]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - sound/x86/intel_hdmi_audio.c
Merge tag 'for-4.13/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / sound / x86 / intel_hdmi_audio.c
1 /*
2 * intel_hdmi_audio.c - Intel HDMI audio driver
3 *
4 * Copyright (C) 2016 Intel Corp
5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6 * Ramesh Babu K V <ramesh.babu@intel.com>
7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8 * Jerome Anand <jerome.anand@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2 of the License.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 * ALSA driver for Intel HDMI audio
22 */
23
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44
45 /*standard module options for ALSA. This module supports only one card*/
46 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
47 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
48
49 module_param_named(index, hdmi_card_index, int, 0444);
50 MODULE_PARM_DESC(index,
51 "Index value for INTEL Intel HDMI Audio controller.");
52 module_param_named(id, hdmi_card_id, charp, 0444);
53 MODULE_PARM_DESC(id,
54 "ID string for INTEL Intel HDMI Audio controller.");
55
56 /*
57 * ELD SA bits in the CEA Speaker Allocation data block
58 */
59 static const int eld_speaker_allocation_bits[] = {
60 [0] = FL | FR,
61 [1] = LFE,
62 [2] = FC,
63 [3] = RL | RR,
64 [4] = RC,
65 [5] = FLC | FRC,
66 [6] = RLC | RRC,
67 /* the following are not defined in ELD yet */
68 [7] = 0,
69 };
70
71 /*
72 * This is an ordered list!
73 *
74 * The preceding ones have better chances to be selected by
75 * hdmi_channel_allocation().
76 */
77 static struct cea_channel_speaker_allocation channel_allocations[] = {
78 /* channel: 7 6 5 4 3 2 1 0 */
79 { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
80 /* 2.1 */
81 { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
82 /* Dolby Surround */
83 { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
84 /* surround40 */
85 { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
86 /* surround41 */
87 { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
88 /* surround50 */
89 { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
90 /* surround51 */
91 { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
92 /* 6.1 */
93 { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
94 /* surround71 */
95 { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
96
97 { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
98 { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
99 { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
100 { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
101 { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
102 { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
103 { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
104 { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
105 { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
106 { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
107 { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
108 { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
109 { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
110 { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
111 { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
112 { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
113 { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
114 { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
115 { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
116 { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
117 { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
118 { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
119 { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
120 };
121
122 static const struct channel_map_table map_tables[] = {
123 { SNDRV_CHMAP_FL, 0x00, FL },
124 { SNDRV_CHMAP_FR, 0x01, FR },
125 { SNDRV_CHMAP_RL, 0x04, RL },
126 { SNDRV_CHMAP_RR, 0x05, RR },
127 { SNDRV_CHMAP_LFE, 0x02, LFE },
128 { SNDRV_CHMAP_FC, 0x03, FC },
129 { SNDRV_CHMAP_RLC, 0x06, RLC },
130 { SNDRV_CHMAP_RRC, 0x07, RRC },
131 {} /* terminator */
132 };
133
134 /* hardware capability structure */
135 static const struct snd_pcm_hardware had_pcm_hardware = {
136 .info = (SNDRV_PCM_INFO_INTERLEAVED |
137 SNDRV_PCM_INFO_MMAP |
138 SNDRV_PCM_INFO_MMAP_VALID |
139 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
140 .formats = (SNDRV_PCM_FMTBIT_S16_LE |
141 SNDRV_PCM_FMTBIT_S24_LE |
142 SNDRV_PCM_FMTBIT_S32_LE),
143 .rates = SNDRV_PCM_RATE_32000 |
144 SNDRV_PCM_RATE_44100 |
145 SNDRV_PCM_RATE_48000 |
146 SNDRV_PCM_RATE_88200 |
147 SNDRV_PCM_RATE_96000 |
148 SNDRV_PCM_RATE_176400 |
149 SNDRV_PCM_RATE_192000,
150 .rate_min = HAD_MIN_RATE,
151 .rate_max = HAD_MAX_RATE,
152 .channels_min = HAD_MIN_CHANNEL,
153 .channels_max = HAD_MAX_CHANNEL,
154 .buffer_bytes_max = HAD_MAX_BUFFER,
155 .period_bytes_min = HAD_MIN_PERIOD_BYTES,
156 .period_bytes_max = HAD_MAX_PERIOD_BYTES,
157 .periods_min = HAD_MIN_PERIODS,
158 .periods_max = HAD_MAX_PERIODS,
159 .fifo_size = HAD_FIFO_SIZE,
160 };
161
162 /* Get the active PCM substream;
163 * Call had_substream_put() for unreferecing.
164 * Don't call this inside had_spinlock, as it takes by itself
165 */
166 static struct snd_pcm_substream *
167 had_substream_get(struct snd_intelhad *intelhaddata)
168 {
169 struct snd_pcm_substream *substream;
170 unsigned long flags;
171
172 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
173 substream = intelhaddata->stream_info.substream;
174 if (substream)
175 intelhaddata->stream_info.substream_refcount++;
176 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
177 return substream;
178 }
179
180 /* Unref the active PCM substream;
181 * Don't call this inside had_spinlock, as it takes by itself
182 */
183 static void had_substream_put(struct snd_intelhad *intelhaddata)
184 {
185 unsigned long flags;
186
187 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
188 intelhaddata->stream_info.substream_refcount--;
189 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
190 }
191
192 /* Register access functions */
193 static u32 had_read_register_raw(struct snd_intelhad *ctx, u32 reg)
194 {
195 return ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
196 }
197
198 static void had_write_register_raw(struct snd_intelhad *ctx, u32 reg, u32 val)
199 {
200 iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
201 }
202
203 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
204 {
205 if (!ctx->connected)
206 *val = 0;
207 else
208 *val = had_read_register_raw(ctx, reg);
209 }
210
211 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
212 {
213 if (ctx->connected)
214 had_write_register_raw(ctx, reg, val);
215 }
216
217 /*
218 * enable / disable audio configuration
219 *
220 * The normal read/modify should not directly be used on VLV2 for
221 * updating AUD_CONFIG register.
222 * This is because:
223 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
224 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
225 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
226 * register. This field should be 1xy binary for configuration with 6 or
227 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
228 * causes the "channels" field to be updated as 0xy binary resulting in
229 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
230 * appropriate value when doing read-modify of AUD_CONFIG register.
