]> git.proxmox.com Git - rustc.git/blob - src/compiler-rt/lib/builtins/fp_extend_impl.inc
New upstream version 1.19.0+dfsg3
[rustc.git] / src / compiler-rt / lib / builtins / fp_extend_impl.inc
1 //=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a fairly generic conversion from a narrower to a wider
11 // IEEE-754 floating-point type. The constants and types defined following the
12 // includes below parameterize the conversion.
13 //
14 // It does not support types that don't use the usual IEEE-754 interchange
15 // formats; specifically, some work would be needed to adapt it to
16 // (for example) the Intel 80-bit format or PowerPC double-double format.
17 //
18 // Note please, however, that this implementation is only intended to support
19 // *widening* operations; if you need to convert to a *narrower* floating-point
20 // type (e.g. double -> float), then this routine will not do what you want it
21 // to.
22 //
23 // It also requires that integer types at least as large as both formats
24 // are available on the target platform; this may pose a problem when trying
25 // to add support for quad on some 32-bit systems, for example. You also may
26 // run into trouble finding an appropriate CLZ function for wide source types;
27 // you will likely need to roll your own on some platforms.
28 //
29 // Finally, the following assumptions are made:
30 //
31 // 1. floating-point types and integer types have the same endianness on the
32 // target platform
33 //
34 // 2. quiet NaNs, if supported, are indicated by the leading bit of the
35 // significand field being set
36 //
37 //===----------------------------------------------------------------------===//
38
39 #include "fp_extend.h"
40
41 static __inline dst_t __extendXfYf2__(src_t a) {
42 // Various constants whose values follow from the type parameters.
43 // Any reasonable optimizer will fold and propagate all of these.
44 const int srcBits = sizeof(src_t)*CHAR_BIT;
45 const int srcExpBits = srcBits - srcSigBits - 1;
46 const int srcInfExp = (1 << srcExpBits) - 1;
47 const int srcExpBias = srcInfExp >> 1;
48
49 const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
50 const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
51 const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
52 const src_rep_t srcAbsMask = srcSignMask - 1;
53 const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
54 const src_rep_t srcNaNCode = srcQNaN - 1;
55
56 const int dstBits = sizeof(dst_t)*CHAR_BIT;
57 const int dstExpBits = dstBits - dstSigBits - 1;
58 const int dstInfExp = (1 << dstExpBits) - 1;
59 const int dstExpBias = dstInfExp >> 1;
60
61 const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
62
63 // Break a into a sign and representation of the absolute value
64 const src_rep_t aRep = srcToRep(a);
65 const src_rep_t aAbs = aRep & srcAbsMask;
66 const src_rep_t sign = aRep & srcSignMask;
67 dst_rep_t absResult;
68
69 // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
70 // to (signed) int. To avoid that, explicitly cast to src_rep_t.
71 if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
72 // a is a normal number.
73 // Extend to the destination type by shifting the significand and
74 // exponent into the proper position and rebiasing the exponent.
75 absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
76 absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
77 }
78
79 else if (aAbs >= srcInfinity) {
80 // a is NaN or infinity.
81 // Conjure the result by beginning with infinity, then setting the qNaN
82 // bit (if needed) and right-aligning the rest of the trailing NaN
83 // payload field.
84 absResult = (dst_rep_t)dstInfExp << dstSigBits;
85 absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
86 absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
87 }
88
89 else if (aAbs) {
90 // a is denormal.
91 // renormalize the significand and clear the leading bit, then insert
92 // the correct adjusted exponent in the destination type.
93 const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
94 absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
95 absResult ^= dstMinNormal;
96 const int resultExponent = dstExpBias - srcExpBias - scale + 1;
97 absResult |= (dst_rep_t)resultExponent << dstSigBits;
98 }
99
100 else {
101 // a is zero.
102 absResult = 0;
103 }
104
105 // Apply the signbit to (dst_t)abs(a).
106 const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
107 return dstFromRep(result);
108 }