]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - sound/usb/usbmidi.c
6e89b8368d9ae2bcb315dd74fb28026cec25af99
[mirror_ubuntu-hirsute-kernel.git] / sound / usb / usbmidi.c
1 /*
2 * usbmidi.c - ALSA USB MIDI driver
3 *
4 * Copyright (c) 2002-2009 Clemens Ladisch
5 * All rights reserved.
6 *
7 * Based on the OSS usb-midi driver by NAGANO Daisuke,
8 * NetBSD's umidi driver by Takuya SHIOZAKI,
9 * the "USB Device Class Definition for MIDI Devices" by Roland
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed and/or modified under the
21 * terms of the GNU General Public License as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any later
23 * version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <sound/core.h>
50 #include <sound/control.h>
51 #include <sound/rawmidi.h>
52 #include <sound/asequencer.h>
53 #include "usbaudio.h"
54
55
56 /*
57 * define this to log all USB packets
58 */
59 /* #define DUMP_PACKETS */
60
61 /*
62 * how long to wait after some USB errors, so that khubd can disconnect() us
63 * without too many spurious errors
64 */
65 #define ERROR_DELAY_JIFFIES (HZ / 10)
66
67 #define OUTPUT_URBS 7
68 #define INPUT_URBS 7
69
70
71 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
72 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
73 MODULE_LICENSE("Dual BSD/GPL");
74
75
76 struct usb_ms_header_descriptor {
77 __u8 bLength;
78 __u8 bDescriptorType;
79 __u8 bDescriptorSubtype;
80 __u8 bcdMSC[2];
81 __le16 wTotalLength;
82 } __attribute__ ((packed));
83
84 struct usb_ms_endpoint_descriptor {
85 __u8 bLength;
86 __u8 bDescriptorType;
87 __u8 bDescriptorSubtype;
88 __u8 bNumEmbMIDIJack;
89 __u8 baAssocJackID[0];
90 } __attribute__ ((packed));
91
92 struct snd_usb_midi_in_endpoint;
93 struct snd_usb_midi_out_endpoint;
94 struct snd_usb_midi_endpoint;
95
96 struct usb_protocol_ops {
97 void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
98 void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
99 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
100 void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
101 void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
102 };
103
104 struct snd_usb_midi {
105 struct usb_device *dev;
106 struct snd_card *card;
107 struct usb_interface *iface;
108 const struct snd_usb_audio_quirk *quirk;
109 struct snd_rawmidi *rmidi;
110 struct usb_protocol_ops* usb_protocol_ops;
111 struct list_head list;
112 struct timer_list error_timer;
113 spinlock_t disc_lock;
114 struct mutex mutex;
115 u32 usb_id;
116 int next_midi_device;
117
118 struct snd_usb_midi_endpoint {
119 struct snd_usb_midi_out_endpoint *out;
120 struct snd_usb_midi_in_endpoint *in;
121 } endpoints[MIDI_MAX_ENDPOINTS];
122 unsigned long input_triggered;
123 unsigned int opened;
124 unsigned char disconnected;
125
126 struct snd_kcontrol *roland_load_ctl;
127 };
128
129 struct snd_usb_midi_out_endpoint {
130 struct snd_usb_midi* umidi;
131 struct out_urb_context {
132 struct urb *urb;
133 struct snd_usb_midi_out_endpoint *ep;
134 } urbs[OUTPUT_URBS];
135 unsigned int active_urbs;
136 unsigned int drain_urbs;
137 int max_transfer; /* size of urb buffer */
138 struct tasklet_struct tasklet;
139 unsigned int next_urb;
140 spinlock_t buffer_lock;
141
142 struct usbmidi_out_port {
143 struct snd_usb_midi_out_endpoint* ep;
144 struct snd_rawmidi_substream *substream;
145 int active;
146 uint8_t cable; /* cable number << 4 */
147 uint8_t state;
148 #define STATE_UNKNOWN 0
149 #define STATE_1PARAM 1
150 #define STATE_2PARAM_1 2
151 #define STATE_2PARAM_2 3
152 #define STATE_SYSEX_0 4
153 #define STATE_SYSEX_1 5
154 #define STATE_SYSEX_2 6
155 uint8_t data[2];
156 } ports[0x10];
157 int current_port;
158
159 wait_queue_head_t drain_wait;
160 };
161
162 struct snd_usb_midi_in_endpoint {
163 struct snd_usb_midi* umidi;
164 struct urb* urbs[INPUT_URBS];
165 struct usbmidi_in_port {
166 struct snd_rawmidi_substream *substream;
167 u8 running_status_length;
168 } ports[0x10];
169 u8 seen_f5;
170 u8 error_resubmit;
171 int current_port;
172 };
173
174 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
175
176 static const uint8_t snd_usbmidi_cin_length[] = {
177 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
178 };
179
180 /*
181 * Submits the URB, with error handling.
182 */
183 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
184 {
185 int err = usb_submit_urb(urb, flags);
186 if (err < 0 && err != -ENODEV)
187 snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
188 return err;
189 }
190
191 /*
192 * Error handling for URB completion functions.
193 */
194 static int snd_usbmidi_urb_error(int status)
195 {
196 switch (status) {
197 /* manually unlinked, or device gone */
198 case -ENOENT:
199 case -ECONNRESET:
200 case -ESHUTDOWN:
201 case -ENODEV:
202 return -ENODEV;
203 /* errors that might occur during unplugging */
204 case -EPROTO:
205 case -ETIME:
206 case -EILSEQ:
207 return -EIO;
208 default:
209 snd_printk(KERN_ERR "urb status %d\n", status);
210 return 0; /* continue */
211 }
212 }
213
214 /*
215 * Receives a chunk of MIDI data.
216 */
217 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
218 uint8_t* data, int length)
219 {
220 struct usbmidi_in_port* port = &ep->ports[portidx];
221
222 if (!port->substream) {
223 snd_printd("unexpected port %d!\n", portidx);
224 return;
225 }
226 if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
227 return;
228 snd_rawmidi_receive(port->substream, data, length);
229 }
230
231 #ifdef DUMP_PACKETS
232 static void dump_urb(const char *type, const u8 *data, int length)
233 {
234 snd_printk(KERN_DEBUG "%s packet: [", type);
235 for (; length > 0; ++data, --length)
236 printk(" %02x", *data);
237 printk(" ]\n");
238 }
239 #else
240 #define dump_urb(type, data, length) /* nothing */
241 #endif
242
243 /*
244 * Processes the data read from the device.
245 */
246 static void snd_usbmidi_in_urb_complete(struct urb* urb)
247 {
248 struct snd_usb_midi_in_endpoint* ep = urb->context;
249
250 if (urb->status == 0) {
251 dump_urb("received", urb->transfer_buffer, urb->actual_length);
252 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
253 urb->actual_length);
254 } else {
255 int err = snd_usbmidi_urb_error(urb->status);
256 if (err < 0) {
257 if (err != -ENODEV) {
258 ep->error_resubmit = 1;
259 mod_timer(&ep->umidi->error_timer,
260 jiffies + ERROR_DELAY_JIFFIES);
261 }
262 return;
263 }
264 }
265
266 urb->dev = ep->umidi->dev;
267 snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
268 }
269
270 static void snd_usbmidi_out_urb_complete(struct urb* urb)
271 {
272 struct out_urb_context *context = urb->context;
273 struct snd_usb_midi_out_endpoint* ep = context->ep;
274 unsigned int urb_index;
275
276 spin_lock(&ep->buffer_lock);
277 urb_index = context - ep->urbs;
278 ep->active_urbs &= ~(1 << urb_index);
279 if (unlikely(ep->drain_urbs)) {
280 ep->drain_urbs &= ~(1 << urb_index);
281 wake_up(&ep->drain_wait);
282 }
283 spin_unlock(&ep->buffer_lock);
284 if (urb->status < 0) {
285 int err = snd_usbmidi_urb_error(urb->status);
286 if (err < 0) {
287 if (err != -ENODEV)
288 mod_timer(&ep->umidi->error_timer,
289 jiffies + ERROR_DELAY_JIFFIES);
290 return;
291 }
292 }
293 snd_usbmidi_do_output(ep);
294 }
295
296 /*
297 * This is called when some data should be transferred to the device
298 * (from one or more substreams).