231 */
232 static void had_enable_audio(struct snd_intelhad *intelhaddata,
233 bool enable)
234 {
235 /* update the cached value */
236 intelhaddata->aud_config.regx.aud_en = enable;
237 had_write_register(intelhaddata, AUD_CONFIG,
238 intelhaddata->aud_config.regval);
239 }
240
241 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
242 static void had_ack_irqs(struct snd_intelhad *ctx)
243 {
244 u32 status_reg;
245
246 if (!ctx->connected)
247 return;
248 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
249 status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
250 had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
251 had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
252 }
253
254 /* Reset buffer pointers */
255 static void had_reset_audio(struct snd_intelhad *intelhaddata)
256 {
257 had_write_register(intelhaddata, AUD_HDMI_STATUS,
258 AUD_HDMI_STATUSG_MASK_FUNCRST);
259 had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
260 }
261
262 /*
263 * initialize audio channel status registers
264 * This function is called in the prepare callback
265 */
266 static int had_prog_status_reg(struct snd_pcm_substream *substream,
267 struct snd_intelhad *intelhaddata)
268 {
269 union aud_cfg cfg_val = {.regval = 0};
270 union aud_ch_status_0 ch_stat0 = {.regval = 0};
271 union aud_ch_status_1 ch_stat1 = {.regval = 0};
272
273 ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
274 IEC958_AES0_NONAUDIO) >> 1;
275 ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
276 IEC958_AES3_CON_CLOCK) >> 4;
277 cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
278
279 switch (substream->runtime->rate) {
280 case AUD_SAMPLE_RATE_32:
281 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
282 break;
283
284 case AUD_SAMPLE_RATE_44_1:
285 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
286 break;
287 case AUD_SAMPLE_RATE_48:
288 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
289 break;
290 case AUD_SAMPLE_RATE_88_2:
291 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
292 break;
293 case AUD_SAMPLE_RATE_96:
294 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
295 break;
296 case AUD_SAMPLE_RATE_176_4:
297 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
298 break;
299 case AUD_SAMPLE_RATE_192:
300 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
301 break;
302
303 default:
304 /* control should never come here */
305 return -EINVAL;
306 }
307
308 had_write_register(intelhaddata,
309 AUD_CH_STATUS_0, ch_stat0.regval);
310
311 switch (substream->runtime->format) {
312 case SNDRV_PCM_FORMAT_S16_LE:
313 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
314 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
315 break;
316 case SNDRV_PCM_FORMAT_S24_LE:
317 case SNDRV_PCM_FORMAT_S32_LE:
318 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
319 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
320 break;
321 default:
322 return -EINVAL;
323 }
324
325 had_write_register(intelhaddata,
326 AUD_CH_STATUS_1, ch_stat1.regval);
327 return 0;
328 }
329
330 /*
331 * function to initialize audio
332 * registers and buffer confgiuration registers
333 * This function is called in the prepare callback
334 */
335 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
336 struct snd_intelhad *intelhaddata)
337 {
338 union aud_cfg cfg_val = {.regval = 0};
339 union aud_buf_config buf_cfg = {.regval = 0};
340 u8 channels;
341
342 had_prog_status_reg(substream, intelhaddata);
343
344 buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
345 buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
346 buf_cfg.regx.aud_delay = 0;
347 had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
348
349 channels = substream->runtime->channels;
350 cfg_val.regx.num_ch = channels - 2;
351 if (channels <= 2)
352 cfg_val.regx.layout = LAYOUT0;
353 else
354 cfg_val.regx.layout = LAYOUT1;
355
356 if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
357 cfg_val.regx.packet_mode = 1;
358
359 if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
360 cfg_val.regx.left_align = 1;
361
362 cfg_val.regx.val_bit = 1;
363
364 /* fix up the DP bits */
365 if (intelhaddata->dp_output) {
366 cfg_val.regx.dp_modei = 1;
367 cfg_val.regx.set = 1;
368 }
369
370 had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
371 intelhaddata->aud_config = cfg_val;
372 return 0;
373 }
374
375 /*
376 * Compute derived values in channel_allocations[].
377 */
378 static void init_channel_allocations(void)
379 {
380 int i, j;
381 struct cea_channel_speaker_allocation *p;
382
383 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
384 p = channel_allocations + i;
385 p->channels = 0;
386 p->spk_mask = 0;
387 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
388 if (p->speakers[j]) {
389 p->channels++;
390 p->spk_mask |= p->speakers[j];
391 }
392 }
393 }
394
395 /*
396 * The transformation takes two steps:
397 *
398 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
399 * spk_mask => (channel_allocations[]) => ai->CA
400 *
401 * TODO: it could select the wrong CA from multiple candidates.
402 */
403 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
404 int channels)
405 {
406 int i;
407 int ca = 0;
408 int spk_mask = 0;
409
410 /*
411 * CA defaults to 0 for basic stereo audio
412 */
413 if (channels <= 2)
414 return 0;
415
416 /*
417 * expand ELD's speaker allocation mask
418 *
419 * ELD tells the speaker mask in a compact(paired) form,
420 * expand ELD's notions to match the ones used by Audio InfoFrame.
421 */
422
423 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
424 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
425 spk_mask |= eld_speaker_allocation_bits[i];
426 }
427
428 /* search for the first working match in the CA table */
429 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
430 if (channels == channel_allocations[i].channels &&
431 (spk_mask & channel_allocations[i].spk_mask) ==
432 channel_allocations[i].spk_mask) {
433 ca = channel_allocations[i].ca_index;
434 break;
435 }
436 }
437
438 dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
439
440 return ca;
441 }
442
443 /* from speaker bit mask to ALSA API channel position */
444 static int spk_to_chmap(int spk)
445 {
446 const struct channel_map_table *t = map_tables;
447
448 for (; t->map; t++) {
449 if (t->spk_mask == spk)
450 return t->map;
451 }
452 return 0;
453 }
454
455 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
456 {
457 int i, c;
458 int spk_mask = 0;
459 struct snd_pcm_chmap_elem *chmap;
460 u8 eld_high, eld_high_mask = 0xF0;
461 u8 high_msb;
462
463 kfree(intelhaddata->chmap->chmap);
464 intelhaddata->chmap->chmap = NULL;
465
466 chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
467 if (!chmap)
468 return;
469
470 dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
471 intelhaddata->eld[DRM_ELD_SPEAKER]);
472
473 /* WA: Fix the max channel supported to 8 */
474
475 /*
476 * Sink may support more than 8 channels, if eld_high has more than
477 * one bit set. SOC supports max 8 channels.
