]> git.proxmox.com Git - rustc.git/blob - src/bootstrap/compile.rs
New upstream version 1.47.0~beta.2+dfsg1
[rustc.git] / src / bootstrap / compile.rs
1 //! Implementation of compiling various phases of the compiler and standard
2 //! library.
3 //!
4 //! This module contains some of the real meat in the rustbuild build system
5 //! which is where Cargo is used to compiler the standard library, libtest, and
6 //! compiler. This module is also responsible for assembling the sysroot as it
7 //! goes along from the output of the previous stage.
8
9 use std::borrow::Cow;
10 use std::env;
11 use std::fs;
12 use std::io::prelude::*;
13 use std::io::BufReader;
14 use std::path::{Path, PathBuf};
15 use std::process::{exit, Command, Stdio};
16 use std::str;
17
18 use build_helper::{output, t, up_to_date};
19 use filetime::FileTime;
20 use serde::Deserialize;
21
22 use crate::builder::Cargo;
23 use crate::builder::{Builder, Kind, RunConfig, ShouldRun, Step};
24 use crate::cache::{Interned, INTERNER};
25 use crate::config::TargetSelection;
26 use crate::dist;
27 use crate::native;
28 use crate::tool::SourceType;
29 use crate::util::{exe, is_dylib, symlink_dir};
30 use crate::{Compiler, DependencyType, GitRepo, Mode};
31
32 #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
33 pub struct Std {
34 pub target: TargetSelection,
35 pub compiler: Compiler,
36 }
37
38 impl Step for Std {
39 type Output = ();
40 const DEFAULT: bool = true;
41
42 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
43 run.all_krates("test")
44 }
45
46 fn make_run(run: RunConfig<'_>) {
47 run.builder.ensure(Std {
48 compiler: run.builder.compiler(run.builder.top_stage, run.host),
49 target: run.target,
50 });
51 }
52
53 /// Builds the standard library.
54 ///
55 /// This will build the standard library for a particular stage of the build
56 /// using the `compiler` targeting the `target` architecture. The artifacts
57 /// created will also be linked into the sysroot directory.
58 fn run(self, builder: &Builder<'_>) {
59 let target = self.target;
60 let compiler = self.compiler;
61
62 if builder.config.keep_stage.contains(&compiler.stage) {
63 builder.info("Warning: Using a potentially old libstd. This may not behave well.");
64 builder.ensure(StdLink { compiler, target_compiler: compiler, target });
65 return;
66 }
67
68 let mut target_deps = builder.ensure(StartupObjects { compiler, target });
69
70 let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
71 if compiler_to_use != compiler {
72 builder.ensure(Std { compiler: compiler_to_use, target });
73 builder.info(&format!("Uplifting stage1 std ({} -> {})", compiler_to_use.host, target));
74
75 // Even if we're not building std this stage, the new sysroot must
76 // still contain the third party objects needed by various targets.
77 copy_third_party_objects(builder, &compiler, target);
78 copy_self_contained_objects(builder, &compiler, target);
79
80 builder.ensure(StdLink {
81 compiler: compiler_to_use,
82 target_compiler: compiler,
83 target,
84 });
85 return;
86 }
87
88 target_deps.extend(copy_third_party_objects(builder, &compiler, target));
89 target_deps.extend(copy_self_contained_objects(builder, &compiler, target));
90
91 let mut cargo = builder.cargo(compiler, Mode::Std, SourceType::InTree, target, "build");
92 std_cargo(builder, target, compiler.stage, &mut cargo);
93
94 builder.info(&format!(
95 "Building stage{} std artifacts ({} -> {})",
96 compiler.stage, &compiler.host, target
97 ));
98 run_cargo(
99 builder,
100 cargo,
101 vec![],
102 &libstd_stamp(builder, compiler, target),
103 target_deps,
104 false,
105 );
106
107 builder.ensure(StdLink {
108 compiler: builder.compiler(compiler.stage, builder.config.build),
109 target_compiler: compiler,
110 target,
111 });
112 }
113 }
114
115 fn copy_and_stamp(
116 builder: &Builder<'_>,
117 libdir: &Path,
118 sourcedir: &Path,
119 name: &str,
120 target_deps: &mut Vec<(PathBuf, DependencyType)>,
121 dependency_type: DependencyType,
122 ) {
123 let target = libdir.join(name);
124 builder.copy(&sourcedir.join(name), &target);
125
126 target_deps.push((target, dependency_type));
127 }
128
129 /// Copies third party objects needed by various targets.
130 fn copy_third_party_objects(
131 builder: &Builder<'_>,
132 compiler: &Compiler,
133 target: TargetSelection,
134 ) -> Vec<(PathBuf, DependencyType)> {
135 let mut target_deps = vec![];
136
137 // FIXME: remove this in 2021
138 if target == "x86_64-fortanix-unknown-sgx" {
139 if env::var_os("X86_FORTANIX_SGX_LIBS").is_some() {
140 builder.info("Warning: X86_FORTANIX_SGX_LIBS environment variable is ignored, libunwind is now compiled as part of rustbuild");
141 }
142 }
143
144 if builder.config.sanitizers && compiler.stage != 0 {
145 // The sanitizers are only copied in stage1 or above,
146 // to avoid creating dependency on LLVM.
