]> git.proxmox.com Git - rustc.git/blob - src/bootstrap/compile.rs
New upstream version 1.43.0+dfsg1
[rustc.git] / src / bootstrap / compile.rs
1 //! Implementation of compiling various phases of the compiler and standard
2 //! library.
3 //!
4 //! This module contains some of the real meat in the rustbuild build system
5 //! which is where Cargo is used to compiler the standard library, libtest, and
6 //! compiler. This module is also responsible for assembling the sysroot as it
7 //! goes along from the output of the previous stage.
8
9 use std::borrow::Cow;
10 use std::env;
11 use std::fs;
12 use std::io::prelude::*;
13 use std::io::BufReader;
14 use std::path::{Path, PathBuf};
15 use std::process::{exit, Command, Stdio};
16 use std::str;
17
18 use build_helper::{output, t, up_to_date};
19 use filetime::FileTime;
20 use serde::Deserialize;
21
22 use crate::builder::Cargo;
23 use crate::dist;
24 use crate::native;
25 use crate::util::{exe, is_dylib};
26 use crate::{Compiler, GitRepo, Mode};
27
28 use crate::builder::{Builder, Kind, RunConfig, ShouldRun, Step};
29 use crate::cache::{Interned, INTERNER};
30
31 #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
32 pub struct Std {
33 pub target: Interned<String>,
34 pub compiler: Compiler,
35 }
36
37 impl Step for Std {
38 type Output = ();
39 const DEFAULT: bool = true;
40
41 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
42 run.all_krates("test")
43 }
44
45 fn make_run(run: RunConfig<'_>) {
46 run.builder.ensure(Std {
47 compiler: run.builder.compiler(run.builder.top_stage, run.host),
48 target: run.target,
49 });
50 }
51
52 /// Builds the standard library.
53 ///
54 /// This will build the standard library for a particular stage of the build
55 /// using the `compiler` targeting the `target` architecture. The artifacts
56 /// created will also be linked into the sysroot directory.
57 fn run(self, builder: &Builder<'_>) {
58 let target = self.target;
59 let compiler = self.compiler;
60
61 if builder.config.keep_stage.contains(&compiler.stage) {
62 builder.info("Warning: Using a potentially old libstd. This may not behave well.");
63 builder.ensure(StdLink { compiler, target_compiler: compiler, target });
64 return;
65 }
66
67 let mut target_deps = builder.ensure(StartupObjects { compiler, target });
68
69 let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
70 if compiler_to_use != compiler {
71 builder.ensure(Std { compiler: compiler_to_use, target });
72 builder.info(&format!("Uplifting stage1 std ({} -> {})", compiler_to_use.host, target));
73
74 // Even if we're not building std this stage, the new sysroot must
75 // still contain the third party objects needed by various targets.
76 copy_third_party_objects(builder, &compiler, target);
77
78 builder.ensure(StdLink {
79 compiler: compiler_to_use,
80 target_compiler: compiler,
81 target,
82 });
83 return;
84 }
85
86 target_deps.extend(copy_third_party_objects(builder, &compiler, target).into_iter());
87
88 let mut cargo = builder.cargo(compiler, Mode::Std, target, "build");
89 std_cargo(builder, target, &mut cargo);
90
91 builder.info(&format!(
92 "Building stage{} std artifacts ({} -> {})",
93 compiler.stage, &compiler.host, target
94 ));
95 run_cargo(
96 builder,
97 cargo,
98 vec![],
99 &libstd_stamp(builder, compiler, target),
100 target_deps,
101 false,
102 );
103
104 builder.ensure(StdLink {
105 compiler: builder.compiler(compiler.stage, builder.config.build),
106 target_compiler: compiler,
107 target,
108 });
109 }
110 }
111
112 /// Copies third party objects needed by various targets.
113 fn copy_third_party_objects(
114 builder: &Builder<'_>,
115 compiler: &Compiler,
116 target: Interned<String>,
117 ) -> Vec<PathBuf> {
118 let libdir = builder.sysroot_libdir(*compiler, target);
119
120 let mut target_deps = vec![];
121
122 let mut copy_and_stamp = |sourcedir: &Path, name: &str| {
123 let target = libdir.join(name);
124 builder.copy(&sourcedir.join(name), &target);
125 target_deps.push(target);
126 };
127
128 // Copies the crt(1,i,n).o startup objects
129 //
130 // Since musl supports fully static linking, we can cross link for it even
131 // with a glibc-targeting toolchain, given we have the appropriate startup
132 // files. As those shipped with glibc won't work, copy the ones provided by
133 // musl so we have them on linux-gnu hosts.