299 */
300 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
301 {
302 unsigned int urb_index;
303 struct urb* urb;
304 unsigned long flags;
305
306 spin_lock_irqsave(&ep->buffer_lock, flags);
307 if (ep->umidi->disconnected) {
308 spin_unlock_irqrestore(&ep->buffer_lock, flags);
309 return;
310 }
311
312 urb_index = ep->next_urb;
313 for (;;) {
314 if (!(ep->active_urbs & (1 << urb_index))) {
315 urb = ep->urbs[urb_index].urb;
316 urb->transfer_buffer_length = 0;
317 ep->umidi->usb_protocol_ops->output(ep, urb);
318 if (urb->transfer_buffer_length == 0)
319 break;
320
321 dump_urb("sending", urb->transfer_buffer,
322 urb->transfer_buffer_length);
323 urb->dev = ep->umidi->dev;
324 if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
325 break;
326 ep->active_urbs |= 1 << urb_index;
327 }
328 if (++urb_index >= OUTPUT_URBS)
329 urb_index = 0;
330 if (urb_index == ep->next_urb)
331 break;
332 }
333 ep->next_urb = urb_index;
334 spin_unlock_irqrestore(&ep->buffer_lock, flags);
335 }
336
337 static void snd_usbmidi_out_tasklet(unsigned long data)
338 {
339 struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
340
341 snd_usbmidi_do_output(ep);
342 }
343
344 /* called after transfers had been interrupted due to some USB error */
345 static void snd_usbmidi_error_timer(unsigned long data)
346 {
347 struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
348 unsigned int i, j;
349
350 spin_lock(&umidi->disc_lock);
351 if (umidi->disconnected) {
352 spin_unlock(&umidi->disc_lock);
353 return;
354 }
355 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
356 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
357 if (in && in->error_resubmit) {
358 in->error_resubmit = 0;
359 for (j = 0; j < INPUT_URBS; ++j) {
360 in->urbs[j]->dev = umidi->dev;
361 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
362 }
363 }
364 if (umidi->endpoints[i].out)
365 snd_usbmidi_do_output(umidi->endpoints[i].out);
366 }
367 spin_unlock(&umidi->disc_lock);
368 }
369
370 /* helper function to send static data that may not DMA-able */
371 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
372 const void *data, int len)
373 {
374 int err = 0;
375 void *buf = kmemdup(data, len, GFP_KERNEL);
376 if (!buf)
377 return -ENOMEM;
378 dump_urb("sending", buf, len);
379 if (ep->urbs[0].urb)
380 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
381 buf, len, NULL, 250);
382 kfree(buf);
383 return err;
384 }
385
386 /*
387 * Standard USB MIDI protocol: see the spec.
388 * Midiman protocol: like the standard protocol, but the control byte is the
389 * fourth byte in each packet, and uses length instead of CIN.
390 */
391
392 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
393 uint8_t* buffer, int buffer_length)
394 {
395 int i;
396
397 for (i = 0; i + 3 < buffer_length; i += 4)
398 if (buffer[i] != 0) {
399 int cable = buffer[i] >> 4;
400 int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
401 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
402 }
403 }
404
405 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
406 uint8_t* buffer, int buffer_length)
407 {
408 int i;
409
410 for (i = 0; i + 3 < buffer_length; i += 4)
411 if (buffer[i + 3] != 0) {
412 int port = buffer[i + 3] >> 4;
413 int length = buffer[i + 3] & 3;
414 snd_usbmidi_input_data(ep, port, &buffer[i], length);
415 }
416 }
417
418 /*
419 * Buggy M-Audio device: running status on input results in a packet that has
420 * the data bytes but not the status byte and that is marked with CIN 4.
421 */
422 static void snd_usbmidi_maudio_broken_running_status_input(
423 struct snd_usb_midi_in_endpoint* ep,
424 uint8_t* buffer, int buffer_length)
425 {
426 int i;
427
428 for (i = 0; i + 3 < buffer_length; i += 4)
429 if (buffer[i] != 0) {
430 int cable = buffer[i] >> 4;
431 u8 cin = buffer[i] & 0x0f;
432 struct usbmidi_in_port *port = &ep->ports[cable];
433 int length;
434
435 length = snd_usbmidi_cin_length[cin];
436 if (cin == 0xf && buffer[i + 1] >= 0xf8)
437 ; /* realtime msg: no running status change */
438 else if (cin >= 0x8 && cin <= 0xe)
439 /* channel msg */
440 port->running_status_length = length - 1;
441 else if (cin == 0x4 &&
442 port->running_status_length != 0 &&
443 buffer[i + 1] < 0x80)
444 /* CIN 4 that is not a SysEx */
445 length = port->running_status_length;
446 else
447 /*
448 * All other msgs cannot begin running status.
449 * (A channel msg sent as two or three CIN 0xF
450 * packets could in theory, but this device
451 * doesn't use this format.)
452 */
453 port->running_status_length = 0;
454 snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
455 }
456 }
457
458 /*
459 * CME protocol: like the standard protocol, but SysEx commands are sent as a
460 * single USB packet preceded by a 0x0F byte.
461 */
462 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
463 uint8_t *buffer, int buffer_length)
464 {
465 if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
466 snd_usbmidi_standard_input(ep, buffer, buffer_length);
467 else
468 snd_usbmidi_input_data(ep, buffer[0] >> 4,
469 &buffer[1], buffer_length - 1);
470 }
471
472 /*
473 * Adds one USB MIDI packet to the output buffer.
474 */
475 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
476 uint8_t p1, uint8_t p2, uint8_t p3)
477 {
478
479 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
480 buf[0] = p0;
481 buf[1] = p1;
482 buf[2] = p2;
483 buf[3] = p3;
484 urb->transfer_buffer_length += 4;
485 }
486
487 /*
488 * Adds one Midiman packet to the output buffer.
489 */
490 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
491 uint8_t p1, uint8_t p2, uint8_t p3)
492 {
493
494 uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
495 buf[0] = p1;
496 buf[1] = p2;
497 buf[2] = p3;
498 buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
499 urb->transfer_buffer_length += 4;
500 }
501
502 /*
503 * Converts MIDI commands to USB MIDI packets.
