0) {
565 p0 |= port->data[0] >> 4;
566 } else {
567 p0 |= 0x02;
568 port->state = STATE_UNKNOWN;
569 }
570 output_packet(urb, p0, port->data[0], b, 0);
571 break;
572 case STATE_2PARAM_1:
573 port->data[1] = b;
574 port->state = STATE_2PARAM_2;
575 break;
576 case STATE_2PARAM_2:
577 if (port->data[0] < 0xf0) {
578 p0 |= port->data[0] >> 4;
579 port->state = STATE_2PARAM_1;
580 } else {
581 p0 |= 0x03;
582 port->state = STATE_UNKNOWN;
583 }
584 output_packet(urb, p0, port->data[0], port->data[1], b);
585 break;
586 case STATE_SYSEX_0:
587 port->data[0] = b;
588 port->state = STATE_SYSEX_1;
589 break;
590 case STATE_SYSEX_1:
591 port->data[1] = b;
592 port->state = STATE_SYSEX_2;
593 break;
594 case STATE_SYSEX_2:
595 output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
596 port->state = STATE_SYSEX_0;
597 break;
598 }
599 }
600 }
601
602 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
603 struct urb *urb)
604 {
605 int p;
606
607 /* FIXME: lower-numbered ports can starve higher-numbered ports */
608 for (p = 0; p < 0x10; ++p) {
609 struct usbmidi_out_port* port = &ep->ports[p];
610 if (!port->active)
611 continue;
612 while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
613 uint8_t b;
614 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
615 port->active = 0;
616 break;
617 }
618 snd_usbmidi_transmit_byte(port, b, urb);
619 }
620 }
621 }
622
623 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
624 .input = snd_usbmidi_standard_input,
625 .output = snd_usbmidi_standard_output,
626 .output_packet = snd_usbmidi_output_standard_packet,
627 };
628
629 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
630 .input = snd_usbmidi_midiman_input,
631 .output = snd_usbmidi_standard_output,
632 .output_packet = snd_usbmidi_output_midiman_packet,
633 };
634
635 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
636 .input = snd_usbmidi_maudio_broken_running_status_input,
637 .output = snd_usbmidi_standard_output,
638 .output_packet = snd_usbmidi_output_standard_packet,
639 };
640
641 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
642 .input = snd_usbmidi_cme_input,
643 .output = snd_usbmidi_standard_output,
644 .output_packet = snd_usbmidi_output_standard_packet,
645 };
646
647 /*
648 * Novation USB MIDI protocol: number of data bytes is in the first byte
649 * (when receiving) (+1!) or in the second byte (when sending); data begins
650 * at the third byte.
651 */
652
653 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
654 uint8_t* buffer, int buffer_length)
655 {
656 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
657 return;
658 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
659 }
660
661 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
662 struct urb *urb)
663 {
664 uint8_t* transfer_buffer;
665 int count;
666
667 if (!ep->ports[0].active)
668 return;
669 transfer_buffer = urb->transfer_buffer;
670 count = snd_rawmidi_transmit(ep->ports[0].substream,
671 &transfer_buffer[2],
672 ep->max_transfer - 2);
673 if (count < 1) {
674 ep->ports[0].active = 0;
675 return;
676 }
677 transfer_buffer[0] = 0;
678 transfer_buffer[1] = count;
679 urb->transfer_buffer_length = 2 + count;
680 }
681
682 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
683 .input = snd_usbmidi_novation_input,
684 .output = snd_usbmidi_novation_output,
685 };
686
687 /*
688 * "raw" protocol: used by the MOTU FastLane.
689 */
690
691 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
692 uint8_t* buffer, int buffer_length)
693 {
694 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
695 }
696
697 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
698 struct urb *urb)
699 {
700 int count;
701
702 if (!ep->ports[0].active)
703 return;
704 count = snd_rawmidi_transmit(ep->ports[0].substream,
705 urb->transfer_buffer,
706 ep->max_transfer);
707 if (count < 1) {
708 ep->ports[0].active = 0;
709 return;
710 }
711 urb->transfer_buffer_length = count;
712 }
713
714 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
715 .input = snd_usbmidi_raw_input,
716 .output = snd_usbmidi_raw_output,
717 };
718
719 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
720 uint8_t *buffer, int buffer_length)
721 {
722 if (buffer_length != 9)
723 return;
724 buffer_length = 8;
725 while (buffer_length && buffer[buffer_length - 1] == 0xFD)
726 buffer_length--;
727 if (buffer_length)
728 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
729 }
730
731 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
732 struct urb *urb)
733 {
734 int count;
735
736 if (!ep->ports[0].active)
737 return;
738 count = snd_usb_get_speed(ep->umidi->dev) == USB_SPEED_HIGH ? 1 : 2;
739 count = snd_rawmidi_transmit(ep->ports[0].substream,
740 urb->transfer_buffer,
741 count);
742 if (count < 1) {
743 ep->ports[0].active = 0;
744 return;
745 }
746
747 memset(urb->transfer_buffer + count, 0xFD, 9 - count);
748 urb->transfer_buffer_length = count;
749 }
750
751 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
752 .input = snd_usbmidi_us122l_input,
753 .output = snd_usbmidi_us122l_output,
754 };
755
756 /*
757 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
758 */
759
760 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
761 {
762 static const u8 init_data[] = {
763 /* initialization magic: "get version" */
764 0xf0,
765 0x00, 0x20, 0x31, /* Emagic */
766 0x64, /* Unitor8 */
767 0x0b, /* version number request */
768 0x00, /* command version */
769 0x00, /* EEPROM, box 0 */
770 0xf7
771 };
772 send_bulk_static_data(ep, init_data, sizeof(init_data));
773 /* while we're at it, pour on more magic */
774 send_bulk_static_data(ep, init_data, sizeof(init_data));
775 }
776
777 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
778 {
779 static const u8 finish_data[] = {
780 /* switch to patch mode with last preset */
