]> git.proxmox.com Git - rustc.git/blob - src/bootstrap/compile.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / src / bootstrap / compile.rs
1 //! Implementation of compiling various phases of the compiler and standard
2 //! library.
3 //!
4 //! This module contains some of the real meat in the rustbuild build system
5 //! which is where Cargo is used to compile the standard library, libtest, and
6 //! the compiler. This module is also responsible for assembling the sysroot as it
7 //! goes along from the output of the previous stage.
8
9 use std::borrow::Cow;
10 use std::collections::HashSet;
11 use std::env;
12 use std::fs;
13 use std::io::prelude::*;
14 use std::io::BufReader;
15 use std::path::{Path, PathBuf};
16 use std::process::{Command, Stdio};
17 use std::str;
18
19 use serde::Deserialize;
20
21 use crate::builder::Cargo;
22 use crate::builder::{Builder, Kind, RunConfig, ShouldRun, Step};
23 use crate::cache::{Interned, INTERNER};
24 use crate::config::{LlvmLibunwind, TargetSelection};
25 use crate::dist;
26 use crate::native;
27 use crate::tool::SourceType;
28 use crate::util::get_clang_cl_resource_dir;
29 use crate::util::{exe, is_debug_info, is_dylib, output, symlink_dir, t, up_to_date};
30 use crate::LLVM_TOOLS;
31 use crate::{CLang, Compiler, DependencyType, GitRepo, Mode};
32
33 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
34 pub struct Std {
35 pub target: TargetSelection,
36 pub compiler: Compiler,
37 /// Whether to build only a subset of crates in the standard library.
38 ///
39 /// This shouldn't be used from other steps; see the comment on [`Rustc`].
40 crates: Interned<Vec<String>>,
41 }
42
43 impl Std {
44 pub fn new(compiler: Compiler, target: TargetSelection) -> Self {
45 Self { target, compiler, crates: Default::default() }
46 }
47 }
48
49 /// Return a `-p=x -p=y` string suitable for passing to a cargo invocation.
50 fn build_crates_in_set(run: &RunConfig<'_>) -> Interned<Vec<String>> {
51 let mut crates = Vec::new();
52 for krate in &run.paths {
53 let path = krate.assert_single_path();
54 let crate_name = run.builder.crate_paths[&path.path];
55 crates.push(format!("-p={crate_name}"));
56 }
57 INTERNER.intern_list(crates)
58 }
59
60 impl Step for Std {
61 type Output = ();
62 const DEFAULT: bool = true;
63
64 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
65 // When downloading stage1, the standard library has already been copied to the sysroot, so
66 // there's no need to rebuild it.
67 let builder = run.builder;
68 run.crate_or_deps("test")
69 .path("library")
70 .lazy_default_condition(Box::new(|| !builder.download_rustc()))
71 }
72
73 fn make_run(run: RunConfig<'_>) {
74 // Normally, people will pass *just* library if they pass it.
75 // But it's possible (although strange) to pass something like `library std core`.
76 // Build all crates anyway, as if they hadn't passed the other args.
77 let has_library =
78 run.paths.iter().any(|set| set.assert_single_path().path.ends_with("library"));
79 let crates = if has_library { Default::default() } else { build_crates_in_set(&run) };
80 run.builder.ensure(Std {
81 compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
82 target: run.target,
83 crates,
84 });
85 }
86
87 /// Builds the standard library.
88 ///
89 /// This will build the standard library for a particular stage of the build
90 /// using the `compiler` targeting the `target` architecture. The artifacts
91 /// created will also be linked into the sysroot directory.
92 fn run(self, builder: &Builder<'_>) {
93 let target = self.target;
94 let compiler = self.compiler;
95
96 // These artifacts were already copied (in `impl Step for Sysroot`).
97 // Don't recompile them.
98 // NOTE: the ABI of the beta compiler is different from the ABI of the downloaded compiler,
99 // so its artifacts can't be reused.
100 if builder.download_rustc() && compiler.stage != 0 {
101 return;
102 }
103
104 if builder.config.keep_stage.contains(&compiler.stage)
105 || builder.config.keep_stage_std.contains(&compiler.stage)
106 {
107 builder.info("Warning: Using a potentially old libstd. This may not behave well.");
108 builder.ensure(StdLink::from_std(self, compiler));
109 return;
110 }
111
112 builder.update_submodule(&Path::new("library").join("stdarch"));
113
114 // Profiler information requires LLVM's compiler-rt
115 if builder.config.profiler {
116 builder.update_submodule(&Path::new("src/llvm-project"));
117 }
118
119 let mut target_deps = builder.ensure(StartupObjects { compiler, target });
120
121 let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
122 if compiler_to_use != compiler {
123 builder.ensure(Std::new(compiler_to_use, target));
124 builder.info(&format!("Uplifting stage1 std ({} -> {})", compiler_to_use.host, target));
125
126 // Even if we're not building std this stage, the new sysroot must
127 // still contain the third party objects needed by various targets.
128 copy_third_party_objects(builder, &compiler, target);
129 copy_self_contained_objects(builder, &compiler, target);
130
131 builder.ensure(StdLink::from_std(self, compiler_to_use));
132 return;
133 }
134
135 target_deps.extend(copy_third_party_objects(builder, &compiler, target));
136 target_deps.extend(copy_self_contained_objects(builder, &compiler, target));
137
138 let mut cargo = builder.cargo(compiler, Mode::Std, SourceType::InTree, target, "build");
139 std_cargo(builder, target, compiler.stage, &mut cargo);
140
141 builder.info(&format!(
142 "Building stage{} std artifacts ({} -> {})",
143 compiler.stage, &compiler.host, target
144 ));
145 run_cargo(
146 builder,
147 cargo,
148 self.crates.to_vec(),
149 &libstd_stamp(builder, compiler, target),
150 target_deps,
151 false,
152 );
153
154 builder.ensure(StdLink::from_std(
155 self,
156 builder.compiler(compiler.stage, builder.config.build),
157 ));
158 }
159 }
160
161 fn copy_and_stamp(
162 builder: &Builder<'_>,
163 libdir: &Path,
164 sourcedir: &Path,
165 name: &str,
166 target_deps: &mut Vec<(PathBuf, DependencyType)>,
167 dependency_type: DependencyType,
168 ) {
169 let target = libdir.join(name);
170 builder.copy(&sourcedir.join(name), &target);
171
172 target_deps.push((target, dependency_type));
173 }
174
175 fn copy_llvm_libunwind(builder: &Builder<'_>, target: TargetSelection, libdir: &Path) -> PathBuf {
176 let libunwind_path = builder.ensure(native::Libunwind { target });
177 let libunwind_source = libunwind_path.join("libunwind.a");
178 let libunwind_target = libdir.join("libunwind.a");
179 builder.copy(&libunwind_source, &libunwind_target);
180 libunwind_target
181 }
182
183 /// Copies third party objects needed by various targets.
184 fn copy_third_party_objects(
185 builder: &Builder<'_>,
186 compiler: &Compiler,
187 target: TargetSelection,
188 ) -> Vec<(PathBuf, DependencyType)> {
189 let mut target_deps = vec![];
190
191 // FIXME: remove this in 2021
192 if target == "x86_64-fortanix-unknown-sgx" {
193 if env::var_os("X86_FORTANIX_SGX_LIBS").is_some() {
194 builder.info("Warning: X86_FORTANIX_SGX_LIBS environment variable is ignored, libunwind is now compiled as part of rustbuild");
195 }
196 }
197
198 if builder.config.sanitizers_enabled(target) && compiler.stage != 0 {
199 // The sanitizers are only copied in stage1 or above,
200 // to avoid creating dependency on LLVM.