504 */
505 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
506 uint8_t b, struct urb* urb)
507 {
508 uint8_t p0 = port->cable;
509 void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
510 port->ep->umidi->usb_protocol_ops->output_packet;
511
512 if (b >= 0xf8) {
513 output_packet(urb, p0 | 0x0f, b, 0, 0);
514 } else if (b >= 0xf0) {
515 switch (b) {
516 case 0xf0:
517 port->data[0] = b;
518 port->state = STATE_SYSEX_1;
519 break;
520 case 0xf1:
521 case 0xf3:
522 port->data[0] = b;
523 port->state = STATE_1PARAM;
524 break;
525 case 0xf2:
526 port->data[0] = b;
527 port->state = STATE_2PARAM_1;
528 break;
529 case 0xf4:
530 case 0xf5:
531 port->state = STATE_UNKNOWN;
532 break;
533 case 0xf6:
534 output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
535 port->state = STATE_UNKNOWN;
536 break;
537 case 0xf7:
538 switch (port->state) {
539 case STATE_SYSEX_0:
540 output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
541 break;
542 case STATE_SYSEX_1:
543 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
544 break;
545 case STATE_SYSEX_2:
546 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
547 break;
548 }
549 port->state = STATE_UNKNOWN;
550 break;
551 }
552 } else if (b >= 0x80) {
553 port->data[0] = b;
554 if (b >= 0xc0 && b <= 0xdf)
555 port->state = STATE_1PARAM;
556 else
557 port->state = STATE_2PARAM_1;
558 } else { /* b < 0x80 */
559 switch (port->state) {
560 case STATE_1PARAM:
561 if (port->data[0] < 0xf0) {
562 p0 |= port->data[0] >> 4;
563 } else {
564 p0 |= 0x02;
565 port->state = STATE_UNKNOWN;
566 }
567 output_packet(urb, p0, port->data[0], b, 0);
568 break;
569 case STATE_2PARAM_1:
570 port->data[1] = b;
571 port->state = STATE_2PARAM_2;
572 break;
573 case STATE_2PARAM_2:
574 if (port->data[0] < 0xf0) {
575 p0 |= port->data[0] >> 4;
576 port->state = STATE_2PARAM_1;
577 } else {
578 p0 |= 0x03;
579 port->state = STATE_UNKNOWN;
580 }
581 output_packet(urb, p0, port->data[0], port->data[1], b);
582 break;
583 case STATE_SYSEX_0:
584 port->data[0] = b;
585 port->state = STATE_SYSEX_1;
586 break;
587 case STATE_SYSEX_1:
588 port->data[1] = b;
589 port->state = STATE_SYSEX_2;
590 break;
591 case STATE_SYSEX_2:
592 output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
593 port->state = STATE_SYSEX_0;
594 break;
595 }
596 }
597 }
598
599 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
600 struct urb *urb)
601 {
602 int p;
603
604 /* FIXME: lower-numbered ports can starve higher-numbered ports */
605 for (p = 0; p < 0x10; ++p) {
606 struct usbmidi_out_port* port = &ep->ports[p];
607 if (!port->active)
608 continue;
609 while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
610 uint8_t b;
611 if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
612 port->active = 0;
613 break;
614 }
615 snd_usbmidi_transmit_byte(port, b, urb);
616 }
617 }
618 }
619
620 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
621 .input = snd_usbmidi_standard_input,
622 .output = snd_usbmidi_standard_output,
623 .output_packet = snd_usbmidi_output_standard_packet,
624 };
625
626 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
627 .input = snd_usbmidi_midiman_input,
628 .output = snd_usbmidi_standard_output,
629 .output_packet = snd_usbmidi_output_midiman_packet,
630 };
631
632 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
633 .input = snd_usbmidi_maudio_broken_running_status_input,
634 .output = snd_usbmidi_standard_output,
635 .output_packet = snd_usbmidi_output_standard_packet,
636 };
637
638 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
639 .input = snd_usbmidi_cme_input,
640 .output = snd_usbmidi_standard_output,
641 .output_packet = snd_usbmidi_output_standard_packet,
642 };
643
644 /*
645 * Novation USB MIDI protocol: number of data bytes is in the first byte
646 * (when receiving) (+1!) or in the second byte (when sending); data begins
647 * at the third byte.
648 */
649
650 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
651 uint8_t* buffer, int buffer_length)
652 {
653 if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
654 return;
655 snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
656 }
657
658 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
659 struct urb *urb)
660 {
661 uint8_t* transfer_buffer;
662 int count;
663
664 if (!ep->ports[0].active)
665 return;
666 transfer_buffer = urb->transfer_buffer;
667 count = snd_rawmidi_transmit(ep->ports[0].substream,
668 &transfer_buffer[2],
669 ep->max_transfer - 2);
670 if (count < 1) {
671 ep->ports[0].active = 0;
672 return;
673 }
674 transfer_buffer[0] = 0;
675 transfer_buffer[1] = count;
676 urb->transfer_buffer_length = 2 + count;
677 }
678
679 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
680 .input = snd_usbmidi_novation_input,
681 .output = snd_usbmidi_novation_output,
682 };
683
684 /*
685 * "raw" protocol: used by the MOTU FastLane.
686 */
687
688 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
689 uint8_t* buffer, int buffer_length)
690 {
691 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
692 }
693
694 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
695 struct urb *urb)
696 {
697 int count;
698
699 if (!ep->ports[0].active)
700 return;
701 count = snd_rawmidi_transmit(ep->ports[0].substream,
702 urb->transfer_buffer,
703 ep->max_transfer);
704 if (count < 1) {
705 ep->ports[0].active = 0;
706 return;
707 }
708 urb->transfer_buffer_length = count;
709 }
710
711 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
712 .input = snd_usbmidi_raw_input,
713 .output = snd_usbmidi_raw_output,
714 };
715
716 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
717 uint8_t *buffer, int buffer_length)
718 {
719 if (buffer_length != 9)
720 return;
721 buffer_length = 8;
722 while (buffer_length && buffer[buffer_length - 1] == 0xFD)
723 buffer_length--;
724 if (buffer_length)
725 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
726 }
727
728 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
729 struct urb *urb)
730 {
731 int count;
732
733 if (!ep->ports[0].active)
734 return;
735 count = snd_usb_get_speed(ep->umidi->dev) == USB_SPEED_HIGH ? 1 : 2;
736 count = snd_rawmidi_transmit(ep->ports[0].substream,
737 urb->transfer_buffer,
738 count);
739 if (count < 1) {
740 ep->ports[0].active = 0;
741 return;
742 }
743
744 memset(urb->transfer_buffer + count, 0xFD, 9 - count);
745 urb->transfer_buffer_length = count;
746 }
747
748 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
749 .input = snd_usbmidi_us122l_input,
750 .output = snd_usbmidi_us122l_output,
751 };
752
753 /*
754 * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
755 */
756
757 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
758 {
759 static const u8 init_data[] = {
760 /* initialization magic: "get version" */
761 0xf0,
762 0x00, 0x20, 0x31, /* Emagic */
763 0x64, /* Unitor8 */
764 0x0b, /* version number request */
765 0x00, /* command version */
766 0x00, /* EEPROM, box 0 */
767 0xf7
768 };
769 send_bulk_static_data(ep, init_data, sizeof(init_data));
770 /* while we're at it, pour on more magic */
771 send_bulk_static_data(ep, init_data, sizeof(init_data));
772 }
773
774 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
775 {
776 static const u8 finish_data[] = {
777 /* switch to patch mode with last preset */
778 0xf0,
779 0x00, 0x20, 0x31, /* Emagic */
780 0x64, /* Unitor8 */
781 0x10, /* patch switch command */
782 0x00, /* command version */
783 0x7f, /* to all boxes */