781 0xf0,
782 0x00, 0x20, 0x31, /* Emagic */
783 0x64, /* Unitor8 */
784 0x10, /* patch switch command */
785 0x00, /* command version */
786 0x7f, /* to all boxes */
787 0x40, /* last preset in EEPROM */
788 0xf7
789 };
790 send_bulk_static_data(ep, finish_data, sizeof(finish_data));
791 }
792
793 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
794 uint8_t* buffer, int buffer_length)
795 {
796 int i;
797
798 /* FF indicates end of valid data */
799 for (i = 0; i < buffer_length; ++i)
800 if (buffer[i] == 0xff) {
801 buffer_length = i;
802 break;
803 }
804
805 /* handle F5 at end of last buffer */
806 if (ep->seen_f5)
807 goto switch_port;
808
809 while (buffer_length > 0) {
810 /* determine size of data until next F5 */
811 for (i = 0; i < buffer_length; ++i)
812 if (buffer[i] == 0xf5)
813 break;
814 snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
815 buffer += i;
816 buffer_length -= i;
817
818 if (buffer_length <= 0)
819 break;
820 /* assert(buffer[0] == 0xf5); */
821 ep->seen_f5 = 1;
822 ++buffer;
823 --buffer_length;
824
825 switch_port:
826 if (buffer_length <= 0)
827 break;
828 if (buffer[0] < 0x80) {
829 ep->current_port = (buffer[0] - 1) & 15;
830 ++buffer;
831 --buffer_length;
832 }
833 ep->seen_f5 = 0;
834 }
835 }
836
837 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
838 struct urb *urb)
839 {
840 int port0 = ep->current_port;
841 uint8_t* buf = urb->transfer_buffer;
842 int buf_free = ep->max_transfer;
843 int length, i;
844
845 for (i = 0; i < 0x10; ++i) {
846 /* round-robin, starting at the last current port */
847 int portnum = (port0 + i) & 15;
848 struct usbmidi_out_port* port = &ep->ports[portnum];
849
850 if (!port->active)
851 continue;
852 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
853 port->active = 0;
854 continue;
855 }
856
857 if (portnum != ep->current_port) {
858 if (buf_free < 2)
859 break;
860 ep->current_port = portnum;
861 buf[0] = 0xf5;
862 buf[1] = (portnum + 1) & 15;
863 buf += 2;
864 buf_free -= 2;
865 }
866
867 if (buf_free < 1)
868 break;
869 length = snd_rawmidi_transmit(port->substream, buf, buf_free);
870 if (length > 0) {
871 buf += length;
872 buf_free -= length;
873 if (buf_free < 1)
874 break;
875 }
876 }
877 if (buf_free < ep->max_transfer && buf_free > 0) {
878 *buf = 0xff;
879 --buf_free;
880 }
881 urb->transfer_buffer_length = ep->max_transfer - buf_free;
882 }
883
884 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
885 .input = snd_usbmidi_emagic_input,
886 .output = snd_usbmidi_emagic_output,
887 .init_out_endpoint = snd_usbmidi_emagic_init_out,
888 .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
889 };
890
891
892 static void update_roland_altsetting(struct snd_usb_midi* umidi)
893 {
894 struct usb_interface *intf;
895 struct usb_host_interface *hostif;
896 struct usb_interface_descriptor *intfd;
897 int is_light_load;
898
899 intf = umidi->iface;
900 is_light_load = intf->cur_altsetting != intf->altsetting;
901 if (umidi->roland_load_ctl->private_value == is_light_load)
902 return;
903 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
904 intfd = get_iface_desc(hostif);
905 snd_usbmidi_input_stop(&umidi->list);
906 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
907 intfd->bAlternateSetting);
908 snd_usbmidi_input_start(&umidi->list);
909 }
910
911 static void substream_open(struct snd_rawmidi_substream *substream, int open)
912 {
913 struct snd_usb_midi* umidi = substream->rmidi->private_data;
914 struct snd_kcontrol *ctl;
915
916 mutex_lock(&umidi->mutex);
917 if (open) {
918 if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
919 ctl = umidi->roland_load_ctl;
920 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
921 snd_ctl_notify(umidi->card,
922 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
923 update_roland_altsetting(umidi);
924 }
925 } else {
926 if (--umidi->opened == 0 && umidi->roland_load_ctl) {
927 ctl = umidi->roland_load_ctl;
928 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
929 snd_ctl_notify(umidi->card,
930 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
931 }
932 }
933 mutex_unlock(&umidi->mutex);
934 }
935
936 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
937 {
938 struct snd_usb_midi* umidi = substream->rmidi->private_data;
939 struct usbmidi_out_port* port = NULL;
940 int i, j;
941
942 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
943 if (umidi->endpoints[i].out)
944 for (j = 0; j < 0x10; ++j)
945 if (umidi->endpoints[i].out->ports[j].substream == substream) {
946 port = &umidi->endpoints[i].out->ports[j];
947 break;
948 }
949 if (!port) {
950 snd_BUG();
951 return -ENXIO;
952 }
953 substream->runtime->private_data = port;
954 port->state = STATE_UNKNOWN;
955 substream_open(substream, 1);
956 return 0;
957 }
958
959 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
960 {
961 substream_open(substream, 0);
962 return 0;
963 }
964
965 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
966 {
967 struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
968
969 port->active = up;
970 if (up) {
971 if (port->ep->umidi->disconnected) {
972 /* gobble up remaining bytes to prevent wait in
973 * snd_rawmidi_drain_output */
974 while (!snd_rawmidi_transmit_empty(substream))
975 snd_rawmidi_transmit_ack(substream, 1);
976 return;
977 }
978 tasklet_schedule(&port->ep->tasklet);
979 }
980 }
981
982 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
983 {
984 struct usbmidi_out_port* port = substream->runtime->private_data;
985 struct snd_usb_midi_out_endpoint *ep = port->ep;
986 unsigned int drain_urbs;
987 DEFINE_WAIT(wait);
988 long timeout = msecs_to_jiffies(50);
989
990 /*
991 * The substream buffer is empty, but some data might still be in the
992 * currently active URBs, so we have to wait for those to complete.