478 * Refer eld_speaker_allocation_bits, for sink speaker allocation
479 */
480
481 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
482 eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
483 if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
484 /* eld_high & (eld_high-1): if more than 1 bit set */
485 /* 0x1F: 7 channels */
486 for (i = 1; i < 4; i++) {
487 high_msb = eld_high & (0x80 >> i);
488 if (high_msb) {
489 intelhaddata->eld[DRM_ELD_SPEAKER] &=
490 high_msb | 0xF;
491 break;
492 }
493 }
494 }
495
496 for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
497 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
498 spk_mask |= eld_speaker_allocation_bits[i];
499 }
500
501 for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
502 if (spk_mask == channel_allocations[i].spk_mask) {
503 for (c = 0; c < channel_allocations[i].channels; c++) {
504 chmap->map[c] = spk_to_chmap(
505 channel_allocations[i].speakers[
506 (MAX_SPEAKERS - 1) - c]);
507 }
508 chmap->channels = channel_allocations[i].channels;
509 intelhaddata->chmap->chmap = chmap;
510 break;
511 }
512 }
513 if (i >= ARRAY_SIZE(channel_allocations))
514 kfree(chmap);
515 }
516
517 /*
518 * ALSA API channel-map control callbacks
519 */
520 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
521 struct snd_ctl_elem_info *uinfo)
522 {
523 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
524 uinfo->count = HAD_MAX_CHANNEL;
525 uinfo->value.integer.min = 0;
526 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
527 return 0;
528 }
529
530 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
531 struct snd_ctl_elem_value *ucontrol)
532 {
533 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
534 struct snd_intelhad *intelhaddata = info->private_data;
535 int i;
536 const struct snd_pcm_chmap_elem *chmap;
537
538 memset(ucontrol->value.integer.value, 0,
539 sizeof(long) * HAD_MAX_CHANNEL);
540 mutex_lock(&intelhaddata->mutex);
541 if (!intelhaddata->chmap->chmap) {
542 mutex_unlock(&intelhaddata->mutex);
543 return 0;
544 }
545
546 chmap = intelhaddata->chmap->chmap;
547 for (i = 0; i < chmap->channels; i++)
548 ucontrol->value.integer.value[i] = chmap->map[i];
549 mutex_unlock(&intelhaddata->mutex);
550
551 return 0;
552 }
553
554 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
555 struct snd_pcm *pcm)
556 {
557 int err;
558
559 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
560 NULL, 0, (unsigned long)intelhaddata,
561 &intelhaddata->chmap);
562 if (err < 0)
563 return err;
564
565 intelhaddata->chmap->private_data = intelhaddata;
566 intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
567 intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
568 intelhaddata->chmap->chmap = NULL;
569 return 0;
570 }
571
572 /*
573 * Initialize Data Island Packets registers
574 * This function is called in the prepare callback
575 */
576 static void had_prog_dip(struct snd_pcm_substream *substream,
577 struct snd_intelhad *intelhaddata)
578 {
579 int i;
580 union aud_ctrl_st ctrl_state = {.regval = 0};
581 union aud_info_frame2 frame2 = {.regval = 0};
582 union aud_info_frame3 frame3 = {.regval = 0};
583 u8 checksum = 0;
584 u32 info_frame;
585 int channels;
586 int ca;
587
588 channels = substream->runtime->channels;
589
590 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
591
592 ca = had_channel_allocation(intelhaddata, channels);
593 if (intelhaddata->dp_output) {
594 info_frame = DP_INFO_FRAME_WORD1;
595 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
596 } else {
597 info_frame = HDMI_INFO_FRAME_WORD1;
598 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
599 frame3.regx.chnl_alloc = ca;
600
601 /* Calculte the byte wide checksum for all valid DIP words */
602 for (i = 0; i < BYTES_PER_WORD; i++)
603 checksum += (info_frame >> (i * 8)) & 0xff;
604 for (i = 0; i < BYTES_PER_WORD; i++)
605 checksum += (frame2.regval >> (i * 8)) & 0xff;
606 for (i = 0; i < BYTES_PER_WORD; i++)
607 checksum += (frame3.regval >> (i * 8)) & 0xff;
608
609 frame2.regx.chksum = -(checksum);
610 }
611
612 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
613 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
614 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
615
616 /* program remaining DIP words with zero */
617 for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
618 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
619
620 ctrl_state.regx.dip_freq = 1;
621 ctrl_state.regx.dip_en_sta = 1;
622 had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
623 }
624
625 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
626 {
627 u32 maud_val;
628
629 /* Select maud according to DP 1.2 spec */
630 if (link_rate == DP_2_7_GHZ) {
631 switch (aud_samp_freq) {
632 case AUD_SAMPLE_RATE_32:
633 maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
634 break;
635
636 case AUD_SAMPLE_RATE_44_1:
637 maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
638 break;
639
640 case AUD_SAMPLE_RATE_48:
641 maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
642 break;
643
644 case AUD_SAMPLE_RATE_88_2:
645 maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
646 break;
647
648 case AUD_SAMPLE_RATE_96:
649 maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
650 break;
651
652 case AUD_SAMPLE_RATE_176_4:
653 maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
654 break;
655
656 case HAD_MAX_RATE:
657 maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
658 break;
659
660 default:
661 maud_val = -EINVAL;
662 break;
663 }
664 } else if (link_rate == DP_1_62_GHZ) {
665 switch (aud_samp_freq) {
666 case AUD_SAMPLE_RATE_32:
667 maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
668 break;
669
670 case AUD_SAMPLE_RATE_44_1:
671 maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
672 break;
673
674 case AUD_SAMPLE_RATE_48:
675 maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
676 break;
677
678 case AUD_SAMPLE_RATE_88_2:
679 maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
680 break;
681
682 case AUD_SAMPLE_RATE_96:
683 maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
684 break;
685
686 case AUD_SAMPLE_RATE_176_4:
687 maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
688 break;
689
690 case HAD_MAX_RATE:
691 maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
692 break;
693
694 default:
695 maud_val = -EINVAL;
696 break;
697 }
698 } else
699 maud_val = -EINVAL;
700
701 return maud_val;
702 }
703
704 /*
705 * Program HDMI audio CTS value
706 *
707 * @aud_samp_freq: sampling frequency of audio data
708 * @tmds: sampling frequency of the display data
709 * @link_rate: DP link rate
710 * @n_param: N value, depends on aud_samp_freq
711 * @intelhaddata: substream private data
712 *
713 * Program CTS register based on the audio and display sampling frequency
714 */
715 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
716 u32 n_param, struct snd_intelhad *intelhaddata)
717 {
718 u32 cts_val;
719 u64 dividend, divisor;
720
721 if (intelhaddata->dp_output) {
722 /* Substitute cts_val with Maud according to DP 1.2 spec*/
723 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
724 } else {
725 /* Calculate CTS according to HDMI 1.3a spec*/
726 dividend = (u64)tmds * n_param*1000;
727 divisor = 128 * aud_samp_freq;
728 cts_val = div64_u64(dividend, divisor);
729 }
730 dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
731 tmds, n_param, cts_val);
732 had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
733 }
734
735 static int had_calculate_n_value(u32 aud_samp_freq)
736 {
737 int n_val;
738
739 /* Select N according to HDMI 1.3a spec*/
740 switch (aud_samp_freq) {
741 case AUD_SAMPLE_RATE_32:
742 n_val = 4096;
743 break;
744
745 case AUD_SAMPLE_RATE_44_1:
746 n_val = 6272;
747 break;
748
749 case AUD_SAMPLE_RATE_48:
750 n_val = 6144;
751 break;
752
753 case AUD_SAMPLE_RATE_88_2:
754 n_val = 12544;
755 break;
756
757 case AUD_SAMPLE_RATE_96:
758 n_val = 12288;
759 break;
760
761 case AUD_SAMPLE_RATE_176_4:
762 n_val = 25088;
763 break;
764
765 case HAD_MAX_RATE:
766 n_val = 24576;
767 break;
768
769 default:
770 n_val = -EINVAL;
771 break;
772 }
773 return n_val;
774 }
775
776 /*
777 * Program HDMI audio N value
778 *
779 * @aud_samp_freq: sampling frequency of audio data
780 * @n_param: N value, depends on aud_samp_freq
781 * @intelhaddata: substream private data
782 *
783 * This function is called in the prepare callback.