201 target_deps.extend(
202 copy_sanitizers(builder, &compiler, target)
203 .into_iter()
204 .map(|d| (d, DependencyType::Target)),
205 );
206 }
207
208 if target == "x86_64-fortanix-unknown-sgx"
209 || target.contains("pc-windows-gnullvm")
210 || builder.config.llvm_libunwind(target) == LlvmLibunwind::InTree
211 && (target.contains("linux") || target.contains("fuchsia"))
212 {
213 let libunwind_path =
214 copy_llvm_libunwind(builder, target, &builder.sysroot_libdir(*compiler, target));
215 target_deps.push((libunwind_path, DependencyType::Target));
216 }
217
218 target_deps
219 }
220
221 /// Copies third party objects needed by various targets for self-contained linkage.
222 fn copy_self_contained_objects(
223 builder: &Builder<'_>,
224 compiler: &Compiler,
225 target: TargetSelection,
226 ) -> Vec<(PathBuf, DependencyType)> {
227 let libdir_self_contained = builder.sysroot_libdir(*compiler, target).join("self-contained");
228 t!(fs::create_dir_all(&libdir_self_contained));
229 let mut target_deps = vec![];
230
231 // Copies the libc and CRT objects.
232 //
233 // rustc historically provides a more self-contained installation for musl targets
234 // not requiring the presence of a native musl toolchain. For example, it can fall back
235 // to using gcc from a glibc-targeting toolchain for linking.
236 // To do that we have to distribute musl startup objects as a part of Rust toolchain
237 // and link with them manually in the self-contained mode.
238 if target.contains("musl") {
239 let srcdir = builder.musl_libdir(target).unwrap_or_else(|| {
240 panic!("Target {:?} does not have a \"musl-libdir\" key", target.triple)
241 });
242 for &obj in &["libc.a", "crt1.o", "Scrt1.o", "rcrt1.o", "crti.o", "crtn.o"] {
243 copy_and_stamp(
244 builder,
245 &libdir_self_contained,
246 &srcdir,
247 obj,
248 &mut target_deps,
249 DependencyType::TargetSelfContained,
250 );
251 }
252 let crt_path = builder.ensure(native::CrtBeginEnd { target });
253 for &obj in &["crtbegin.o", "crtbeginS.o", "crtend.o", "crtendS.o"] {
254 let src = crt_path.join(obj);
255 let target = libdir_self_contained.join(obj);
256 builder.copy(&src, &target);
257 target_deps.push((target, DependencyType::TargetSelfContained));
258 }
259
260 if !target.starts_with("s390x") {
261 let libunwind_path = copy_llvm_libunwind(builder, target, &libdir_self_contained);
262 target_deps.push((libunwind_path, DependencyType::TargetSelfContained));
263 }
264 } else if target.ends_with("-wasi") {
265 let srcdir = builder
266 .wasi_root(target)
267 .unwrap_or_else(|| {
268 panic!("Target {:?} does not have a \"wasi-root\" key", target.triple)
269 })
270 .join("lib/wasm32-wasi");
271 for &obj in &["libc.a", "crt1-command.o", "crt1-reactor.o"] {
272 copy_and_stamp(
273 builder,
274 &libdir_self_contained,
275 &srcdir,
276 obj,
277 &mut target_deps,
278 DependencyType::TargetSelfContained,
279 );
280 }
281 } else if target.ends_with("windows-gnu") {
282 for obj in ["crt2.o", "dllcrt2.o"].iter() {
283 let src = compiler_file(builder, builder.cc(target), target, CLang::C, obj);
284 let target = libdir_self_contained.join(obj);
285 builder.copy(&src, &target);
286 target_deps.push((target, DependencyType::TargetSelfContained));
287 }
288 }
289
290 target_deps
291 }
292
293 /// Configure cargo to compile the standard library, adding appropriate env vars
294 /// and such.
295 pub fn std_cargo(builder: &Builder<'_>, target: TargetSelection, stage: u32, cargo: &mut Cargo) {
296 if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
297 cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
298 }
299
300 // Determine if we're going to compile in optimized C intrinsics to
301 // the `compiler-builtins` crate. These intrinsics live in LLVM's
302 // `compiler-rt` repository, but our `src/llvm-project` submodule isn't
303 // always checked out, so we need to conditionally look for this. (e.g. if
304 // an external LLVM is used we skip the LLVM submodule checkout).
305 //
306 // Note that this shouldn't affect the correctness of `compiler-builtins`,
307 // but only its speed. Some intrinsics in C haven't been translated to Rust
308 // yet but that's pretty rare. Other intrinsics have optimized
309 // implementations in C which have only had slower versions ported to Rust,
310 // so we favor the C version where we can, but it's not critical.
311 //
312 // If `compiler-rt` is available ensure that the `c` feature of the
313 // `compiler-builtins` crate is enabled and it's configured to learn where
314 // `compiler-rt` is located.
315 let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
316 let compiler_builtins_c_feature = if compiler_builtins_root.exists() {
317 // Note that `libprofiler_builtins/build.rs` also computes this so if
318 // you're changing something here please also change that.
319 cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
320 " compiler-builtins-c"
321 } else {
322 ""
323 };
324
325 if builder.no_std(target) == Some(true) {
326 let mut features = "compiler-builtins-mem".to_string();
327 if !target.starts_with("bpf") {
328 features.push_str(compiler_builtins_c_feature);
329 }
330
331 // for no-std targets we only compile a few no_std crates
332 cargo
333 .args(&["-p", "alloc"])
334 .arg("--manifest-path")
335 .arg(builder.src.join("library/alloc/Cargo.toml"))
336 .arg("--features")
337 .arg(features);
338 } else {
339 let mut features = builder.std_features(target);
340 features.push_str(compiler_builtins_c_feature);
341
342 cargo
343 .arg("--features")
344 .arg(features)
345 .arg("--manifest-path")
346 .arg(builder.src.join("library/test/Cargo.toml"));
347
348 // Help the libc crate compile by assisting it in finding various
349 // sysroot native libraries.
350 if target.contains("musl") {
351 if let Some(p) = builder.musl_libdir(target) {
352 let root = format!("native={}", p.to_str().unwrap());
353 cargo.rustflag("-L").rustflag(&root);
354 }
355 }
356
357 if target.ends_with("-wasi") {
358 if let Some(p) = builder.wasi_root(target) {
359 let root = format!("native={}/lib/wasm32-wasi", p.to_str().unwrap());
360 cargo.rustflag("-L").rustflag(&root);
361 }
362 }
363 }
364
365 // By default, rustc uses `-Cembed-bitcode=yes`, and Cargo overrides that
366 // with `-Cembed-bitcode=no` for non-LTO builds. However, libstd must be
367 // built with bitcode so that the produced rlibs can be used for both LTO
368 // builds (which use bitcode) and non-LTO builds (which use object code).
369 // So we override the override here!
370 //
371 // But we don't bother for the stage 0 compiler because it's never used
372 // with LTO.
373 if stage >= 1 {
374 cargo.rustflag("-Cembed-bitcode=yes");
375 }
376
377 // By default, rustc does not include unwind tables unless they are required
378 // for a particular target. They are not required by RISC-V targets, but
379 // compiling the standard library with them means that users can get
380 // backtraces without having to recompile the standard library themselves.