993 */
994 spin_lock_irq(&ep->buffer_lock);
995 drain_urbs = ep->active_urbs;
996 if (drain_urbs) {
997 ep->drain_urbs |= drain_urbs;
998 do {
999 prepare_to_wait(&ep->drain_wait, &wait,
1000 TASK_UNINTERRUPTIBLE);
1001 spin_unlock_irq(&ep->buffer_lock);
1002 timeout = schedule_timeout(timeout);
1003 spin_lock_irq(&ep->buffer_lock);
1004 drain_urbs &= ep->drain_urbs;
1005 } while (drain_urbs && timeout);
1006 finish_wait(&ep->drain_wait, &wait);
1007 }
1008 spin_unlock_irq(&ep->buffer_lock);
1009 }
1010
1011 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1012 {
1013 substream_open(substream, 1);
1014 return 0;
1015 }
1016
1017 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1018 {
1019 substream_open(substream, 0);
1020 return 0;
1021 }
1022
1023 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1024 {
1025 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1026
1027 if (up)
1028 set_bit(substream->number, &umidi->input_triggered);
1029 else
1030 clear_bit(substream->number, &umidi->input_triggered);
1031 }
1032
1033 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1034 .open = snd_usbmidi_output_open,
1035 .close = snd_usbmidi_output_close,
1036 .trigger = snd_usbmidi_output_trigger,
1037 .drain = snd_usbmidi_output_drain,
1038 };
1039
1040 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1041 .open = snd_usbmidi_input_open,
1042 .close = snd_usbmidi_input_close,
1043 .trigger = snd_usbmidi_input_trigger
1044 };
1045
1046 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1047 unsigned int buffer_length)
1048 {
1049 usb_buffer_free(umidi->dev, buffer_length,
1050 urb->transfer_buffer, urb->transfer_dma);
1051 usb_free_urb(urb);
1052 }
1053
1054 /*
1055 * Frees an input endpoint.
1056 * May be called when ep hasn't been initialized completely.
1057 */
1058 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1059 {
1060 unsigned int i;
1061
1062 for (i = 0; i < INPUT_URBS; ++i)
1063 if (ep->urbs[i])
1064 free_urb_and_buffer(ep->umidi, ep->urbs[i],
1065 ep->urbs[i]->transfer_buffer_length);
1066 kfree(ep);
1067 }
1068
1069 /*
1070 * Creates an input endpoint.
1071 */
1072 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1073 struct snd_usb_midi_endpoint_info* ep_info,
1074 struct snd_usb_midi_endpoint* rep)
1075 {
1076 struct snd_usb_midi_in_endpoint* ep;
1077 void* buffer;
1078 unsigned int pipe;
1079 int length;
1080 unsigned int i;
1081
1082 rep->in = NULL;
1083 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1084 if (!ep)
1085 return -ENOMEM;
1086 ep->umidi = umidi;
1087
1088 for (i = 0; i < INPUT_URBS; ++i) {
1089 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1090 if (!ep->urbs[i]) {
1091 snd_usbmidi_in_endpoint_delete(ep);
1092 return -ENOMEM;
1093 }
1094 }
1095 if (ep_info->in_interval)
1096 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1097 else
1098 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1099 length = usb_maxpacket(umidi->dev, pipe, 0);
1100 for (i = 0; i < INPUT_URBS; ++i) {
1101 buffer = usb_buffer_alloc(umidi->dev, length, GFP_KERNEL,
1102 &ep->urbs[i]->transfer_dma);
1103 if (!buffer) {
1104 snd_usbmidi_in_endpoint_delete(ep);
1105 return -ENOMEM;
1106 }
1107 if (ep_info->in_interval)
1108 usb_fill_int_urb(ep->urbs[i], umidi->dev,
1109 pipe, buffer, length,
1110 snd_usbmidi_in_urb_complete,
1111 ep, ep_info->in_interval);
1112 else
1113 usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1114 pipe, buffer, length,
1115 snd_usbmidi_in_urb_complete, ep);
1116 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1117 }
1118
1119 rep->in = ep;
1120 return 0;
1121 }
1122
1123 /*
1124 * Frees an output endpoint.
1125 * May be called when ep hasn't been initialized completely.
1126 */
1127 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint* ep)
1128 {
1129 unsigned int i;
1130
1131 for (i = 0; i < OUTPUT_URBS; ++i)
1132 if (ep->urbs[i].urb)
1133 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1134 ep->max_transfer);
1135 kfree(ep);
1136 }
1137
1138 /*
1139 * Creates an output endpoint, and initializes output ports.