784 * It programs based on the audio and display sampling frequency
785 */
786 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
787 struct snd_intelhad *intelhaddata)
788 {
789 int n_val;
790
791 if (intelhaddata->dp_output) {
792 /*
793 * According to DP specs, Maud and Naud values hold
794 * a relationship, which is stated as:
795 * Maud/Naud = 512 * fs / f_LS_Clk
796 * where, fs is the sampling frequency of the audio stream
797 * and Naud is 32768 for Async clock.
798 */
799
800 n_val = DP_NAUD_VAL;
801 } else
802 n_val = had_calculate_n_value(aud_samp_freq);
803
804 if (n_val < 0)
805 return n_val;
806
807 had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
808 *n_param = n_val;
809 return 0;
810 }
811
812 /*
813 * PCM ring buffer handling
814 *
815 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
816 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
817 * moves at each period elapsed. The below illustrates how it works:
818 *
819 * At time=0
820 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
821 * BD | 0 | 1 | 2 | 3 |
822 *
823 * At time=1 (period elapsed)
824 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
825 * BD | 1 | 2 | 3 | 0 |
826 *
827 * At time=2 (second period elapsed)
828 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
829 * BD | 2 | 3 | 0 | 1 |
830 *
831 * The bd_head field points to the index of the BD to be read. It's also the
832 * position to be filled at next. The pcm_head and the pcm_filled fields
833 * point to the indices of the current position and of the next position to
834 * be filled, respectively. For PCM buffer there are both _head and _filled
835 * because they may be difference when nperiods > 4. For example, in the
836 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
837 *
838 * pcm_head (=1) --v v-- pcm_filled (=5)
839 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
840 * BD | 1 | 2 | 3 | 0 |
841 * bd_head (=1) --^ ^-- next to fill (= bd_head)
842 *
843 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
844 * the hardware skips those BDs in the loop.
845 *
846 * An exceptional setup is the case with nperiods=1. Since we have to update
847 * BDs after finishing one BD processing, we'd need at least two BDs, where
848 * both BDs point to the same content, the same address, the same size of the
849 * whole PCM buffer.
850 */
851
852 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
853 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
854
855 /* Set up a buffer descriptor at the "filled" position */
856 static void had_prog_bd(struct snd_pcm_substream *substream,
857 struct snd_intelhad *intelhaddata)
858 {
859 int idx = intelhaddata->bd_head;
860 int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
861 u32 addr = substream->runtime->dma_addr + ofs;
862
863 addr |= AUD_BUF_VALID;
864 if (!substream->runtime->no_period_wakeup)
865 addr |= AUD_BUF_INTR_EN;
866 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
867 had_write_register(intelhaddata, AUD_BUF_LEN(idx),
868 intelhaddata->period_bytes);
869
870 /* advance the indices to the next */
871 intelhaddata->bd_head++;
872 intelhaddata->bd_head %= intelhaddata->num_bds;
873 intelhaddata->pcmbuf_filled++;
874 intelhaddata->pcmbuf_filled %= substream->runtime->periods;
875 }
876
877 /* invalidate a buffer descriptor with the given index */
878 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
879 int idx)
880 {
881 had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
882 had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
883 }
884
885 /* Initial programming of ring buffer */
886 static void had_init_ringbuf(struct snd_pcm_substream *substream,
887 struct snd_intelhad *intelhaddata)
888 {
889 struct snd_pcm_runtime *runtime = substream->runtime;
890 int i, num_periods;
891
892 num_periods = runtime->periods;
893 intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
894 /* set the minimum 2 BDs for num_periods=1 */
895 intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
896 intelhaddata->period_bytes =
897 frames_to_bytes(runtime, runtime->period_size);
898 WARN_ON(intelhaddata->period_bytes & 0x3f);
899
900 intelhaddata->bd_head = 0;
901 intelhaddata->pcmbuf_head = 0;
902 intelhaddata->pcmbuf_filled = 0;
903
904 for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
905 if (i < intelhaddata->num_bds)
906 had_prog_bd(substream, intelhaddata);
907 else /* invalidate the rest */
908 had_invalidate_bd(intelhaddata, i);
909 }
910
911 intelhaddata->bd_head = 0; /* reset at head again before starting */
912 }
913
914 /* process a bd, advance to the next */
915 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
916 struct snd_intelhad *intelhaddata)
917 {
918 int num_periods = substream->runtime->periods;
919
920 /* reprogram the next buffer */
921 had_prog_bd(substream, intelhaddata);
922
923 /* proceed to next */
924 intelhaddata->pcmbuf_head++;
925 intelhaddata->pcmbuf_head %= num_periods;
926 }
927
928 /* process the current BD(s);
929 * returns the current PCM buffer byte position, or -EPIPE for underrun.
930 */
931 static int had_process_ringbuf(struct snd_pcm_substream *substream,
932 struct snd_intelhad *intelhaddata)
933 {
934 int len, processed;
935 unsigned long flags;
936
937 processed = 0;
938 spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
939 for (;;) {
940 /* get the remaining bytes on the buffer */
941 had_read_register(intelhaddata,
942 AUD_BUF_LEN(intelhaddata->bd_head),
943 &len);
944 if (len < 0 || len > intelhaddata->period_bytes) {
945 dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
946 len);
947 len = -EPIPE;
948 goto out;
949 }
950
951 if (len > 0) /* OK, this is the current buffer */
952 break;
953
954 /* len=0 => already empty, check the next buffer */
955 if (++processed >= intelhaddata->num_bds) {
956 len = -EPIPE; /* all empty? - report underrun */
957 goto out;
958 }
959 had_advance_ringbuf(substream, intelhaddata);
960 }
961
962 len = intelhaddata->period_bytes - len;
963 len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
964 out:
965 spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
966 return len;
967 }
968
969 /* called from irq handler */
970 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
971 {
972 struct snd_pcm_substream *substream;
973
974 substream = had_substream_get(intelhaddata);
975 if (!substream)
976 return; /* no stream? - bail out */
977
978 if (!intelhaddata->connected) {
979 snd_pcm_stop_xrun(substream);
980 goto out; /* disconnected? - bail out */
981 }
982
983 /* process or stop the stream */
984 if (had_process_ringbuf(substream, intelhaddata) < 0)
985 snd_pcm_stop_xrun(substream);
986 else
987 snd_pcm_period_elapsed(substream);
988
989 out:
990 had_substream_put(intelhaddata);
991 }
992
993 /*
994 * The interrupt status 'sticky' bits might not be cleared by
995 * setting '1' to that bit once...