784 0x40, /* last preset in EEPROM */
785 0xf7
786 };
787 send_bulk_static_data(ep, finish_data, sizeof(finish_data));
788 }
789
790 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
791 uint8_t* buffer, int buffer_length)
792 {
793 int i;
794
795 /* FF indicates end of valid data */
796 for (i = 0; i < buffer_length; ++i)
797 if (buffer[i] == 0xff) {
798 buffer_length = i;
799 break;
800 }
801
802 /* handle F5 at end of last buffer */
803 if (ep->seen_f5)
804 goto switch_port;
805
806 while (buffer_length > 0) {
807 /* determine size of data until next F5 */
808 for (i = 0; i < buffer_length; ++i)
809 if (buffer[i] == 0xf5)
810 break;
811 snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
812 buffer += i;
813 buffer_length -= i;
814
815 if (buffer_length <= 0)
816 break;
817 /* assert(buffer[0] == 0xf5); */
818 ep->seen_f5 = 1;
819 ++buffer;
820 --buffer_length;
821
822 switch_port:
823 if (buffer_length <= 0)
824 break;
825 if (buffer[0] < 0x80) {
826 ep->current_port = (buffer[0] - 1) & 15;
827 ++buffer;
828 --buffer_length;
829 }
830 ep->seen_f5 = 0;
831 }
832 }
833
834 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
835 struct urb *urb)
836 {
837 int port0 = ep->current_port;
838 uint8_t* buf = urb->transfer_buffer;
839 int buf_free = ep->max_transfer;
840 int length, i;
841
842 for (i = 0; i < 0x10; ++i) {
843 /* round-robin, starting at the last current port */
844 int portnum = (port0 + i) & 15;
845 struct usbmidi_out_port* port = &ep->ports[portnum];
846
847 if (!port->active)
848 continue;
849 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
850 port->active = 0;
851 continue;
852 }
853
854 if (portnum != ep->current_port) {
855 if (buf_free < 2)
856 break;
857 ep->current_port = portnum;
858 buf[0] = 0xf5;
859 buf[1] = (portnum + 1) & 15;
860 buf += 2;
861 buf_free -= 2;
862 }
863
864 if (buf_free < 1)
865 break;
866 length = snd_rawmidi_transmit(port->substream, buf, buf_free);
867 if (length > 0) {
868 buf += length;
869 buf_free -= length;
870 if (buf_free < 1)
871 break;
872 }
873 }
874 if (buf_free < ep->max_transfer && buf_free > 0) {
875 *buf = 0xff;
876 --buf_free;
877 }
878 urb->transfer_buffer_length = ep->max_transfer - buf_free;
879 }
880
881 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
882 .input = snd_usbmidi_emagic_input,
883 .output = snd_usbmidi_emagic_output,
884 .init_out_endpoint = snd_usbmidi_emagic_init_out,
885 .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
886 };
887
888
889 static void update_roland_altsetting(struct snd_usb_midi* umidi)
890 {
891 struct usb_interface *intf;
892 struct usb_host_interface *hostif;
893 struct usb_interface_descriptor *intfd;
894 int is_light_load;
895
896 intf = umidi->iface;
897 is_light_load = intf->cur_altsetting != intf->altsetting;
898 if (umidi->roland_load_ctl->private_value == is_light_load)
899 return;
900 hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
901 intfd = get_iface_desc(hostif);
902 snd_usbmidi_input_stop(&umidi->list);
903 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
904 intfd->bAlternateSetting);
905 snd_usbmidi_input_start(&umidi->list);
906 }
907
908 static void substream_open(struct snd_rawmidi_substream *substream, int open)
909 {
910 struct snd_usb_midi* umidi = substream->rmidi->private_data;
911 struct snd_kcontrol *ctl;
912
913 mutex_lock(&umidi->mutex);
914 if (open) {
915 if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
916 ctl = umidi->roland_load_ctl;
917 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
918 snd_ctl_notify(umidi->card,
919 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
920 update_roland_altsetting(umidi);
921 }
922 } else {
923 if (--umidi->opened == 0 && umidi->roland_load_ctl) {
924 ctl = umidi->roland_load_ctl;
925 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
926 snd_ctl_notify(umidi->card,
927 SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
928 }
929 }
930 mutex_unlock(&umidi->mutex);
931 }
932
933 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
934 {
935 struct snd_usb_midi* umidi = substream->rmidi->private_data;
936 struct usbmidi_out_port* port = NULL;
937 int i, j;
938
939 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
940 if (umidi->endpoints[i].out)
941 for (j = 0; j < 0x10; ++j)
942 if (umidi->endpoints[i].out->ports[j].substream == substream) {
943 port = &umidi->endpoints[i].out->ports[j];
944 break;
945 }
946 if (!port) {
947 snd_BUG();
948 return -ENXIO;
949 }
950 substream->runtime->private_data = port;
951 port->state = STATE_UNKNOWN;
952 substream_open(substream, 1);
953 return 0;
954 }
955
956 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
957 {
958 substream_open(substream, 0);
959 return 0;
960 }
961
962 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
963 {
964 struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
965
966 port->active = up;
967 if (up) {
968 if (port->ep->umidi->disconnected) {
969 /* gobble up remaining bytes to prevent wait in
970 * snd_rawmidi_drain_output */
971 while (!snd_rawmidi_transmit_empty(substream))
972 snd_rawmidi_transmit_ack(substream, 1);
973 return;
974 }
975 tasklet_schedule(&port->ep->tasklet);
976 }
977 }
978
979 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
980 {
981 struct usbmidi_out_port* port = substream->runtime->private_data;
982 struct snd_usb_midi_out_endpoint *ep = port->ep;
983 unsigned int drain_urbs;
984 DEFINE_WAIT(wait);
985 long timeout = msecs_to_jiffies(50);
986
987 /*
988 * The substream buffer is empty, but some data might still be in the
989 * currently active URBs, so we have to wait for those to complete.
990 */
991 spin_lock_irq(&ep->buffer_lock);
992 drain_urbs = ep->active_urbs;
993 if (drain_urbs) {
994 ep->drain_urbs |= drain_urbs;
995 do {
996 prepare_to_wait(&ep->drain_wait, &wait,
997 TASK_UNINTERRUPTIBLE);
998 spin_unlock_irq(&ep->buffer_lock);
999 timeout = schedule_timeout(timeout);
1000 spin_lock_irq(&ep->buffer_lock);
1001 drain_urbs &= ep->drain_urbs;
1002 } while (drain_urbs && timeout);
1003 finish_wait(&ep->drain_wait, &wait);
1004 }
1005 spin_unlock_irq(&ep->buffer_lock);
1006 }
1007
1008 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1009 {
1010 substream_open(substream, 1);
1011 return 0;
1012 }
1013
1014 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1015 {
1016 substream_open(substream, 0);
1017 return 0;
1018 }
1019
1020 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1021 {
1022 struct snd_usb_midi* umidi = substream->rmidi->private_data;
1023
1024 if (up)
1025 set_bit(substream->number, &umidi->input_triggered);
1026 else
1027 clear_bit(substream->number, &umidi->input_triggered);
1028 }
1029
1030 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1031 .open = snd_usbmidi_output_open,
1032 .close = snd_usbmidi_output_close,
1033 .trigger = snd_usbmidi_output_trigger,
1034 .drain = snd_usbmidi_output_drain,
1035 };
1036
1037 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1038 .open = snd_usbmidi_input_open,
1039 .close = snd_usbmidi_input_close,
1040 .trigger = snd_usbmidi_input_trigger
1041 };
1042
1043 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1044 unsigned int buffer_length)
1045 {
1046 usb_buffer_free(umidi->dev, buffer_length,
1047 urb->transfer_buffer, urb->transfer_dma);
1048 usb_free_urb(urb);
1049 }
1050
1051 /*
1052 * Frees an input endpoint.
1053 * May be called when ep hasn't been initialized completely.