134 if target.contains("musl") {
135 let srcdir = builder.musl_root(target).unwrap().join("lib");
136 for &obj in &["crt1.o", "crti.o", "crtn.o"] {
137 copy_and_stamp(&srcdir, obj);
138 }
139 } else if target.ends_with("-wasi") {
140 let srcdir = builder.wasi_root(target).unwrap().join("lib/wasm32-wasi");
141 copy_and_stamp(&srcdir, "crt1.o");
142 }
143
144 // Copies libunwind.a compiled to be linked with x86_64-fortanix-unknown-sgx.
145 //
146 // This target needs to be linked to Fortanix's port of llvm's libunwind.
147 // libunwind requires support for rwlock and printing to stderr,
148 // which is provided by std for this target.
149 if target == "x86_64-fortanix-unknown-sgx" {
150 let src_path_env = "X86_FORTANIX_SGX_LIBS";
151 let src =
152 env::var(src_path_env).unwrap_or_else(|_| panic!("{} not found in env", src_path_env));
153 copy_and_stamp(Path::new(&src), "libunwind.a");
154 }
155
156 if builder.config.sanitizers && compiler.stage != 0 {
157 // The sanitizers are only copied in stage1 or above,
158 // to avoid creating dependency on LLVM.
159 target_deps.extend(copy_sanitizers(builder, &compiler, target));
160 }
161
162 target_deps
163 }
164
165 /// Configure cargo to compile the standard library, adding appropriate env vars
166 /// and such.
167 pub fn std_cargo(builder: &Builder<'_>, target: Interned<String>, cargo: &mut Cargo) {
168 if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
169 cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
170 }
171
172 // Determine if we're going to compile in optimized C intrinsics to
173 // the `compiler-builtins` crate. These intrinsics live in LLVM's
174 // `compiler-rt` repository, but our `src/llvm-project` submodule isn't
175 // always checked out, so we need to conditionally look for this. (e.g. if
176 // an external LLVM is used we skip the LLVM submodule checkout).
177 //
178 // Note that this shouldn't affect the correctness of `compiler-builtins`,
179 // but only its speed. Some intrinsics in C haven't been translated to Rust
180 // yet but that's pretty rare. Other intrinsics have optimized
181 // implementations in C which have only had slower versions ported to Rust,
182 // so we favor the C version where we can, but it's not critical.
183 //
184 // If `compiler-rt` is available ensure that the `c` feature of the
185 // `compiler-builtins` crate is enabled and it's configured to learn where
186 // `compiler-rt` is located.
187 let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
188 let compiler_builtins_c_feature = if compiler_builtins_root.exists() {
189 cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
190 " compiler-builtins-c".to_string()
191 } else {
192 String::new()
193 };
194
195 if builder.no_std(target) == Some(true) {
196 let mut features = "compiler-builtins-mem".to_string();
197 features.push_str(&compiler_builtins_c_feature);
198
199 // for no-std targets we only compile a few no_std crates
200 cargo
201 .args(&["-p", "alloc"])
202 .arg("--manifest-path")
203 .arg(builder.src.join("src/liballoc/Cargo.toml"))
204 .arg("--features")
205 .arg("compiler-builtins-mem compiler-builtins-c");
206 } else {
207 let mut features = builder.std_features();
208 features.push_str(&compiler_builtins_c_feature);
209
210 cargo
211 .arg("--features")
212 .arg(features)
213 .arg("--manifest-path")
214 .arg(builder.src.join("src/libtest/Cargo.toml"));
215
216 // Help the libc crate compile by assisting it in finding various
217 // sysroot native libraries.
218 if target.contains("musl") {
219 if let Some(p) = builder.musl_root(target) {
220 let root = format!("native={}/lib", p.to_str().unwrap());
221 cargo.rustflag("-L").rustflag(&root);
222 }
223 }
224
225 if target.ends_with("-wasi") {
226 if let Some(p) = builder.wasi_root(target) {
227 let root = format!("native={}/lib/wasm32-wasi", p.to_str().unwrap());
228 cargo.rustflag("-L").rustflag(&root);
229 }
230 }
231 }
232 }
233
234 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
235 struct StdLink {
236 pub compiler: Compiler,
237 pub target_compiler: Compiler,
238 pub target: Interned<String>,
239 }
240
241 impl Step for StdLink {
242 type Output = ();
243
244 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
245 run.never()
246 }
247
248 /// Link all libstd rlibs/dylibs into the sysroot location.
249 ///
250 /// Links those artifacts generated by `compiler` to the `stage` compiler's
251 /// sysroot for the specified `host` and `target`.
252 ///
253 /// Note that this assumes that `compiler` has already generated the libstd
254 /// libraries for `target`, and this method will find them in the relevant
255 /// output directory.