996 */
997 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
998 {
999 int i;
1000 u32 val;
1001
1002 for (i = 0; i < 100; i++) {
1003 /* clear bit30, 31 AUD_HDMI_STATUS */
1004 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1005 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1006 return;
1007 udelay(100);
1008 cond_resched();
1009 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1010 }
1011 dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1012 }
1013
1014 /* Perform some reset procedure but only when need_reset is set;
1015 * this is called from prepare or hw_free callbacks once after trigger STOP
1016 * or underrun has been processed in order to settle down the h/w state.
1017 */
1018 static void had_do_reset(struct snd_intelhad *intelhaddata)
1019 {
1020 if (!intelhaddata->need_reset || !intelhaddata->connected)
1021 return;
1022
1023 /* Reset buffer pointers */
1024 had_reset_audio(intelhaddata);
1025 wait_clear_underrun_bit(intelhaddata);
1026 intelhaddata->need_reset = false;
1027 }
1028
1029 /* called from irq handler */
1030 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1031 {
1032 struct snd_pcm_substream *substream;
1033
1034 /* Report UNDERRUN error to above layers */
1035 substream = had_substream_get(intelhaddata);
1036 if (substream) {
1037 snd_pcm_stop_xrun(substream);
1038 had_substream_put(intelhaddata);
1039 }
1040 intelhaddata->need_reset = true;
1041 }
1042
1043 /*
1044 * ALSA PCM open callback
1045 */
1046 static int had_pcm_open(struct snd_pcm_substream *substream)
1047 {
1048 struct snd_intelhad *intelhaddata;
1049 struct snd_pcm_runtime *runtime;
1050 int retval;
1051
1052 intelhaddata = snd_pcm_substream_chip(substream);
1053 runtime = substream->runtime;
1054
1055 pm_runtime_get_sync(intelhaddata->dev);
1056
1057 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1058 runtime->hw = had_pcm_hardware;
1059
1060 retval = snd_pcm_hw_constraint_integer(runtime,
1061 SNDRV_PCM_HW_PARAM_PERIODS);
1062 if (retval < 0)
1063 goto error;
1064
1065 /* Make sure, that the period size is always aligned
1066 * 64byte boundary
1067 */
1068 retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1069 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1070 if (retval < 0)
1071 goto error;
1072
1073 retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1074 if (retval < 0)
1075 goto error;
1076
1077 /* expose PCM substream */
1078 spin_lock_irq(&intelhaddata->had_spinlock);
1079 intelhaddata->stream_info.substream = substream;
1080 intelhaddata->stream_info.substream_refcount++;
1081 spin_unlock_irq(&intelhaddata->had_spinlock);
1082
1083 return retval;
1084 error:
1085 pm_runtime_mark_last_busy(intelhaddata->dev);
1086 pm_runtime_put_autosuspend(intelhaddata->dev);
1087 return retval;
1088 }
1089
1090 /*
1091 * ALSA PCM close callback
1092 */
1093 static int had_pcm_close(struct snd_pcm_substream *substream)
1094 {
1095 struct snd_intelhad *intelhaddata;
1096
1097 intelhaddata = snd_pcm_substream_chip(substream);
1098
1099 /* unreference and sync with the pending PCM accesses */
1100 spin_lock_irq(&intelhaddata->had_spinlock);
1101 intelhaddata->stream_info.substream = NULL;
1102 intelhaddata->stream_info.substream_refcount--;
1103 while (intelhaddata->stream_info.substream_refcount > 0) {
1104 spin_unlock_irq(&intelhaddata->had_spinlock);
1105 cpu_relax();
1106 spin_lock_irq(&intelhaddata->had_spinlock);
1107 }
1108 spin_unlock_irq(&intelhaddata->had_spinlock);
1109
1110 pm_runtime_mark_last_busy(intelhaddata->dev);
1111 pm_runtime_put_autosuspend(intelhaddata->dev);
1112 return 0;
1113 }
1114
1115 /*
1116 * ALSA PCM hw_params callback
1117 */
1118 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1119 struct snd_pcm_hw_params *hw_params)
1120 {
1121 struct snd_intelhad *intelhaddata;
1122 unsigned long addr;
1123 int pages, buf_size, retval;
1124
1125 intelhaddata = snd_pcm_substream_chip(substream);
1126 buf_size = params_buffer_bytes(hw_params);
1127 retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1128 if (retval < 0)
1129 return retval;
1130 dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1131 __func__, buf_size);
1132 /* mark the pages as uncached region */
1133 addr = (unsigned long) substream->runtime->dma_area;
1134 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1135 retval = set_memory_uc(addr, pages);
1136 if (retval) {
1137 dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1138 retval);
1139 return retval;
1140 }
1141 memset(substream->runtime->dma_area, 0, buf_size);
1142
1143 return retval;
1144 }
1145
1146 /*
1147 * ALSA PCM hw_free callback
1148 */
1149 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1150 {
1151 struct snd_intelhad *intelhaddata;
1152 unsigned long addr;
1153 u32 pages;
1154
1155 intelhaddata = snd_pcm_substream_chip(substream);
1156 had_do_reset(intelhaddata);
1157
1158 /* mark back the pages as cached/writeback region before the free */
1159 if (substream->runtime->dma_area != NULL) {
1160 addr = (unsigned long) substream->runtime->dma_area;
1161 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1162 PAGE_SIZE;
1163 set_memory_wb(addr, pages);
1164 return snd_pcm_lib_free_pages(substream);
1165 }
1166 return 0;
1167 }
1168
1169 /*
1170 * ALSA PCM trigger callback
1171 */
1172 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1173 {
1174 int retval = 0;
1175 struct snd_intelhad *intelhaddata;
1176
1177 intelhaddata = snd_pcm_substream_chip(substream);
1178
1179 spin_lock(&intelhaddata->had_spinlock);
1180 switch (cmd) {
1181 case SNDRV_PCM_TRIGGER_START:
1182 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1183 case SNDRV_PCM_TRIGGER_RESUME:
1184 /* Enable Audio */
1185 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1186 had_enable_audio(intelhaddata, true);
1187 break;
1188
1189 case SNDRV_PCM_TRIGGER_STOP:
1190 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1191 /* Disable Audio */
1192 had_enable_audio(intelhaddata, false);
1193 intelhaddata->need_reset = true;
1194 break;
1195
1196 default:
1197 retval = -EINVAL;
1198 }
1199 spin_unlock(&intelhaddata->had_spinlock);
1200 return retval;
1201 }
1202
1203 /*
1204 * ALSA PCM prepare callback
1205 */
1206 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1207 {
1208 int retval;
1209 u32 disp_samp_freq, n_param;
1210 u32 link_rate = 0;
1211 struct snd_intelhad *intelhaddata;
1212 struct snd_pcm_runtime *runtime;
1213
1214 intelhaddata = snd_pcm_substream_chip(substream);
1215 runtime = substream->runtime;
1216
1217 dev_dbg(intelhaddata->dev, "period_size=%d\n",