1054 */
1055 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1056 {
1057 unsigned int i;
1058
1059 for (i = 0; i < INPUT_URBS; ++i)
1060 if (ep->urbs[i])
1061 free_urb_and_buffer(ep->umidi, ep->urbs[i],
1062 ep->urbs[i]->transfer_buffer_length);
1063 kfree(ep);
1064 }
1065
1066 /*
1067 * Creates an input endpoint.
1068 */
1069 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1070 struct snd_usb_midi_endpoint_info* ep_info,
1071 struct snd_usb_midi_endpoint* rep)
1072 {
1073 struct snd_usb_midi_in_endpoint* ep;
1074 void* buffer;
1075 unsigned int pipe;
1076 int length;
1077 unsigned int i;
1078
1079 rep->in = NULL;
1080 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1081 if (!ep)
1082 return -ENOMEM;
1083 ep->umidi = umidi;
1084
1085 for (i = 0; i < INPUT_URBS; ++i) {
1086 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1087 if (!ep->urbs[i]) {
1088 snd_usbmidi_in_endpoint_delete(ep);
1089 return -ENOMEM;
1090 }
1091 }
1092 if (ep_info->in_interval)
1093 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1094 else
1095 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1096 length = usb_maxpacket(umidi->dev, pipe, 0);
1097 for (i = 0; i < INPUT_URBS; ++i) {
1098 buffer = usb_buffer_alloc(umidi->dev, length, GFP_KERNEL,
1099 &ep->urbs[i]->transfer_dma);
1100 if (!buffer) {
1101 snd_usbmidi_in_endpoint_delete(ep);
1102 return -ENOMEM;
1103 }
1104 if (ep_info->in_interval)
1105 usb_fill_int_urb(ep->urbs[i], umidi->dev,
1106 pipe, buffer, length,
1107 snd_usbmidi_in_urb_complete,
1108 ep, ep_info->in_interval);
1109 else
1110 usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1111 pipe, buffer, length,
1112 snd_usbmidi_in_urb_complete, ep);
1113 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1114 }
1115
1116 rep->in = ep;
1117 return 0;
1118 }
1119
1120 /*
1121 * Frees an output endpoint.
1122 * May be called when ep hasn't been initialized completely.
1123 */
1124 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint* ep)
1125 {
1126 unsigned int i;
1127
1128 for (i = 0; i < OUTPUT_URBS; ++i)
1129 if (ep->urbs[i].urb)
1130 free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1131 ep->max_transfer);
1132 kfree(ep);
1133 }
1134
1135 /*
1136 * Creates an output endpoint, and initializes output ports.
1137 */
1138 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1139 struct snd_usb_midi_endpoint_info* ep_info,
1140 struct snd_usb_midi_endpoint* rep)
1141 {
1142 struct snd_usb_midi_out_endpoint* ep;
1143 unsigned int i;
1144 unsigned int pipe;
1145 void* buffer;
1146
1147 rep->out = NULL;
1148 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1149 if (!ep)
1150 return -ENOMEM;
1151 ep->umidi = umidi;
1152
1153 for (i = 0; i < OUTPUT_URBS; ++i) {
1154 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1155 if (!ep->urbs[i].urb) {
1156 snd_usbmidi_out_endpoint_delete(ep);
1157 return -ENOMEM;
1158 }
1159 ep->urbs[i].ep = ep;
1160 }
1161 if (ep_info->out_interval)
1162 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1163 else
1164 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1165 if (umidi->usb_id == USB_ID(0x0a92, 0x1020)) /* ESI M4U */
1166 ep->max_transfer = 4;
1167 else
1168 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1169 for (i = 0; i < OUTPUT_URBS; ++i) {
1170 buffer = usb_buffer_alloc(umidi->dev,
1171 ep->max_transfer, GFP_KERNEL,
1172 &ep->urbs[i].urb->transfer_dma);
1173 if (!buffer) {
1174 snd_usbmidi_out_endpoint_delete(ep);
1175 return -ENOMEM;
1176 }
1177 if (ep_info->out_interval)
1178 usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1179 pipe, buffer, ep->max_transfer,
1180 snd_usbmidi_out_urb_complete,
1181 &ep->urbs[i], ep_info->out_interval);
1182 else
1183 usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1184 pipe, buffer, ep->max_transfer,
1185 snd_usbmidi_out_urb_complete,
1186 &ep->urbs[i]);
1187 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1188 }
1189
1190 spin_lock_init(&ep->buffer_lock);
1191 tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1192 init_waitqueue_head(&ep->drain_wait);
1193
1194 for (i = 0; i < 0x10; ++i)
1195 if (ep_info->out_cables & (1 << i)) {
1196 ep->ports[i].ep = ep;
1197 ep->ports[i].cable = i << 4;
1198 }
1199
1200 if (umidi->usb_protocol_ops->init_out_endpoint)
1201 umidi->usb_protocol_ops->init_out_endpoint(ep);
1202
1203 rep->out = ep;
1204 return 0;
1205 }
1206
1207 /*
1208 * Frees everything.
1209 */
1210 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1211 {
1212 int i;
1213
1214 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1215 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1216 if (ep->out)
1217 snd_usbmidi_out_endpoint_delete(ep->out);
1218 if (ep->in)
1219 snd_usbmidi_in_endpoint_delete(ep->in);
1220 }
1221 mutex_destroy(&umidi->mutex);
1222 kfree(umidi);
1223 }
1224
1225 /*
1226 * Unlinks all URBs (must be done before the usb_device is deleted).
1227 */
1228 void snd_usbmidi_disconnect(struct list_head* p)
1229 {
1230 struct snd_usb_midi* umidi;
1231 unsigned int i, j;
1232
1233 umidi = list_entry(p, struct snd_usb_midi, list);
1234 /*
1235 * an URB's completion handler may start the timer and
1236 * a timer may submit an URB. To reliably break the cycle
1237 * a flag under lock must be used
1238 */
1239 spin_lock_irq(&umidi->disc_lock);
1240 umidi->disconnected = 1;
1241 spin_unlock_irq(&umidi->disc_lock);
1242 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1243 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1244 if (ep->out)
1245 tasklet_kill(&ep->out->tasklet);
1246 if (ep->out) {
1247 for (j = 0; j < OUTPUT_URBS; ++j)
1248 usb_kill_urb(ep->out->urbs[j].urb);
1249 if (umidi->usb_protocol_ops->finish_out_endpoint)
1250 umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1251 }
1252 if (ep->in)
1253 for (j = 0; j < INPUT_URBS; ++j)
1254 usb_kill_urb(ep->in->urbs[j]);
1255 /* free endpoints here; later call can result in Oops */
1256 if (ep->out) {
1257 snd_usbmidi_out_endpoint_delete(ep->out);
1258 ep->out = NULL;
1259 }
1260 if (ep->in) {
1261 snd_usbmidi_in_endpoint_delete(ep->in);
1262 ep->in = NULL;
1263 }
1264 }
1265 del_timer_sync(&umidi->error_timer);
1266 }
1267
1268 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1269 {
1270 struct snd_usb_midi* umidi = rmidi->private_data;
1271 snd_usbmidi_free(umidi);
1272 }
1273
1274 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1275 int stream, int number)
1276 {
1277 struct list_head* list;
1278
1279 list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1280 struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1281 if (substream->number == number)
1282 return substream;
1283 }
1284 return NULL;
1285 }
1286
1287 /*
1288 * This list specifies names for ports that do not fit into the standard
1289 * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1290 * such as internal control or synthesizer ports.