1140 */
1141 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1142 struct snd_usb_midi_endpoint_info* ep_info,
1143 struct snd_usb_midi_endpoint* rep)
1144 {
1145 struct snd_usb_midi_out_endpoint* ep;
1146 unsigned int i;
1147 unsigned int pipe;
1148 void* buffer;
1149
1150 rep->out = NULL;
1151 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1152 if (!ep)
1153 return -ENOMEM;
1154 ep->umidi = umidi;
1155
1156 for (i = 0; i < OUTPUT_URBS; ++i) {
1157 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1158 if (!ep->urbs[i].urb) {
1159 snd_usbmidi_out_endpoint_delete(ep);
1160 return -ENOMEM;
1161 }
1162 ep->urbs[i].ep = ep;
1163 }
1164 if (ep_info->out_interval)
1165 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1166 else
1167 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1168 switch (umidi->usb_id) {
1169 default:
1170 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1171 break;
1172 /*
1173 * Various chips declare a packet size larger than 4 bytes, but
1174 * do not actually work with larger packets:
1175 */
1176 case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1177 case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1178 case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1179 case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1180 case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1181 ep->max_transfer = 4;
1182 break;
1183 }
1184 for (i = 0; i < OUTPUT_URBS; ++i) {
1185 buffer = usb_buffer_alloc(umidi->dev,
1186 ep->max_transfer, GFP_KERNEL,
1187 &ep->urbs[i].urb->transfer_dma);
1188 if (!buffer) {
1189 snd_usbmidi_out_endpoint_delete(ep);
1190 return -ENOMEM;
1191 }
1192 if (ep_info->out_interval)
1193 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1194 pipe, buffer, ep->max_transfer,
1195 snd_usbmidi_out_urb_complete,
1196 &ep->urbs[i], ep_info->out_interval);
1197 else
1198 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1199 pipe, buffer, ep->max_transfer,
1200 snd_usbmidi_out_urb_complete,
1201 &ep->urbs[i]);
1202 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1203 }
1204
1205 spin_lock_init(&ep->buffer_lock);
1206 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1207 init_waitqueue_head(&ep->drain_wait);
1208
1209 for (i = 0; i < 0x10; ++i)
1210 if (ep_info->out_cables & (1 << i)) {
1211 ep->ports[i].ep = ep;
1212 ep->ports[i].cable = i << 4;
1213 }
1214
1215 if (umidi->usb_protocol_ops->init_out_endpoint)
1216 umidi->usb_protocol_ops->init_out_endpoint(ep);
1217
1218 rep->out = ep;
1219 return 0;
1220 }
1221
1222 /*
1223 * Frees everything.
1224 */
1225 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1226 {
1227 int i;
1228
1229 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1230 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1231 if (ep->out)
1232 snd_usbmidi_out_endpoint_delete(ep->out);
1233 if (ep->in)
1234 snd_usbmidi_in_endpoint_delete(ep->in);
1235 }
1236 mutex_destroy(&umidi->mutex);
1237 kfree(umidi);
1238 }
1239
1240 /*
1241 * Unlinks all URBs (must be done before the usb_device is deleted).
1242 */
1243 void snd_usbmidi_disconnect(struct list_head* p)
1244 {
1245 struct snd_usb_midi* umidi;
1246 unsigned int i, j;
1247
1248 umidi = list_entry(p, struct snd_usb_midi, list);
1249 /*
1250 * an URB's completion handler may start the timer and
1251 * a timer may submit an URB. To reliably break the cycle
1252 * a flag under lock must be used
1253 */
1254 spin_lock_irq(&umidi->disc_lock);
1255 umidi->disconnected = 1;
1256 spin_unlock_irq(&umidi->disc_lock);
1257 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1258 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1259 if (ep->out)
1260 tasklet_kill(&ep->out->tasklet);
1261 if (ep->out) {
1262 for (j = 0; j < OUTPUT_URBS; ++j)
1263 usb_kill_urb(ep->out->urbs[j].urb);
1264 if (umidi->usb_protocol_ops->finish_out_endpoint)
1265 umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1266 }
1267 if (ep->in)
1268 for (j = 0; j < INPUT_URBS; ++j)
1269 usb_kill_urb(ep->in->urbs[j]);
1270 /* free endpoints here; later call can result in Oops */
1271 if (ep->out) {
1272 snd_usbmidi_out_endpoint_delete(ep->out);
1273 ep->out = NULL;
1274 }
1275 if (ep->in) {
1276 snd_usbmidi_in_endpoint_delete(ep->in);
1277 ep->in = NULL;
1278 }
1279 }
1280 del_timer_sync(&umidi->error_timer);
1281 }
1282
1283 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1284 {
1285 struct snd_usb_midi* umidi = rmidi->private_data;
1286 snd_usbmidi_free(umidi);
1287 }
1288
1289 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1290 int stream, int number)
1291 {
1292 struct list_head* list;
1293
1294 list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1295 struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1296 if (substream->number == number)
1297 return substream;
1298 }
1299 return NULL;
1300 }
1301
1302 /*
1303 * This list specifies names for ports that do not fit into the standard
1304 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1305 * such as internal control or synthesizer ports.