381 //
382 // This choice was discussed in https://github.com/rust-lang/rust/pull/69890
383 if target.contains("riscv") {
384 cargo.rustflag("-Cforce-unwind-tables=yes");
385 }
386
387 let html_root =
388 format!("-Zcrate-attr=doc(html_root_url=\"{}/\")", builder.doc_rust_lang_org_channel(),);
389 cargo.rustflag(&html_root);
390 cargo.rustdocflag(&html_root);
391 }
392
393 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
394 struct StdLink {
395 pub compiler: Compiler,
396 pub target_compiler: Compiler,
397 pub target: TargetSelection,
398 /// Not actually used; only present to make sure the cache invalidation is correct.
399 crates: Interned<Vec<String>>,
400 }
401
402 impl StdLink {
403 fn from_std(std: Std, host_compiler: Compiler) -> Self {
404 Self {
405 compiler: host_compiler,
406 target_compiler: std.compiler,
407 target: std.target,
408 crates: std.crates,
409 }
410 }
411 }
412
413 impl Step for StdLink {
414 type Output = ();
415
416 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
417 run.never()
418 }
419
420 /// Link all libstd rlibs/dylibs into the sysroot location.
421 ///
422 /// Links those artifacts generated by `compiler` to the `stage` compiler's
423 /// sysroot for the specified `host` and `target`.
424 ///
425 /// Note that this assumes that `compiler` has already generated the libstd
426 /// libraries for `target`, and this method will find them in the relevant
427 /// output directory.
428 fn run(self, builder: &Builder<'_>) {
429 let compiler = self.compiler;
430 let target_compiler = self.target_compiler;
431 let target = self.target;
432 builder.info(&format!(
433 "Copying stage{} std from stage{} ({} -> {} / {})",
434 target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
435 ));
436 let libdir = builder.sysroot_libdir(target_compiler, target);
437 let hostdir = builder.sysroot_libdir(target_compiler, compiler.host);
438 add_to_sysroot(builder, &libdir, &hostdir, &libstd_stamp(builder, compiler, target));
439 }
440 }
441
442 /// Copies sanitizer runtime libraries into target libdir.
443 fn copy_sanitizers(
444 builder: &Builder<'_>,
445 compiler: &Compiler,
446 target: TargetSelection,
447 ) -> Vec<PathBuf> {
448 let runtimes: Vec<native::SanitizerRuntime> = builder.ensure(native::Sanitizers { target });
449
450 if builder.config.dry_run {
451 return Vec::new();
452 }
453
454 let mut target_deps = Vec::new();
455 let libdir = builder.sysroot_libdir(*compiler, target);
456
457 for runtime in &runtimes {
458 let dst = libdir.join(&runtime.name);
459 builder.copy(&runtime.path, &dst);
460
461 if target == "x86_64-apple-darwin" || target == "aarch64-apple-darwin" {
462 // Update the library’s install name to reflect that it has has been renamed.
463 apple_darwin_update_library_name(&dst, &format!("@rpath/{}", &runtime.name));
464 // Upon renaming the install name, the code signature of the file will invalidate,
465 // so we will sign it again.
466 apple_darwin_sign_file(&dst);
467 }
468
469 target_deps.push(dst);
470 }
471
472 target_deps
473 }
474
475 fn apple_darwin_update_library_name(library_path: &Path, new_name: &str) {
476 let status = Command::new("install_name_tool")
477 .arg("-id")
478 .arg(new_name)
479 .arg(library_path)
480 .status()
481 .expect("failed to execute `install_name_tool`");
482 assert!(status.success());
483 }
484
485 fn apple_darwin_sign_file(file_path: &Path) {
486 let status = Command::new("codesign")
487 .arg("-f") // Force to rewrite the existing signature
488 .arg("-s")
489 .arg("-")
490 .arg(file_path)
491 .status()
492 .expect("failed to execute `codesign`");
493 assert!(status.success());
494 }
495
496 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
497 pub struct StartupObjects {
498 pub compiler: Compiler,
499 pub target: TargetSelection,
500 }
501
502 impl Step for StartupObjects {
503 type Output = Vec<(PathBuf, DependencyType)>;
504
505 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
506 run.path("library/rtstartup")
507 }
508
509 fn make_run(run: RunConfig<'_>) {
510 run.builder.ensure(StartupObjects {
511 compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
512 target: run.target,
513 });
514 }
515
516 /// Builds and prepare startup objects like rsbegin.o and rsend.o
517 ///
518 /// These are primarily used on Windows right now for linking executables/dlls.
519 /// They don't require any library support as they're just plain old object
520 /// files, so we just use the nightly snapshot compiler to always build them (as
521 /// no other compilers are guaranteed to be available).
522 fn run(self, builder: &Builder<'_>) -> Vec<(PathBuf, DependencyType)> {
523 let for_compiler = self.compiler;
524 let target = self.target;
525 if !target.ends_with("windows-gnu") {
526 return vec![];
527 }
528
529 let mut target_deps = vec![];
530
531 let src_dir = &builder.src.join("library").join("rtstartup");
532 let dst_dir = &builder.native_dir(target).join("rtstartup");
533 let sysroot_dir = &builder.sysroot_libdir(for_compiler, target);
534 t!(fs::create_dir_all(dst_dir));
535
536 for file in &["rsbegin", "rsend"] {
537 let src_file = &src_dir.join(file.to_string() + ".rs");
538 let dst_file = &dst_dir.join(file.to_string() + ".o");
539 if !up_to_date(src_file, dst_file) {
540 let mut cmd = Command::new(&builder.initial_rustc);
541 cmd.env("RUSTC_BOOTSTRAP", "1");
542 if !builder.local_rebuild {
543 // a local_rebuild compiler already has stage1 features
544 cmd.arg("--cfg").arg("bootstrap");
545 }
546 builder.run(
547 cmd.arg("--target")
548 .arg(target.rustc_target_arg())
549 .arg("--emit=obj")
550 .arg("-o")
551 .arg(dst_file)
552 .arg(src_file),
553 );
554 }
555
556 let target = sysroot_dir.join((*file).to_string() + ".o");
557 builder.copy(dst_file, &target);
558 target_deps.push((target, DependencyType::Target));
559 }
560
561 target_deps
562 }
563 }
564
565 #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
566 pub struct Rustc {
567 pub target: TargetSelection,
568 pub compiler: Compiler,
569 /// Whether to build a subset of crates, rather than the whole compiler.
570 ///
571 /// This should only be requested by the user, not used within rustbuild itself.
572 /// Using it within rustbuild can lead to confusing situation where lints are replayed
573 /// in two different steps.
574 crates: Interned<Vec<String>>,
575 }
576
577 impl Rustc {
578 pub fn new(compiler: Compiler, target: TargetSelection) -> Self {
579 Self { target, compiler, crates: Default::default() }
580 }
581 }
582
583 impl Step for Rustc {
584 type Output = ();
585 const ONLY_HOSTS: bool = true;
586 const DEFAULT: bool = false;
587
588 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
589 let mut crates = run.builder.in_tree_crates("rustc-main", None);
590 for (i, krate) in crates.iter().enumerate() {
591 if krate.name == "rustc-main" {
592 crates.swap_remove(i);
593 break;
594 }
595 }
596 run.crates(crates)
597 }
598
599 fn make_run(run: RunConfig<'_>) {
600 let crates = build_crates_in_set(&run);
601 run.builder.ensure(Rustc {
602 compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
603 target: run.target,
604 crates,
605 });
606 }
607
608 /// Builds the compiler.
609 ///
610 /// This will build the compiler for a particular stage of the build using
611 /// the `compiler` targeting the `target` architecture. The artifacts
612 /// created will also be linked into the sysroot directory.
613 fn run(self, builder: &Builder<'_>) {
614 let compiler = self.compiler;
615 let target = self.target;
616
617 // NOTE: the ABI of the beta compiler is different from the ABI of the downloaded compiler,
618 // so its artifacts can't be reused.