1291 */
1292 static struct port_info {
1293 u32 id;
1294 short int port;
1295 short int voices;
1296 const char *name;
1297 unsigned int seq_flags;
1298 } snd_usbmidi_port_info[] = {
1299 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1300 { .id = USB_ID(vendor, product), \
1301 .port = num, .voices = voices_, \
1302 .name = name_, .seq_flags = flags }
1303 #define EXTERNAL_PORT(vendor, product, num, name) \
1304 PORT_INFO(vendor, product, num, name, 0, \
1305 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1306 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1307 SNDRV_SEQ_PORT_TYPE_PORT)
1308 #define CONTROL_PORT(vendor, product, num, name) \
1309 PORT_INFO(vendor, product, num, name, 0, \
1310 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1311 SNDRV_SEQ_PORT_TYPE_HARDWARE)
1312 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1313 PORT_INFO(vendor, product, num, name, voices, \
1314 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1315 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1316 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1317 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1318 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1319 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1320 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1321 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1322 PORT_INFO(vendor, product, num, name, voices, \
1323 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1324 SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1325 SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1326 SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1327 SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1328 SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1329 SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1330 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1331 /* Roland UA-100 */
1332 CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1333 /* Roland SC-8850 */
1334 SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1335 SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1336 SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1337 SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1338 EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1339 EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1340 /* Roland U-8 */
1341 EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1342 CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1343 /* Roland SC-8820 */
1344 SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1345 SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1346 EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1347 /* Roland SK-500 */
1348 SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1349 SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1350 EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1351 /* Roland SC-D70 */
1352 SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1353 SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1354 EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1355 /* Edirol UM-880 */
1356 CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1357 /* Edirol SD-90 */
1358 ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1359 ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1360 EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1361 EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1362 /* Edirol UM-550 */
1363 CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1364 /* Edirol SD-20 */
1365 ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1366 ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1367 EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1368 /* Edirol SD-80 */
1369 ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1370 ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1371 EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1372 EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1373 /* Edirol UA-700 */
1374 EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1375 CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1376 /* Roland VariOS */
1377 EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1378 EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1379 EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1380 /* Edirol PCR */
1381 EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1382 EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1383 EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1384 /* BOSS GS-10 */
1385 EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1386 CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1387 /* Edirol UA-1000 */
1388 EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1389 CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1390 /* Edirol UR-80 */
1391 EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1392 EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1393 EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1394 /* Edirol PCR-A */
1395 EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1396 EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1397 EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1398 /* Edirol UM-3EX */
1399 CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1400 /* M-Audio MidiSport 8x8 */
1401 CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1402 CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1403 /* MOTU Fastlane */
1404 EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1405 EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1406 /* Emagic Unitor8/AMT8/MT4 */
1407 EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1408 EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1409 EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1410 };
1411
1412 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1413 {
1414 int i;
1415
1416 for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1417 if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1418 snd_usbmidi_port_info[i].port == number)
1419 return &snd_usbmidi_port_info[i];
1420 }
1421 return NULL;
1422 }
1423
1424 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1425 struct snd_seq_port_info *seq_port_info)
1426 {
1427 struct snd_usb_midi *umidi = rmidi->private_data;
1428 struct port_info *port_info;
1429
1430 /* TODO: read port flags from descriptors */
1431 port_info = find_port_info(umidi, number);
1432 if (port_info) {
1433 seq_port_info->type = port_info->seq_flags;
1434 seq_port_info->midi_voices = port_info->voices;
1435 }
1436 }
1437
1438 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1439 int stream, int number,
1440 struct snd_rawmidi_substream ** rsubstream)
1441 {
1442 struct port_info *port_info;
1443 const char *name_format;
1444
1445 struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1446 if (!substream) {
1447 snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1448 return;
1449 }
1450
1451 /* TODO: read port name from jack descriptor */
1452 port_info = find_port_info(umidi, number);
1453 name_format = port_info ? port_info->name : "%s MIDI %d";
1454 snprintf(substream->name, sizeof(substream->name),
1455 name_format, umidi->card->shortname, number + 1);
1456
1457 *rsubstream = substream;
1458 }
1459
1460 /*
1461 * Creates the endpoints and their ports.
1462 */
1463 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1464 struct snd_usb_midi_endpoint_info* endpoints)
1465 {
1466 int i, j, err;
1467 int out_ports = 0, in_ports = 0;
1468
1469 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1470 if (endpoints[i].out_cables) {
1471 err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1472 &umidi->endpoints[i]);
1473 if (err < 0)
1474 return err;
1475 }
1476 if (endpoints[i].in_cables) {
1477 err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1478 &umidi->endpoints[i]);
1479 if (err < 0)
1480 return err;
1481 }
1482
1483 for (j = 0; j < 0x10; ++j) {
1484 if (endpoints[i].out_cables & (1 << j)) {
1485 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1486 &umidi->endpoints[i].out->ports[j].substream);
1487 ++out_ports;
1488 }
1489 if (endpoints[i].in_cables & (1 << j)) {
1490 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1491 &umidi->endpoints[i].in->ports[j].substream);
1492 ++in_ports;
1493 }
1494 }
1495 }
1496 snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1497 out_ports, in_ports);
1498 return 0;
1499 }
1500
1501 /*
1502 * Returns MIDIStreaming device capabilities.
1503 */
1504 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1505 struct snd_usb_midi_endpoint_info* endpoints)
1506 {
1507 struct usb_interface* intf;
1508 struct usb_host_interface *hostif;
1509 struct usb_interface_descriptor* intfd;
1510 struct usb_ms_header_descriptor* ms_header;
1511 struct usb_host_endpoint *hostep;
1512 struct usb_endpoint_descriptor* ep;
1513 struct usb_ms_endpoint_descriptor* ms_ep;
1514 int i, epidx;
1515
1516 intf = umidi->iface;
1517 if (!intf)
1518 return -ENXIO;
1519 hostif = &intf->altsetting[0];
1520 intfd = get_iface_desc(hostif);
1521 ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1522 if (hostif->extralen >= 7 &&
1523 ms_header->bLength >= 7 &&
1524 ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1525 ms_header->bDescriptorSubtype == HEADER)
1526 snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1527 ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1528 else
1529 snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1530
1531 epidx = 0;
1532 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1533 hostep = &hostif->endpoint[i];
1534 ep = get_ep_desc(hostep);
1535 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1536 continue;
1537 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1538 if (hostep->extralen < 4 ||
1539 ms_ep->bLength < 4 ||
1540 ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1541 ms_ep->bDescriptorSubtype != MS_GENERAL)
1542 continue;
1543 if (usb_endpoint_dir_out(ep)) {
1544 if (endpoints[epidx].out_ep) {
1545 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1546 snd_printk(KERN_WARNING "too many endpoints\n");
1547 break;
1548 }
1549 }
1550 endpoints[epidx].out_ep = usb_endpoint_num(ep);
1551 if (usb_endpoint_xfer_int(ep))
1552 endpoints[epidx].out_interval = ep->bInterval;
1553 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1554 /*
1555 * Low speed bulk transfers don't exist, so
1556 * force interrupt transfers for devices like
1557 * ESI MIDI Mate that try to use them anyway.