256 fn run(self, builder: &Builder<'_>) {
257 let compiler = self.compiler;
258 let target_compiler = self.target_compiler;
259 let target = self.target;
260 builder.info(&format!(
261 "Copying stage{} std from stage{} ({} -> {} / {})",
262 target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
263 ));
264 let libdir = builder.sysroot_libdir(target_compiler, target);
265 let hostdir = builder.sysroot_libdir(target_compiler, compiler.host);
266 add_to_sysroot(builder, &libdir, &hostdir, &libstd_stamp(builder, compiler, target));
267 }
268 }
269
270 /// Copies sanitizer runtime libraries into target libdir.
271 fn copy_sanitizers(
272 builder: &Builder<'_>,
273 compiler: &Compiler,
274 target: Interned<String>,
275 ) -> Vec<PathBuf> {
276 let runtimes: Vec<native::SanitizerRuntime> = builder.ensure(native::Sanitizers { target });
277
278 if builder.config.dry_run {
279 return Vec::new();
280 }
281
282 let mut target_deps = Vec::new();
283 let libdir = builder.sysroot_libdir(*compiler, target);
284
285 for runtime in &runtimes {
286 let dst = libdir.join(&runtime.name);
287 builder.copy(&runtime.path, &dst);
288
289 if target == "x86_64-apple-darwin" {
290 // Update the library install name reflect the fact it has been renamed.
291 let status = Command::new("install_name_tool")
292 .arg("-id")
293 .arg(format!("@rpath/{}", runtime.name))
294 .arg(&dst)
295 .status()
296 .expect("failed to execute `install_name_tool`");
297 assert!(status.success());
298 }
299
300 target_deps.push(dst);
301 }
302
303 target_deps
304 }
305
306 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
307 pub struct StartupObjects {
308 pub compiler: Compiler,
309 pub target: Interned<String>,
310 }
311
312 impl Step for StartupObjects {
313 type Output = Vec<PathBuf>;
314
315 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
316 run.path("src/rtstartup")
317 }
318
319 fn make_run(run: RunConfig<'_>) {
320 run.builder.ensure(StartupObjects {
321 compiler: run.builder.compiler(run.builder.top_stage, run.host),
322 target: run.target,
323 });
324 }
325
326 /// Builds and prepare startup objects like rsbegin.o and rsend.o
327 ///
328 /// These are primarily used on Windows right now for linking executables/dlls.
329 /// They don't require any library support as they're just plain old object
330 /// files, so we just use the nightly snapshot compiler to always build them (as
331 /// no other compilers are guaranteed to be available).
332 fn run(self, builder: &Builder<'_>) -> Vec<PathBuf> {
333 let for_compiler = self.compiler;
334 let target = self.target;
335 if !target.contains("windows-gnu") {
336 return vec![];
337 }
338
339 let mut target_deps = vec![];
340
341 let src_dir = &builder.src.join("src/rtstartup");
342 let dst_dir = &builder.native_dir(target).join("rtstartup");
343 let sysroot_dir = &builder.sysroot_libdir(for_compiler, target);
344 t!(fs::create_dir_all(dst_dir));
345
346 for file in &["rsbegin", "rsend"] {
347 let src_file = &src_dir.join(file.to_string() + ".rs");
348 let dst_file = &dst_dir.join(file.to_string() + ".o");
349 if !up_to_date(src_file, dst_file) {
350 let mut cmd = Command::new(&builder.initial_rustc);
351 builder.run(
352 cmd.env("RUSTC_BOOTSTRAP", "1")
353 .arg("--cfg")
354 .arg("bootstrap")
355 .arg("--target")
356 .arg(target)
357 .arg("--emit=obj")
358 .arg("-o")
359 .arg(dst_file)
360 .arg(src_file),
361 );
362 }
363
364 let target = sysroot_dir.join((*file).to_string() + ".o");
365 builder.copy(dst_file, &target);
366 target_deps.push(target);
367 }
368
369 for obj in ["crt2.o", "dllcrt2.o"].iter() {
370 let src = compiler_file(builder, builder.cc(target), target, obj);
371 let target = sysroot_dir.join(obj);
372 builder.copy(&src, &target);
373 target_deps.push(target);
374 }
375
376 target_deps
377 }
378 }
379
380 #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
381 pub struct Rustc {
382 pub target: Interned<String>,
383 pub compiler: Compiler,
384 }
385
386 impl Step for Rustc {
387 type Output = ();
388 const ONLY_HOSTS: bool = true;
389 const DEFAULT: bool = true;
390
391 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
392 run.all_krates("rustc-main")
393 }
394
395 fn make_run(run: RunConfig<'_>) {
396 run.builder.ensure(Rustc {
397 compiler: run.builder.compiler(run.builder.top_stage, run.host),
398 target: run.target,
399 });
400 }
401
402 /// Builds the compiler.