619 if builder.download_rustc() && compiler.stage != 0 {
620 // Copy the existing artifacts instead of rebuilding them.
621 // NOTE: this path is only taken for tools linking to rustc-dev.
622 builder.ensure(Sysroot { compiler });
623 return;
624 }
625
626 builder.ensure(Std::new(compiler, target));
627
628 if builder.config.keep_stage.contains(&compiler.stage) {
629 builder.info("Warning: Using a potentially old librustc. This may not behave well.");
630 builder.info("Warning: Use `--keep-stage-std` if you want to rebuild the compiler when it changes");
631 builder.ensure(RustcLink::from_rustc(self, compiler));
632 return;
633 }
634
635 let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
636 if compiler_to_use != compiler {
637 builder.ensure(Rustc::new(compiler_to_use, target));
638 builder
639 .info(&format!("Uplifting stage1 rustc ({} -> {})", builder.config.build, target));
640 builder.ensure(RustcLink::from_rustc(self, compiler_to_use));
641 return;
642 }
643
644 // Ensure that build scripts and proc macros have a std / libproc_macro to link against.
645 builder.ensure(Std::new(
646 builder.compiler(self.compiler.stage, builder.config.build),
647 builder.config.build,
648 ));
649
650 let mut cargo = builder.cargo(compiler, Mode::Rustc, SourceType::InTree, target, "build");
651 rustc_cargo(builder, &mut cargo, target);
652
653 if builder.config.rust_profile_use.is_some()
654 && builder.config.rust_profile_generate.is_some()
655 {
656 panic!("Cannot use and generate PGO profiles at the same time");
657 }
658
659 // With LLD, we can use ICF (identical code folding) to reduce the executable size
660 // of librustc_driver/rustc and to improve i-cache utilization.
661 //
662 // -Wl,[link options] doesn't work on MSVC. However, /OPT:ICF (technically /OPT:REF,ICF)
663 // is already on by default in MSVC optimized builds, which is interpreted as --icf=all:
664 // https://github.com/llvm/llvm-project/blob/3329cec2f79185bafd678f310fafadba2a8c76d2/lld/COFF/Driver.cpp#L1746
665 // https://github.com/rust-lang/rust/blob/f22819bcce4abaff7d1246a56eec493418f9f4ee/compiler/rustc_codegen_ssa/src/back/linker.rs#L827
666 if builder.config.use_lld && !compiler.host.contains("msvc") {
667 cargo.rustflag("-Clink-args=-Wl,--icf=all");
668 }
669
670 let is_collecting = if let Some(path) = &builder.config.rust_profile_generate {
671 if compiler.stage == 1 {
672 cargo.rustflag(&format!("-Cprofile-generate={}", path));
673 // Apparently necessary to avoid overflowing the counters during
674 // a Cargo build profile
675 cargo.rustflag("-Cllvm-args=-vp-counters-per-site=4");
676 true
677 } else {
678 false
679 }
680 } else if let Some(path) = &builder.config.rust_profile_use {
681 if compiler.stage == 1 {
682 cargo.rustflag(&format!("-Cprofile-use={}", path));
683 cargo.rustflag("-Cllvm-args=-pgo-warn-missing-function");
684 true
685 } else {
686 false
687 }
688 } else {
689 false
690 };
691 if is_collecting {
692 // Ensure paths to Rust sources are relative, not absolute.
693 cargo.rustflag(&format!(
694 "-Cllvm-args=-static-func-strip-dirname-prefix={}",
695 builder.config.src.components().count()
696 ));
697 }
698
699 builder.info(&format!(
700 "Building stage{} compiler artifacts ({} -> {})",
701 compiler.stage, &compiler.host, target
702 ));
703 run_cargo(
704 builder,
705 cargo,
706 self.crates.to_vec(),
707 &librustc_stamp(builder, compiler, target),
708 vec![],
709 false,
710 );
711
712 builder.ensure(RustcLink::from_rustc(
713 self,
714 builder.compiler(compiler.stage, builder.config.build),
715 ));
716 }
717 }
718
719 pub fn rustc_cargo(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
720 cargo
721 .arg("--features")
722 .arg(builder.rustc_features(builder.kind))
723 .arg("--manifest-path")
724 .arg(builder.src.join("compiler/rustc/Cargo.toml"));
725 rustc_cargo_env(builder, cargo, target);
726 }
727
728 pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) {
729 // Set some configuration variables picked up by build scripts and
730 // the compiler alike
731 cargo
732 .env("CFG_RELEASE", builder.rust_release())
733 .env("CFG_RELEASE_CHANNEL", &builder.config.channel)
734 .env("CFG_VERSION", builder.rust_version());
735
736 if let Some(backend) = builder.config.rust_codegen_backends.get(0) {
737 cargo.env("CFG_DEFAULT_CODEGEN_BACKEND", backend);
738 }
739
740 let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
741 let target_config = builder.config.target_config.get(&target);
742
743 cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
744
745 if let Some(ref ver_date) = builder.rust_info.commit_date() {
746 cargo.env("CFG_VER_DATE", ver_date);
747 }
748 if let Some(ref ver_hash) = builder.rust_info.sha() {
749 cargo.env("CFG_VER_HASH", ver_hash);
750 }
751 if !builder.unstable_features() {
752 cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
753 }
754
755 // Prefer the current target's own default_linker, else a globally
756 // specified one.
757 if let Some(s) = target_config.and_then(|c| c.default_linker.as_ref()) {
758 cargo.env("CFG_DEFAULT_LINKER", s);
759 } else if let Some(ref s) = builder.config.rustc_default_linker {
760 cargo.env("CFG_DEFAULT_LINKER", s);
761 }
762
763 if builder.config.rustc_parallel {
764 // keep in sync with `bootstrap/lib.rs:Build::rustc_features`
765 // `cfg` option for rustc, `features` option for cargo, for conditional compilation
766 cargo.rustflag("--cfg=parallel_compiler");
767 cargo.rustdocflag("--cfg=parallel_compiler");
768 }
769 if builder.config.rust_verify_llvm_ir {
770 cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
771 }
772
773 // Pass down configuration from the LLVM build into the build of
774 // rustc_llvm and rustc_codegen_llvm.
775 //
776 // Note that this is disabled if LLVM itself is disabled or we're in a check
777 // build. If we are in a check build we still go ahead here presuming we've
778 // detected that LLVM is already built and good to go which helps prevent
779 // busting caches (e.g. like #71152).
780 if builder.config.llvm_enabled()
781 && (builder.kind != Kind::Check
782 || crate::native::prebuilt_llvm_config(builder, target).is_ok())
783 {
784 if builder.is_rust_llvm(target) {
785 cargo.env("LLVM_RUSTLLVM", "1");
786 }
787 let llvm_config = builder.ensure(native::Llvm { target });
788 cargo.env("LLVM_CONFIG", &llvm_config);
789 if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
790 cargo.env("CFG_LLVM_ROOT", s);
791 }
792
793 // Some LLVM linker flags (-L and -l) may be needed to link `rustc_llvm`. Its build script
794 // expects these to be passed via the `LLVM_LINKER_FLAGS` env variable, separated by
795 // whitespace.
796 //
797 // For example:
798 // - on windows, when `clang-cl` is used with instrumentation, we need to manually add
799 // clang's runtime library resource directory so that the profiler runtime library can be
800 // found. This is to avoid the linker errors about undefined references to
801 // `__llvm_profile_instrument_memop` when linking `rustc_driver`.