1558 */
1559 endpoints[epidx].out_interval = 1;
1560 endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1561 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1562 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1563 } else {
1564 if (endpoints[epidx].in_ep) {
1565 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1566 snd_printk(KERN_WARNING "too many endpoints\n");
1567 break;
1568 }
1569 }
1570 endpoints[epidx].in_ep = usb_endpoint_num(ep);
1571 if (usb_endpoint_xfer_int(ep))
1572 endpoints[epidx].in_interval = ep->bInterval;
1573 else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1574 endpoints[epidx].in_interval = 1;
1575 endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1576 snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1577 ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1578 }
1579 }
1580 return 0;
1581 }
1582
1583 static int roland_load_info(struct snd_kcontrol *kcontrol,
1584 struct snd_ctl_elem_info *info)
1585 {
1586 static const char *const names[] = { "High Load", "Light Load" };
1587
1588 info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1589 info->count = 1;
1590 info->value.enumerated.items = 2;
1591 if (info->value.enumerated.item > 1)
1592 info->value.enumerated.item = 1;
1593 strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
1594 return 0;
1595 }
1596
1597 static int roland_load_get(struct snd_kcontrol *kcontrol,
1598 struct snd_ctl_elem_value *value)
1599 {
1600 value->value.enumerated.item[0] = kcontrol->private_value;
1601 return 0;
1602 }
1603
1604 static int roland_load_put(struct snd_kcontrol *kcontrol,
1605 struct snd_ctl_elem_value *value)
1606 {
1607 struct snd_usb_midi* umidi = kcontrol->private_data;
1608 int changed;
1609
1610 if (value->value.enumerated.item[0] > 1)
1611 return -EINVAL;
1612 mutex_lock(&umidi->mutex);
1613 changed = value->value.enumerated.item[0] != kcontrol->private_value;
1614 if (changed)
1615 kcontrol->private_value = value->value.enumerated.item[0];
1616 mutex_unlock(&umidi->mutex);
1617 return changed;
1618 }
1619
1620 static struct snd_kcontrol_new roland_load_ctl = {
1621 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1622 .name = "MIDI Input Mode",
1623 .info = roland_load_info,
1624 .get = roland_load_get,
1625 .put = roland_load_put,
1626 .private_value = 1,
1627 };
1628
1629 /*
1630 * On Roland devices, use the second alternate setting to be able to use
1631 * the interrupt input endpoint.
1632 */
1633 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1634 {
1635 struct usb_interface* intf;
1636 struct usb_host_interface *hostif;
1637 struct usb_interface_descriptor* intfd;
1638
1639 intf = umidi->iface;
1640 if (!intf || intf->num_altsetting != 2)
1641 return;
1642
1643 hostif = &intf->altsetting[1];
1644 intfd = get_iface_desc(hostif);
1645 if (intfd->bNumEndpoints != 2 ||
1646 (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1647 (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1648 return;
1649
1650 snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1651 intfd->bAlternateSetting);
1652 usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1653 intfd->bAlternateSetting);
1654
1655 umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1656 if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1657 umidi->roland_load_ctl = NULL;
1658 }
1659
1660 /*
1661 * Try to find any usable endpoints in the interface.
1662 */
1663 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1664 struct snd_usb_midi_endpoint_info* endpoint,
1665 int max_endpoints)
1666 {
1667 struct usb_interface* intf;
1668 struct usb_host_interface *hostif;
1669 struct usb_interface_descriptor* intfd;
1670 struct usb_endpoint_descriptor* epd;
1671 int i, out_eps = 0, in_eps = 0;
1672
1673 if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1674 snd_usbmidi_switch_roland_altsetting(umidi);
1675
1676 if (endpoint[0].out_ep || endpoint[0].in_ep)
1677 return 0;
1678
1679 intf = umidi->iface;
1680 if (!intf || intf->num_altsetting < 1)
1681 return -ENOENT;
1682 hostif = intf->cur_altsetting;
1683 intfd = get_iface_desc(hostif);
1684
1685 for (i = 0; i < intfd->bNumEndpoints; ++i) {
1686 epd = get_endpoint(hostif, i);
1687 if (!usb_endpoint_xfer_bulk(epd) &&
1688 !usb_endpoint_xfer_int(epd))
1689 continue;
1690 if (out_eps < max_endpoints &&
1691 usb_endpoint_dir_out(epd)) {
1692 endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1693 if (usb_endpoint_xfer_int(epd))
1694 endpoint[out_eps].out_interval = epd->bInterval;
1695 ++out_eps;
1696 }
1697 if (in_eps < max_endpoints &&
1698 usb_endpoint_dir_in(epd)) {
1699 endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1700 if (usb_endpoint_xfer_int(epd))
1701 endpoint[in_eps].in_interval = epd->bInterval;
1702 ++in_eps;
1703 }
1704 }
1705 return (out_eps || in_eps) ? 0 : -ENOENT;
1706 }
1707
1708 /*
1709 * Detects the endpoints for one-port-per-endpoint protocols.
1710 */
1711 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1712 struct snd_usb_midi_endpoint_info* endpoints)
1713 {
1714 int err, i;
1715
1716 err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1717 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1718 if (endpoints[i].out_ep)
1719 endpoints[i].out_cables = 0x0001;
1720 if (endpoints[i].in_ep)
1721 endpoints[i].in_cables = 0x0001;
1722 }
1723 return err;
1724 }
1725
1726 /*
1727 * Detects the endpoints and ports of Yamaha devices.
1728 */
1729 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1730 struct snd_usb_midi_endpoint_info* endpoint)
1731 {
1732 struct usb_interface* intf;
1733 struct usb_host_interface *hostif;
1734 struct usb_interface_descriptor* intfd;
1735 uint8_t* cs_desc;
1736
1737 intf = umidi->iface;
1738 if (!intf)
1739 return -ENOENT;
1740 hostif = intf->altsetting;
1741 intfd = get_iface_desc(hostif);
1742 if (intfd->bNumEndpoints < 1)
1743 return -ENOENT;
1744
1745 /*
1746 * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1747 * necessarily with any useful contents. So simply count 'em.
1748 */
1749 for (cs_desc = hostif->extra;
1750 cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1751 cs_desc += cs_desc[0]) {
1752 if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1753 if (cs_desc[2] == MIDI_IN_JACK)
1754 endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1755 else if (cs_desc[2] == MIDI_OUT_JACK)
1756 endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1757 }
1758 }
1759 if (!endpoint->in_cables && !endpoint->out_cables)
1760 return -ENOENT;
1761
1762 return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1763 }
1764
1765 /*
1766 * Creates the endpoints and their ports for Midiman devices.
1767 */
1768 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1769 struct snd_usb_midi_endpoint_info* endpoint)
1770 {
1771 struct snd_usb_midi_endpoint_info ep_info;
1772 struct usb_interface* intf;
1773 struct usb_host_interface *hostif;
1774 struct usb_interface_descriptor* intfd;
1775 struct usb_endpoint_descriptor* epd;
1776 int cable, err;
1777
1778 intf = umidi->iface;
1779 if (!intf)
1780 return -ENOENT;
1781 hostif = intf->altsetting;
1782 intfd = get_iface_desc(hostif);
1783 /*
1784 * The various MidiSport devices have more or less random endpoint
1785 * numbers, so we have to identify the endpoints by their index in
1786 * the descriptor array, like the driver for that other OS does.
1787 *
1788 * There is one interrupt input endpoint for all input ports, one
1789 * bulk output endpoint for even-numbered ports, and one for odd-
1790 * numbered ports. Both bulk output endpoints have corresponding
1791 * input bulk endpoints (at indices 1 and 3) which aren't used.