403 ///
404 /// This will build the compiler for a particular stage of the build using
405 /// the `compiler` targeting the `target` architecture. The artifacts
406 /// created will also be linked into the sysroot directory.
407 fn run(self, builder: &Builder<'_>) {
408 let compiler = self.compiler;
409 let target = self.target;
410
411 builder.ensure(Std { compiler, target });
412
413 if builder.config.keep_stage.contains(&compiler.stage) {
414 builder.info("Warning: Using a potentially old librustc. This may not behave well.");
415 builder.ensure(RustcLink { compiler, target_compiler: compiler, target });
416 return;
417 }
418
419 let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
420 if compiler_to_use != compiler {
421 builder.ensure(Rustc { compiler: compiler_to_use, target });
422 builder
423 .info(&format!("Uplifting stage1 rustc ({} -> {})", builder.config.build, target));
424 builder.ensure(RustcLink {
425 compiler: compiler_to_use,
426 target_compiler: compiler,
427 target,
428 });
429 return;
430 }
431
432 // Ensure that build scripts and proc macros have a std / libproc_macro to link against.
433 builder.ensure(Std {
434 compiler: builder.compiler(self.compiler.stage, builder.config.build),
435 target: builder.config.build,
436 });
437
438 let mut cargo = builder.cargo(compiler, Mode::Rustc, target, "build");
439 rustc_cargo(builder, &mut cargo, target);
440
441 builder.info(&format!(
442 "Building stage{} compiler artifacts ({} -> {})",
443 compiler.stage, &compiler.host, target
444 ));
445 run_cargo(
446 builder,
447 cargo,
448 vec![],
449 &librustc_stamp(builder, compiler, target),
450 vec![],
451 false,
452 );
453
454 // We used to build librustc_codegen_llvm as a separate step,
455 // which produced a dylib that the compiler would dlopen() at runtime.
456 // This meant that we only needed to make sure that libLLVM.so was
457 // installed by the time we went to run a tool using it - since
458 // librustc_codegen_llvm was effectively a standalone artifact,
459 // other crates were completely oblivious to its dependency
460 // on `libLLVM.so` during build time.
461 //
462 // However, librustc_codegen_llvm is now built as an ordinary
463 // crate during the same step as the rest of the compiler crates.
464 // This means that any crates depending on it will see the fact
465 // that it uses `libLLVM.so` as a native library, and will
466 // cause us to pass `-llibLLVM.so` to the linker when we link
467 // a binary.
468 //
469 // For `rustc` itself, this works out fine.
470 // During the `Assemble` step, we call `dist::maybe_install_llvm_dylib`
471 // to copy libLLVM.so into the `stage` directory. We then link
472 // the compiler binary, which will find `libLLVM.so` in the correct place.
473 //
474 // However, this is insufficient for tools that are build against stage0
475 // (e.g. stage1 rustdoc). Since `Assemble` for stage0 doesn't actually do anything,
476 // we won't have `libLLVM.so` in the stage0 sysroot. In the past, this wasn't
477 // a problem - we would copy the tool binary into its correct stage directory
478 // (e.g. stage1 for a stage1 rustdoc built against a stage0 compiler).
479 // Since libLLVM.so wasn't resolved until runtime, it was fine for it to
480 // not exist while we were building it.
481 //
482 // To ensure that we can still build stage1 tools against a stage0 compiler,
483 // we explicitly copy libLLVM.so into the stage0 sysroot when building
484 // the stage0 compiler. This ensures that tools built against stage0
485 // will see libLLVM.so at build time, making the linker happy.
486 if compiler.stage == 0 {
487 builder.info(&format!("Installing libLLVM.so to stage 0 ({})", compiler.host));
488 let sysroot = builder.sysroot(compiler);
489 dist::maybe_install_llvm_dylib(builder, compiler.host, &sysroot);
490 }
491
492 builder.ensure(RustcLink {
493 compiler: builder.compiler(compiler.stage, builder.config.build),
494 target_compiler: compiler,
495 target,
496 });
497 }
498 }
499
500 pub fn rustc_cargo(builder: &Builder<'_>, cargo: &mut Cargo, target: Interned<String>) {
501 cargo
502 .arg("--features")
503 .arg(builder.rustc_features())
504 .arg("--manifest-path")
505 .arg(builder.src.join("src/rustc/Cargo.toml"));
506 rustc_cargo_env(builder, cargo, target);
507 }
508
509 pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: Interned<String>) {
510 // Set some configuration variables picked up by build scripts and
511 // the compiler alike
512 cargo
513 .env("CFG_RELEASE", builder.rust_release())
514 .env("CFG_RELEASE_CHANNEL", &builder.config.channel)
515 .env("CFG_VERSION", builder.rust_version())
516 .env("CFG_PREFIX", builder.config.prefix.clone().unwrap_or_default());
517
518 let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
519 cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
520
521 if let Some(ref ver_date) = builder.rust_info.commit_date() {
522 cargo.env("CFG_VER_DATE", ver_date);
523 }
524 if let Some(ref ver_hash) = builder.rust_info.sha() {
525 cargo.env("CFG_VER_HASH", ver_hash);
526 }
527 if !builder.unstable_features() {
528 cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
529 }
530 if let Some(ref s) = builder.config.rustc_default_linker {
531 cargo.env("CFG_DEFAULT_LINKER", s);
532 }
533 if builder.config.rustc_parallel {
534 cargo.rustflag("--cfg=parallel_compiler");
535 }
536 if builder.config.rust_verify_llvm_ir {
537 cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
538 }
539
540 // Pass down configuration from the LLVM build into the build of
541 // librustc_llvm and librustc_codegen_llvm.