802 let mut llvm_linker_flags = String::new();
803 if builder.config.llvm_profile_generate && target.contains("msvc") {
804 if let Some(ref clang_cl_path) = builder.config.llvm_clang_cl {
805 // Add clang's runtime library directory to the search path
806 let clang_rt_dir = get_clang_cl_resource_dir(clang_cl_path);
807 llvm_linker_flags.push_str(&format!("-L{}", clang_rt_dir.display()));
808 }
809 }
810
811 // The config can also specify its own llvm linker flags.
812 if let Some(ref s) = builder.config.llvm_ldflags {
813 if !llvm_linker_flags.is_empty() {
814 llvm_linker_flags.push_str(" ");
815 }
816 llvm_linker_flags.push_str(s);
817 }
818
819 // Set the linker flags via the env var that `rustc_llvm`'s build script will read.
820 if !llvm_linker_flags.is_empty() {
821 cargo.env("LLVM_LINKER_FLAGS", llvm_linker_flags);
822 }
823
824 // Building with a static libstdc++ is only supported on linux right now,
825 // not for MSVC or macOS
826 if builder.config.llvm_static_stdcpp
827 && !target.contains("freebsd")
828 && !target.contains("msvc")
829 && !target.contains("apple")
830 && !target.contains("solaris")
831 {
832 let file = compiler_file(
833 builder,
834 builder.cxx(target).unwrap(),
835 target,
836 CLang::Cxx,
837 "libstdc++.a",
838 );
839 cargo.env("LLVM_STATIC_STDCPP", file);
840 }
841 if builder.llvm_link_shared() {
842 cargo.env("LLVM_LINK_SHARED", "1");
843 }
844 if builder.config.llvm_use_libcxx {
845 cargo.env("LLVM_USE_LIBCXX", "1");
846 }
847 if builder.config.llvm_optimize && !builder.config.llvm_release_debuginfo {
848 cargo.env("LLVM_NDEBUG", "1");
849 }
850 }
851 }
852
853 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
854 struct RustcLink {
855 pub compiler: Compiler,
856 pub target_compiler: Compiler,
857 pub target: TargetSelection,
858 /// Not actually used; only present to make sure the cache invalidation is correct.
859 crates: Interned<Vec<String>>,
860 }
861
862 impl RustcLink {
863 fn from_rustc(rustc: Rustc, host_compiler: Compiler) -> Self {
864 Self {
865 compiler: host_compiler,
866 target_compiler: rustc.compiler,
867 target: rustc.target,
868 crates: rustc.crates,
869 }
870 }
871 }
872
873 impl Step for RustcLink {
874 type Output = ();
875
876 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
877 run.never()
878 }
879
880 /// Same as `std_link`, only for librustc
881 fn run(self, builder: &Builder<'_>) {
882 let compiler = self.compiler;
883 let target_compiler = self.target_compiler;
884 let target = self.target;
885 builder.info(&format!(
886 "Copying stage{} rustc from stage{} ({} -> {} / {})",
887 target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
888 ));
889 add_to_sysroot(
890 builder,
891 &builder.sysroot_libdir(target_compiler, target),
892 &builder.sysroot_libdir(target_compiler, compiler.host),
893 &librustc_stamp(builder, compiler, target),
894 );
895 }
896 }
897
898 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
899 pub struct CodegenBackend {
900 pub target: TargetSelection,
901 pub compiler: Compiler,
902 pub backend: Interned<String>,
903 }
904
905 impl Step for CodegenBackend {
906 type Output = ();
907 const ONLY_HOSTS: bool = true;
908 // Only the backends specified in the `codegen-backends` entry of `config.toml` are built.
909 const DEFAULT: bool = true;
910
911 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
912 run.paths(&["compiler/rustc_codegen_cranelift", "compiler/rustc_codegen_gcc"])
913 }
914
915 fn make_run(run: RunConfig<'_>) {
916 for &backend in &run.builder.config.rust_codegen_backends {
917 if backend == "llvm" {
918 continue; // Already built as part of rustc
919 }
920
921 run.builder.ensure(CodegenBackend {
922 target: run.target,
923 compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()),
924 backend,
925 });
926 }
927 }
928
929 fn run(self, builder: &Builder<'_>) {
930 let compiler = self.compiler;
931 let target = self.target;
932 let backend = self.backend;
933
934 builder.ensure(Rustc::new(compiler, target));
935
936 if builder.config.keep_stage.contains(&compiler.stage) {
937 builder.info(
938 "Warning: Using a potentially old codegen backend. \
939 This may not behave well.",
940 );
941 // Codegen backends are linked separately from this step today, so we don't do
942 // anything here.
943 return;
944 }
945
946 let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
947 if compiler_to_use != compiler {
948 builder.ensure(CodegenBackend { compiler: compiler_to_use, target, backend });
949 return;
950 }
951
952 let out_dir = builder.cargo_out(compiler, Mode::Codegen, target);
953
954 let mut cargo = builder.cargo(compiler, Mode::Codegen, SourceType::InTree, target, "build");
955 cargo
956 .arg("--manifest-path")
957 .arg(builder.src.join(format!("compiler/rustc_codegen_{}/Cargo.toml", backend)));
958 rustc_cargo_env(builder, &mut cargo, target);
959
960 let tmp_stamp = out_dir.join(".tmp.stamp");
961
962 builder.info(&format!(
963 "Building stage{} codegen backend {} ({} -> {})",
964 compiler.stage, backend, &compiler.host, target
965 ));
966 let files = run_cargo(builder, cargo, vec![], &tmp_stamp, vec![], false);
967 if builder.config.dry_run {
968 return;
969 }
970 let mut files = files.into_iter().filter(|f| {
971 let filename = f.file_name().unwrap().to_str().unwrap();
972 is_dylib(filename) && filename.contains("rustc_codegen_")
973 });
974 let codegen_backend = match files.next() {
975 Some(f) => f,
976 None => panic!("no dylibs built for codegen backend?"),
977 };
978 if let Some(f) = files.next() {
979 panic!(
980 "codegen backend built two dylibs:\n{}\n{}",
981 codegen_backend.display(),
982 f.display()
983 );
984 }
985 let stamp = codegen_backend_stamp(builder, compiler, target, backend);
986 let codegen_backend = codegen_backend.to_str().unwrap();
987 t!(fs::write(&stamp, &codegen_backend));
988 }
989 }
990
991 /// Creates the `codegen-backends` folder for a compiler that's about to be
992 /// assembled as a complete compiler.
993 ///
994 /// This will take the codegen artifacts produced by `compiler` and link them
995 /// into an appropriate location for `target_compiler` to be a functional
996 /// compiler.
997 fn copy_codegen_backends_to_sysroot(
998 builder: &Builder<'_>,
999 compiler: Compiler,
1000 target_compiler: Compiler,
1001 ) {
1002 let target = target_compiler.host;
1003
1004 // Note that this step is different than all the other `*Link` steps in
1005 // that it's not assembling a bunch of libraries but rather is primarily
1006 // moving the codegen backend into place. The codegen backend of rustc is
1007 // not linked into the main compiler by default but is rather dynamically
1008 // selected at runtime for inclusion.
1009 //
1010 // Here we're looking for the output dylib of the `CodegenBackend` step and
1011 // we're copying that into the `codegen-backends` folder.