1306 */
1307 static struct port_info {
1308 u32 id;
1309 short int port;
1310 short int voices;
1311 const char *name;
1312 unsigned int seq_flags;
1313 } snd_usbmidi_port_info[] = {
1314 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1315 { .id = USB_ID(vendor, product), \
1316 .port = num, .voices = voices_, \
1317 .name = name_, .seq_flags = flags }
1318 #define EXTERNAL_PORT(vendor, product, num, name) \
1319 PORT_INFO(vendor, product, num, name, 0, \
1320 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1321 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1322 SNDRV_SEQ_PORT_TYPE_PORT)
1323 #define CONTROL_PORT(vendor, product, num, name) \
1324 PORT_INFO(vendor, product, num, name, 0, \
1325 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1326 SNDRV_SEQ_PORT_TYPE_HARDWARE)
1327 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1328 PORT_INFO(vendor, product, num, name, voices, \
1329 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1330 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1331 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1332 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1333 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1334 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1335 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1336 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1337 PORT_INFO(vendor, product, num, name, voices, \
1338 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1339 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1340 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1341 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1342 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1343 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1344 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1345 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1346 /* Roland UA-100 */
1347 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1348 /* Roland SC-8850 */
1349 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1350 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1351 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1352 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1353 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1354 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1355 /* Roland U-8 */
1356 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1357 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1358 /* Roland SC-8820 */
1359 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1360 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1361 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1362 /* Roland SK-500 */
1363 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1364 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1365 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1366 /* Roland SC-D70 */
1367 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1368 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1369 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1370 /* Edirol UM-880 */
1371 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1372 /* Edirol SD-90 */
1373 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1374 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1375 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1376 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1377 /* Edirol UM-550 */
1378 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1379 /* Edirol SD-20 */
1380 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1381 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1382 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1383 /* Edirol SD-80 */
1384 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1385 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1386 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1387 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1388 /* Edirol UA-700 */
1389 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1390 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1391 /* Roland VariOS */
1392 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1393 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1394 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1395 /* Edirol PCR */
1396 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1397 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1398 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1399 /* BOSS GS-10 */
1400 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1401 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1402 /* Edirol UA-1000 */
1403 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1404 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1405 /* Edirol UR-80 */
1406 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1407 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1408 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1409 /* Edirol PCR-A */
1410 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1411 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1412 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1413 /* Edirol UM-3EX */
1414 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1415 /* M-Audio MidiSport 8x8 */
1416 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1417 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1418 /* MOTU Fastlane */
1419 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1420 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1421 /* Emagic Unitor8/AMT8/MT4 */
1422 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1423 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1424 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1425 /* Access Music Virus TI */
1426 EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1427 PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1428 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1429 SNDRV_SEQ_PORT_TYPE_HARDWARE |
1430 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1431 };
1432
1433 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1434 {
1435 int i;
1436
1437 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1438 if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1439 snd_usbmidi_port_info[i].port == number)
1440 return &snd_usbmidi_port_info[i];
1441 }
1442 return NULL;
1443 }
1444
1445 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1446 struct snd_seq_port_info *seq_port_info)
1447 {
1448 struct snd_usb_midi *umidi = rmidi->private_data;
1449 struct port_info *port_info;
1450
1451 /* TODO: read port flags from descriptors */
1452 port_info = find_port_info(umidi, number);
1453 if (port_info) {
1454 seq_port_info->type = port_info->seq_flags;
1455 seq_port_info->midi_voices = port_info->voices;
1456 }
1457 }
1458
1459 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1460 int stream, int number,
1461 struct snd_rawmidi_substream ** rsubstream)
1462 {
1463 struct port_info *port_info;
1464 const char *name_format;
1465
1466 struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1467 if (!substream) {
1468 snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1469 return;
1470 }
1471
1472 /* TODO: read port name from jack descriptor */
1473 port_info = find_port_info(umidi, number);
1474 name_format = port_info ? port_info->name : "%s MIDI %d";
1475 snprintf(substream->name, sizeof(substream->name),
1476 name_format, umidi->card->shortname, number + 1);
1477
1478 *rsubstream = substream;
1479 }
1480
1481 /*
1482 * Creates the endpoints and their ports.
1483 */
1484 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1485 struct snd_usb_midi_endpoint_info* endpoints)
1486 {
1487 int i, j, err;
1488 int out_ports = 0, in_ports = 0;
1489
1490 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1491 if (endpoints[i].out_cables) {
1492 err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1493 &umidi->endpoints[i]);
1494 if (err < 0)
1495 return err;
1496 }
1497 if (endpoints[i].in_cables) {
1498 err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1499 &umidi->endpoints[i]);
1500 if (err < 0)
1501 return err;
1502 }
1503
1504 for (j = 0; j < 0x10; ++j) {
1505 if (endpoints[i].out_cables & (1 << j)) {
1506 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1507 &umidi->endpoints[i].out->ports[j].substream);
1508 ++out_ports;
1509 }
1510 if (endpoints[i].in_cables & (1 << j)) {
1511 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1512 &umidi->endpoints[i].in->ports[j].substream);
1513 ++in_ports;
1514 }
1515 }
1516 }
1517 snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1518 out_ports, in_ports);
1519 return 0;
1520 }
1521
1522 /*
1523 * Returns MIDIStreaming device capabilities.
