]> git.proxmox.com Git - rustc.git/blob - src/compiler-rt/lib/builtins/i386/umoddi3.S
Imported Upstream version 1.6.0+dfsg1
[rustc.git] / src / compiler-rt / lib / builtins / i386 / umoddi3.S
1 // This file is dual licensed under the MIT and the University of Illinois Open
2 // Source Licenses. See LICENSE.TXT for details.
3
4 #include "../assembly.h"
5
6 // du_int __umoddi3(du_int a, du_int b);
7
8 // result = remainder of a / b.
9 // both inputs and the output are 64-bit unsigned integers.
10 // This will do whatever the underlying hardware is set to do on division by zero.
11 // No other exceptions are generated, as the divide cannot overflow.
12 //
13 // This is targeted at 32-bit x86 *only*, as this can be done directly in hardware
14 // on x86_64. The performance goal is ~40 cycles per divide, which is faster than
15 // currently possible via simulation of integer divides on the x87 unit.
16 //
17
18 // Stephen Canon, December 2008
19
20 #ifdef __i386__
21
22 .text
23 .balign 4
24 DEFINE_COMPILERRT_FUNCTION(__umoddi3)
25
26 pushl %ebx
27 movl 20(%esp), %ebx // Find the index i of the leading bit in b.
28 bsrl %ebx, %ecx // If the high word of b is zero, jump to
29 jz 9f // the code to handle that special case [9].
30
31 /* High word of b is known to be non-zero on this branch */
32
33 movl 16(%esp), %eax // Construct bhi, containing bits [1+i:32+i] of b
34
35 shrl %cl, %eax // Practically, this means that bhi is given by:
36 shrl %eax //
37 notl %ecx // bhi = (high word of b) << (31 - i) |
38 shll %cl, %ebx // (low word of b) >> (1 + i)
39 orl %eax, %ebx //
40 movl 12(%esp), %edx // Load the high and low words of a, and jump
41 movl 8(%esp), %eax // to [2] if the high word is larger than bhi
42 cmpl %ebx, %edx // to avoid overflowing the upcoming divide.
43 jae 2f
44
45 /* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
46
47 divl %ebx // eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r
48
49 pushl %edi
50 notl %ecx
51 shrl %eax
52 shrl %cl, %eax // q = qs >> (1 + i)
53 movl %eax, %edi
54 mull 20(%esp) // q*blo
55 movl 12(%esp), %ebx
56 movl 16(%esp), %ecx // ECX:EBX = a
57 subl %eax, %ebx
58 sbbl %edx, %ecx // ECX:EBX = a - q*blo
59 movl 24(%esp), %eax
60 imull %edi, %eax // q*bhi
61 subl %eax, %ecx // ECX:EBX = a - q*b
62
63 jnc 1f // if positive, this is the result.
64 addl 20(%esp), %ebx // otherwise
65 adcl 24(%esp), %ecx // ECX:EBX = a - (q-1)*b = result
66 1: movl %ebx, %eax
67 movl %ecx, %edx
68
69 popl %edi
70 popl %ebx
71 retl
72
73
74 2: /* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
75
76 subl %ebx, %edx // subtract bhi from ahi so that divide will not
77 divl %ebx // overflow, and find q and r such that
78 //
79 // ahi:alo = (1:q)*bhi + r
80 //
81 // Note that q is a number in (31-i).(1+i)
82 // fix point.
83
84 pushl %edi
85 notl %ecx
86 shrl %eax
87 orl $0x80000000, %eax
88 shrl %cl, %eax // q = (1:qs) >> (1 + i)
89 movl %eax, %edi
90 mull 20(%esp) // q*blo
91 movl 12(%esp), %ebx
92 movl 16(%esp), %ecx // ECX:EBX = a
93 subl %eax, %ebx
94 sbbl %edx, %ecx // ECX:EBX = a - q*blo
95 movl 24(%esp), %eax
96 imull %edi, %eax // q*bhi
97 subl %eax, %ecx // ECX:EBX = a - q*b
98
99 jnc 3f // if positive, this is the result.
100 addl 20(%esp), %ebx // otherwise
101 adcl 24(%esp), %ecx // ECX:EBX = a - (q-1)*b = result
102 3: movl %ebx, %eax
103 movl %ecx, %edx
104
105 popl %edi
106 popl %ebx
107 retl
108
109
110
111 9: /* High word of b is zero on this branch */
112
113 movl 12(%esp), %eax // Find qhi and rhi such that
114 movl 16(%esp), %ecx //
115 xorl %edx, %edx // ahi = qhi*b + rhi with 0 ≤ rhi < b
116 divl %ecx //
117 movl %eax, %ebx //
118 movl 8(%esp), %eax // Find rlo such that
119 divl %ecx //
120 movl %edx, %eax // rhi:alo = qlo*b + rlo with 0 ≤ rlo < b
121 popl %ebx //
122 xorl %edx, %edx // and return 0:rlo
123 retl //
124 END_COMPILERRT_FUNCTION(__umoddi3)
125
126 #endif // __i386__