147 target_deps.extend(
148 copy_sanitizers(builder, &compiler, target)
149 .into_iter()
150 .map(|d| (d, DependencyType::Target)),
151 );
152 }
153
154 target_deps
155 }
156
157 /// Copies third party objects needed by various targets for self-contained linkage.
158 fn copy_self_contained_objects(
159 builder: &Builder<'_>,
160 compiler: &Compiler,
161 target: TargetSelection,
162 ) -> Vec<(PathBuf, DependencyType)> {
163 let libdir_self_contained = builder.sysroot_libdir(*compiler, target).join("self-contained");
164 t!(fs::create_dir_all(&libdir_self_contained));
165 let mut target_deps = vec![];
166
167 // Copies the CRT objects.
168 //
169 // rustc historically provides a more self-contained installation for musl targets
170 // not requiring the presence of a native musl toolchain. For example, it can fall back
171 // to using gcc from a glibc-targeting toolchain for linking.
172 // To do that we have to distribute musl startup objects as a part of Rust toolchain
173 // and link with them manually in the self-contained mode.
174 if target.contains("musl") {
175 let srcdir = builder.musl_libdir(target).unwrap();
176 for &obj in &["crt1.o", "Scrt1.o", "rcrt1.o", "crti.o", "crtn.o"] {
177 copy_and_stamp(
178 builder,
179 &libdir_self_contained,
180 &srcdir,
181 obj,
182 &mut target_deps,
183 DependencyType::TargetSelfContained,
184 );
185 }
186 } else if target.ends_with("-wasi") {
187 let srcdir = builder.wasi_root(target).unwrap().join("lib/wasm32-wasi");
188 copy_and_stamp(
189 builder,
190 &libdir_self_contained,
191 &srcdir,
192 "crt1.o",
193 &mut target_deps,
194 DependencyType::TargetSelfContained,
195 );
196 } else if target.contains("windows-gnu") {
197 for obj in ["crt2.o", "dllcrt2.o"].iter() {
198 let src = compiler_file(builder, builder.cc(target), target, obj);
199 let target = libdir_self_contained.join(obj);
200 builder.copy(&src, &target);
201 target_deps.push((target, DependencyType::TargetSelfContained));
202 }
203 }
204
205 target_deps
206 }
207
208 /// Configure cargo to compile the standard library, adding appropriate env vars
209 /// and such.
210 pub fn std_cargo(builder: &Builder<'_>, target: TargetSelection, stage: u32, cargo: &mut Cargo) {
211 if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
212 cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
213 }
214
215 // Determine if we're going to compile in optimized C intrinsics to
216 // the `compiler-builtins` crate. These intrinsics live in LLVM's
217 // `compiler-rt` repository, but our `src/llvm-project` submodule isn't
218 // always checked out, so we need to conditionally look for this. (e.g. if
219 // an external LLVM is used we skip the LLVM submodule checkout).
220 //
221 // Note that this shouldn't affect the correctness of `compiler-builtins`,
222 // but only its speed. Some intrinsics in C haven't been translated to Rust
223 // yet but that's pretty rare. Other intrinsics have optimized
224 // implementations in C which have only had slower versions ported to Rust,
225 // so we favor the C version where we can, but it's not critical.
226 //
227 // If `compiler-rt` is available ensure that the `c` feature of the
228 // `compiler-builtins` crate is enabled and it's configured to learn where
229 // `compiler-rt` is located.
230 let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
231 let compiler_builtins_c_feature = if compiler_builtins_root.exists() {
232 // Note that `libprofiler_builtins/build.rs` also computes this so if
233 // you're changing something here please also change that.
234 cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
235 " compiler-builtins-c".to_string()
236 } else {
237 String::new()
238 };
239
240 if builder.no_std(target) == Some(true) {
241 let mut features = "compiler-builtins-mem".to_string();
242 features.push_str(&compiler_builtins_c_feature);
243
244 // for no-std targets we only compile a few no_std crates
245 cargo
246 .args(&["-p", "alloc"])
247 .arg("--manifest-path")
248 .arg(builder.src.join("library/alloc/Cargo.toml"))
249 .arg("--features")
250 .arg("compiler-builtins-mem compiler-builtins-c");
251 } else {
252 let mut features = builder.std_features();
253 features.push_str(&compiler_builtins_c_feature);
254
255 cargo
256 .arg("--features")
257 .arg(features)
258 .arg("--manifest-path")
259 .arg(builder.src.join("library/test/Cargo.toml"));
260
261 // Help the libc crate compile by assisting it in finding various
262 // sysroot native libraries.