1524 */
1525 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1526 struct snd_usb_midi_endpoint_info* endpoints)
1527 {
1528 struct usb_interface* intf;
1529 struct usb_host_interface *hostif;
1530 struct usb_interface_descriptor* intfd;
1531 struct usb_ms_header_descriptor* ms_header;
1532 struct usb_host_endpoint *hostep;
1533 struct usb_endpoint_descriptor* ep;
1534 struct usb_ms_endpoint_descriptor* ms_ep;
1535 int i, epidx;
1536
1537 intf = umidi->iface;
1538 if (!intf)
1539 return -ENXIO;
1540 hostif = &intf->altsetting[0];
1541 intfd = get_iface_desc(hostif);
1542 ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1543 if (hostif->extralen >= 7 &&
1544 ms_header->bLength >= 7 &&
1545 ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1546 ms_header->bDescriptorSubtype == UAC_HEADER)
1547 snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1548 ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1549 else
1550 snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1551
1552 epidx = 0;
1553 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1554 hostep = &hostif->endpoint[i];
1555 ep = get_ep_desc(hostep);
1556 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1557 continue;
1558 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1559 if (hostep->extralen < 4 ||
1560 ms_ep->bLength < 4 ||
1561 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1562 ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1563 continue;
1564 if (usb_endpoint_dir_out(ep)) {
1565 if (endpoints[epidx].out_ep) {
1566 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1567 snd_printk(KERN_WARNING "too many endpoints\n");
1568 break;
1569 }
1570 }
1571 endpoints[epidx].out_ep = usb_endpoint_num(ep);
1572 if (usb_endpoint_xfer_int(ep))
1573 endpoints[epidx].out_interval = ep->bInterval;
1574 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1575 /*
1576 * Low speed bulk transfers don't exist, so
1577 * force interrupt transfers for devices like
1578 * ESI MIDI Mate that try to use them anyway.
1579 */
1580 endpoints[epidx].out_interval = 1;
1581 endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1582 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1583 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1584 } else {
1585 if (endpoints[epidx].in_ep) {
1586 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1587 snd_printk(KERN_WARNING "too many endpoints\n");
1588 break;
1589 }
1590 }
1591 endpoints[epidx].in_ep = usb_endpoint_num(ep);
1592 if (usb_endpoint_xfer_int(ep))
1593 endpoints[epidx].in_interval = ep->bInterval;
1594 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1595 endpoints[epidx].in_interval = 1;
1596 endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1597 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1598 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1599 }
1600 }
1601 return 0;
1602 }
1603
1604 static int roland_load_info(struct snd_kcontrol *kcontrol,
1605 struct snd_ctl_elem_info *info)
1606 {
1607 static const char *const names[] = { "High Load", "Light Load" };
1608
1609 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1610 info->count = 1;
1611 info->value.enumerated.items = 2;
1612 if (info->value.enumerated.item > 1)
1613 info->value.enumerated.item = 1;
1614 strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
1615 return 0;
1616 }
1617
1618 static int roland_load_get(struct snd_kcontrol *kcontrol,
1619 struct snd_ctl_elem_value *value)
1620 {
1621 value->value.enumerated.item[0] = kcontrol->private_value;
1622 return 0;
1623 }
1624
1625 static int roland_load_put(struct snd_kcontrol *kcontrol,
1626 struct snd_ctl_elem_value *value)
1627 {
1628 struct snd_usb_midi* umidi = kcontrol->private_data;
1629 int changed;
1630
1631 if (value->value.enumerated.item[0] > 1)
1632 return -EINVAL;
1633 mutex_lock(&umidi->mutex);
1634 changed = value->value.enumerated.item[0] != kcontrol->private_value;
1635 if (changed)
1636 kcontrol->private_value = value->value.enumerated.item[0];
1637 mutex_unlock(&umidi->mutex);
1638 return changed;
1639 }
1640
1641 static struct snd_kcontrol_new roland_load_ctl = {
1642 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1643 .name = "MIDI Input Mode",
1644 .info = roland_load_info,
1645 .get = roland_load_get,
1646 .put = roland_load_put,
1647 .private_value = 1,
1648 };
1649
1650 /*
1651 * On Roland devices, use the second alternate setting to be able to use
1652 * the interrupt input endpoint.
1653 */
1654 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1655 {
1656 struct usb_interface* intf;
1657 struct usb_host_interface *hostif;
1658 struct usb_interface_descriptor* intfd;
1659
1660 intf = umidi->iface;
1661 if (!intf || intf->num_altsetting != 2)
1662 return;
1663
1664 hostif = &intf->altsetting[1];
1665 intfd = get_iface_desc(hostif);
1666 if (intfd->bNumEndpoints != 2 ||
1667 (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1668 (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1669 return;
1670
1671 snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1672 intfd->bAlternateSetting);
1673 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1674 intfd->bAlternateSetting);
1675
1676 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1677 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1678 umidi->roland_load_ctl = NULL;
1679 }
1680
1681 /*
1682 * Try to find any usable endpoints in the interface.
1683 */
1684 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1685 struct snd_usb_midi_endpoint_info* endpoint,
1686 int max_endpoints)
1687 {
1688 struct usb_interface* intf;
1689 struct usb_host_interface *hostif;
1690 struct usb_interface_descriptor* intfd;
1691 struct usb_endpoint_descriptor* epd;
1692 int i, out_eps = 0, in_eps = 0;
1693
1694 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1695 snd_usbmidi_switch_roland_altsetting(umidi);
1696
1697 if (endpoint[0].out_ep || endpoint[0].in_ep)
1698 return 0;
1699
1700 intf = umidi->iface;
1701 if (!intf || intf->num_altsetting < 1)
1702 return -ENOENT;
1703 hostif = intf->cur_altsetting;
1704 intfd = get_iface_desc(hostif);
1705
1706 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1707 epd = get_endpoint(hostif, i);
1708 if (!usb_endpoint_xfer_bulk(epd) &&
1709 !usb_endpoint_xfer_int(epd))
1710 continue;
1711 if (out_eps < max_endpoints &&
1712 usb_endpoint_dir_out(epd)) {
1713 endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1714 if (usb_endpoint_xfer_int(epd))
1715 endpoint[out_eps].out_interval = epd->bInterval;
1716 ++out_eps;
1717 }
1718 if (in_eps < max_endpoints &&
1719 usb_endpoint_dir_in(epd)) {
1720 endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1721 if (usb_endpoint_xfer_int(epd))
1722 endpoint[in_eps].in_interval = epd->bInterval;
1723 ++in_eps;
1724 }
1725 }
1726 return (out_eps || in_eps) ? 0 : -ENOENT;
1727 }
1728
1729 /*
1730 * Detects the endpoints for one-port-per-endpoint protocols.