1218 (int)frames_to_bytes(runtime, runtime->period_size));
1219 dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1220 dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1221 (int)snd_pcm_lib_buffer_bytes(substream));
1222 dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1223 dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1224
1225 had_do_reset(intelhaddata);
1226
1227 /* Get N value in KHz */
1228 disp_samp_freq = intelhaddata->tmds_clock_speed;
1229
1230 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1231 if (retval) {
1232 dev_err(intelhaddata->dev,
1233 "programming N value failed %#x\n", retval);
1234 goto prep_end;
1235 }
1236
1237 if (intelhaddata->dp_output)
1238 link_rate = intelhaddata->link_rate;
1239
1240 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1241 n_param, intelhaddata);
1242
1243 had_prog_dip(substream, intelhaddata);
1244
1245 retval = had_init_audio_ctrl(substream, intelhaddata);
1246
1247 /* Prog buffer address */
1248 had_init_ringbuf(substream, intelhaddata);
1249
1250 /*
1251 * Program channel mapping in following order:
1252 * FL, FR, C, LFE, RL, RR
1253 */
1254
1255 had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1256
1257 prep_end:
1258 return retval;
1259 }
1260
1261 /*
1262 * ALSA PCM pointer callback
1263 */
1264 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1265 {
1266 struct snd_intelhad *intelhaddata;
1267 int len;
1268
1269 intelhaddata = snd_pcm_substream_chip(substream);
1270
1271 if (!intelhaddata->connected)
1272 return SNDRV_PCM_POS_XRUN;
1273
1274 len = had_process_ringbuf(substream, intelhaddata);
1275 if (len < 0)
1276 return SNDRV_PCM_POS_XRUN;
1277 len = bytes_to_frames(substream->runtime, len);
1278 /* wrapping may happen when periods=1 */
1279 len %= substream->runtime->buffer_size;
1280 return len;
1281 }
1282
1283 /*
1284 * ALSA PCM mmap callback
1285 */
1286 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1287 struct vm_area_struct *vma)
1288 {
1289 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1290 return remap_pfn_range(vma, vma->vm_start,
1291 substream->dma_buffer.addr >> PAGE_SHIFT,
1292 vma->vm_end - vma->vm_start, vma->vm_page_prot);
1293 }
1294
1295 /*
1296 * ALSA PCM ops
1297 */
1298 static const struct snd_pcm_ops had_pcm_ops = {
1299 .open = had_pcm_open,
1300 .close = had_pcm_close,
1301 .ioctl = snd_pcm_lib_ioctl,
1302 .hw_params = had_pcm_hw_params,
1303 .hw_free = had_pcm_hw_free,
1304 .prepare = had_pcm_prepare,
1305 .trigger = had_pcm_trigger,
1306 .pointer = had_pcm_pointer,
1307 .mmap = had_pcm_mmap,
1308 };
1309
1310 /* process mode change of the running stream; called in mutex */
1311 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1312 {
1313 struct snd_pcm_substream *substream;
1314 int retval = 0;
1315 u32 disp_samp_freq, n_param;
1316 u32 link_rate = 0;
1317
1318 substream = had_substream_get(intelhaddata);
1319 if (!substream)
1320 return 0;
1321
1322 /* Disable Audio */
1323 had_enable_audio(intelhaddata, false);
1324
1325 /* Update CTS value */
1326 disp_samp_freq = intelhaddata->tmds_clock_speed;
1327
1328 retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1329 if (retval) {
1330 dev_err(intelhaddata->dev,
1331 "programming N value failed %#x\n", retval);
1332 goto out;
1333 }
1334
1335 if (intelhaddata->dp_output)
1336 link_rate = intelhaddata->link_rate;
1337
1338 had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1339 n_param, intelhaddata);
1340
1341 /* Enable Audio */
1342 had_enable_audio(intelhaddata, true);
1343
1344 out:
1345 had_substream_put(intelhaddata);
1346 return retval;
1347 }
1348
1349 /* process hot plug, called from wq with mutex locked */
1350 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1351 {
1352 struct snd_pcm_substream *substream;
1353
1354 spin_lock_irq(&intelhaddata->had_spinlock);
1355 if (intelhaddata->connected) {
1356 dev_dbg(intelhaddata->dev, "Device already connected\n");
1357 spin_unlock_irq(&intelhaddata->had_spinlock);
1358 return;
1359 }
1360
1361 intelhaddata->connected = true;
1362 dev_dbg(intelhaddata->dev,
1363 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1364 __func__, __LINE__);
1365 spin_unlock_irq(&intelhaddata->had_spinlock);
1366
1367 had_build_channel_allocation_map(intelhaddata);
1368
1369 /* Report to above ALSA layer */
1370 substream = had_substream_get(intelhaddata);
1371 if (substream) {
1372 snd_pcm_stop_xrun(substream);
1373 had_substream_put(intelhaddata);
1374 }
1375
1376 snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1377 }
1378
1379 /* process hot unplug, called from wq with mutex locked */
1380 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1381 {
1382 struct snd_pcm_substream *substream;
1383
1384 spin_lock_irq(&intelhaddata->had_spinlock);
1385 if (!intelhaddata->connected) {
1386 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1387 spin_unlock_irq(&intelhaddata->had_spinlock);
1388 return;
1389
1390 }
1391
1392 /* Disable Audio */
1393 had_enable_audio(intelhaddata, false);
1394
1395 intelhaddata->connected = false;
1396 dev_dbg(intelhaddata->dev,
1397 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1398 __func__, __LINE__);
1399 spin_unlock_irq(&intelhaddata->had_spinlock);
1400
1401 kfree(intelhaddata->chmap->chmap);
1402 intelhaddata->chmap->chmap = NULL;
1403
1404 /* Report to above ALSA layer */
1405 substream = had_substream_get(intelhaddata);
1406 if (substream) {
1407 snd_pcm_stop_xrun(substream);
1408 had_substream_put(intelhaddata);
1409 }
1410
1411 snd_jack_report(intelhaddata->jack, 0);
1412 }
1413
1414 /*
1415 * ALSA iec958 and ELD controls
1416 */
1417
1418 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1419 struct snd_ctl_elem_info *uinfo)
1420 {
1421 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1422 uinfo->count = 1;
1423 return 0;
1424 }
1425
1426 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1427 struct snd_ctl_elem_value *ucontrol)
1428 {
1429 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1430
1431 mutex_lock(&intelhaddata->mutex);
1432 ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1433 ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1434 ucontrol->value.iec958.status[2] =
1435 (intelhaddata->aes_bits >> 16) & 0xff;
1436 ucontrol->value.iec958.status[3] =
1437 (intelhaddata->aes_bits >> 24) & 0xff;
1438 mutex_unlock(&intelhaddata->mutex);
1439 return 0;
1440 }
1441
1442 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1443 struct snd_ctl_elem_value *ucontrol)
1444 {
1445 ucontrol->value.iec958.status[0] = 0xff;
1446 ucontrol->value.iec958.status[1] = 0xff;