542 //
543 // Note that this is disabled if LLVM itself is disabled or we're in a check
544 // build, where if we're in a check build there's no need to build all of
545 // LLVM and such.
546 if builder.config.llvm_enabled() && builder.kind != Kind::Check {
547 if builder.is_rust_llvm(target) {
548 cargo.env("LLVM_RUSTLLVM", "1");
549 }
550 let llvm_config = builder.ensure(native::Llvm { target });
551 cargo.env("LLVM_CONFIG", &llvm_config);
552 let target_config = builder.config.target_config.get(&target);
553 if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
554 cargo.env("CFG_LLVM_ROOT", s);
555 }
556 // Some LLVM linker flags (-L and -l) may be needed to link librustc_llvm.
557 if let Some(ref s) = builder.config.llvm_ldflags {
558 cargo.env("LLVM_LINKER_FLAGS", s);
559 }
560 // Building with a static libstdc++ is only supported on linux right now,
561 // not for MSVC or macOS
562 if builder.config.llvm_static_stdcpp
563 && !target.contains("freebsd")
564 && !target.contains("msvc")
565 && !target.contains("apple")
566 {
567 let file = compiler_file(builder, builder.cxx(target).unwrap(), target, "libstdc++.a");
568 cargo.env("LLVM_STATIC_STDCPP", file);
569 }
570 if builder.config.llvm_link_shared || builder.config.llvm_thin_lto {
571 cargo.env("LLVM_LINK_SHARED", "1");
572 }
573 if builder.config.llvm_use_libcxx {
574 cargo.env("LLVM_USE_LIBCXX", "1");
575 }
576 if builder.config.llvm_optimize && !builder.config.llvm_release_debuginfo {
577 cargo.env("LLVM_NDEBUG", "1");
578 }
579 }
580 }
581
582 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
583 struct RustcLink {
584 pub compiler: Compiler,
585 pub target_compiler: Compiler,
586 pub target: Interned<String>,
587 }
588
589 impl Step for RustcLink {
590 type Output = ();
591
592 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
593 run.never()
594 }
595
596 /// Same as `std_link`, only for librustc
597 fn run(self, builder: &Builder<'_>) {
598 let compiler = self.compiler;
599 let target_compiler = self.target_compiler;
600 let target = self.target;
601 builder.info(&format!(
602 "Copying stage{} rustc from stage{} ({} -> {} / {})",
603 target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
604 ));
605 add_to_sysroot(
606 builder,
607 &builder.sysroot_libdir(target_compiler, target),
608 &builder.sysroot_libdir(target_compiler, compiler.host),
609 &librustc_stamp(builder, compiler, target),
610 );
611 }
612 }
613
614 /// Cargo's output path for the standard library in a given stage, compiled
615 /// by a particular compiler for the specified target.
616 pub fn libstd_stamp(
617 builder: &Builder<'_>,
618 compiler: Compiler,
619 target: Interned<String>,
620 ) -> PathBuf {
621 builder.cargo_out(compiler, Mode::Std, target).join(".libstd.stamp")
622 }
623
624 /// Cargo's output path for librustc in a given stage, compiled by a particular
625 /// compiler for the specified target.