1731 */
1732 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1733 struct snd_usb_midi_endpoint_info* endpoints)
1734 {
1735 int err, i;
1736
1737 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1738 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1739 if (endpoints[i].out_ep)
1740 endpoints[i].out_cables = 0x0001;
1741 if (endpoints[i].in_ep)
1742 endpoints[i].in_cables = 0x0001;
1743 }
1744 return err;
1745 }
1746
1747 /*
1748 * Detects the endpoints and ports of Yamaha devices.
1749 */
1750 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1751 struct snd_usb_midi_endpoint_info* endpoint)
1752 {
1753 struct usb_interface* intf;
1754 struct usb_host_interface *hostif;
1755 struct usb_interface_descriptor* intfd;
1756 uint8_t* cs_desc;
1757
1758 intf = umidi->iface;
1759 if (!intf)
1760 return -ENOENT;
1761 hostif = intf->altsetting;
1762 intfd = get_iface_desc(hostif);
1763 if (intfd->bNumEndpoints < 1)
1764 return -ENOENT;
1765
1766 /*
1767 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1768 * necessarily with any useful contents. So simply count 'em.
1769 */
1770 for (cs_desc = hostif->extra;
1771 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1772 cs_desc += cs_desc[0]) {
1773 if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1774 if (cs_desc[2] == UAC_MIDI_IN_JACK)
1775 endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1776 else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1777 endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1778 }
1779 }
1780 if (!endpoint->in_cables && !endpoint->out_cables)
1781 return -ENOENT;
1782
1783 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1784 }
1785
1786 /*
1787 * Creates the endpoints and their ports for Midiman devices.
1788 */
1789 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1790 struct snd_usb_midi_endpoint_info* endpoint)
1791 {
1792 struct snd_usb_midi_endpoint_info ep_info;
1793 struct usb_interface* intf;
1794 struct usb_host_interface *hostif;
1795 struct usb_interface_descriptor* intfd;
1796 struct usb_endpoint_descriptor* epd;
1797 int cable, err;
1798
1799 intf = umidi->iface;
1800 if (!intf)
1801 return -ENOENT;
1802 hostif = intf->altsetting;
1803 intfd = get_iface_desc(hostif);
1804 /*
1805 * The various MidiSport devices have more or less random endpoint
1806 * numbers, so we have to identify the endpoints by their index in
1807 * the descriptor array, like the driver for that other OS does.
1808 *
1809 * There is one interrupt input endpoint for all input ports, one
1810 * bulk output endpoint for even-numbered ports, and one for odd-
1811 * numbered ports. Both bulk output endpoints have corresponding
1812 * input bulk endpoints (at indices 1 and 3) which aren't used.
1813 */
1814 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1815 snd_printdd(KERN_ERR "not enough endpoints\n");
1816 return -ENOENT;
1817 }
1818
1819 epd = get_endpoint(hostif, 0);
1820 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1821 snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1822 return -ENXIO;
1823 }
1824 epd = get_endpoint(hostif, 2);
1825 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1826 snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1827 return -ENXIO;
1828 }
1829 if (endpoint->out_cables > 0x0001) {
1830 epd = get_endpoint(hostif, 4);
1831 if (!usb_endpoint_dir_out(epd) ||
1832 !usb_endpoint_xfer_bulk(epd)) {
1833 snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1834 return -ENXIO;
1835 }
1836 }
1837
1838 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1839 ep_info.out_interval = 0;
1840 ep_info.out_cables = endpoint->out_cables & 0x5555;
1841 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1842 if (err < 0)
1843 return err;
1844
1845 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1846 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1847 ep_info.in_cables = endpoint->in_cables;
1848 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1849 if (err < 0)
1850 return err;
1851
1852 if (endpoint->out_cables > 0x0001) {
1853 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1854 ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1855 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1856 if (err < 0)
1857 return err;
1858 }
1859
1860 for (cable = 0; cable < 0x10; ++cable) {
1861 if (endpoint->out_cables & (1 << cable))
1862 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1863 &umidi->endpoints[cable & 1].out->ports[cable].substream);
1864 if (endpoint->in_cables & (1 << cable))
1865 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1866 &umidi->endpoints[0].in->ports[cable].substream);
1867 }
1868 return 0;
1869 }
1870
1871 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
1872 .get_port_info = snd_usbmidi_get_port_info,
1873 };
1874
1875 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
1876 int out_ports, int in_ports)
1877 {
1878 struct snd_rawmidi *rmidi;
1879 int err;
1880
1881 err = snd_rawmidi_new(umidi->card, "USB MIDI",
1882 umidi->next_midi_device++,
1883 out_ports, in_ports, &rmidi);
1884 if (err < 0)
1885 return err;
1886 strcpy(rmidi->name, umidi->card->shortname);
1887 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
1888 SNDRV_RAWMIDI_INFO_INPUT |
1889 SNDRV_RAWMIDI_INFO_DUPLEX;
1890 rmidi->ops = &snd_usbmidi_ops;
1891 rmidi->private_data = umidi;
1892 rmidi->private_free = snd_usbmidi_rawmidi_free;
1893 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
1894 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
1895
1896 umidi->rmidi = rmidi;
1897 return 0;
1898 }
1899
1900 /*
1901 * Temporarily stop input.