263 if target.contains("musl") {
264 if let Some(p) = builder.musl_libdir(target) {
265 let root = format!("native={}", p.to_str().unwrap());
266 cargo.rustflag("-L").rustflag(&root);
267 }
268 }
269
270 if target.ends_with("-wasi") {
271 if let Some(p) = builder.wasi_root(target) {
272 let root = format!("native={}/lib/wasm32-wasi", p.to_str().unwrap());
273 cargo.rustflag("-L").rustflag(&root);
274 }
275 }
276 }
277
278 // By default, rustc uses `-Cembed-bitcode=yes`, and Cargo overrides that
279 // with `-Cembed-bitcode=no` for non-LTO builds. However, libstd must be
280 // built with bitcode so that the produced rlibs can be used for both LTO
281 // builds (which use bitcode) and non-LTO builds (which use object code).
282 // So we override the override here!
283 //
284 // But we don't bother for the stage 0 compiler because it's never used
285 // with LTO.
286 if stage >= 1 {
287 cargo.rustflag("-Cembed-bitcode=yes");
288 }
289
290 // By default, rustc does not include unwind tables unless they are required
291 // for a particular target. They are not required by RISC-V targets, but
292 // compiling the standard library with them means that users can get
293 // backtraces without having to recompile the standard library themselves.
294 //
295 // This choice was discussed in https://github.com/rust-lang/rust/pull/69890
296 if target.contains("riscv") {
297 cargo.rustflag("-Cforce-unwind-tables=yes");
298 }
299 }
300
301 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
302 struct StdLink {
303 pub compiler: Compiler,
304 pub target_compiler: Compiler,
305 pub target: TargetSelection,
306 }
307
308 impl Step for StdLink {
309 type Output = ();
310
311 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
312 run.never()
313 }
314
315 /// Link all libstd rlibs/dylibs into the sysroot location.
316 ///
317 /// Links those artifacts generated by `compiler` to the `stage` compiler's
318 /// sysroot for the specified `host` and `target`.
319 ///
320 /// Note that this assumes that `compiler` has already generated the libstd
321 /// libraries for `target`, and this method will find them in the relevant
322 /// output directory.
323 fn run(self, builder: &Builder<'_>) {
324 let compiler = self.compiler;
325 let target_compiler = self.target_compiler;
326 let target = self.target;
327 builder.info(&format!(
328 "Copying stage{} std from stage{} ({} -> {} / {})",
329 target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
330 ));
331 let libdir = builder.sysroot_libdir(target_compiler, target);
332 let hostdir = builder.sysroot_libdir(target_compiler, compiler.host);
333 add_to_sysroot(builder, &libdir, &hostdir, &libstd_stamp(builder, compiler, target));
334 }
335 }
336
337 /// Copies sanitizer runtime libraries into target libdir.
338 fn copy_sanitizers(
339 builder: &Builder<'_>,
340 compiler: &Compiler,
341 target: TargetSelection,
342 ) -> Vec<PathBuf> {
343 let runtimes: Vec<native::SanitizerRuntime> = builder.ensure(native::Sanitizers { target });
344
345 if builder.config.dry_run {
346 return Vec::new();
347 }
348
349 let mut target_deps = Vec::new();
350 let libdir = builder.sysroot_libdir(*compiler, target);
351
352 for runtime in &runtimes {
353 let dst = libdir.join(&runtime.name);
354 builder.copy(&runtime.path, &dst);
355
356 if target == "x86_64-apple-darwin" {
357 // Update the library install name reflect the fact it has been renamed.
358 let status = Command::new("install_name_tool")
359 .arg("-id")
360 .arg(format!("@rpath/{}", runtime.name))
361 .arg(&dst)
362 .status()
363 .expect("failed to execute `install_name_tool`");
364 assert!(status.success());
365 }
366
367 target_deps.push(dst);
368 }
369
370 target_deps
371 }
372
373 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
374 pub struct StartupObjects {
375 pub compiler: Compiler,
376 pub target: TargetSelection,
377 }
378
379 impl Step for StartupObjects {
380 type Output = Vec<(PathBuf, DependencyType)>;
381
382 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
383 run.path("library/rtstartup")
384 }
385
386 fn make_run(run: RunConfig<'_>) {
387 run.builder.ensure(StartupObjects {
388 compiler: run.builder.compiler(run.builder.top_stage, run.host),
389 target: run.target,
390 });
391 }
392
393 /// Builds and prepare startup objects like rsbegin.o and rsend.o
394 ///
395 /// These are primarily used on Windows right now for linking executables/dlls.
396 /// They don't require any library support as they're just plain old object
397 /// files, so we just use the nightly snapshot compiler to always build them (as
398 /// no other compilers are guaranteed to be available).