1012 let dst = builder.sysroot_codegen_backends(target_compiler);
1013 t!(fs::create_dir_all(&dst), dst);
1014
1015 if builder.config.dry_run {
1016 return;
1017 }
1018
1019 for backend in builder.config.rust_codegen_backends.iter() {
1020 if backend == "llvm" {
1021 continue; // Already built as part of rustc
1022 }
1023
1024 let stamp = codegen_backend_stamp(builder, compiler, target, *backend);
1025 let dylib = t!(fs::read_to_string(&stamp));
1026 let file = Path::new(&dylib);
1027 let filename = file.file_name().unwrap().to_str().unwrap();
1028 // change `librustc_codegen_cranelift-xxxxxx.so` to
1029 // `librustc_codegen_cranelift-release.so`
1030 let target_filename = {
1031 let dash = filename.find('-').unwrap();
1032 let dot = filename.find('.').unwrap();
1033 format!("{}-{}{}", &filename[..dash], builder.rust_release(), &filename[dot..])
1034 };
1035 builder.copy(&file, &dst.join(target_filename));
1036 }
1037 }
1038
1039 /// Cargo's output path for the standard library in a given stage, compiled
1040 /// by a particular compiler for the specified target.
1041 pub fn libstd_stamp(builder: &Builder<'_>, compiler: Compiler, target: TargetSelection) -> PathBuf {
1042 builder.cargo_out(compiler, Mode::Std, target).join(".libstd.stamp")
1043 }
1044
1045 /// Cargo's output path for librustc in a given stage, compiled by a particular
1046 /// compiler for the specified target.
1047 pub fn librustc_stamp(
1048 builder: &Builder<'_>,
1049 compiler: Compiler,
1050 target: TargetSelection,
1051 ) -> PathBuf {
1052 builder.cargo_out(compiler, Mode::Rustc, target).join(".librustc.stamp")
1053 }
1054
1055 /// Cargo's output path for librustc_codegen_llvm in a given stage, compiled by a particular
1056 /// compiler for the specified target and backend.
1057 fn codegen_backend_stamp(
1058 builder: &Builder<'_>,
1059 compiler: Compiler,
1060 target: TargetSelection,
1061 backend: Interned<String>,
1062 ) -> PathBuf {
1063 builder
1064 .cargo_out(compiler, Mode::Codegen, target)
1065 .join(format!(".librustc_codegen_{}.stamp", backend))
1066 }
1067
1068 pub fn compiler_file(
1069 builder: &Builder<'_>,
1070 compiler: &Path,
1071 target: TargetSelection,
1072 c: CLang,
1073 file: &str,
1074 ) -> PathBuf {
1075 let mut cmd = Command::new(compiler);
1076 cmd.args(builder.cflags(target, GitRepo::Rustc, c));
1077 cmd.arg(format!("-print-file-name={}", file));
1078 let out = output(&mut cmd);
1079 PathBuf::from(out.trim())
1080 }
1081
1082 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
1083 pub struct Sysroot {
1084 pub compiler: Compiler,
1085 }
1086
1087 impl Step for Sysroot {
1088 type Output = Interned<PathBuf>;
1089
1090 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1091 run.never()
1092 }
1093
1094 /// Returns the sysroot for the `compiler` specified that *this build system
1095 /// generates*.
1096 ///
1097 /// That is, the sysroot for the stage0 compiler is not what the compiler
1098 /// thinks it is by default, but it's the same as the default for stages
1099 /// 1-3.
1100 fn run(self, builder: &Builder<'_>) -> Interned<PathBuf> {
1101 let compiler = self.compiler;
1102 let sysroot = if compiler.stage == 0 {
1103 builder.out.join(&compiler.host.triple).join("stage0-sysroot")
1104 } else {
1105 builder.out.join(&compiler.host.triple).join(format!("stage{}", compiler.stage))
1106 };
1107 let _ = fs::remove_dir_all(&sysroot);
1108 t!(fs::create_dir_all(&sysroot));
1109
1110 // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
1111 if builder.download_rustc() && compiler.stage != 0 {
1112 assert_eq!(
1113 builder.config.build, compiler.host,
1114 "Cross-compiling is not yet supported with `download-rustc`",
1115 );
1116 // Copy the compiler into the correct sysroot.
1117 let ci_rustc_dir =
1118 builder.config.out.join(&*builder.config.build.triple).join("ci-rustc");
1119 builder.cp_r(&ci_rustc_dir, &sysroot);
1120 return INTERNER.intern_path(sysroot);
1121 }
1122
1123 // Symlink the source root into the same location inside the sysroot,
1124 // where `rust-src` component would go (`$sysroot/lib/rustlib/src/rust`),
1125 // so that any tools relying on `rust-src` also work for local builds,
1126 // and also for translating the virtual `/rustc/$hash` back to the real
1127 // directory (for running tests with `rust.remap-debuginfo = true`).
1128 let sysroot_lib_rustlib_src = sysroot.join("lib/rustlib/src");
1129 t!(fs::create_dir_all(&sysroot_lib_rustlib_src));
1130 let sysroot_lib_rustlib_src_rust = sysroot_lib_rustlib_src.join("rust");
1131 if let Err(e) = symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_src_rust) {
1132 eprintln!(
1133 "warning: creating symbolic link `{}` to `{}` failed with {}",
1134 sysroot_lib_rustlib_src_rust.display(),
1135 builder.src.display(),
1136 e,
1137 );
1138 if builder.config.rust_remap_debuginfo {
1139 eprintln!(
1140 "warning: some `src/test/ui` tests will fail when lacking `{}`",
1141 sysroot_lib_rustlib_src_rust.display(),
1142 );
1143 }
1144 }
1145
1146 INTERNER.intern_path(sysroot)
1147 }
1148 }
1149
1150 #[derive(Debug, Copy, PartialOrd, Ord, Clone, PartialEq, Eq, Hash)]
1151 pub struct Assemble {
1152 /// The compiler which we will produce in this step. Assemble itself will
1153 /// take care of ensuring that the necessary prerequisites to do so exist,
1154 /// that is, this target can be a stage2 compiler and Assemble will build
1155 /// previous stages for you.
1156 pub target_compiler: Compiler,
1157 }
1158
1159 impl Step for Assemble {
1160 type Output = Compiler;
1161 const ONLY_HOSTS: bool = true;
1162
1163 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
1164 run.path("compiler/rustc").path("compiler")
1165 }
1166
1167 fn make_run(run: RunConfig<'_>) {
1168 run.builder.ensure(Assemble {
1169 target_compiler: run.builder.compiler(run.builder.top_stage + 1, run.target),
1170 });
1171 }
1172
1173 /// Prepare a new compiler from the artifacts in `stage`
1174 ///
1175 /// This will assemble a compiler in `build/$host/stage$stage`. The compiler
1176 /// must have been previously produced by the `stage - 1` builder.build
1177 /// compiler.
1178 fn run(self, builder: &Builder<'_>) -> Compiler {
1179 let target_compiler = self.target_compiler;
1180
1181 if target_compiler.stage == 0 {
1182 assert_eq!(
1183 builder.config.build, target_compiler.host,
1184 "Cannot obtain compiler for non-native build triple at stage 0"
1185 );
1186 // The stage 0 compiler for the build triple is always pre-built.
1187 return target_compiler;
1188 }
1189
1190 // Get the compiler that we'll use to bootstrap ourselves.
1191 //
1192 // Note that this is where the recursive nature of the bootstrap
1193 // happens, as this will request the previous stage's compiler on
1194 // downwards to stage 0.
1195 //
1196 // Also note that we're building a compiler for the host platform. We
1197 // only assume that we can run `build` artifacts, which means that to
1198 // produce some other architecture compiler we need to start from
1199 // `build` to get there.
1200 //
1201 // FIXME: It may be faster if we build just a stage 1 compiler and then
1202 // use that to bootstrap this compiler forward.
1203 let build_compiler = builder.compiler(target_compiler.stage - 1, builder.config.build);
1204
1205 // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0.