1447 ucontrol->value.iec958.status[2] = 0xff;
1448 ucontrol->value.iec958.status[3] = 0xff;
1449 return 0;
1450 }
1451
1452 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1453 struct snd_ctl_elem_value *ucontrol)
1454 {
1455 unsigned int val;
1456 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1457 int changed = 0;
1458
1459 val = (ucontrol->value.iec958.status[0] << 0) |
1460 (ucontrol->value.iec958.status[1] << 8) |
1461 (ucontrol->value.iec958.status[2] << 16) |
1462 (ucontrol->value.iec958.status[3] << 24);
1463 mutex_lock(&intelhaddata->mutex);
1464 if (intelhaddata->aes_bits != val) {
1465 intelhaddata->aes_bits = val;
1466 changed = 1;
1467 }
1468 mutex_unlock(&intelhaddata->mutex);
1469 return changed;
1470 }
1471
1472 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1473 struct snd_ctl_elem_info *uinfo)
1474 {
1475 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1476 uinfo->count = HDMI_MAX_ELD_BYTES;
1477 return 0;
1478 }
1479
1480 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1481 struct snd_ctl_elem_value *ucontrol)
1482 {
1483 struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484
1485 mutex_lock(&intelhaddata->mutex);
1486 memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1487 HDMI_MAX_ELD_BYTES);
1488 mutex_unlock(&intelhaddata->mutex);
1489 return 0;
1490 }
1491
1492 static const struct snd_kcontrol_new had_controls[] = {
1493 {
1494 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1495 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1496 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1497 .info = had_iec958_info, /* shared */
1498 .get = had_iec958_mask_get,
1499 },
1500 {
1501 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1502 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1503 .info = had_iec958_info,
1504 .get = had_iec958_get,
1505 .put = had_iec958_put,
1506 },
1507 {
1508 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1509 SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1510 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1511 .name = "ELD",
1512 .info = had_ctl_eld_info,
1513 .get = had_ctl_eld_get,
1514 },
1515 };
1516
1517 /*
1518 * audio interrupt handler
1519 */
1520 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1521 {
1522 struct snd_intelhad *ctx = dev_id;
1523 u32 audio_stat;
1524
1525 /* use raw register access to ack IRQs even while disconnected */
1526 audio_stat = had_read_register_raw(ctx, AUD_HDMI_STATUS);
1527
1528 if (audio_stat & HDMI_AUDIO_UNDERRUN) {
1529 had_write_register_raw(ctx, AUD_HDMI_STATUS,
1530 HDMI_AUDIO_UNDERRUN);
1531 had_process_buffer_underrun(ctx);
1532 }
1533
1534 if (audio_stat & HDMI_AUDIO_BUFFER_DONE) {
1535 had_write_register_raw(ctx, AUD_HDMI_STATUS,
1536 HDMI_AUDIO_BUFFER_DONE);
1537 had_process_buffer_done(ctx);
1538 }
1539
1540 return IRQ_HANDLED;
1541 }
1542
1543 /*
1544 * monitor plug/unplug notification from i915; just kick off the work
1545 */
1546 static void notify_audio_lpe(struct platform_device *pdev)
1547 {
1548 struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1549
1550 schedule_work(&ctx->hdmi_audio_wq);
1551 }
1552
1553 /* the work to handle monitor hot plug/unplug */
1554 static void had_audio_wq(struct work_struct *work)
1555 {
1556 struct snd_intelhad *ctx =
1557 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1558 struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1559
1560 pm_runtime_get_sync(ctx->dev);
1561 mutex_lock(&ctx->mutex);
1562 if (!pdata->hdmi_connected) {
1563 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
1564 __func__);
1565 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1566 had_process_hot_unplug(ctx);
1567 } else {
1568 struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld;
1569
1570 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1571 __func__, eld->port_id, pdata->tmds_clock_speed);
1572
1573 switch (eld->pipe_id) {
1574 case 0:
1575 ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1576 break;
1577 case 1:
1578 ctx->had_config_offset = AUDIO_HDMI_CONFIG_B;
1579 break;
1580 case 2:
1581 ctx->had_config_offset = AUDIO_HDMI_CONFIG_C;
1582 break;
1583 default:
1584 dev_dbg(ctx->dev, "Invalid pipe %d\n",
1585 eld->pipe_id);
1586 break;
1587 }
1588
1589 memcpy(ctx->eld, eld->eld_data, sizeof(ctx->eld));
1590
1591 ctx->dp_output = pdata->dp_output;
1592 ctx->tmds_clock_speed = pdata->tmds_clock_speed;
1593 ctx->link_rate = pdata->link_rate;
1594
1595 had_process_hot_plug(ctx);
1596
1597 /* Process mode change if stream is active */
1598 had_process_mode_change(ctx);
1599 }
1600 mutex_unlock(&ctx->mutex);
1601 pm_runtime_mark_last_busy(ctx->dev);
1602 pm_runtime_put_autosuspend(ctx->dev);
1603 }
1604
1605 /*
1606 * Jack interface
1607 */
1608 static int had_create_jack(struct snd_intelhad *ctx)
1609 {
1610 int err;
1611
1612 err = snd_jack_new(ctx->card, "HDMI/DP", SND_JACK_AVOUT, &ctx->jack,
1613 true, false);
1614 if (err < 0)
1615 return err;
1616 ctx->jack->private_data = ctx;
1617 return 0;
1618 }
1619
1620 /*
1621 * PM callbacks
1622 */
1623
1624 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1625 {
1626 struct snd_intelhad *ctx = dev_get_drvdata(dev);
1627 struct snd_pcm_substream *substream;
1628
1629 substream = had_substream_get(ctx);
1630 if (substream) {
1631 snd_pcm_suspend(substream);
1632 had_substream_put(ctx);
1633 }
1634
1635 return 0;
1636 }
1637
1638 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1639 {
1640 struct snd_intelhad *ctx = dev_get_drvdata(dev);
1641 int err;
1642
1643 err = hdmi_lpe_audio_runtime_suspend(dev);
1644 if (!err)
1645 snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D3hot);
1646 return err;
1647 }
1648
1649 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1650 {
1651 pm_runtime_mark_last_busy(dev);
1652 return 0;
1653 }
1654
1655 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1656 {
1657 struct snd_intelhad *ctx = dev_get_drvdata(dev);
1658
1659 hdmi_lpe_audio_runtime_resume(dev);
1660 snd_power_change_state(ctx->card, SNDRV_CTL_POWER_D0);
1661 return 0;
1662 }
1663
1664 /* release resources */
1665 static void hdmi_lpe_audio_free(struct snd_card *card)
1666 {
1667 struct snd_intelhad *ctx = card->private_data;
1668
1669 cancel_work_sync(&ctx->hdmi_audio_wq);
1670
1671 if (ctx->mmio_start)
1672 iounmap(ctx->mmio_start);
1673 if (ctx->irq >= 0)
1674 free_irq(ctx->irq, ctx);
1675 }
1676
1677 /*
1678 * hdmi_lpe_audio_probe - start bridge with i915
1679 *
1680 * This function is called when the i915 driver creates the
1681 * hdmi-lpe-audio platform device.