626 pub fn librustc_stamp(
627 builder: &Builder<'_>,
628 compiler: Compiler,
629 target: Interned<String>,
630 ) -> PathBuf {
631 builder.cargo_out(compiler, Mode::Rustc, target).join(".librustc.stamp")
632 }
633
634 pub fn compiler_file(
635 builder: &Builder<'_>,
636 compiler: &Path,
637 target: Interned<String>,
638 file: &str,
639 ) -> PathBuf {
640 let mut cmd = Command::new(compiler);
641 cmd.args(builder.cflags(target, GitRepo::Rustc));
642 cmd.arg(format!("-print-file-name={}", file));
643 let out = output(&mut cmd);
644 PathBuf::from(out.trim())
645 }
646
647 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
648 pub struct Sysroot {
649 pub compiler: Compiler,
650 }
651
652 impl Step for Sysroot {
653 type Output = Interned<PathBuf>;
654
655 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
656 run.never()
657 }
658
659 /// Returns the sysroot for the `compiler` specified that *this build system
660 /// generates*.
661 ///
662 /// That is, the sysroot for the stage0 compiler is not what the compiler
663 /// thinks it is by default, but it's the same as the default for stages
664 /// 1-3.
665 fn run(self, builder: &Builder<'_>) -> Interned<PathBuf> {
666 let compiler = self.compiler;
667 let sysroot = if compiler.stage == 0 {
668 builder.out.join(&compiler.host).join("stage0-sysroot")
669 } else {
670 builder.out.join(&compiler.host).join(format!("stage{}", compiler.stage))
671 };
672 let _ = fs::remove_dir_all(&sysroot);
673 t!(fs::create_dir_all(&sysroot));
674 INTERNER.intern_path(sysroot)
675 }
676 }
677
678 #[derive(Debug, Copy, PartialOrd, Ord, Clone, PartialEq, Eq, Hash)]
679 pub struct Assemble {
680 /// The compiler which we will produce in this step. Assemble itself will
681 /// take care of ensuring that the necessary prerequisites to do so exist,
682 /// that is, this target can be a stage2 compiler and Assemble will build
683 /// previous stages for you.
684 pub target_compiler: Compiler,
685 }
686
687 impl Step for Assemble {
688 type Output = Compiler;
689
690 fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
691 run.never()
692 }
693
694 /// Prepare a new compiler from the artifacts in `stage`
695 ///
696 /// This will assemble a compiler in `build/$host/stage$stage`. The compiler
697 /// must have been previously produced by the `stage - 1` builder.build
698 /// compiler.
699 fn run(self, builder: &Builder<'_>) -> Compiler {
700 let target_compiler = self.target_compiler;
701
702 if target_compiler.stage == 0 {
703 assert_eq!(
704 builder.config.build, target_compiler.host,
705 "Cannot obtain compiler for non-native build triple at stage 0"
706 );
707 // The stage 0 compiler for the build triple is always pre-built.
708 return target_compiler;
709 }
710
711 // Get the compiler that we'll use to bootstrap ourselves.
712 //
713 // Note that this is where the recursive nature of the bootstrap
714 // happens, as this will request the previous stage's compiler on
715 // downwards to stage 0.
716 //
717 // Also note that we're building a compiler for the host platform. We
718 // only assume that we can run `build` artifacts, which means that to
719 // produce some other architecture compiler we need to start from
720 // `build` to get there.
721 //
722 // FIXME: Perhaps we should download those libraries?
723 // It would make builds faster...
724 //
725 // FIXME: It may be faster if we build just a stage 1 compiler and then
726 // use that to bootstrap this compiler forward.
727 let build_compiler = builder.compiler(target_compiler.stage - 1, builder.config.build);
728
729 // Build the libraries for this compiler to link to (i.e., the libraries
730 // it uses at runtime). NOTE: Crates the target compiler compiles don't
731 // link to these. (FIXME: Is that correct? It seems to be correct most
732 // of the time but I think we do link to these for stage2/bin compilers
733 // when not performing a full bootstrap).
734 builder.ensure(Rustc { compiler: build_compiler, target: target_compiler.host });
735
736 let lld_install = if builder.config.lld_enabled {
737 Some(builder.ensure(native::Lld { target: target_compiler.host }))
738 } else {
739 None
740 };
741
742 let stage = target_compiler.stage;
743 let host = target_compiler.host;
744 builder.info(&format!("Assembling stage{} compiler ({})", stage, host));
745
746 // Link in all dylibs to the libdir
747 let sysroot = builder.sysroot(target_compiler);
748 let rustc_libdir = builder.rustc_libdir(target_compiler);
749 t!(fs::create_dir_all(&rustc_libdir));
750 let src_libdir = builder.sysroot_libdir(build_compiler, host);
751 for f in builder.read_dir(&src_libdir) {
752 let filename = f.file_name().into_string().unwrap();
753 if is_dylib(&filename) {
754 builder.copy(&f.path(), &rustc_libdir.join(&filename));
755 }
756 }
757
758 let libdir = builder.sysroot_libdir(target_compiler, target_compiler.host);
759 if let Some(lld_install) = lld_install {
760 let src_exe = exe("lld", &target_compiler.host);
761 let dst_exe = exe("rust-lld", &target_compiler.host);
762 // we prepend this bin directory to the user PATH when linking Rust binaries. To
763 // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
764 let dst = libdir.parent().unwrap().join("bin");
765 t!(fs::create_dir_all(&dst));
766 builder.copy(&lld_install.join("bin").join(&src_exe), &dst.join(&dst_exe));
767 }
768
769 // Ensure that `libLLVM.so` ends up in the newly build compiler directory,
770 // so that it can be found when the newly built `rustc` is run.