1206 if builder.download_rustc() {
1207 builder.ensure(Sysroot { compiler: target_compiler });
1208 return target_compiler;
1209 }
1210
1211 // Build the libraries for this compiler to link to (i.e., the libraries
1212 // it uses at runtime). NOTE: Crates the target compiler compiles don't
1213 // link to these. (FIXME: Is that correct? It seems to be correct most
1214 // of the time but I think we do link to these for stage2/bin compilers
1215 // when not performing a full bootstrap).
1216 builder.ensure(Rustc::new(build_compiler, target_compiler.host));
1217
1218 for &backend in builder.config.rust_codegen_backends.iter() {
1219 if backend == "llvm" {
1220 continue; // Already built as part of rustc
1221 }
1222
1223 builder.ensure(CodegenBackend {
1224 compiler: build_compiler,
1225 target: target_compiler.host,
1226 backend,
1227 });
1228 }
1229
1230 let lld_install = if builder.config.lld_enabled {
1231 Some(builder.ensure(native::Lld { target: target_compiler.host }))
1232 } else {
1233 None
1234 };
1235
1236 let stage = target_compiler.stage;
1237 let host = target_compiler.host;
1238 builder.info(&format!("Assembling stage{} compiler ({})", stage, host));
1239
1240 // Link in all dylibs to the libdir
1241 let stamp = librustc_stamp(builder, build_compiler, target_compiler.host);
1242 let proc_macros = builder
1243 .read_stamp_file(&stamp)
1244 .into_iter()
1245 .filter_map(|(path, dependency_type)| {
1246 if dependency_type == DependencyType::Host {
1247 Some(path.file_name().unwrap().to_owned().into_string().unwrap())
1248 } else {
1249 None
1250 }
1251 })
1252 .collect::<HashSet<_>>();
1253
1254 let sysroot = builder.sysroot(target_compiler);
1255 let rustc_libdir = builder.rustc_libdir(target_compiler);
1256 t!(fs::create_dir_all(&rustc_libdir));
1257 let src_libdir = builder.sysroot_libdir(build_compiler, host);
1258 for f in builder.read_dir(&src_libdir) {
1259 let filename = f.file_name().into_string().unwrap();
1260 if (is_dylib(&filename) || is_debug_info(&filename)) && !proc_macros.contains(&filename)
1261 {
1262 builder.copy(&f.path(), &rustc_libdir.join(&filename));
1263 }
1264 }
1265
1266 copy_codegen_backends_to_sysroot(builder, build_compiler, target_compiler);
1267
1268 // We prepend this bin directory to the user PATH when linking Rust binaries. To
1269 // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
1270 let libdir = builder.sysroot_libdir(target_compiler, target_compiler.host);
1271 let libdir_bin = libdir.parent().unwrap().join("bin");
1272 t!(fs::create_dir_all(&libdir_bin));
1273 if let Some(lld_install) = lld_install {
1274 let src_exe = exe("lld", target_compiler.host);
1275 let dst_exe = exe("rust-lld", target_compiler.host);
1276 builder.copy(&lld_install.join("bin").join(&src_exe), &libdir_bin.join(&dst_exe));
1277 // for `-Z gcc-ld=lld`
1278 let gcc_ld_dir = libdir_bin.join("gcc-ld");
1279 t!(fs::create_dir(&gcc_ld_dir));
1280 let lld_wrapper_exe = builder.ensure(crate::tool::LldWrapper {
1281 compiler: build_compiler,
1282 target: target_compiler.host,
1283 });
1284 for name in crate::LLD_FILE_NAMES {
1285 builder.copy(&lld_wrapper_exe, &gcc_ld_dir.join(exe(name, target_compiler.host)));
1286 }
1287 }
1288
1289 if builder.config.rust_codegen_backends.contains(&INTERNER.intern_str("llvm")) {
1290 let llvm_config_bin = builder.ensure(native::Llvm { target: target_compiler.host });
1291 if !builder.config.dry_run {
1292 let llvm_bin_dir = output(Command::new(llvm_config_bin).arg("--bindir"));
1293 let llvm_bin_dir = Path::new(llvm_bin_dir.trim());
1294
1295 // Since we've already built the LLVM tools, install them to the sysroot.
1296 // This is the equivalent of installing the `llvm-tools-preview` component via
1297 // rustup, and lets developers use a locally built toolchain to
1298 // build projects that expect llvm tools to be present in the sysroot
1299 // (e.g. the `bootimage` crate).
1300 for tool in LLVM_TOOLS {
1301 let tool_exe = exe(tool, target_compiler.host);
1302 let src_path = llvm_bin_dir.join(&tool_exe);
1303 // When using `download-ci-llvm`, some of the tools
1304 // may not exist, so skip trying to copy them.
1305 if src_path.exists() {
1306 builder.copy(&src_path, &libdir_bin.join(&tool_exe));
1307 }
1308 }
1309 }
1310 }
1311
1312 // Ensure that `libLLVM.so` ends up in the newly build compiler directory,
1313 // so that it can be found when the newly built `rustc` is run.
1314 dist::maybe_install_llvm_runtime(builder, target_compiler.host, &sysroot);
1315 dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot);
1316
1317 // Link the compiler binary itself into place
1318 let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
1319 let rustc = out_dir.join(exe("rustc-main", host));
1320 let bindir = sysroot.join("bin");
1321 t!(fs::create_dir_all(&bindir));
1322 let compiler = builder.rustc(target_compiler);
1323 builder.copy(&rustc, &compiler);
1324
1325 target_compiler
1326 }
1327 }
1328
1329 /// Link some files into a rustc sysroot.
1330 ///
1331 /// For a particular stage this will link the file listed in `stamp` into the
1332 /// `sysroot_dst` provided.
1333 pub fn add_to_sysroot(
1334 builder: &Builder<'_>,
1335 sysroot_dst: &Path,
1336 sysroot_host_dst: &Path,
1337 stamp: &Path,
1338 ) {
1339 let self_contained_dst = &sysroot_dst.join("self-contained");
1340 t!(fs::create_dir_all(&sysroot_dst));
1341 t!(fs::create_dir_all(&sysroot_host_dst));
1342 t!(fs::create_dir_all(&self_contained_dst));
1343 for (path, dependency_type) in builder.read_stamp_file(stamp) {
1344 let dst = match dependency_type {
1345 DependencyType::Host => sysroot_host_dst,
1346 DependencyType::Target => sysroot_dst,
1347 DependencyType::TargetSelfContained => self_contained_dst,
1348 };
1349 builder.copy(&path, &dst.join(path.file_name().unwrap()));
1350 }
1351 }
1352
1353 pub fn run_cargo(
1354 builder: &Builder<'_>,
1355 cargo: Cargo,
1356 tail_args: Vec<String>,
1357 stamp: &Path,
1358 additional_target_deps: Vec<(PathBuf, DependencyType)>,
1359 is_check: bool,
1360 ) -> Vec<PathBuf> {
1361 if builder.config.dry_run {
1362 return Vec::new();
1363 }
1364
1365 // `target_root_dir` looks like $dir/$target/release
1366 let target_root_dir = stamp.parent().unwrap();
1367 // `target_deps_dir` looks like $dir/$target/release/deps
1368 let target_deps_dir = target_root_dir.join("deps");
1369 // `host_root_dir` looks like $dir/release
1370 let host_root_dir = target_root_dir
1371 .parent()
1372 .unwrap() // chop off `release`
1373 .parent()
1374 .unwrap() // chop off `$target`
1375 .join(target_root_dir.file_name().unwrap());
1376
1377 // Spawn Cargo slurping up its JSON output. We'll start building up the
1378 // `deps` array of all files it generated along with a `toplevel` array of
1379 // files we need to probe for later.