1792 */
1793 if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1794 snd_printdd(KERN_ERR "not enough endpoints\n");
1795 return -ENOENT;
1796 }
1797
1798 epd = get_endpoint(hostif, 0);
1799 if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1800 snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1801 return -ENXIO;
1802 }
1803 epd = get_endpoint(hostif, 2);
1804 if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1805 snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1806 return -ENXIO;
1807 }
1808 if (endpoint->out_cables > 0x0001) {
1809 epd = get_endpoint(hostif, 4);
1810 if (!usb_endpoint_dir_out(epd) ||
1811 !usb_endpoint_xfer_bulk(epd)) {
1812 snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1813 return -ENXIO;
1814 }
1815 }
1816
1817 ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1818 ep_info.out_interval = 0;
1819 ep_info.out_cables = endpoint->out_cables & 0x5555;
1820 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1821 if (err < 0)
1822 return err;
1823
1824 ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1825 ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1826 ep_info.in_cables = endpoint->in_cables;
1827 err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1828 if (err < 0)
1829 return err;
1830
1831 if (endpoint->out_cables > 0x0001) {
1832 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1833 ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1834 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1835 if (err < 0)
1836 return err;
1837 }
1838
1839 for (cable = 0; cable < 0x10; ++cable) {
1840 if (endpoint->out_cables & (1 << cable))
1841 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1842 &umidi->endpoints[cable & 1].out->ports[cable].substream);
1843 if (endpoint->in_cables & (1 << cable))
1844 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1845 &umidi->endpoints[0].in->ports[cable].substream);
1846 }
1847 return 0;
1848 }
1849
1850 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
1851 .get_port_info = snd_usbmidi_get_port_info,
1852 };
1853
1854 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
1855 int out_ports, int in_ports)
1856 {
1857 struct snd_rawmidi *rmidi;
1858 int err;
1859
1860 err = snd_rawmidi_new(umidi->card, "USB MIDI",
1861 umidi->next_midi_device++,
1862 out_ports, in_ports, &rmidi);
1863 if (err < 0)
1864 return err;
1865 strcpy(rmidi->name, umidi->card->shortname);
1866 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
1867 SNDRV_RAWMIDI_INFO_INPUT |
1868 SNDRV_RAWMIDI_INFO_DUPLEX;
1869 rmidi->ops = &snd_usbmidi_ops;
1870 rmidi->private_data = umidi;
1871 rmidi->private_free = snd_usbmidi_rawmidi_free;
1872 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
1873 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
1874
1875 umidi->rmidi = rmidi;
1876 return 0;
1877 }
1878
1879 /*
1880 * Temporarily stop input.
1881 */
1882 void snd_usbmidi_input_stop(struct list_head* p)
1883 {
1884 struct snd_usb_midi* umidi;
1885 unsigned int i, j;
1886
1887 umidi = list_entry(p, struct snd_usb_midi, list);
1888 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1889 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1890 if (ep->in)
1891 for (j = 0; j < INPUT_URBS; ++j)
1892 usb_kill_urb(ep->in->urbs[j]);
1893 }
1894 }
1895
1896 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
1897 {
1898 unsigned int i;
1899
1900 if (!ep)
1901 return;
1902 for (i = 0; i < INPUT_URBS; ++i) {
1903 struct urb* urb = ep->urbs[i];
1904 urb->dev = ep->umidi->dev;
1905 snd_usbmidi_submit_urb(urb, GFP_KERNEL);
1906 }
1907 }
1908
1909 /*
1910 * Resume input after a call to snd_usbmidi_input_stop().
1911 */
1912 void snd_usbmidi_input_start(struct list_head* p)
1913 {
1914 struct snd_usb_midi* umidi;
1915 int i;
1916
1917 umidi = list_entry(p, struct snd_usb_midi, list);
1918 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1919 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
1920 }
1921
1922 /*
1923 * Creates and registers everything needed for a MIDI streaming interface.
1924 */
1925 int snd_usbmidi_create(struct snd_card *card,
1926 struct usb_interface* iface,
1927 struct list_head *midi_list,
1928 const struct snd_usb_audio_quirk* quirk)
1929 {
1930 struct snd_usb_midi* umidi;
1931 struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
1932 int out_ports, in_ports;
1933 int i, err;
1934
1935 umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
1936 if (!umidi)
1937 return -ENOMEM;
1938 umidi->dev = interface_to_usbdev(iface);
1939 umidi->card = card;
1940 umidi->iface = iface;
1941 umidi->quirk = quirk;
1942 umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
1943 init_timer(&umidi->error_timer);
1944 spin_lock_init(&umidi->disc_lock);
1945 mutex_init(&umidi->mutex);
1946 umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
1947 le16_to_cpu(umidi->dev->descriptor.idProduct));
1948 umidi->error_timer.function = snd_usbmidi_error_timer;
1949 umidi->error_timer.data = (unsigned long)umidi;
1950
1951 /* detect the endpoint(s) to use */
1952 memset(endpoints, 0, sizeof(endpoints));
1953 switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
1954 case QUIRK_MIDI_STANDARD_INTERFACE:
1955 err = snd_usbmidi_get_ms_info(umidi, endpoints);
1956 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
1957 umidi->usb_protocol_ops =
1958 &snd_usbmidi_maudio_broken_running_status_ops;
1959 break;
1960 case QUIRK_MIDI_US122L:
1961 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
1962 /* fall through */
1963 case QUIRK_MIDI_FIXED_ENDPOINT:
1964 memcpy(&endpoints[0], quirk->data,
1965 sizeof(struct snd_usb_midi_endpoint_info));
1966 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
1967 break;
1968 case QUIRK_MIDI_YAMAHA:
1969 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
1970 break;
1971 case QUIRK_MIDI_MIDIMAN:
1972 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
1973 memcpy(&endpoints[0], quirk->data,
1974 sizeof(struct snd_usb_midi_endpoint_info));
1975 err = 0;
1976 break;
1977 case QUIRK_MIDI_NOVATION:
1978 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
1979 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
1980 break;
1981 case QUIRK_MIDI_FASTLANE:
1982 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
1983 /*
1984 * Interface 1 contains isochronous endpoints, but with the same
1985 * numbers as in interface 0. Since it is interface 1 that the
1986 * USB core has most recently seen, these descriptors are now
1987 * associated with the endpoint numbers. This will foul up our
1988 * attempts to submit bulk/interrupt URBs to the endpoints in
1989 * interface 0, so we have to make sure that the USB core looks
1990 * again at interface 0 by calling usb_set_interface() on it.
1991 */
1992 usb_set_interface(umidi->dev, 0, 0);
1993 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
1994 break;
1995 case QUIRK_MIDI_EMAGIC:
1996 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
1997 memcpy(&endpoints[0], quirk->data,
1998 sizeof(struct snd_usb_midi_endpoint_info));
1999 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2000 break;
2001 case QUIRK_MIDI_CME:
2002 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2003 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2004 break;
2005 default:
2006 snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2007 err = -ENXIO;
2008 break;
2009 }
2010 if (err < 0) {
2011 kfree(umidi);
2012 return err;
2013 }
2014
2015 /* create rawmidi device */
2016 out_ports = 0;
2017 in_ports = 0;
2018 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2019 out_ports += hweight16(endpoints[i].out_cables);
2020 in_ports += hweight16(endpoints[i].in_cables);
2021 }
2022 err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2023 if (err < 0) {
2024 kfree(umidi);
2025 return err;
2026 }
2027
2028 /* create endpoint/port structures */
2029 if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2030 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2031 else
2032 err = snd_usbmidi_create_endpoints(umidi, endpoints);
2033 if (err < 0) {
2034 snd_usbmidi_free(umidi);
2035 return err;
2036 }
2037
2038 list_add_tail(&umidi->list, midi_list);
2039
2040 for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2041 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2042 return 0;
2043 }
2044
2045 EXPORT_SYMBOL(snd_usbmidi_create);
2046 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2047 EXPORT_SYMBOL(snd_usbmidi_input_start);
2048 EXPORT_SYMBOL(snd_usbmidi_disconnect);