1902 */
1903 void snd_usbmidi_input_stop(struct list_head* p)
1904 {
1905 struct snd_usb_midi* umidi;
1906 unsigned int i, j;
1907
1908 umidi = list_entry(p, struct snd_usb_midi, list);
1909 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1910 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1911 if (ep->in)
1912 for (j = 0; j < INPUT_URBS; ++j)
1913 usb_kill_urb(ep->in->urbs[j]);
1914 }
1915 }
1916
1917 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
1918 {
1919 unsigned int i;
1920
1921 if (!ep)
1922 return;
1923 for (i = 0; i < INPUT_URBS; ++i) {
1924 struct urb* urb = ep->urbs[i];
1925 urb->dev = ep->umidi->dev;
1926 snd_usbmidi_submit_urb(urb, GFP_KERNEL);
1927 }
1928 }
1929
1930 /*
1931 * Resume input after a call to snd_usbmidi_input_stop().
1932 */
1933 void snd_usbmidi_input_start(struct list_head* p)
1934 {
1935 struct snd_usb_midi* umidi;
1936 int i;
1937
1938 umidi = list_entry(p, struct snd_usb_midi, list);
1939 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1940 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
1941 }
1942
1943 /*
1944 * Creates and registers everything needed for a MIDI streaming interface.
1945 */
1946 int snd_usbmidi_create(struct snd_card *card,
1947 struct usb_interface* iface,
1948 struct list_head *midi_list,
1949 const struct snd_usb_audio_quirk* quirk)
1950 {
1951 struct snd_usb_midi* umidi;
1952 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
1953 int out_ports, in_ports;
1954 int i, err;
1955
1956 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
1957 if (!umidi)
1958 return -ENOMEM;
1959 umidi->dev = interface_to_usbdev(iface);
1960 umidi->card = card;
1961 umidi->iface = iface;
1962 umidi->quirk = quirk;
1963 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
1964 init_timer(&umidi->error_timer);
1965 spin_lock_init(&umidi->disc_lock);
1966 mutex_init(&umidi->mutex);
1967 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
1968 le16_to_cpu(umidi->dev->descriptor.idProduct));
1969 umidi->error_timer.function = snd_usbmidi_error_timer;
1970 umidi->error_timer.data = (unsigned long)umidi;
1971
1972 /* detect the endpoint(s) to use */
1973 memset(endpoints, 0, sizeof(endpoints));
1974 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
1975 case QUIRK_MIDI_STANDARD_INTERFACE:
1976 err = snd_usbmidi_get_ms_info(umidi, endpoints);
1977 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
1978 umidi->usb_protocol_ops =
1979 &snd_usbmidi_maudio_broken_running_status_ops;
1980 break;
1981 case QUIRK_MIDI_US122L:
1982 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
1983 /* fall through */
1984 case QUIRK_MIDI_FIXED_ENDPOINT:
1985 memcpy(&endpoints[0], quirk->data,
1986 sizeof(struct snd_usb_midi_endpoint_info));
1987 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
1988 break;
1989 case QUIRK_MIDI_YAMAHA:
1990 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
1991 break;
1992 case QUIRK_MIDI_MIDIMAN:
1993 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
1994 memcpy(&endpoints[0], quirk->data,
1995 sizeof(struct snd_usb_midi_endpoint_info));
1996 err = 0;
1997 break;
1998 case QUIRK_MIDI_NOVATION:
1999 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2000 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2001 break;
2002 case QUIRK_MIDI_FASTLANE:
2003 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2004 /*
2005 * Interface 1 contains isochronous endpoints, but with the same
2006 * numbers as in interface 0. Since it is interface 1 that the
2007 * USB core has most recently seen, these descriptors are now
2008 * associated with the endpoint numbers. This will foul up our
2009 * attempts to submit bulk/interrupt URBs to the endpoints in
2010 * interface 0, so we have to make sure that the USB core looks
2011 * again at interface 0 by calling usb_set_interface() on it.
2012 */
2013 usb_set_interface(umidi->dev, 0, 0);
2014 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2015 break;
2016 case QUIRK_MIDI_EMAGIC:
2017 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2018 memcpy(&endpoints[0], quirk->data,
2019 sizeof(struct snd_usb_midi_endpoint_info));
2020 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2021 break;
2022 case QUIRK_MIDI_CME:
2023 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2024 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2025 break;
2026 default:
2027 snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2028 err = -ENXIO;
2029 break;
2030 }
2031 if (err < 0) {
2032 kfree(umidi);
2033 return err;
2034 }
2035
2036 /* create rawmidi device */
2037 out_ports = 0;
2038 in_ports = 0;
2039 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2040 out_ports += hweight16(endpoints[i].out_cables);
2041 in_ports += hweight16(endpoints[i].in_cables);
2042 }
2043 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2044 if (err < 0) {
2045 kfree(umidi);
2046 return err;
2047 }
2048
2049 /* create endpoint/port structures */
2050 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2051 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2052 else
2053 err = snd_usbmidi_create_endpoints(umidi, endpoints);
2054 if (err < 0) {
2055 snd_usbmidi_free(umidi);
2056 return err;
2057 }
2058
2059 list_add_tail(&umidi->list, midi_list);
2060
2061 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2062 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2063 return 0;
2064 }
2065
2066 EXPORT_SYMBOL(snd_usbmidi_create);
2067 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2068 EXPORT_SYMBOL(snd_usbmidi_input_start);
2069 EXPORT_SYMBOL(snd_usbmidi_disconnect);