771 dist::maybe_install_llvm_dylib(builder, target_compiler.host, &sysroot);
772
773 // Link the compiler binary itself into place
774 let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
775 let rustc = out_dir.join(exe("rustc_binary", &*host));
776 let bindir = sysroot.join("bin");
777 t!(fs::create_dir_all(&bindir));
778 let compiler = builder.rustc(target_compiler);
779 builder.copy(&rustc, &compiler);
780
781 target_compiler
782 }
783 }
784
785 /// Link some files into a rustc sysroot.
786 ///
787 /// For a particular stage this will link the file listed in `stamp` into the
788 /// `sysroot_dst` provided.
789 pub fn add_to_sysroot(
790 builder: &Builder<'_>,
791 sysroot_dst: &Path,
792 sysroot_host_dst: &Path,
793 stamp: &Path,
794 ) {
795 t!(fs::create_dir_all(&sysroot_dst));
796 t!(fs::create_dir_all(&sysroot_host_dst));
797 for (path, host) in builder.read_stamp_file(stamp) {
798 if host {
799 builder.copy(&path, &sysroot_host_dst.join(path.file_name().unwrap()));
800 } else {
801 builder.copy(&path, &sysroot_dst.join(path.file_name().unwrap()));
802 }
803 }
804 }
805
806 pub fn run_cargo(
807 builder: &Builder<'_>,
808 cargo: Cargo,
809 tail_args: Vec<String>,
810 stamp: &Path,
811 additional_target_deps: Vec<PathBuf>,
812 is_check: bool,
813 ) -> Vec<PathBuf> {
814 if builder.config.dry_run {
815 return Vec::new();
816 }
817
818 // `target_root_dir` looks like $dir/$target/release
819 let target_root_dir = stamp.parent().unwrap();
820 // `target_deps_dir` looks like $dir/$target/release/deps
821 let target_deps_dir = target_root_dir.join("deps");
822 // `host_root_dir` looks like $dir/release
823 let host_root_dir = target_root_dir
824 .parent()
825 .unwrap() // chop off `release`
826 .parent()
827 .unwrap() // chop off `$target`
828 .join(target_root_dir.file_name().unwrap());
829
830 // Spawn Cargo slurping up its JSON output. We'll start building up the
831 // `deps` array of all files it generated along with a `toplevel` array of
832 // files we need to probe for later.
833 let mut deps = Vec::new();
834 let mut toplevel = Vec::new();
835 let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
836 let (filenames, crate_types) = match msg {
837 CargoMessage::CompilerArtifact {
838 filenames,
839 target: CargoTarget { crate_types },
840 ..
841 } => (filenames, crate_types),
842 _ => return,
843 };
844 for filename in filenames {
845 // Skip files like executables
846 if !(filename.ends_with(".rlib")
847 || filename.ends_with(".lib")
848 || filename.ends_with(".a")
849 || is_dylib(&filename)
850 || (is_check && filename.ends_with(".rmeta")))
851 {
852 continue;
853 }
854
855 let filename = Path::new(&*filename);
856
857 // If this was an output file in the "host dir" we don't actually
858 // worry about it, it's not relevant for us
859 if filename.starts_with(&host_root_dir) {
860 // Unless it's a proc macro used in the compiler
861 if crate_types.iter().any(|t| t == "proc-macro") {
862 deps.push((filename.to_path_buf(), true));
863 }
864 continue;
865 }
866
867 // If this was output in the `deps` dir then this is a precise file
868 // name (hash included) so we start tracking it.
869 if filename.starts_with(&target_deps_dir) {
870 deps.push((filename.to_path_buf(), false));
871 continue;
872 }
873
874 // Otherwise this was a "top level artifact" which right now doesn't
875 // have a hash in the name, but there's a version of this file in
876 // the `deps` folder which *does* have a hash in the name. That's
877 // the one we'll want to we'll probe for it later.
878 //
879 // We do not use `Path::file_stem` or `Path::extension` here,
880 // because some generated files may have multiple extensions e.g.
881 // `std-<hash>.dll.lib` on Windows. The aforementioned methods only
882 // split the file name by the last extension (`.lib`) while we need
883 // to split by all extensions (`.dll.lib`).