1380 let mut deps = Vec::new();
1381 let mut toplevel = Vec::new();
1382 let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
1383 let (filenames, crate_types) = match msg {
1384 CargoMessage::CompilerArtifact {
1385 filenames,
1386 target: CargoTarget { crate_types },
1387 ..
1388 } => (filenames, crate_types),
1389 _ => return,
1390 };
1391 for filename in filenames {
1392 // Skip files like executables
1393 if !(filename.ends_with(".rlib")
1394 || filename.ends_with(".lib")
1395 || filename.ends_with(".a")
1396 || is_debug_info(&filename)
1397 || is_dylib(&filename)
1398 || (is_check && filename.ends_with(".rmeta")))
1399 {
1400 continue;
1401 }
1402
1403 let filename = Path::new(&*filename);
1404
1405 // If this was an output file in the "host dir" we don't actually
1406 // worry about it, it's not relevant for us
1407 if filename.starts_with(&host_root_dir) {
1408 // Unless it's a proc macro used in the compiler
1409 if crate_types.iter().any(|t| t == "proc-macro") {
1410 deps.push((filename.to_path_buf(), DependencyType::Host));
1411 }
1412 continue;
1413 }
1414
1415 // If this was output in the `deps` dir then this is a precise file
1416 // name (hash included) so we start tracking it.
1417 if filename.starts_with(&target_deps_dir) {
1418 deps.push((filename.to_path_buf(), DependencyType::Target));
1419 continue;
1420 }
1421
1422 // Otherwise this was a "top level artifact" which right now doesn't
1423 // have a hash in the name, but there's a version of this file in
1424 // the `deps` folder which *does* have a hash in the name. That's
1425 // the one we'll want to we'll probe for it later.
1426 //
1427 // We do not use `Path::file_stem` or `Path::extension` here,
1428 // because some generated files may have multiple extensions e.g.
1429 // `std-<hash>.dll.lib` on Windows. The aforementioned methods only
1430 // split the file name by the last extension (`.lib`) while we need
1431 // to split by all extensions (`.dll.lib`).
1432 let expected_len = t!(filename.metadata()).len();
1433 let filename = filename.file_name().unwrap().to_str().unwrap();
1434 let mut parts = filename.splitn(2, '.');
1435 let file_stem = parts.next().unwrap().to_owned();
1436 let extension = parts.next().unwrap().to_owned();
1437
1438 toplevel.push((file_stem, extension, expected_len));
1439 }
1440 });
1441
1442 if !ok {
1443 crate::detail_exit(1);
1444 }
1445
1446 // Ok now we need to actually find all the files listed in `toplevel`. We've
1447 // got a list of prefix/extensions and we basically just need to find the
1448 // most recent file in the `deps` folder corresponding to each one.
1449 let contents = t!(target_deps_dir.read_dir())
1450 .map(|e| t!(e))
1451 .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
1452 .collect::<Vec<_>>();
1453 for (prefix, extension, expected_len) in toplevel {
1454 let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| {
1455 meta.len() == expected_len
1456 && filename
1457 .strip_prefix(&prefix[..])
1458 .map(|s| s.starts_with('-') && s.ends_with(&extension[..]))
1459 .unwrap_or(false)
1460 });
1461 let max = candidates.max_by_key(|&&(_, _, ref metadata)| {
1462 metadata.modified().expect("mtime should be available on all relevant OSes")
1463 });
1464 let path_to_add = match max {
1465 Some(triple) => triple.0.to_str().unwrap(),
1466 None => panic!("no output generated for {:?} {:?}", prefix, extension),
1467 };
1468 if is_dylib(path_to_add) {
1469 let candidate = format!("{}.lib", path_to_add);
1470 let candidate = PathBuf::from(candidate);
1471 if candidate.exists() {
1472 deps.push((candidate, DependencyType::Target));
1473 }
1474 }
1475 deps.push((path_to_add.into(), DependencyType::Target));
1476 }
1477
1478 deps.extend(additional_target_deps);
1479 deps.sort();
1480 let mut new_contents = Vec::new();
1481 for (dep, dependency_type) in deps.iter() {
1482 new_contents.extend(match *dependency_type {
1483 DependencyType::Host => b"h",
1484 DependencyType::Target => b"t",
1485 DependencyType::TargetSelfContained => b"s",
1486 });
1487 new_contents.extend(dep.to_str().unwrap().as_bytes());
1488 new_contents.extend(b"\0");
1489 }
1490 t!(fs::write(&stamp, &new_contents));
1491 deps.into_iter().map(|(d, _)| d).collect()
1492 }
1493
1494 pub fn stream_cargo(
1495 builder: &Builder<'_>,
1496 cargo: Cargo,
1497 tail_args: Vec<String>,
1498 cb: &mut dyn FnMut(CargoMessage<'_>),
1499 ) -> bool {
1500 let mut cargo = Command::from(cargo);
1501 if builder.config.dry_run {
1502 return true;
1503 }
1504 // Instruct Cargo to give us json messages on stdout, critically leaving
1505 // stderr as piped so we can get those pretty colors.
1506 let mut message_format = if builder.config.json_output {
1507 String::from("json")
1508 } else {
1509 String::from("json-render-diagnostics")
1510 };
1511 if let Some(s) = &builder.config.rustc_error_format {
1512 message_format.push_str(",json-diagnostic-");
1513 message_format.push_str(s);
1514 }
1515 cargo.arg("--message-format").arg(message_format).stdout(Stdio::piped());
1516
1517 for arg in tail_args {
1518 cargo.arg(arg);
1519 }
1520
1521 builder.verbose(&format!("running: {:?}", cargo));
1522 let mut child = match cargo.spawn() {
1523 Ok(child) => child,
1524 Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e),
1525 };
1526
1527 // Spawn Cargo slurping up its JSON output. We'll start building up the
1528 // `deps` array of all files it generated along with a `toplevel` array of
1529 // files we need to probe for later.
1530 let stdout = BufReader::new(child.stdout.take().unwrap());
1531 for line in stdout.lines() {
1532 let line = t!(line);
1533 match serde_json::from_str::<CargoMessage<'_>>(&line) {
1534 Ok(msg) => {
1535 if builder.config.json_output {
1536 // Forward JSON to stdout.
1537 println!("{}", line);
1538 }
1539 cb(msg)
1540 }
1541 // If this was informational, just print it out and continue
1542 Err(_) => println!("{}", line),
1543 }
1544 }
1545
1546 // Make sure Cargo actually succeeded after we read all of its stdout.
1547 let status = t!(child.wait());
1548 if builder.is_verbose() && !status.success() {
1549 eprintln!(
1550 "command did not execute successfully: {:?}\n\
1551 expected success, got: {}",
1552 cargo, status
1553 );
1554 }
1555 status.success()
1556 }
1557
1558 #[derive(Deserialize)]
1559 pub struct CargoTarget<'a> {
1560 crate_types: Vec<Cow<'a, str>>,
1561 }
1562
1563 #[derive(Deserialize)]
1564 #[serde(tag = "reason", rename_all = "kebab-case")]
1565 pub enum CargoMessage<'a> {
1566 CompilerArtifact {
1567 package_id: Cow<'a, str>,
1568 features: Vec<Cow<'a, str>>,
1569 filenames: Vec<Cow<'a, str>>,
1570 target: CargoTarget<'a>,
1571 },
1572 BuildScriptExecuted {
1573 package_id: Cow<'a, str>,
1574 },
1575 BuildFinished {
1576 success: bool,
1577 },
1578 }