399 fn run(self, builder: &Builder<'_>) -> Vec<(PathBuf, DependencyType)> {
400 let for_compiler = self.compiler;
401 let target = self.target;
402 if !target.contains("windows-gnu") {
403 return vec![];
404 }
405
406 let mut target_deps = vec![];
407
408 let src_dir = &builder.src.join("library").join("rtstartup");
409 let dst_dir = &builder.native_dir(target).join("rtstartup");
410 let sysroot_dir = &builder.sysroot_libdir(for_compiler, target);
411 t!(fs::create_dir_all(dst_dir));
412
413 for file in &["rsbegin", "rsend"] {
414 let src_file = &src_dir.join(file.to_string() + ".rs");
415 let dst_file = &dst_dir.join(file.to_string() + ".o");
416 if !up_to_date(src_file, dst_file) {
417 let mut cmd = Command::new(&builder.initial_rustc);
418 builder.run(
419 cmd.env("RUSTC_BOOTSTRAP", "1")
420 .arg("--cfg")
421 .arg("bootstrap")
422 .arg("--target")
423 .arg(target.rustc_target_arg())
424 .arg("--emit=obj")
425 .arg("-o")
426 .arg(dst_file)
427 .arg(src_file),
428 );
429 }
430
431 let target = sysroot_dir.join((*file).to_string() + ".o");
432 builder.copy(dst_file, &target);
433 target_deps.push((target, DependencyType::Target));
434 }
435
436 target_deps
437 }
438 }
439
440 #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
441 pub struct Rustc {
442 pub target: TargetSelection,
443 pub compiler: Compiler,
444 }
445
446 impl Step for Rustc {
447 type Output = ();
448 const ONLY_HOSTS: bool = true;
449 const DEFAULT: bool = false;
450
451 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
452 run.path("src/rustc")
453 }
454
455 fn make_run(run: RunConfig<'_>) {
456 run.builder.ensure(Rustc {
457 compiler: run.builder.compiler(run.builder.top_stage, run.host),
458 target: run.target,
459 });
460 }
461
462 /// Builds the compiler.
463 ///
464 /// This will build the compiler for a particular stage of the build using
465 /// the `compiler` targeting the `target` architecture. The artifacts
466 /// created will also be linked into the sysroot directory.
467 fn run(self, builder: &Builder<'_>) {
468 let compiler = self.compiler;
469 let target = self.target;
470
471 builder.ensure(Std { compiler, target });
472
473 if builder.config.keep_stage.contains(&compiler.stage) {
474 builder.info("Warning: Using a potentially old librustc. This may not behave well.");
475 builder.ensure(RustcLink { compiler, target_compiler: compiler, target });
476 return;
477 }
478
479 let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
480 if compiler_to_use != compiler {
481 builder.ensure(Rustc { compiler: compiler_to_use, target });
482 builder
483 .info(&format!("Uplifting stage1 rustc ({} -> {})", builder.config.build, target));
484 builder.ensure(RustcLink {
485 compiler: compiler_to_use,
486 target_compiler: compiler,
487 target,
488 });
489 return;
490 }
491
492 // Ensure that build scripts and proc macros have a std / libproc_macro to link against.
493 builder.ensure(Std {
494 compiler: builder.compiler(self.compiler.stage, builder.config.build),
495 target: builder.config.build,
496 });
497
498 let mut cargo = builder.cargo(compiler, Mode::Rustc, SourceType::InTree, target, "build");
499 rustc_cargo(builder, &mut cargo, target);
500
501 builder.info(&format!(
502 "Building stage{} compiler artifacts ({} -> {})",
503 compiler.stage, &compiler.host, target
504 ));
505 run_cargo(
506 builder,
507 cargo,
508 vec![],
509 &librustc_stamp(builder, compiler, target),
510 vec![],
511 false,
512 );
513
514 builder.ensure(RustcLink {
515 compiler: builder.compiler(compiler.stage, builder.config.build),
516 target_compiler: compiler,
517 target,
518 });
519 }
520 }
521
522 pub fn rustc_cargo(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
523 cargo
524 .arg("--features")
525 .arg(builder.rustc_features())
526 .arg("--manifest-path")
527 .arg(builder.src.join("src/rustc/Cargo.toml"));
528 rustc_cargo_env(builder, cargo, target);
529 }
530
531 pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
532 // Set some configuration variables picked up by build scripts and
533 // the compiler alike
534 cargo
535 .env("CFG_RELEASE", builder.rust_release())
536 .env("CFG_RELEASE_CHANNEL", &builder.config.channel)
537 .env("CFG_VERSION", builder.rust_version())
538 .env("CFG_PREFIX", builder.config.prefix.clone().unwrap_or_default());
539
540 let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
541 cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
542
543 if let Some(ref ver_date) = builder.rust_info.commit_date() {
544 cargo.env("CFG_VER_DATE", ver_date);
545 }
546 if let Some(ref ver_hash) = builder.rust_info.sha() {
547 cargo.env("CFG_VER_HASH", ver_hash);
548 }
549 if !builder.unstable_features() {
550 cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
551 }
552 if let Some(ref s) = builder.config.rustc_default_linker {
553 cargo.env("CFG_DEFAULT_LINKER", s);
554 }
555 if builder.config.rustc_parallel {
556 cargo.rustflag("--cfg=parallel_compiler");
557 }
558 if builder.config.rust_verify_llvm_ir {
559 cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
560 }
561
562 // Pass down configuration from the LLVM build into the build of
563 // librustc_llvm and librustc_codegen_llvm.