1682 */
1683 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1684 {
1685 struct snd_card *card;
1686 struct snd_intelhad *ctx;
1687 struct snd_pcm *pcm;
1688 struct intel_hdmi_lpe_audio_pdata *pdata;
1689 int irq;
1690 struct resource *res_mmio;
1691 int i, ret;
1692
1693 pdata = pdev->dev.platform_data;
1694 if (!pdata) {
1695 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1696 return -EINVAL;
1697 }
1698
1699 /* get resources */
1700 irq = platform_get_irq(pdev, 0);
1701 if (irq < 0) {
1702 dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1703 return irq;
1704 }
1705
1706 res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1707 if (!res_mmio) {
1708 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1709 return -ENXIO;
1710 }
1711
1712 /* create a card instance with ALSA framework */
1713 ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1714 THIS_MODULE, sizeof(*ctx), &card);
1715 if (ret)
1716 return ret;
1717
1718 ctx = card->private_data;
1719 spin_lock_init(&ctx->had_spinlock);
1720 mutex_init(&ctx->mutex);
1721 ctx->connected = false;
1722 ctx->dev = &pdev->dev;
1723 ctx->card = card;
1724 ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
1725 strcpy(card->driver, INTEL_HAD);
1726 strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1727 strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1728
1729 ctx->irq = -1;
1730 ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5;
1731 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1732
1733 card->private_free = hdmi_lpe_audio_free;
1734
1735 /* assume pipe A as default */
1736 ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
1737
1738 platform_set_drvdata(pdev, ctx);
1739
1740 dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1741 __func__, (unsigned int)res_mmio->start,
1742 (unsigned int)res_mmio->end);
1743
1744 ctx->mmio_start = ioremap_nocache(res_mmio->start,
1745 (size_t)(resource_size(res_mmio)));
1746 if (!ctx->mmio_start) {
1747 dev_err(&pdev->dev, "Could not get ioremap\n");
1748 ret = -EACCES;
1749 goto err;
1750 }
1751
1752 /* setup interrupt handler */
1753 ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1754 pdev->name, ctx);
1755 if (ret < 0) {
1756 dev_err(&pdev->dev, "request_irq failed\n");
1757 goto err;
1758 }
1759
1760 ctx->irq = irq;
1761
1762 ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
1763 MAX_CAP_STREAMS, &pcm);
1764 if (ret)
1765 goto err;
1766
1767 /* setup private data which can be retrieved when required */
1768 pcm->private_data = ctx;
1769 pcm->info_flags = 0;
1770 strncpy(pcm->name, card->shortname, strlen(card->shortname));
1771 /* setup the ops for playabck */
1772 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773
1774 /* only 32bit addressable */
1775 dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1776 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1777
1778 /* allocate dma pages;
1779 * try to allocate 600k buffer as default which is large enough
1780 */
1781 snd_pcm_lib_preallocate_pages_for_all(pcm,
1782 SNDRV_DMA_TYPE_DEV, NULL,
1783 HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1784
1785 /* create controls */
1786 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1787 ret = snd_ctl_add(card, snd_ctl_new1(&had_controls[i], ctx));
1788 if (ret < 0)
1789 goto err;
1790 }
1791
1792 init_channel_allocations();
1793
1794 /* Register channel map controls */
1795 ret = had_register_chmap_ctls(ctx, pcm);
1796 if (ret < 0)
1797 goto err;
1798
1799 ret = had_create_jack(ctx);
1800 if (ret < 0)
1801 goto err;
1802
1803 ret = snd_card_register(card);
1804 if (ret)
1805 goto err;
1806
1807 spin_lock_irq(&pdata->lpe_audio_slock);
1808 pdata->notify_audio_lpe = notify_audio_lpe;
1809 pdata->notify_pending = false;
1810 spin_unlock_irq(&pdata->lpe_audio_slock);
1811
1812 pm_runtime_use_autosuspend(&pdev->dev);
1813 pm_runtime_mark_last_busy(&pdev->dev);
1814 pm_runtime_set_active(&pdev->dev);
1815
1816 dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1817 schedule_work(&ctx->hdmi_audio_wq);
1818
1819 return 0;
1820
1821 err:
1822 snd_card_free(card);
1823 return ret;
1824 }
1825
1826 /*
1827 * hdmi_lpe_audio_remove - stop bridge with i915
1828 *
1829 * This function is called when the platform device is destroyed.
1830 */
1831 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1832 {
1833 struct snd_intelhad *ctx = platform_get_drvdata(pdev);
1834
1835 snd_card_free(ctx->card);
1836 return 0;
1837 }
1838
1839 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1840 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1841 SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1842 hdmi_lpe_audio_runtime_resume, NULL)
1843 };
1844
1845 static struct platform_driver hdmi_lpe_audio_driver = {
1846 .driver = {
1847 .name = "hdmi-lpe-audio",
1848 .pm = &hdmi_lpe_audio_pm,
1849 },
1850 .probe = hdmi_lpe_audio_probe,
1851 .remove = hdmi_lpe_audio_remove,
1852 };
1853
1854 module_platform_driver(hdmi_lpe_audio_driver);
1855 MODULE_ALIAS("platform:hdmi_lpe_audio");
1856
1857 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1858 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1859 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1860 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1861 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1862 MODULE_LICENSE("GPL v2");
1863 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");