]> git.proxmox.com Git - rustc.git/blob - src/compiler-rt/lib/builtins/arm/comparesf2.S
Imported Upstream version 1.6.0+dfsg1
[rustc.git] / src / compiler-rt / lib / builtins / arm / comparesf2.S
1 //===-- comparesf2.S - Implement single-precision soft-float comparisons --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the following soft-fp_t comparison routines:
11 //
12 // __eqsf2 __gesf2 __unordsf2
13 // __lesf2 __gtsf2
14 // __ltsf2
15 // __nesf2
16 //
17 // The semantics of the routines grouped in each column are identical, so there
18 // is a single implementation for each, with multiple names.
19 //
20 // The routines behave as follows:
21 //
22 // __lesf2(a,b) returns -1 if a < b
23 // 0 if a == b
24 // 1 if a > b
25 // 1 if either a or b is NaN
26 //
27 // __gesf2(a,b) returns -1 if a < b
28 // 0 if a == b
29 // 1 if a > b
30 // -1 if either a or b is NaN
31 //
32 // __unordsf2(a,b) returns 0 if both a and b are numbers
33 // 1 if either a or b is NaN
34 //
35 // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
36 // NaN values.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "../assembly.h"
41 .syntax unified
42
43 .p2align 2
44 DEFINE_COMPILERRT_FUNCTION(__eqsf2)
45 // Make copies of a and b with the sign bit shifted off the top. These will
46 // be used to detect zeros and NaNs.
47 mov r2, r0, lsl #1
48 mov r3, r1, lsl #1
49
50 // We do the comparison in three stages (ignoring NaN values for the time
51 // being). First, we orr the absolute values of a and b; this sets the Z
52 // flag if both a and b are zero (of either sign). The shift of r3 doesn't
53 // effect this at all, but it *does* make sure that the C flag is clear for
54 // the subsequent operations.
55 orrs r12, r2, r3, lsr #1
56
57 // Next, we check if a and b have the same or different signs. If they have
58 // opposite signs, this eor will set the N flag.
59 it ne
60 eorsne r12, r0, r1
61
62 // If a and b are equal (either both zeros or bit identical; again, we're
63 // ignoring NaNs for now), this subtract will zero out r0. If they have the
64 // same sign, the flags are updated as they would be for a comparison of the
65 // absolute values of a and b.
66 it pl
67 subspl r0, r2, r3
68
69 // If a is smaller in magnitude than b and both have the same sign, place
70 // the negation of the sign of b in r0. Thus, if both are negative and
71 // a > b, this sets r0 to 0; if both are positive and a < b, this sets
72 // r0 to -1.
73 //
74 // This is also done if a and b have opposite signs and are not both zero,
75 // because in that case the subtract was not performed and the C flag is
76 // still clear from the shift argument in orrs; if a is positive and b
77 // negative, this places 0 in r0; if a is negative and b positive, -1 is
78 // placed in r0.
79 it lo
80 mvnlo r0, r1, asr #31
81
82 // If a is greater in magnitude than b and both have the same sign, place
83 // the sign of b in r0. Thus, if both are negative and a < b, -1 is placed
84 // in r0, which is the desired result. Conversely, if both are positive
85 // and a > b, zero is placed in r0.
86 it hi
87 movhi r0, r1, asr #31
88
89 // If you've been keeping track, at this point r0 contains -1 if a < b and
90 // 0 if a >= b. All that remains to be done is to set it to 1 if a > b.
91 // If a == b, then the Z flag is set, so we can get the correct final value
92 // into r0 by simply or'ing with 1 if Z is clear.
93 it ne
94 orrne r0, r0, #1
95
96 // Finally, we need to deal with NaNs. If either argument is NaN, replace
97 // the value in r0 with 1.
98 cmp r2, #0xff000000
99 ite ls
100 cmpls r3, #0xff000000
101 movhi r0, #1
102 JMP(lr)
103 END_COMPILERRT_FUNCTION(__eqsf2)
104 DEFINE_COMPILERRT_FUNCTION_ALIAS(__lesf2, __eqsf2)
105 DEFINE_COMPILERRT_FUNCTION_ALIAS(__ltsf2, __eqsf2)
106 DEFINE_COMPILERRT_FUNCTION_ALIAS(__nesf2, __eqsf2)
107
108 .p2align 2
109 DEFINE_COMPILERRT_FUNCTION(__gtsf2)
110 // Identical to the preceding except in that we return -1 for NaN values.
111 // Given that the two paths share so much code, one might be tempted to
112 // unify them; however, the extra code needed to do so makes the code size
113 // to performance tradeoff very hard to justify for such small functions.
114 mov r2, r0, lsl #1
115 mov r3, r1, lsl #1
116 orrs r12, r2, r3, lsr #1
117 it ne
118 eorsne r12, r0, r1
119 it pl
120 subspl r0, r2, r3
121 it lo
122 mvnlo r0, r1, asr #31
123 it hi
124 movhi r0, r1, asr #31
125 it ne
126 orrne r0, r0, #1
127 cmp r2, #0xff000000
128 ite ls
129 cmpls r3, #0xff000000
130 movhi r0, #-1
131 JMP(lr)
132 END_COMPILERRT_FUNCTION(__gtsf2)
133 DEFINE_COMPILERRT_FUNCTION_ALIAS(__gesf2, __gtsf2)
134
135 .p2align 2
136 DEFINE_COMPILERRT_FUNCTION(__unordsf2)
137 // Return 1 for NaN values, 0 otherwise.
138 mov r2, r0, lsl #1
139 mov r3, r1, lsl #1
140 mov r0, #0
141 cmp r2, #0xff000000
142 ite ls
143 cmpls r3, #0xff000000
144 movhi r0, #1
145 JMP(lr)
146 END_COMPILERRT_FUNCTION(__unordsf2)
147
148 DEFINE_AEABI_FUNCTION_ALIAS(__aeabi_fcmpun, __unordsf2)