564 //
565 // Note that this is disabled if LLVM itself is disabled or we're in a check
566 // build. If we are in a check build we still go ahead here presuming we've
567 // detected that LLVM is alreay built and good to go which helps prevent
568 // busting caches (e.g. like #71152).
569 if builder.config.llvm_enabled()
570 && (builder.kind != Kind::Check
571 || crate::native::prebuilt_llvm_config(builder, target).is_ok())
572 {
573 if builder.is_rust_llvm(target) {
574 cargo.env("LLVM_RUSTLLVM", "1");
575 }
576 let llvm_config = builder.ensure(native::Llvm { target });
577 cargo.env("LLVM_CONFIG", &llvm_config);
578 let target_config = builder.config.target_config.get(&target);
579 if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
580 cargo.env("CFG_LLVM_ROOT", s);
581 }
582 // Some LLVM linker flags (-L and -l) may be needed to link librustc_llvm.
583 if let Some(ref s) = builder.config.llvm_ldflags {
584 cargo.env("LLVM_LINKER_FLAGS", s);
585 }
586 // Building with a static libstdc++ is only supported on linux right now,
587 // not for MSVC or macOS
588 if builder.config.llvm_static_stdcpp
589 && !target.contains("freebsd")
590 && !target.contains("msvc")
591 && !target.contains("apple")
592 {
593 let file = compiler_file(builder, builder.cxx(target).unwrap(), target, "libstdc++.a");
594 cargo.env("LLVM_STATIC_STDCPP", file);
595 }
596 if builder.config.llvm_link_shared || builder.config.llvm_thin_lto {
597 cargo.env("LLVM_LINK_SHARED", "1");
598 }
599 if builder.config.llvm_use_libcxx {
600 cargo.env("LLVM_USE_LIBCXX", "1");
601 }
602 if builder.config.llvm_optimize && !builder.config.llvm_release_debuginfo {
603 cargo.env("LLVM_NDEBUG", "1");
604 }
605 }
606 }
607
608 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
609 struct RustcLink {
610 pub compiler: Compiler,
611 pub target_compiler: Compiler,
612 pub target: TargetSelection,
613 }
614
615 impl Step for RustcLink {
616 type Output = ();
617
618 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
619 run.never()
620 }
621
622 /// Same as `std_link`, only for librustc
623 fn run(self, builder: &Builder<'_>) {
624 let compiler = self.compiler;
625 let target_compiler = self.target_compiler;
626 let target = self.target;
627 builder.info(&format!(
628 "Copying stage{} rustc from stage{} ({} -> {} / {})",
629 target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
630 ));
631 add_to_sysroot(
632 builder,
633 &builder.sysroot_libdir(target_compiler, target),
634 &builder.sysroot_libdir(target_compiler, compiler.host),
635 &librustc_stamp(builder, compiler, target),
636 );
637 }
638 }
639
640 /// Cargo's output path for the standard library in a given stage, compiled
641 /// by a particular compiler for the specified target.
642 pub fn libstd_stamp(builder: &Builder<'_>, compiler: Compiler, target: TargetSelection) -> PathBuf {
643 builder.cargo_out(compiler, Mode::Std, target).join(".libstd.stamp")
644 }
645
646 /// Cargo's output path for librustc in a given stage, compiled by a particular
647 /// compiler for the specified target.
648 pub fn librustc_stamp(
649 builder: &Builder<'_>,
650 compiler: Compiler,
651 target: TargetSelection,
652 ) -> PathBuf {
653 builder.cargo_out(compiler, Mode::Rustc, target).join(".librustc.stamp")
654 }
655
656 pub fn compiler_file(
657 builder: &Builder<'_>,
658 compiler: &Path,
659 target: TargetSelection,
660 file: &str,
661 ) -> PathBuf {
662 let mut cmd = Command::new(compiler);
663 cmd.args(builder.cflags(target, GitRepo::Rustc));
664 cmd.arg(format!("-print-file-name={}", file));
665 let out = output(&mut cmd);
666 PathBuf::from(out.trim())
667 }
668
669 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
670 pub struct Sysroot {
671 pub compiler: Compiler,
672 }
673
674 impl Step for Sysroot {
675 type Output = Interned<PathBuf>;
676
677 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
678 run.never()
679 }
680
681 /// Returns the sysroot for the `compiler` specified that *this build system
682 /// generates*.
683 ///
684 /// That is, the sysroot for the stage0 compiler is not what the compiler
685 /// thinks it is by default, but it's the same as the default for stages
686 /// 1-3.