884 let expected_len = t!(filename.metadata()).len();
885 let filename = filename.file_name().unwrap().to_str().unwrap();
886 let mut parts = filename.splitn(2, '.');
887 let file_stem = parts.next().unwrap().to_owned();
888 let extension = parts.next().unwrap().to_owned();
889
890 toplevel.push((file_stem, extension, expected_len));
891 }
892 });
893
894 if !ok {
895 exit(1);
896 }
897
898 // Ok now we need to actually find all the files listed in `toplevel`. We've
899 // got a list of prefix/extensions and we basically just need to find the
900 // most recent file in the `deps` folder corresponding to each one.
901 let contents = t!(target_deps_dir.read_dir())
902 .map(|e| t!(e))
903 .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
904 .collect::<Vec<_>>();
905 for (prefix, extension, expected_len) in toplevel {
906 let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| {
907 filename.starts_with(&prefix[..])
908 && filename[prefix.len()..].starts_with('-')
909 && filename.ends_with(&extension[..])
910 && meta.len() == expected_len
911 });
912 let max = candidates
913 .max_by_key(|&&(_, _, ref metadata)| FileTime::from_last_modification_time(metadata));
914 let path_to_add = match max {
915 Some(triple) => triple.0.to_str().unwrap(),
916 None => panic!("no output generated for {:?} {:?}", prefix, extension),
917 };
918 if is_dylib(path_to_add) {
919 let candidate = format!("{}.lib", path_to_add);
920 let candidate = PathBuf::from(candidate);
921 if candidate.exists() {
922 deps.push((candidate, false));
923 }
924 }
925 deps.push((path_to_add.into(), false));
926 }
927
928 deps.extend(additional_target_deps.into_iter().map(|d| (d, false)));
929 deps.sort();
930 let mut new_contents = Vec::new();
931 for (dep, proc_macro) in deps.iter() {
932 new_contents.extend(if *proc_macro { b"h" } else { b"t" });
933 new_contents.extend(dep.to_str().unwrap().as_bytes());
934 new_contents.extend(b"\0");
935 }
936 t!(fs::write(&stamp, &new_contents));
937 deps.into_iter().map(|(d, _)| d).collect()
938 }
939
940 pub fn stream_cargo(
941 builder: &Builder<'_>,
942 cargo: Cargo,
943 tail_args: Vec<String>,
944 cb: &mut dyn FnMut(CargoMessage<'_>),
945 ) -> bool {
946 let mut cargo = Command::from(cargo);
947 if builder.config.dry_run {
948 return true;
949 }
950 // Instruct Cargo to give us json messages on stdout, critically leaving
951 // stderr as piped so we can get those pretty colors.
952 let mut message_format = String::from("json-render-diagnostics");
953 if let Some(s) = &builder.config.rustc_error_format {
954 message_format.push_str(",json-diagnostic-");
955 message_format.push_str(s);
956 }
957 cargo.arg("--message-format").arg(message_format).stdout(Stdio::piped());
958
959 for arg in tail_args {
960 cargo.arg(arg);
961 }
962
963 builder.verbose(&format!("running: {:?}", cargo));
964 let mut child = match cargo.spawn() {
965 Ok(child) => child,
966 Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e),
967 };
968
969 // Spawn Cargo slurping up its JSON output. We'll start building up the
970 // `deps` array of all files it generated along with a `toplevel` array of
971 // files we need to probe for later.
972 let stdout = BufReader::new(child.stdout.take().unwrap());
973 for line in stdout.lines() {
974 let line = t!(line);
975 match serde_json::from_str::<CargoMessage<'_>>(&line) {
976 Ok(msg) => cb(msg),
977 // If this was informational, just print it out and continue
978 Err(_) => println!("{}", line),
979 }
980 }
981
982 // Make sure Cargo actually succeeded after we read all of its stdout.
983 let status = t!(child.wait());
984 if !status.success() {
985 eprintln!(
986 "command did not execute successfully: {:?}\n\
987 expected success, got: {}",
988 cargo, status
989 );
990 }
991 status.success()
992 }
993
994 #[derive(Deserialize)]
995 pub struct CargoTarget<'a> {
996 crate_types: Vec<Cow<'a, str>>,
997 }
998
999 #[derive(Deserialize)]
1000 #[serde(tag = "reason", rename_all = "kebab-case")]
1001 pub enum CargoMessage<'a> {
1002 CompilerArtifact {
1003 package_id: Cow<'a, str>,
1004 features: Vec<Cow<'a, str>>,
1005 filenames: Vec<Cow<'a, str>>,
1006 target: CargoTarget<'a>,
1007 },
1008 BuildScriptExecuted {
1009 package_id: Cow<'a, str>,
1010 },
1011 }