687 fn run(self, builder: &Builder<'_>) -> Interned<PathBuf> {
688 let compiler = self.compiler;
689 let sysroot = if compiler.stage == 0 {
690 builder.out.join(&compiler.host.triple).join("stage0-sysroot")
691 } else {
692 builder.out.join(&compiler.host.triple).join(format!("stage{}", compiler.stage))
693 };
694 let _ = fs::remove_dir_all(&sysroot);
695 t!(fs::create_dir_all(&sysroot));
696
697 // Symlink the source root into the same location inside the sysroot,
698 // where `rust-src` component would go (`$sysroot/lib/rustlib/src/rust`),
699 // so that any tools relying on `rust-src` also work for local builds,
700 // and also for translating the virtual `/rustc/$hash` back to the real
701 // directory (for running tests with `rust.remap-debuginfo = true`).
702 let sysroot_lib_rustlib_src = sysroot.join("lib/rustlib/src");
703 t!(fs::create_dir_all(&sysroot_lib_rustlib_src));
704 let sysroot_lib_rustlib_src_rust = sysroot_lib_rustlib_src.join("rust");
705 if let Err(e) = symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_src_rust) {
706 eprintln!(
707 "warning: creating symbolic link `{}` to `{}` failed with {}",
708 sysroot_lib_rustlib_src_rust.display(),
709 builder.src.display(),
710 e,
711 );
712 if builder.config.rust_remap_debuginfo {
713 eprintln!(
714 "warning: some `src/test/ui` tests will fail when lacking `{}`",
715 sysroot_lib_rustlib_src_rust.display(),
716 );
717 }
718 }
719
720 INTERNER.intern_path(sysroot)
721 }
722 }
723
724 #[derive(Debug, Copy, PartialOrd, Ord, Clone, PartialEq, Eq, Hash)]
725 pub struct Assemble {
726 /// The compiler which we will produce in this step. Assemble itself will
727 /// take care of ensuring that the necessary prerequisites to do so exist,
728 /// that is, this target can be a stage2 compiler and Assemble will build
729 /// previous stages for you.
730 pub target_compiler: Compiler,
731 }
732
733 impl Step for Assemble {
734 type Output = Compiler;
735
736 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
737 run.never()
738 }
739
740 /// Prepare a new compiler from the artifacts in `stage`
741 ///
742 /// This will assemble a compiler in `build/$host/stage$stage`. The compiler
743 /// must have been previously produced by the `stage - 1` builder.build
744 /// compiler.
745 fn run(self, builder: &Builder<'_>) -> Compiler {
746 let target_compiler = self.target_compiler;
747
748 if target_compiler.stage == 0 {
749 assert_eq!(
750 builder.config.build, target_compiler.host,
751 "Cannot obtain compiler for non-native build triple at stage 0"
752 );
753 // The stage 0 compiler for the build triple is always pre-built.
754 return target_compiler;
755 }
756
757 // Get the compiler that we'll use to bootstrap ourselves.
758 //
759 // Note that this is where the recursive nature of the bootstrap
760 // happens, as this will request the previous stage's compiler on
761 // downwards to stage 0.
762 //
763 // Also note that we're building a compiler for the host platform. We
764 // only assume that we can run `build` artifacts, which means that to
765 // produce some other architecture compiler we need to start from
766 // `build` to get there.
767 //
768 // FIXME: Perhaps we should download those libraries?
769 // It would make builds faster...
770 //
771 // FIXME: It may be faster if we build just a stage 1 compiler and then
772 // use that to bootstrap this compiler forward.
773 let build_compiler = builder.compiler(target_compiler.stage - 1, builder.config.build);
774
775 // Build the libraries for this compiler to link to (i.e., the libraries
776 // it uses at runtime). NOTE: Crates the target compiler compiles don't
777 // link to these. (FIXME: Is that correct? It seems to be correct most
778 // of the time but I think we do link to these for stage2/bin compilers
779 // when not performing a full bootstrap).
780 builder.ensure(Rustc { compiler: build_compiler, target: target_compiler.host });
781
782 let lld_install = if builder.config.lld_enabled {
783 Some(builder.ensure(native::Lld { target: target_compiler.host }))
784 } else {
785 None
786 };
787
788 let stage = target_compiler.stage;
789 let host = target_compiler.host;
790 builder.info(&format!("Assembling stage{} compiler ({})", stage, host));
791
792 // Link in all dylibs to the libdir
793 let sysroot = builder.sysroot(target_compiler);
794 let rustc_libdir = builder.rustc_libdir(target_compiler);
795 t!(fs::create_dir_all(&rustc_libdir));
796 let src_libdir = builder.sysroot_libdir(build_compiler, host);
797 for f in builder.read_dir(&src_libdir) {
798 let filename = f.file_name().into_string().unwrap();
799 if is_dylib(&filename) {
800 builder.copy(&f.path(), &rustc_libdir.join(&filename));
801 }
802 }
803
804 let libdir = builder.sysroot_libdir(target_compiler, target_compiler.host);
805 if let Some(lld_install) = lld_install {
806 let src_exe = exe("lld", target_compiler.host);
807 let dst_exe = exe("rust-lld", target_compiler.host);
808 // we prepend this bin directory to the user PATH when linking Rust binaries. To
809 // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
810 let dst = libdir.parent().unwrap().join("bin");
811 t!(fs::create_dir_all(&dst));
812 builder.copy(&lld_install.join("bin").join(&src_exe), &dst.join(&dst_exe));
813 }
814
815 // Ensure that `libLLVM.so` ends up in the newly build compiler directory,
816 // so that it can be found when the newly built `rustc` is run.
817 dist::maybe_install_llvm_runtime(builder, target_compiler.host, &sysroot);
818 dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
819
820 // Link the compiler binary itself into place
821 let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
822 let rustc = out_dir.join(exe("rustc_binary", host));
823 let bindir = sysroot.join("bin");
824 t!(fs::create_dir_all(&bindir));
825 let compiler = builder.rustc(target_compiler);
826 builder.copy(&rustc, &compiler);
827
828 target_compiler
829 }
830 }
831
832 /// Link some files into a rustc sysroot.
833 ///
834 /// For a particular stage this will link the file listed in `stamp` into the
835 /// `sysroot_dst` provided.
836 pub fn add_to_sysroot(
837 builder: &Builder<'_>,
838 sysroot_dst: &Path,
839 sysroot_host_dst: &Path,
840 stamp: &Path,
841 ) {
842 let self_contained_dst = &sysroot_dst.join("self-contained");
843 t!(fs::create_dir_all(&sysroot_dst));
844 t!(fs::create_dir_all(&sysroot_host_dst));
845 t!(fs::create_dir_all(&self_contained_dst));
846 for (path, dependency_type) in builder.read_stamp_file(stamp) {
847 let dst = match dependency_type {
848 DependencyType::Host => sysroot_host_dst,
849 DependencyType::Target => sysroot_dst,
850 DependencyType::TargetSelfContained => self_contained_dst,
851 };
852 builder.copy(&path, &dst.join(path.file_name().unwrap()));
853 }
854 }
855
856 pub fn run_cargo(
857 builder: &Builder<'_>,
858 cargo: Cargo,
859 tail_args: Vec<String>,
860 stamp: &Path,
861 additional_target_deps: Vec<(PathBuf, DependencyType)>,
862 is_check: bool,
863 ) -> Vec<PathBuf> {
864 if builder.config.dry_run {
865 return Vec::new();
866 }
867
868 // `target_root_dir` looks like $dir/$target/release
869 let target_root_dir = stamp.parent().unwrap();
870 // `target_deps_dir` looks like $dir/$target/release/deps
871 let target_deps_dir = target_root_dir.join("deps");
872 // `host_root_dir` looks like $dir/release
873 let host_root_dir = target_root_dir
874 .parent()
875 .unwrap() // chop off `release`
876 .parent()
877 .unwrap() // chop off `$target`
878 .join(target_root_dir.file_name().unwrap());
879
880 // Spawn Cargo slurping up its JSON output. We'll start building up the
881 // `deps` array of all files it generated along with a `toplevel` array of
882 // files we need to probe for later.
883 let mut deps = Vec::new();
884 let mut toplevel = Vec::new();
885 let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
886 let (filenames, crate_types) = match msg {
887 CargoMessage::CompilerArtifact {
888 filenames,
889 target: CargoTarget { crate_types },
890 ..
891 } => (filenames, crate_types),
892 _ => return,
893 };
894 for filename in filenames {
895 // Skip files like executables
896 if !(filename.ends_with(".rlib")
897 || filename.ends_with(".lib")
898 || filename.ends_with(".a")
899 || is_dylib(&filename)
900 || (is_check && filename.ends_with(".rmeta")))
901 {
902 continue;
903 }
904
905 let filename = Path::new(&*filename);
906
907 // If this was an output file in the "host dir" we don't actually
908 // worry about it, it's not relevant for us
909 if filename.starts_with(&host_root_dir) {
910 // Unless it's a proc macro used in the compiler
911 if crate_types.iter().any(|t| t == "proc-macro") {
912 deps.push((filename.to_path_buf(), DependencyType::Host));
913 }
914 continue;
915 }
916
917 // If this was output in the `deps` dir then this is a precise file
918 // name (hash included) so we start tracking it.
919 if filename.starts_with(&target_deps_dir) {
920 deps.push((filename.to_path_buf(), DependencyType::Target));
921 continue;
922 }
923
924 // Otherwise this was a "top level artifact" which right now doesn't
925 // have a hash in the name, but there's a version of this file in
926 // the `deps` folder which *does* have a hash in the name. That's
927 // the one we'll want to we'll probe for it later.
928 //
929 // We do not use `Path::file_stem` or `Path::extension` here,
930 // because some generated files may have multiple extensions e.g.
931 // `std-<hash>.dll.lib` on Windows. The aforementioned methods only
932 // split the file name by the last extension (`.lib`) while we need
933 // to split by all extensions (`.dll.lib`).
934 let expected_len = t!(filename.metadata()).len();
935 let filename = filename.file_name().unwrap().to_str().unwrap();
936 let mut parts = filename.splitn(2, '.');
937 let file_stem = parts.next().unwrap().to_owned();
938 let extension = parts.next().unwrap().to_owned();
939
940 toplevel.push((file_stem, extension, expected_len));
941 }
942 });
943
944 if !ok {
945 exit(1);
946 }
947
948 // Ok now we need to actually find all the files listed in `toplevel`. We've
949 // got a list of prefix/extensions and we basically just need to find the
950 // most recent file in the `deps` folder corresponding to each one.
951 let contents = t!(target_deps_dir.read_dir())
952 .map(|e| t!(e))
953 .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
954 .collect::<Vec<_>>();
955 for (prefix, extension, expected_len) in toplevel {
956 let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| {
957 meta.len() == expected_len
958 && filename
959 .strip_prefix(&prefix[..])
960 .map(|s| s.starts_with('-') && s.ends_with(&extension[..]))
961 .unwrap_or(false)
962 });
963 let max = candidates
964 .max_by_key(|&&(_, _, ref metadata)| FileTime::from_last_modification_time(metadata));
965 let path_to_add = match max {
966 Some(triple) => triple.0.to_str().unwrap(),
967 None => panic!("no output generated for {:?} {:?}", prefix, extension),
968 };
969 if is_dylib(path_to_add) {
970 let candidate = format!("{}.lib", path_to_add);
971 let candidate = PathBuf::from(candidate);
972 if candidate.exists() {
973 deps.push((candidate, DependencyType::Target));
974 }
975 }
976 deps.push((path_to_add.into(), DependencyType::Target));
977 }
978
979 deps.extend(additional_target_deps);
980 deps.sort();
981 let mut new_contents = Vec::new();
982 for (dep, dependency_type) in deps.iter() {
983 new_contents.extend(match *dependency_type {
984 DependencyType::Host => b"h",
985 DependencyType::Target => b"t",
986 DependencyType::TargetSelfContained => b"s",
987 });
988 new_contents.extend(dep.to_str().unwrap().as_bytes());
989 new_contents.extend(b"\0");
990 }
991 t!(fs::write(&stamp, &new_contents));
992 deps.into_iter().map(|(d, _)| d).collect()
993 }
994
995 pub fn stream_cargo(
996 builder: &Builder<'_>,
997 cargo: Cargo,
998 tail_args: Vec<String>,
999 cb: &mut dyn FnMut(CargoMessage<'_>),
1000 ) -> bool {
1001 let mut cargo = Command::from(cargo);
1002 if builder.config.dry_run {
1003 return true;
1004 }
1005 // Instruct Cargo to give us json messages on stdout, critically leaving
1006 // stderr as piped so we can get those pretty colors.
1007 let mut message_format = if builder.config.json_output {
1008 String::from("json")
1009 } else {
1010 String::from("json-render-diagnostics")
1011 };
1012 if let Some(s) = &builder.config.rustc_error_format {
1013 message_format.push_str(",json-diagnostic-");
1014 message_format.push_str(s);
1015 }
1016 cargo.arg("--message-format").arg(message_format).stdout(Stdio::piped());
1017
1018 for arg in tail_args {
1019 cargo.arg(arg);
1020 }
1021
1022 builder.verbose(&format!("running: {:?}", cargo));
1023 let mut child = match cargo.spawn() {
1024 Ok(child) => child,
1025 Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e),
1026 };
1027
1028 // Spawn Cargo slurping up its JSON output. We'll start building up the
1029 // `deps` array of all files it generated along with a `toplevel` array of
1030 // files we need to probe for later.
1031 let stdout = BufReader::new(child.stdout.take().unwrap());
1032 for line in stdout.lines() {
1033 let line = t!(line);
1034 match serde_json::from_str::<CargoMessage<'_>>(&line) {
1035 Ok(msg) => {
1036 if builder.config.json_output {
1037 // Forward JSON to stdout.
1038 println!("{}", line);
1039 }
1040 cb(msg)
1041 }
1042 // If this was informational, just print it out and continue
1043 Err(_) => println!("{}", line),
1044 }
1045 }
1046
1047 // Make sure Cargo actually succeeded after we read all of its stdout.
1048 let status = t!(child.wait());
1049 if !status.success() {
1050 eprintln!(
1051 "command did not execute successfully: {:?}\n\
1052 expected success, got: {}",
1053 cargo, status
1054 );
1055 }
1056 status.success()
1057 }
1058
1059 #[derive(Deserialize)]
1060 pub struct CargoTarget<'a> {
1061 crate_types: Vec<Cow<'a, str>>,
1062 }
1063
1064 #[derive(Deserialize)]
1065 #[serde(tag = "reason", rename_all = "kebab-case")]
1066 pub enum CargoMessage<'a> {
1067 CompilerArtifact {
1068 package_id: Cow<'a, str>,
1069 features: Vec<Cow<'a, str>>,
1070 filenames: Vec<Cow<'a, str>>,
1071 target: CargoTarget<'a>,
1072 },
1073 BuildScriptExecuted {
1074 package_id: Cow<'a, str>,
1075 },
1076 BuildFinished {
1077 success: bool,
1078 },
1079 }